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Abstract: This article describes the design of a new model IKMART, for classification of 

documents and their incorporation into categories based on the KMART architecture. The 

architecture consists of two networks that mutually cooperate through the interconnection 

of weights and the output matrix of the coded documents. The architecture retains required 

network features such as incremental learning without the need of descriptive and 

input/output fuzzy data, learning acceleration and classification of documents and a 

minimal number of user-defined parameters. The conducted experiments with real 

documents showed a more precise categorization of documents and higher classification 

performance in comparison to the classic KMART algorithm. 
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1 Introduction 

The number of various electronic documents grows enormously every day. It 

appears that it is necessary to search for new algorithms for their fast and reliable 

classification [1] [2]. New document classification algorithms contribute to this 

objective; however, descriptive data for classifiers are mostly not available. 

Therefore, fully controlled classification approaches are not entirely appropriate 

for broader deployment, for example on the web. Categorization approaches 

contained in algorithms of non-controlled learning appear to be more suitable for 
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broader deployment [3]. A wide application of neural networks based on the 

theory of adaptive resonance (ART) was found in document clustering and 

classification tasks. Some of the applications are briefly described in Section 2, 

more may be found, for example, in the works [4]–[9]. 

This work is organized into 6 sections. Section 2 generally deals with problems of 

category proliferation and methods of minimizing of their occurrence. In Section 

3, we present the types of ART networks based on fuzzy clustering, by which, it is 

possible to categorize overlapping data into more categories with various 

membership degrees. In Section 4, we present the learning algorithm of a 

KMART (Kondadadi & Kozma Modified ART) network with the cluster creating 

principle. The core of the contribution is created by Sections 5 and 6. In Section 5, 

we propose a new model for the optimized algorithm KMART, called IKMART 

(Improved KMART), which enables to optimize the dilemma of 

stability/plasticity, increase the precision of categorization and influence the speed 

of categorization. In Section 6, we present results of experiments of the 

categorization of real text documents, which contextually overlap. The conclusion 

provides a brief summary. 

2 The Category Proliferation Problem in ART 

Networks 

The category proliferation problem, which was described in the works [10]–[14], 

often occurs in the categorization of documents using ART or ARTMAP 

networks. Category proliferation leads to the creation of a large number of 

categories, which mostly decrease the precision of categorization [10]. 

Category proliferation may occur due to various reasons such as noise [15], 

training with large datasets (overtraining) [16], or due to unsuitable setting of 

network parameters [17]. Another reason of the category proliferation occurrence, 

as stated in literature, may be a state when a network is trained with data of related 

content [16], [18]. For contextually related input documents there are various 

categories as well as their mutual intersections created by a network, thus, it is not 

easy to correctly generalize an input area of documents. 

Various methods on how to deal with the category proliferation problem in Fuzzy 

ART and Fuzzy ARTMAP networks have been devised. More broadly, there are 

basically two kinds of methods for the minimization of category proliferation: (1) 

post-process methods, which are realized in networks after the completion of a 

training process. These methods are based on the cut rule [19], which removes 

redundant categories based on their frequency of use and precision, or (2) 

adjustment methods in construction of a learning algorithm in order to avoid a 

large number of categories even before they are created [20]. This method 
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includes modifications in the way of learning [21] and actualization of the 

network weight system [22], with the objective of decreasing category 

proliferation resulting from noisy inputs, as well as, Fuzzy ARTMAP variants, 

Distributed ARTMAP [23], Gaussian ARTMAP [23] and boosted ARTMAP [23]. 

Isawa [20] designed the improvement of a Fuzzy ART algorithm, called C-FART, 

based on the connection of overlapping categories in order to remove the category 

proliferation problem. An important feature of this approach is control of the 

threshold parameter AT for individual categories and its change in the learning 

process. The parameter determines if categories merge or if they stay unmerged. 

