
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

12-1-2016

Feature-sensitive and Adaptive Image
Triangulation: A Super-pixel-based Scheme for
Image Segmentation and Mesh Generation
Ming Xu
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Xu, Ming, "Feature-sensitive and Adaptive Image Triangulation: A Super-pixel-based Scheme for Image Segmentation and Mesh
Generation" (2016). Theses and Dissertations. 1431.
https://dc.uwm.edu/etd/1431

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1431?utm_source=dc.uwm.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

 FEATURE-SENSITIVE AND ADAPTIVE IMAGE

TRIANGULATION: A SUPER-PIXEL-BASED

SCHEME FOR IMAGE SEGMENTATION AND MESH

GENERATION

by

Ming Xu

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin–Milwaukee

December 2016

ii

ABSTRACT

 FEATURE-SENSITIVE AND ADAPTIVE IMAGE

TRIANGULATION: A SUPER-PIXEL-BASED SCHEME

FOR IMAGE SEGMENTATION AND

MESH GENERATION

by

Ming Xu

The University of Wisconsin–Milwaukee, 2016

Under the Supervision of Professor Zeyun Yu

With increasing utilization of various imaging techniques (such as CT, MRI and PET) in

medical fields, it is often in great need to computationally extract the boundaries of objects of

interest, a process commonly known as image segmentation. While numerous approaches have

been proposed in literature on automatic/semi-automatic image segmentation, most of these

approaches are based on image pixels. The number of pixels in an image can be huge, especially

for 3D imaging volumes, which renders the pixel-based image segmentation process inevitably

slow. On the other hand, 3D mesh generation from imaging data has become important not only

for visualization and quantification but more critically for finite element based numerical

simulation. Traditionally image-based mesh generation follows such a procedure as: (1) image

boundary segmentation, (2) surface mesh generation from segmented boundaries, and (3)

volumetric (e.g., tetrahedral) mesh generation from surface meshes. These three majors steps have

iii

been commonly treated as separate algorithms/steps and hence image information, once

segmented, is not considered any more in mesh generation.

In this thesis, we investigate a super-pixel based scheme that integrates both image

segmentation and mesh generation into a single method, making mesh generation truly an image-

incorporated approach. Our method, called image content-aware mesh generation, consists of

several main steps. First, we generate a set of feature-sensitive, and adaptively distributed points

from 2D grayscale images or 3D volumes. A novel image edge enhancement method via

randomized shortest paths is introduced to be an optional choice to generate the features’ boundary

map in mesh node generation step. Second, a Delaunay-triangulation generator (2D) or tetrahedral

mesh generator (3D) is then utilized to generate a 2D triangulation or 3D tetrahedral mesh. The

generated triangulation (or tetrahedralization) provides an adaptive partitioning of a given image

(or volume). Each cluster of pixels within a triangle (or voxels within a tetrahedron) is called a

super-pixel, which forms one of the nodes of a graph and adjacent super-pixels give an edge of the

graph. A graph-cut method is then applied to the graph to define the boundary between two subsets

of the graph, resulting in good boundary segmentations with high quality meshes. Thanks to the

significantly reduced number of elements (super-pixels) as compared to that of pixels in an image,

the super-pixel based segmentation method has tremendously improved the segmentation speed,

making it feasible for real-time feature detection. In addition, the incorporation of image

segmentation into mesh generation makes the generated mesh well adapted to image features, a

desired property known as feature-preserving mesh generation.

iv

TABLE OF CONTENTS

Abstract…………………………………………………………………………………….…....ii

1 Introduction………………………………………………………………………………1

1.1 Image Segmentation…………………………….……………..………………………...3

1.2 2D and 3D Mesh Generation ………….………………………………….…….……...4

1.3 Objectives and Contributions……………………………………………….…….…….6

2 Feature-Sensitive and Adaptive Mesh Generation on 2D Images……………...……...9

2.1 Node Generation……………………………………………………………….….……..9

2.1.1 Canny Sample Points………………………………………………………….….10

2.1.2 Halftoning Sample Points………………………………………………..….…..12

2.1.3 Uniform Sample Points…………………………………………………..….…..14

2.2 Mesh Generation via Delaunay Triangulation……………………………….……...14

2.3 Mesh Smoothing………………………………………………………………………...15

2.3.1 Image-based CVT Scheme………………………………………………..…….16

2.3.2 Image-based ODT Scheme………………………………………………….….18

2.3.3 Edge Flipping Strategy…………………………………………………….……18

2.4 Experimental Results……………………………………………………………...…....21

3 Super-Pixels Based 2D Image Segmentation……………………….………….….….……35

3.1 S-t Graph Cut Method…………………………………………………………….……36

3.1.1 Background of Graph………………………………………………………….....36

3.1.2 Edges Weight Assignment…………………………………………………….....37

3.1.3 Image segmentation based on Min-cut………………………………...…………39

3.2 Experimental results……………………………………………………….…...…43

4 3D Adaptive Meshes Generation and 3D Image Segmentation…………….…………….53

4.1 Nodes Generation……………………………………………………………………….54

4.1.1 Canny Sample Nodes…………………………………………………..………..54

4.1.2 Surfaces Nodes……………………………………………………………..…...56

4.2 Mesh Generation via Delaunay Tetrahedralization…..……..………………………57

v

4.3 Super-voxels Based 3D Segmentation……………………..………………....…..…58

4.4 Surface Smoothing……………………………………………………………….……..59

4.5 Experimental results……………………………………………………………….......59

5 Image Edge Enhancement and Segmentation via Randomized Shortest Paths…..……68

5.1 Seeds Generation……………………………………………………………….……….70

5.1.1 Initial Seed Selection by Users……………………………………………….…..70

5.1.2 Generating Marching Distance Maps………………………………………...…71

5.1.3 Random Seed Selection……………………………………………………….….73

5.2 Image Edge Enhancement by Shortest Paths…………………………………..…..…74

5.3 Edge Detection from the Enhanced Edges………………………………………….….76

5.4 Experimental Results……………………………………………………………..…….77

6 Conclusion…………………………………………………………………………………..84

References………………………………………………………………………………….…....85

Appendices 98

Appendix A: Publications 99

Curriculum Vitae 100

vi

LIST OF FIGURES

1.1 (a) MRI scanner system cutaway. (b) MRI scanner gradient magnets. (a) and (b) are from

national high magnetic field laboratory. http://www.magnet.fsu.edu ……………………1

1.2 Biomedical image segmentation. www.researchgate.net..2

2.1 The original image of 192*256 pixels. (b) The result image of the canny edge detector,

where = 0.7, lower threshod =0.1, and higher threshod = 0.6. The region in red shows an

example of curved-boundary or tiny features. The region in blue is an example of straight-

boundary features. (c) The adaptively sampled points from (b). The red and blue rectangles

show the results of curved-boundary and straight-boundary features respectively. (d) The

final result of adaptive node generation. The green points are the canny edge points and

the red points are the halftoning and uniform sample points. …………………11

2.2 Initial triangle mesh generated by Delaunay triangulation. …………………………….15

2.3 The one-ring neighborhood of x0. Tj is one of the adjacent triangles in the neighborhood.

Cj is the centroid of the Tj . (b) The one-ring neighborhood of x0. xk is one of the

neighboring vertices of x0. Skl and Skr are the left and right triangles of edge x0, xk

respectively………………………………………………………………………………17

2.4 (a) Initial triangle mesh generated by Delaunay triangulation. (b) A closeup look of (a).

(c)Smoothed mesh by the CVT method based on the image features after five iterations.

(d) A closeup look of (c). (e) Smoothed mesh by the ODT method based on the image

features after five iterations. (f) A closeup look of (e)…………………………………..21

2.5 Result of our method running on a 128*128 heart image. (a) The original image. (b) The

result of the sample point generation. Green points are Canny's sample points. Red points

are halftoning and uniform sample points. The time for Canny sample nodes generation is

15 ms. The time for PCA sampling is 12ms (c) The result of initial mesh generated by

Delaunay triangulation. The time for the generation of initial mesh is 15 ms (d) Result of

the image-based ODT method. The time for ODT smoothing is 16ms (e) Result of the

image-based CVT method. The time of the CVT smoothing is 16ms (f) A closeup look at

the rectangular region in (e). (g) A quantitative measure of the quality of the final

http://www.magnet.fsu.edu/
http://www.researchgate.net/

vii

triangulations. The minimum angle is 4.57 degree. The maximum angle is 165.96 degree.

The minimum size of the triangles is 0.499. The maximum size of the triangles is 32.99.22

2.6 Result of our method running on a 256* 256 knee image. (a) The original image. (b) The

result of the sample point generation. Green points are Canny's sample points. Red points

are halftoning and uniform sample points. The time for Canny sample nodes generation is

15 ms. The time for PCA sampling is 31 ms. (c) The result of initial mesh generated by

Delaunay triangulation. The time for the generation of initial mesh is 15 ms. (d) Result

mesh of the image-based ODT method. The time for ODT smoothing is 78 ms. (e) Result

mesh of the image-based CVT method. The time of the CVT smoothing is 62 ms (f) A

closeup look at the rectangular region in (e)……………………………………………..24

2.7 Result of our method running on a 256*256 cardiac cell image. (a) The original image. (b)

The result of the sample point generation. Green points are Canny's sample points. Red

points are halftoning and uniform sample points. The time for Canny sample nodes

generation is 46 ms. The time for PCA sampling is 31 ms (c) Result of initial mesh

generated by Delaunay triangulation. The time for the generation of initial mesh is 15 ms

(d) Result of the image-based ODT method. The time for ODT smoothing is 47 ms (e)

Result of the image-based CVT method. The time of the CVT smoothing is 47 ms (f) A

closeup look at the rectangular region in (e)……………………………………………...27

2.8 Result of our method running on a 1032*912 cardiac cell image. (a) The original image.

(b) The result of the sample point generation. Green points are Canny's sample points. Red

points are halftoning and uniform sample points. The time for Canny sample nodes

generation is 265 ms. The time for PCA sampling is 437 ms. (c) The result of initial mesh

generated by Delaunay triangulation. The time for the generation of initial mesh is 140 ms

(d) Result of the image-based ODT method. The time for ODT smoothing is 641 ms (e)

Result of the image-based CVT method. The time of the CVT smoothing is 562 ms……29

3.1 The weighted graph based on Super-Pixels (2D)………………………………………..35

3.2 Example of S-t graph. Edges drawn by full lines are n-links and edges drawn by dotted

lines are t-links…………………………………………………………………………...36

3.3 Example of Search trees S and T. P are passive nodes and A are active nodes. The blank

nodes are free nodes……………………………………………………………………...39

viii

3.4 Result of image segmentation on a 128*128 heart image. (a) The original image. (b) The

seeds which are chosen manually. Red points are the object seeds and green points are

background seeds. (c) The result of super-pixel based image segmentation. The running

time for segmentation is 15 ms (d) The result of pixel based image segmentation. The

running time for segmentation is 46 ms………………………………………………….43

3.5 Result of image segmentation on a 256*256 heart image. (a) The original image. (b) The

seeds which are chosen manually. Red points are the object seeds and green points are

background seeds. (c) The result of super-pixel based image segmentation. The running

time for segmentation is 16 ms (d) The result of pixel based image segmentation. The

running time for segmentation is 203 ms………………………………………………..45

3.6 Result of image segmentation on a 256*256 knee image. (a) The original image. (b) The

seeds which are chosen manually. Red points are the object seeds and green points are

background seeds. (c) The result of super-pixel based image segmentation. The running

time for segmentation is 16 ms (d) The result of pixel based image segmentation. The

running time for segmentation is 170 ms…………………………………………………47

3.7 Result of image segmentation on a 1032*912 cell image. (a) The original image. (b) The

seeds which are chosen manually. Red points are the object seeds and green points are

background seeds. (c) Result image of super-pixel based image segmentation. The running

time for segmentation is 250 ms (d) Result image of pixel based image segmentation. The

running time for segmentation is 1980 ms……………………………………………….49

4.1 (a) The Iso-surface of a 128*128*128 thoracic cavity 3D volume. (b) The slice image of

thoracic cavity 3D volume. (c) The slice image of the result of 3D Canny edge detector.

Blue rectangular region is the curved-boundary or tiny features. Red rectangular region is

the straight-boundary or big features…………………………………………………….55

4.2 A slice image of the 3D thoracic cavity volume with the adaptively nodes which are marked

in red includ ing bo th Cann y sample nodes and su rfaces nodes …….56

4.3 (a) Iso-surface of a 128*128*128 sphere 3D volume. (b) The adaptive nodes including

both Canny sample nodes and surfaces nodes…………………………………57

4.4 (a) A slice of 128*128*128 thoracic cavity volume mesh generation via Delaunay

tetrahedralization. Nodes number= 51625, tetrahedrons number=324577. (b) A closeup

look at the rectangular region in (a)………………………………………………………58

ix

4.5 (a) Iso-surface of a 128*128*128 sphere 3D volume. (b) The result of classical voxel-

based 3D image segmentation. The running time is 3640. (c) The result of the supervoxel-

based 3D image segmentation. The running time of 3D Canny edge detector is 1438ms,

The running time of PCA sampling is 62ms. The running time of the generation of the

tetrahedral mesh is 78ms. Running time of S-t cut based on the super-voxels is 16ms.

Running time of Laplacian smoothing is 78ms. (d) A closeup look at the rectangular region

in (c). (e)The clipping result of volume mesh structure. (f) A closeup look at the rectangular

region in (e). ……………………………………………………………………………..60

4.6 is a 136*121*71 very noisy cell 3D volume. (a) and (b) Two slices of the cross sections of

this 3D volume. (c) The iso-surface of this 3D cell volume. (d) Slice of the Canny map.(e)

The final picked nodes result. (f) The result of classical voxel -based 3D image

segmentation. The running time is 24078ms. (g)The result of the supervoxel-based 3D

image segmentation. The running time of 3D Canny edge detector is 500ms, The running

time of PCA sampling is 985ms. The running time of the generation of the tetrahedral

mesh is 703ms. The running time of S-t cut based on the super-voxel is 594ms. Running

time of Laplacian smoothing is 31ms (h) A closeup look at the rectangular region in (g).

(i)The clipping result of volume mesh structure. (j) A closeup look at the rectangular region

i n (i) … …… … ……… … … …… … …… …… … … … … …… …… … … …… 6 1

4.7 A 128*128*128 thoracic cavity 3D volume. (a) is the iso-surface map of this 3D volume.

(b) The final picked nodes result. (c) The result of classical voxel-based 3D image

segmentation. The running time is 14422ms. (d)The result of the supervoxel-based 3D

image segmentation. The running time of 3D Canny edge detector is 828ms. The running

time of PCA sampling is 1422ms. The running time for the generation of the tetrahedral

mesh is 1203ms. S-t cut based on the super-voxel is 1031ms. Running time of Laplacian

smoothing is 78ms. (e) A closeup look at the rectangular region in (d). (f)The clipping

result of volume mesh structure. (g) A closeup look at the rectangular region in (f)……64

5.1 Initial seeds selection on an electron microscopic image of cardiac cells (image size:

177*180 pixels)…………………………………………………………………………..71

5.2 (a) Marching distance map from the user-picked object seeds. (b) Marching distance map

from the user-picked background seeds. The seeds are shown in Figure 1. The blue color

x

means smaller marching distances and by contrast the red color indicates larger marching

distances………………………………………………………………………………….72

5.3 The generation of source (in red, representing object) and sink (in blue, representing

background) points by using random number generation……………………………….74

5.4 The shortest path between one of the source (object) points and one of the sink

(background) points. Note the path favors going through the boundary of the object due to

the small edge weights on the boundary…………………………………………………75

5.5 Shortest paths between one of the source points (representing the object) and all the sink

points (representing the background)…………………………………………………….75

5.6 The edge confidence (EC) map formed by adding one to pixels where a shortest path goes

through. ………………………………………………………………………………….76

5.7 Final segmentation result by using the randomized shortest paths, an algorithm based on

the Monte Carlo method…………………………………………………………………77

5.8 Illustration of our algorithm on a cardiac cell with 264*235 pixels. (a) Initial object (in

red) and background (in blue) seeds picked by the user. (b) The marching distance map

from the object seeds. (c) The marching distance map from the background seeds. (d) The

randomly generated source (in red) and sink (in blue) points by using the marching distance

maps. (e) The computed edge confidence image by adding all shortest paths together. (f)

The final segmentation result……………………………………………………………78

5.9 Illustration of our algorithm on a cardiac cell with 125*145 pixels. (a) Initial object (in

red) and background (in blue) seeds picked by the user. (b) The marching distance map

from the object seeds. (c) The marching distance map from the background seeds. (d) The

randomly generated source (in red) and sink (in blue) points by using the marching distance

maps. (e) The computed edge confidence image by adding all shortest paths together. (f)

The final segmentation result……………………………………………………………80

5.10 Illustration of our algorithm on an MRI image of the heart with 128*128 pixels. (a) Initial

object (in red) and background (in blue) seeds picked by the user. (b) The marching

distance map from the object seeds. (c) The marching distance map from the background

seeds. (d) The randomly generated source (in red) and sink (in blue) points by using the

marching distance maps. (e) The final segmentation result of the left ventricle………....82

xi

LIST OF TABLES

2.1 Running time of our mesh generation method on a 128*128 heart image………………..23

2.2 Running time of our mesh generation method on a 256* 256 knee image……………….26

2.3 Running time of our mesh generation method on a 256*256 cardiac cell image…………28

2.4 Running time of our mesh generation method on a 1032*912 cardiac cell image……….33

3.1 Running time comparison between our supervoxel-based 2D image segmentation with the

classical pixel-based 2D image segmentation on a 128*128 heart image……………….44

3.2 Running time comparison between our supervoxel-based 2D image segmentation with the

classical pixel-based 2D image segmentation on a 256*256 cell image…………………46

3.3 Running time comparison between our supervoxel-based 2D image segmentation with the

classical pixel-based 2D image segmentation on a 256*256 knee image………………..48

3.4 Running time comparison between our supervoxel-based 2D image segmentation with the

classical pixel-based 2D image segmentation on a 1032*912 knee image……………….51

4.1 Running time comparison between our supervoxel-based 3D image segmentation with the

classical voxel-based 3D image segmentation……………………………………………66

xii

ACKNOWLEGEMENTS

I am utilizing this opportunity to express my gratitude to everyone who has supported me

pursuing my Ph.D. degree in Computer Science. I am thankful for their aspiring guidance,

invaluably constructive criticism and intelligent advice in my scientific career.

First, I was grateful to my advisor Prof. Zeyun Yu for recruiting me as one of his Ph.D.

students and I was honored to join his biomedical modeling and visualization laboratory.

Especially, I thank for his continuous support of my Ph.D. study and related research, for his

patience, motivation and immense knowledge. His guidance helped me in all the time of research

and writing of this dissertation.

Additionally, I would like to express my genuinely gratitude to Prof. Ichiro Suzuki as well.

It was glad being his teaching assistant and assisting his computer graphics class in the past four

years. His conscientious attitude to science and teaching inspires my scrupulous attention to pursue

scientific paradigm.

Besides, my earnest thanks also go to the rest of my dissertation committee: Prof. Dexuan

Xie, Prof. Jun Zhang and Prof. Roshan D’Souza for their insightful comments and encouragement,

but also for the hard questions which incented me to widen my research from various perspectives.

Last but not least, I would like to greatly appreciate my parents’ and my girlfriend Yu Lin’s

spiritually supporting throughout writing my Ph.D. dissertation and in my life in general. Also, Yu

Lin’s creative and humorous attitude to life and insightful critique impress me that a Ph.D. should

xiii

not live off the grid and always dig into academic science. There are many brand-new novelties in

the world awaiting me to make bold attempts as well.

1

Chapter 1

Introduction:

Imaging technologies have been widely utilized in many aspects of science and engineering

fields. Some popular examples in biomedical applications are computerized tomography (CT),

magnetic resonance imaging (MRI), ultrasound (US), single photon emission computed

tomography (SPECT), positron emission tomography (PET), and light/electron microscopy

(LM/EM) [1, 2]. Figure 1.1 shows the diagrammatic sketch of MRI scanner system.

(a) (b)

Fig 1.1: (a) MRI scanner system cutaway. (b) MRI scanner gradient magnets. (a) and (b) are from national

high magnetic field laboratory. http://www.magnet.fsu.edu

http://www.magnet.fsu.edu/

2

Fig 1.2: Biomedical image segmentation. www.researchgate.net

However, there are some restrictions of medical image segmentation and mesh generation

techniques. First, medical imaging data are usually quite noisy and features are often ambiguously

presented in images due to the limitations of either imaging devices or reconstruction algorithms.

Second, for purpose of doing quick diagnostic analysis for the patients with the 2D or 3D

visualization models, finding real-time mesh generation and image segmentation schemes have

become progressively vital.

 In this chapter, several popular methods of image segmentation and mesh generation will

be presented.

http://www.researchgate.net/

3

1.1 Image Segmentation

 Image segmentation as a fundamental problem in image processing and computer vision

area which trying to separate objects of interest from surrounding background have received

tremendous attention from researchers. Many other tasks, such as shape modeling and feature

recognition, rely largely on correct segmentation result. Image segmentation is to partition the

pixels or voxels into several clusters. The pixels or the voxels which are in the same cluster share

the similar characteristics. With the increasing utilization of imaging technologies in the medical

field, it is not uncommon to see a single image or a volume exceeding the size of one Gigabyte or

more. The growing availability of high-resolution images has posed challenges on data storage

and transmission. The traditional image segmentation methods are based on the pixels. Because

the number of the pixels is usually extremely big, the speed of pixel-based image segmentation is

typically slow.

Commonly used methods include segmentation based on edge detection [5], region

growing and/or region merging [6], active curve/surface motion [7], watershed immersion method

[8], and eigenvector analysis [10]. Among the existing computational approaches for

segmentation, the deformable contour has drawn a lot of attention in recent years. There are two

ways of representing deformable contours: one is parametric (i.e., the well-known snake model)

[11] and the other is geometric (i.e., the level set method) [12]. The drawback of the parametric

approach is that any topological change of contours would heavily complicate the procedures and

data structures being used. By contrast, the level set method can handle topological changes

naturally but is computationally more expensive due to the added dimension in the technique. In

[6], a variant of the level set method was described to segment features in an image. This method,

4

called the multi-seeded fast marching method, is used in conjunction with seed classification and

region growing and merging [6, 13].

Graph-based methods are also very popular in image segmentation field. In these methods,

an image is treated as a graph, where each pixel is a node and an edge is created between two

adjacent pixels with 4- or 8-connectivity. The first method is based on graph cuts [14, 15, 16],

where the goal is to partition the graph into several connected components with certain

optimization criteria and each of them corresponds to one segmented feature (or background). This

method works in a way similar to data classification – the intra-class difference is minimized while

the inter-class difference is maximized. The original graph cut method is computationally

expensive because the graph size generated from the original image may be huge, especially for

3D images. To remedy this problem, the concept of “super-pixels” has been introduced to group a

set of local, coherent pixels sharing similar texture or brightness into a region (or super-pixel) [6,

23,24]. It has been estimated that using super-pixels can tremendously reduce both time and

memory consumptions [25]. The second graph-based method is the random walker method [17].

This approach also treats the image as a weighted graph but assigns each pixel to a seed (belonging

to an object or background) by considering the most likely random walker between the pixel and

the seed found. The third widely used graph-based method for image segmentation is the shortest

path approach [18]. This approach assigns a pixel to the object if the path from the pixel to the

object seed is shorter than paths to the background seed.

1.2 2D and 3D Mesh Generation

Computer visualization and simulations help researchers and doctors to realize the various

activities in biomedical systems, ranging from molecular, cellular to organ scales [51, 52, 53].

5

Many of these biological activities can be formulated as partial differential equations (PDEs),

which often do not admit analytical solutions and have to be numerically solved. Among a variety

of numerical approaches, the finite element method (FEM) has become popular for solving PDEs.

One of the challenges in using the FEM, however, is to generate high-quality meshes on which the

simulations are performed. In order to obtain more accurate simulation results, it is also practically

important to incorporate realistic biological structures into geometric mesh models [54, 55, 56, 57,

58, 59].

The classic routine to generate the surface or volumetric meshes from given images typically

have two steps: (1) from images to surface models. (2) from surface models to triangular meshes

or tetrahedral meshes. First step is unknown as image segmentation which is introduced in above

section.

From surface models to triangular meshes or tetrahedral meshes which is step (2) typically

performed in two steps: nodes generation and Delaunay triangulation of the nodes. Different mesh

generation methods are often different from each other in node generation and can be classified

into three categories: (1) content-adaptive node generation with various types of local feature

measurements [26, 27, 28, 29, 30], (2) greedy (iterative) node insertion starting from a coarse mesh

of an image [31, 32, 33, 34, 35], and (3) greedy (iterative) node removal starting from a dense

mesh containing all pixels of an image [32, 36, 37, 38]. Most of the approaches mentioned above,

however, do not take mesh quality into serious consideration except the method described in [29],

where some mesh post-processing strategies are carried out by adding new mesh nodes. It is known

that mesh quality can be efficiently improved by moving mesh nodes without adding additional

ones [18, 19, 20, 21]. This strategy had been recently used in [22] for image triangulation by

optimizing an objective function that incorporates both image intensities and mesh quality. There

6

are two major drawbacks of this approach: low speed due to a numerical scheme adopted to

minimize the energy function, and high approximation errors because of the assumption of a

constant intensity in each triangle. The Delaunay-based method is very successful in 2D mesh

generation but sometimes may not work well in generating high-quality tetrahedral meshes, where

some nearly degenerate elements known as slivers often occur [102]. The octree-based method

recursively subdivides the domain containing the given mesh until some stopping criteria are

reached [69, 70, 71, 72]. In all the above approaches, however, the dihedral angles are not

guaranteed in the resulting tetrahedral especially those near the surfaces. More recently, Labelle

and Shewchuk [73] presented an iso-Variational tetrahedral meshing, surface stuffing algorithm

to generate tetrahedral meshes.

1.3 Objectives and Contributions

How to extract the boundary of features and generate the high-quality mesh from a given 2D

or 3D images with a real-time performance has become very popular in image processing. The

number of pixels in 2D images or voxels in 3D volumes is typically very huge and image

segmentation algorithms are normally global optimization based. Therefore, the speed of image

segmentation and mesh generation would be very slow.

The main contributions are what we treat the triangles or tetrahedrons of the feature-sensitive

and adaptive mesh on given 2D or 3D images as super-pixels. Our feature-sensitive and adaptive

image triangulation is a super-pixel-based scheme for image segmentation and mesh generation to

help significantly reducing the time complexity. The output of this scheme is an object of interest

with a high-quality mesh.

7

First, we create an adaptive and feature-sensitive mesh on the overall given 2D or 3D images

instead of implementing the image segmentation as the first step in the classic pipeline. During

this step, a new image edge enhancement and segmentation via randomized shortest paths method

is introduced to be an optional choice of boundary extraction to replace Canny edge detector. The

principal components analysis sampling strategy is utilized to calculate the sampling radius so that

to make sure the tiny features are captured by small mesh elements and big features are represented

by large (sparse) elements.

Second, the generated triangulation (or tetrahedralization) provides an adaptive partitioning

of a given image (or volume). Each cluster of pixels within a triangle (or voxels within a

tetrahedron) is called a super-pixel. Moreover, a popular graph-cut method is then applied to the

graph to extract image features which result in a good boundary segmentation with high quality

mesh. Thanks to the significantly reduced number of elements (super-pixels) as compared to that

of pixels in an image, the super-pixel based segmentation method has tremendously improved the

segmentation speed, making it feasible for real-time feature detection from an image of a decent

size.

Finally, the last contribute is that I was chosen to be one of the members to develop toolkit in

our lab which names “Bimos” for fast visualization and interpretation on 2D and 3D images and

meshes. In this thesis, most of the 2D and 3D meshes are displayed by Bimos.

In chapter 2, I will present a series of algorithms to generate high quality, feature-sensitive,

and adaptive meshes from a given grayscale image. Furthermore, this thesis will display some

experimental results after the algorithm introduction. In chapter 3, a popular graph cut S-t cut is

adopted to cut the graph into two parts, including sink and source which represent object and

background. As the chapter 2, a series of the experiment results are shown for comparing the speed

8

of pixel-based segmentation with super-pixel based segmentation in chapter 3 as well. In chapter

4, a procedure of 3D feature-sensitive and adaptive mesh generation based on image segmentation

will be discussed. In chapter 5, an image edge enhancement and segmentation via randomized

shortest paths method will be presented.

9

Chapter 2

Feature-Sensitive and Adaptive Mesh Generation on 2D Images

In this chapter, an adaptive and feature-sensitive meshes will be generated to pave on the

whole 2D images. The proposed method includes three main steps. Firstly, we generate three kinds

of mesh nodes: (1) Canny's points, (2) halftoning points, and (3) uniform points. In the second

step, an initial triangular mesh is generated from these points by using the popular open source

mesh generators. Finally, the initial mesh is smoothed by modified versions of the conventional

centroid Voronoi triangulation (CVT) and optimal Delaunay triangulation (ODT) smoothing

methods.

2.1 Node Generation

In order to have adaptive and feature-sensitive meshes for given images, we need to

generate initial mesh nodes. We would like to generate dense mesh nodes distribution on or near

curved-boundary or tiny features and sparse mesh nodes distribution on straight-boundary features

or background.

10

2.1.1 Canny Sample Points

Image edges are important features in an image and need to be preserved in the obtained

meshes. Canny edge detector is a well-known method to extract feature boundaries. Figure 2.1(b)

displays the result of the Canny edge detector running on an image of 192*256 pixels shown in

Figure 2.1(a). While the Canny edge detector can represent the image edges quite faithfully, the

edge points are too dense to generate triangular meshes. Our strategy is to implement an adaptive

sampling on the Canny edge points. We note that an image usually contains features with high

curvature and features with relatively straight edges. An example of curved-boundary and tiny

features is displayed in red on Figure 2.1(b). The blue rectangle on the Figure 2.1(b) shows an

example of straight-boundary features. Our interest is to generate dense sample points on curved-

boundary features and sparse sample points on straight-boundary features.

(a) (b)

11

(c) (d)

Fig.2.1: (a) The original image of 192*256 pixels. (b) The result image of the canny edge detector, where

 = 0.7, lower threshold =0.1, and higher threshold = 0.6. The region in red shows an example of curved-

boundary or tiny features. The region in blue is an example of straight-boundary features. (c) The adaptively

sampled points from (b). The red and blue rectangles show the results of curved-boundary and straight-

boundary features respectively. (d) The final result of adaptive node generation. The green points are the

canny edge points and the red points are the halftoning and uniform sample points.

In our method, we take the curvature information of every Canny's edge point into account

and use the principal component analysis (PCA) to determine the sampling density. The PCA

method can detect the overall attribute of the neighbors of a certain size by a statistical way, and

this method can be easily extended to three dimensional images. We traverse every edge point in

Canny map, denoted as P̅. Let all the edge points within P̅'s K×K neighborhood be P1,P2,...,Pn,

where n is the number of neighboring edge points of P̅ in its neighborhood. K is a parameter based

on the density of the features in the original image, and is locally calculated for each edge point in

the method described below. The covariance matrix is first calculated in the following expression:

2 2

1

()() R
n

T

j j

j

P P P P 



   (1)

12

Then we calculate the two eigenvalues of this covariance matrix, denoted by 1 , 2

(assuming 1 > 2). We decide the sample radius which we call as R(P̅) using the following

equation:

 
   

   
1 2 1 2

1 2 1 2

1 / 0.3

3 0.3 / 0.5

5

R P

else

   

   

  


    



 (2)

The current Canny edge point P survives (i.e., being a valid sampling point) if and only if

there is no other existing sampling point found within the neighborhood of size K×K, where

K=2×R(P̅)+1. Figure 2.1(c) shows the sampled points with the PCA strategy. As we have

discussed, tiny features and features with high curvature have dense sample points (see the red

rectangle for example). On the other hand, big features or features with straight lines have sparsely

sampled points (see the blue rectangle for example).

2.1.2 Halftoning Sample Points

The edge points described above only capture the pixels on or near the image edges. In

order to have a decent initial mesh, one has to scatter some more points in the non-edge regions of

the image. To this aim, we adopt the halftoning sample points based on the approach described in

[44]. This method generates the sample points based on the second derivatives of an image, where

most of the sample points found are placed near the image features (edges). Below we give a brief

summary of this approach. The interested reader can refer to [44] for more details.

The first step of this method is to extract the image feature map by calculating the Hessian

matrix described in the following equation [44]:

13

'' ''

'' ''

(,) (,)
(,)

(,) (,)

xx xy

xy yy

f x y f x y
H x y

f x y f x y

 
  
 

 (3)

We then calculate the two eigenvalues of the above Hessian matrix:

              
2 2

'' '' '' '' ''

1,2

1 1
, , , , , ,

2 4
xx yy xx yy xyx y f x y f x y f x y f x y f x y      (4)

The image feature map is generated in the following equation (where G(x,y) =

    1 2max , , ,x y x y ):

 
 ,

,
G x y

x y
A




 

  
 

 (5)

Where A is the largest value of G(x, y), and  is a parameter and in this thesis  = 1.0.

The Floyd-Steinberg diffusion algorithm [45] is then used to scan the whole image pixel by pixel

and compare each pixel's feature map value with a threshold q as follows[44]:

 
 1 ,

,
0

if x y q
b x y

otherwise

 
 


 (6)

A point (x, y) is chosen as a sample point if b(x, y) = 1. The parameter q determines the

number of mesh nodes that can be generated using this method. In our method, q = 0.3. To

dynamically update the feature map  (x, y), this method computes the quantization error e(x, y)

by[44]:

       , , 2 ,e x y x y q b x y  (7)

14

And the feature map is updated by the diffusion procedure towards the right and down

directions[44]:

   

   

   

   

1

2

3

4

, 1 , 1 (,)

1, 1 1, 1 (,)

1, 1, (,)

1, 1 1, 1 (,)

x y x y e x y

x y x y e x y

x y x y e x y

x y x y e x y

  

  

  

  

   

     

   

     

 (8)

Where 1 2 3 47 /16, 3/16, 5 /16, 1/16.      

The above updating scheme is applied to every pixel until the bottom of the image is

reached. A point (x, y) is said to be a halftoning sample point if the final b(x, y) is non-zero and

no Canny's points are found in its 7×7 neighborhood.

2.1.3 Uniform Sample Points

Although the halftoning sample points can cover most non-edge regions of the image, it is

possible the no point (either Canny or halftoning) is found in regions of almost constant intensities.

We therefore generate some points uniformly to cover the rest of the images where the first two

types of sample points are not located. Again, a point (x, y) is said to be a valid uniform sample

point if no Canny's or halftoning points are found in its 7×7 neighborhoods. