414 research outputs found

    Placental Flattening via Volumetric Parameterization

    Full text link
    We present a volumetric mesh-based algorithm for flattening the placenta to a canonical template to enable effective visualization of local anatomy and function. Monitoring placental function in vivo promises to support pregnancy assessment and to improve care outcomes. We aim to alleviate visualization and interpretation challenges presented by the shape of the placenta when it is attached to the curved uterine wall. To do so, we flatten the volumetric mesh that captures placental shape to resemble the well-studied ex vivo shape. We formulate our method as a map from the in vivo shape to a flattened template that minimizes the symmetric Dirichlet energy to control distortion throughout the volume. Local injectivity is enforced via constrained line search during gradient descent. We evaluate the proposed method on 28 placenta shapes extracted from MRI images in a clinical study of placental function. We achieve sub-voxel accuracy in mapping the boundary of the placenta to the template while successfully controlling distortion throughout the volume. We illustrate how the resulting mapping of the placenta enhances visualization of placental anatomy and function. Our code is freely available at https://github.com/mabulnaga/placenta-flattening .Comment: MICCAI 201

    Feature-sensitive and Adaptive Image Triangulation: A Super-pixel-based Scheme for Image Segmentation and Mesh Generation

    Get PDF
    With increasing utilization of various imaging techniques (such as CT, MRI and PET) in medical fields, it is often in great need to computationally extract the boundaries of objects of interest, a process commonly known as image segmentation. While numerous approaches have been proposed in literature on automatic/semi-automatic image segmentation, most of these approaches are based on image pixels. The number of pixels in an image can be huge, especially for 3D imaging volumes, which renders the pixel-based image segmentation process inevitably slow. On the other hand, 3D mesh generation from imaging data has become important not only for visualization and quantification but more critically for finite element based numerical simulation. Traditionally image-based mesh generation follows such a procedure as: (1) image boundary segmentation, (2) surface mesh generation from segmented boundaries, and (3) volumetric (e.g., tetrahedral) mesh generation from surface meshes. These three majors steps have been commonly treated as separate algorithms/steps and hence image information, once segmented, is not considered any more in mesh generation. In this thesis, we investigate a super-pixel based scheme that integrates both image segmentation and mesh generation into a single method, making mesh generation truly an image-incorporated approach. Our method, called image content-aware mesh generation, consists of several main steps. First, we generate a set of feature-sensitive, and adaptively distributed points from 2D grayscale images or 3D volumes. A novel image edge enhancement method via randomized shortest paths is introduced to be an optional choice to generate the features’ boundary map in mesh node generation step. Second, a Delaunay-triangulation generator (2D) or tetrahedral mesh generator (3D) is then utilized to generate a 2D triangulation or 3D tetrahedral mesh. The generated triangulation (or tetrahedralization) provides an adaptive partitioning of a given image (or volume). Each cluster of pixels within a triangle (or voxels within a tetrahedron) is called a super-pixel, which forms one of the nodes of a graph and adjacent super-pixels give an edge of the graph. A graph-cut method is then applied to the graph to define the boundary between two subsets of the graph, resulting in good boundary segmentations with high quality meshes. Thanks to the significantly reduced number of elements (super-pixels) as compared to that of pixels in an image, the super-pixel based segmentation method has tremendously improved the segmentation speed, making it feasible for real-time feature detection. In addition, the incorporation of image segmentation into mesh generation makes the generated mesh well adapted to image features, a desired property known as feature-preserving mesh generation

    EIT-MESHER – Segmented FEM Mesh Generation and Refinement

    Get PDF
    EIT-MESHER (https://github.com/EIT-team/Mesher) is C++ software, based on the CGAL library, which generates high quality Finite Element Model tetrahedral meshes from binary masks of 3D volume segmentations. Originally developed for biomedical applications in Electrical Impedance Tomography (EIT) to address the need for custom, non-linear refinement in certain areas (e.g. around electrodes), EIT-MESHER can also be used in other fields where custom FEM refinement is required, such as Diffuse Optical Tomography (DOT)

    Particle-based Sampling and Meshing of Surfaces in Multimaterial Volumes

    Full text link

    Multi-Material Mesh Representation of Anatomical Structures for Deep Brain Stimulation Planning

    Get PDF
    The Dual Contouring algorithm (DC) is a grid-based process used to generate surface meshes from volumetric data. However, DC is unable to guarantee 2-manifold and watertight meshes due to the fact that it produces only one vertex for each grid cube. We present a modified Dual Contouring algorithm that is capable of overcoming this limitation. The proposed method decomposes an ambiguous grid cube into a set of tetrahedral cells and uses novel polygon generation rules that produce 2-manifold and watertight surface meshes with good-quality triangles. These meshes, being watertight and 2-manifold, are geometrically correct, and therefore can be used to initialize tetrahedral meshes. The 2-manifold DC method has been extended into the multi-material domain. Due to its multi-material nature, multi-material surface meshes will contain non-manifold elements along material interfaces or shared boundaries. The proposed multi-material DC algorithm can (1) generate multi-material surface meshes where each material sub-mesh is a 2-manifold and watertight mesh, (2) preserve the non-manifold elements along the material interfaces, and (3) ensure that the material interface or shared boundary between materials is consistent. The proposed method is used to generate multi-material surface meshes of deep brain anatomical structures from a digital atlas of the basal ganglia and thalamus. Although deep brain anatomical structures can be labeled as functionally separate, they are in fact continuous tracts of soft tissue in close proximity to each other. The multi-material meshes generated by the proposed DC algorithm can accurately represent the closely-packed deep brain structures as a single mesh consisting of multiple material sub-meshes. Each sub-mesh represents a distinct functional structure of the brain. Printed and/or digital atlases are important tools for medical research and surgical intervention. While these atlases can provide guidance in identifying anatomical structures, they do not take into account the wide variations in the shape and size of anatomical structures that occur from patient to patient. Accurate, patient-specific representations are especially important for surgical interventions like deep brain stimulation, where even small inaccuracies can result in dangerous complications. The last part of this research effort extends the discrete deformable 2-simplex mesh into the multi-material domain where geometry-based internal forces and image-based external forces are used in the deformation process. This multi-material deformable framework is used to segment anatomical structures of the deep brain region from Magnetic Resonance (MR) data

    Material Characterization and Geometric Segmentation of a Composite Structure Using Microfocus X-Ray Computed Tomography Image-Based Finite Element Modeling

    Get PDF
    This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made
    • …
    corecore