In the work [10] there were suggested changes in the learning algorithm of a 

Fuzzy ARTMAP network, which enable a network to predict more than one class 

during classification. There was introduced a threshold value of activation, which 

enabled a network to create more than one prediction of a class when it was 

necessary, especially for patterns of overlapping areas between classes. A part of 

this algorithm is also the suppression of formation of small categories, which 

improved the categorization and predictive precision. Other features dealing with 

the category proliferation problem in ART networks can be found for example in 

literature [11], [21], [24], [25], which focus mostly on removing of the category 

proliferation problem in ARTMAP networks caused by noisy data. In the works 

[10], [14] authors deal with the creation of proliferation from the perspective of 

overlapping input data. In these works, data are categorized only into one winning 

category, which is unsuitable for text document processing applications, because 

in output categories there is removed the possible content context of documents 

with different categories. 

For the correction of creation of new categories, there is a vigilance parameter  

used in most ART networks, however, its change has only little effect. This is 

notable especially on a set of synthetic documents. The greatest progress in this 

direction has been reached by Isawa [14], who introduced a threshold parameter 

AT within a Fuzzy ART algorithm for similar categories and its change during the 

learning process. However, this approach does not guarantee complete stability 

(immutability) of categories; it only reduces several similar categories by 

connecting them. 

3 Fuzzy Clustering and the Categorization by a 

Fuzzy ART Network 

The literature overview stated in the previous section showed that none of the 

published works in the area of category proliferation problems solves fuzzy 

approaches enabling to categorize overlapping data into more categories with a 

varying membership degree. The stated works categorize data only into one 

winning category. For example, if there exists, a document that belongs to the 
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category of atheism as well as to the category of Christianity, it is expected to be 

classified into both categories with a certain membership degree, not only into a 

winning category. Therefore, there were further developed ART networks based 

on fuzzy clustering, which are suitable for binary and analogous input data. There 

have been methods published, which suggest various ways of fuzzy clustering 

such as a system of concept duplication [17] for an ART1 network, an IFART 

(Improved Fuzzy ART) system for a Fuzzy ART network [26], and a KMART 

system also for a fuzzy ART network [5]. Based on the stated methods, the 

KMART method appears to be the most suitable for the concept of fuzzy 

clustering in ART networks, because the method of concept duplication is 

demanding on computing memory and moreover, it implements an evidence 

parameter, which has large memory requirements at low values and at higher 

values a network starts to behave unstably [17]. An IFART network is based on 

the post-process method, which calculates the membership of data in clusters after 

their formation by a very difficult calculating process, because after the clustering 

process it has to go through all data (e.g. documents) in all clusters and calculate 

membership degrees of every data instance in all clusters based on cluster centers 

[26]. In a KMART network, a membership of documents in individual clusters is 

calculated directly in the learning algorithm. This approach to fuzzification is 

simple from the calculating and implementation perspective and it brings also 

further advantages such as reduction of user-defined input parameters [5]. Its 

learning algorithm with the description of cluster formation is stated in the 

following section. 

4 Algorithm and the Description of Cluster 

Formation in a KMART Network 

In the work [5], there was suggested a variation of the existing Fuzzy ART 

algorithm [27], so that it is possible to apply Fuzzy clustering. This system is 

called KMART according to its authors Kondadadi & Kozma [3] and its steps are 

stated in Table 1. 

The learning algorithm KAMART is based on a modified version of a fuzzy art 

network. Instead of choosing maximal similarity of a category and using the 

vigilance test for verification if a category is close enough to an input pattern, 

there can be controlled every category in the recognition layer by application of 

the vigilance test. If a category passes the vigilance test, then an input document is 

inserted into this particular category. 

Measurement of similarity lies within the vigilance test that defines the 

membership degree of a given input sample, in an actual cluster. It enables a 

document to be in more clusters with a different membership degree. All 

prototypes that pass the vigilance test are actualized according to the learning rule 
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(4). This modification has two other advantages compared to a fuzzy ART 

network. Firstly, a fuzzy ART network is time consuming because it requires 

iterative browsing during searching for a winning category that satisfies the 

vigilance test. In the described modification, this searching is not necessary 

because every node in the recognition layer has already been controlled. This 

makes the model less difficult for calculation. Another advantage is that by 

eliminating the category choice step, we are avoiding the use of a choice 

parameter . This will reduce a number of user-defined parameters in the system. 

This modification does not violate the underlying principal of an ART network, 

i.e. to avoid the dilemma of stability and plasticity. KMART is still an incremental 

clustering algorithm and before learning a new input it controls the input and it 

learns an output pattern only if it corresponds to any of the stored patterns with a 

certain tolerance. 

Table 1 

Learning algorithm of a KMART (Kondadadi & Kozma Modified ART) network 

1. Load a new input vector (document) I containing binary or analogous 

components. 

Let I:=[subsequent input vector] 

2. Calculate membership degrees for all outputs 𝑦(𝑗) (it is a membership 

degree of a document in j category) based on the relationship:  

𝑦(𝑗):=
|𝐼⋀𝑤𝑗|

|𝐼|
, (1) 

Where,   is fuzzy AND operator, defined as: (𝑥 ∧ 𝑦) = min(𝑥𝑖 , 𝑦𝑖). 

3. Match the calculated value 𝑦(𝑗) to the matrix 𝑚𝑎𝑝, on a place of actually 

processed category 𝑗(𝑗 > 1) and document 𝑑𝑜𝑐 (𝑑𝑜𝑐 > 1): 

𝑚𝑎𝑝(𝑗, 𝑑𝑜𝑐): = 𝑦(𝑗)  (2) 

4. Vigilance test: 

If 𝑦(𝑗) ≥ 𝜌, then go to the step 5, otherwise go to the step 6.   (3) 

5. Actualize the winning neuron (learning rule): 

𝑤𝑗
(𝑛𝑒𝑤)

≔ 𝛽(𝐼 ∧ 𝑤𝑗
(𝑜𝑙𝑑)) + (1 − 𝛽)𝑤𝑗

(𝑜𝑙𝑑)
 (4) 

6. Return: go to the step 2, while ≤ max number of categories, otherwise go to 

the step 1. If there is no other vector (document) in order or 

 𝑤(𝑛𝑒𝑤) = 𝑤(𝑜𝑙𝑑), then finish. 
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5 Proposal of a Modified Model of KMART Network 

for Fuzzy Clustering and the Categorization of 

Contextually-related Documents 

It has been shown that by modification of the original Fuzzy ART neural network 

there can be reached the excellent results in the area of clustering and 

categorization of text documents [5], [7], [28]–[30]. One of the above described 

modifications, which enables fuzzy clustering is a KMART network [5]. There are 

also newer approaches to fuzzy clustering for ART networks [17], [26], however, 

these have serious deficiencies described in section 3. Therefore, our proposed 

modified model of a KMART network is based on the KMART network stated in 

the work [5]. The objective of the proposed modification is to remove the category 

proliferation problem caused by the influence of text documents overlapping in 

content, apply a fuzzy approach in the categorization of these documents and 

optimize features of the model – especially stability and plasticity of categories, 

the precision of categorization and computing speed – on real text documents. The 

model consists of two separate parts (see Figure 1): the fuzzy clustering part 

(KMART) and the fuzzy categorization part (modified KMART). These parts are 

interconnected by a mutual layer, which is created by matrixes of fuzzy categories 

and documents map and network weights 𝑤𝑖𝑗 . 

The function of the fuzzy clustering part of the model, based on the KMART 

network, is designed to keep plasticity of categories. It means that a training set of 

text documents chosen by a user will suitably create or expand a number of 

categories. In the second run, one representative document is sufficient to add a 

new category. A representative document should ideally contain as much as 

possible common keywords with the categorized documents from the fuzzy 

categorization part, which should belong to this category. As both parts work with 

network weights wij in both directions, i.e. for writing and reading, both arrows in 

Figure 1 are double-headed. Only output values of documents’ membership 

degree in individual categories are recorded in the matrix of documents and 

categories map, thus the communication direction is single. 

 

Figure 1 

General view of the model architecture after connection of both parts 
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Fuzzy clustering 
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The function of the fuzzy categorization part is designed to maintain stability of 

the categories. As this part of the model is prevented from the possibility to create 

new categories, the absolute stability of categories even in case of contextually 

overlapping documents is assured, which contributes to solve the category 

proliferation problem. The fuzzy categorization part is based on the learning 

algorithm of a KMART network, and it is based on the following three 

adjustments of the original algorithm from Table 1. 

After the calculation of membership degrees for all outputs 𝑦(𝑗) ∶=
|𝐼⋀𝑤𝑗|

|𝐼|
 and 

their integration into the output matrix map, there is omitted the vigilance test  

𝑦(𝑗) ≥ 𝜌, based on which it is decided if a new category will or will not be 

created. This step (step no. 4 from the algorithm in Table 1) was completely 

removed together with the difficult set up of the vigilance parameter . The 

membership degree 𝑦 is calculated for all documents and categories based on the 

equation (5) (step no. 2 from the algorithm in Table 2). The creation of new 

categories was prevented by this adjustment. At the same time, there was 

cancelled the burden of creation of new categories (by omitting the increment of 

category calculation and adding new rows to the matrix map and weights wij). 

The second adjustment lies in a partial removal of the step for the weight 

adaptation (learning rule) 𝑤𝑗

(𝑛𝑒𝑤)
≔ 𝛽(𝐼 ∧ 𝑤𝑗

(𝑜𝑙𝑑)) + (1 − 𝛽)𝑤𝑗

(𝑜𝑙𝑑)
. Removing of 

this step in the algorithm in Table 1 will not violate the precision of a set of 

synthetic documents or in a training set of real documents. In case of testing of a 

real document set, it is necessary to return this step back because the precision of 

categorization would be decreased. In case of removing of the weight adaptation 

there will also be removed the last user-defined parameter, which is the learning 

speed . 

The third adjustment of the algorithm assures its stability and resistance against its 

cycling. The KMART algorithm can reach a stable state in case of satisfying of 

the condition: 𝑤(𝑛𝑒𝑤) = 𝑤(𝑜𝑙𝑑). It means that in the previous and current state 

there is no change of weights (Δ𝑤 = 0). 

It often happens in practice, that e.g. in case of wrong set up of parameters weighs 

will oscillate and the stability condition is not fulfilled (Δ𝑤 > 0). The adjustment 

consists of removal of this condition. The algorithm ends when membership 

degrees for all incoming documents to all exiting categories are calculated. 

Regarding the categorization part in Figure 1, the matrix of documents and 

categories map as well as the network weights wij are shared also for the second 

categorization part of the model. Thus, the categorization part of the model is 

connected to a learned network through these two matrixes and it uses it for its 

processes. After the description of performed adjustments in the algorithm 

KMART, there is the new fuzzy categorization algorithm IKMART stated in 

Table 2. 
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Table 2 

Steps of the new algorithm IKMART 

1. Load a new input vector (document) I containing binary or analogous parts. 

Let I:=[subsequent input vector]. 

If there is no document in order, go to the step 6. 

2. Calculate membership degrees for all outputs 𝑦(𝑗) (it is a membership 

degree of a document to j category) based on the relationship: 

𝑦(𝑗):=
|𝐼⋀𝑤𝑗|

|𝐼|
,  (5) 

where   is fuzzy operator AND, defined as: (𝑥 ∧ 𝑦) = min(𝑥𝑖 , 𝑦𝑖). 

3. Match the calculated value 𝑦(𝑗) to the matrix 𝑚𝑎𝑝, on a place of the actually 

processed category 𝑗(𝑗 > 1) and document 𝑑𝑜𝑐 (𝑑𝑜𝑐 > 1): 

𝑚𝑎𝑝(𝑗, 𝑑𝑜𝑐): = −𝑦(𝑗) (6) 

Negative value – 𝑦 is a distinguishing feature in order to identify which 

algorithm calculated the given value in the mutual matrix map. Algorithm 

KMART uses positive values. 

4. Weight adaptation wj: 

𝑤𝑗
(𝑛𝑒𝑤)

≔ 𝛽(𝐼 ∧ 𝑤𝑗
(𝑜𝑙𝑑)) + (1 − 𝛽)𝑤𝑗

(𝑜𝑙𝑑)
 (7) 

5. Return to the step 2, until 𝑗 ≤ 𝑚𝑎𝑥, where max stands for the maximum 

number of categories, otherwise go to the step 1. 

6. The end of algorithm. 

In the following, we present the behavior of the algorithm IKMART and results of 

the testing on a real situation with real text documents. 

6 Experiments – The Categorization of Real Text 

Documents 

The objective of the experiment is to verify if the proposed model reaches the 

required stability of categories and if there occurs an improvement of quality and 
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speed in comparison to the original KMART model also on real text documents, 

which are contextually overlapping. 

Figure 2 schematically shows the overlapping of sets of individual documents. 

Based on Figure 2, we define two basic characteristics for the evaluation of 

categorization quality: Precision and Recall [31]. 

 

Figure 2 

Relationship between the document sets 

Precision P can be defined based on the relationship: 

𝑃 =
|𝑅𝐼|

|𝐼|
, (8) 

where |RI| is a number of retrieved relevant documents and |I| is a number of all 

retrieved documents. Recall R can be defined as a ratio of a number of retrieved 

relevant documents (|RI|) the number of relevant documents (|R|): 

𝑅 =
|𝑅𝐼|

|𝑅|
  (9) 

For the calculation of categorization quality there is usually used the so-called F-

measure (or also F1 score). The F-measure is a value, which is a compromise 

between the precision P and recall R and it serves to overall evaluation of quality 

of the information processing model. It is expressed by the following relationship: 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙
𝑃.𝑅

𝑃+𝑅
 (10) 

Text documents are selected from the corpus 20 Newsgroups
1
. It is a corpus 

consisting of English texts from email discussion groups. The corpus in total 

contains 20 topics (categories) such as: sport, computers, religion, politics, 

science, electronics, medicine and so on. 

The training matrix contains 500 selected pre-processed text documents from the 

corpus 20 Newsgroups, each with 118 terms. The documents are divided into five 

categories, in each of them there are 2 x 50 = 100 documents. In order to create 

more precise clusters, documents are duplicated (2 x repeated in every category). 

                                                           
1
 Available at: http://qwone.com/~jason/20Newsgroups/  
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Since the documents are for an algorithm without learning, this set does not 

contain information (description) to which categories should a given document 

belong. Therefore, it was necessary to repeat 50 documents for each category. 

Thus, there was reached more precise clustering of documents into categories. 

Otherwise the KMART network created an incorrect structure of categories. The 

training matrix of documents and terms is built by the method Term Frequency -

 Inverse Document Frequency (TF-IDF). The input matrix contains the following 

categories: 1. Hockey, 2. Christianity, 3. PC hardware, 4. Atheism, 5. MAC 

hardware. The testing matrix contains 100 pre-processed documents from the 

same corpus as the training matrix, each with 118 terms. Documents are divided 

into two categories with 50 documents, while every document belongs to two 

categories at the same time. The testing matrix is again set up by the method TF-

IDF and it contains the following two different double combinations. The first 

combination is labeled as Windows (expected context with 3
rd

 and 5
th

 category 

from the training matrix) and the second one is the combination with the label 

Religion (expected context with 2
nd

 and 4
th

 category from the training matrix). 

In the process of the experiment, the KMART network was firstly provided with 

the training set. The network created the structure of five categories within the 

clustering process (hockey, Christianity, PC hardware, Atheism, MAC hardware). 

The process was subsequently repeated in order to prove that the network had 

learned correctly. At the most optimal value of parameters  = 0.61 and β = 1 

(determined experimentally), there was the maximum membership degree 0.927 

reached for the training set (see Table. 3). 

Table 3 

Results of algorithms with the training set – real documents 

Algorithm and 

input set 
β  F-measure 

CPU time 

[s] 

Number 

of 

iterations 

Number of 

created 

categories 

KMART TRAIN 1 0.61 0.927 1.547 3 5 

KMART TRAIN 1 0.61 0.927 0.567 1 0 

Fuzzy Kat TRAIN 

without weight adaptation  
- - 0.927 0.524 1 0 

Fuzzy Kat TRAIN 

with weight adaptation 
1 - 0.335 0.551 1 0 

The Fuzzy categorization algorithm IKMART was further modified in this 

experiment so that for reaching of a more precise categorization we applied also 

the step of weight adaptation (learning rule) according to the expression (7). Thus, 

there were created two versions of the fuzzy categorization algorithm IKMART: 

without the weight adaptation and with the weight adaptation. Experiments 

showed that in case of the training set there were reached significantly higher 
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values of a membership degree of documents in categories with the original 

version of the algorithm without the weight adaptation (see Table 3). 

Table 4 shows the reached values of the quality of document categorization into 

categories and values of algorithm performance given by CPU times on the testing 

set of real documents. At the fuzzy categorization, there is monitored if a 

document reached the first highest membership degree (1
st
 HMD) in its category, 

i.e. if there is a document about hockey at the input of the KMART network it 

should reach 1
st
 HMD in the cluster identified as the hockey category. If there is a 

document at the input of the network that has context with e.g. two already created 

categories, then there is the calculation of membership degrees monitored in both 

categories, i.e. 1
st
 HMD and 2

nd
 HMD. Then there are calculated F-measures for 

these two categories (1
st
 HMD and 2

nd
 HMD). Until now, the behavior of 

individual algorithms of the training set was monitored. The first part of the 

experiment finished here. Results are stated in Table 3. Subsequently, it was 

necessary to test the algorithm, with the testing set. 

The experiment in the second part started from the beginning by repeated training 

of the KMART network by the training set and then all the algorithms were tested 

by the testing set with documents from new categories: Windows and Religion. It 

was proven that the use of the Fuzzy categorization algorithm with the weight 

adaptation reaches better values in all monitored parameters than the 

repeated use of the KMART algorithm. Unlike experiments with synthetic 

documents [32], this did not create any new category (which is correct) but both 

F-measures were lower than in the Fuzzy categorization algorithm with the weight 

adaptation and equal to or lower than in the Fuzzy categorization algorithm 

without the weight adaptation. It is caused by the incorrect document 

categorization, what is also shown in Figure 3. The CPU time was lower for both 

versions of the Fuzzy categorization algorithm, because the KMART network 

needed 2 iterations for stabilization. If there was the parameter β<1 in the 

KMART network, then saving of the CPU time in case of the Fuzzy 

categorization algorithm would be significantly higher. 

Table 4 

Results of algorithms with the training and testing set – real documents 

Algorithm and 

input set 
β  

F-

measure 

1st HMD 

F-

measure 

2nd HMD 

Average 

of F-

measures 

CPU 

time 

[s] 

Number 

of 

iterations 

Number 

of created 

categories 

KMART TRAIN 1 0.61 0.927 - - 1.475 3 5 

KMART TEST 1 0.4 0.667 0.667 0.667 0.260 2 0 

Fuzzy Kat TEST 

without weight adaptation 
- - 0.830 0.667 0.749 0.110 1 0 

Fuzzy Kat TEST 

with weight adaptation 
0.4 - 0.953 0.758 0.856 0.110 1 0 
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Figure 3 

Graf of the document categorization from the testing matrix into categories by the Fuzzy categorizing 

algorithm with the weight adaptation 

Figure 3 shows the behavior of the fuzzy categorization algorithm with the weight 

adaptation of the testing matrix. The graph illustrates the more concrete and 

precise progress of both membership degrees than it was in case of the KMART 

network. In case of documents belonging to both categories (Windows and 

Religion) from the testing matrix, there were correctly recognized both expected 

categories from the training matrix. 

Conclusions 

This work is devoted to the issue of decreasing category proliferation, as an 

adverse effect occurring in a network of the ART type, which in the end decreases 

the precision of document categorization. The core of the contribution lies in the 

proposal of the new architecture of the ART network type, with the aim to 

minimize category proliferation and at the same time increase the category 

performance. In the article, there was proposed a model for an Improved KMART 

(IKMART) network consisting of a block of clustering, operated by the fuzzy 

clustering algorithm KMART and a block of fuzzy categorization operated by the 

developed categorization algorithm IKMART. These are interconnected with the 

matrix of documents and the matrix of fuzzy categories. The IKMART model was 

verified for the categorization of real overlapping contextually similar text 

documents. Results of the verification showed that the proposed model provides 

stability of categories and a better qualitative, as well as, performance values on a 

domain of real text documents belonging to more categories than the separate 

basic model KMART. It can be concluded that the proposed model contributed to 

solving of the category proliferation problem in ART networks, caused by content 

related documents, with more existing categories. Next proposed, is the model 

IKMART compared to the conventional fuzzy clustering model Fuzzy C-Means, 

alternatively, with further variations, such as, Gustafson-Kessel Fuzzy C-Means, 

or Kernel-based Fuzzy C-Means. 
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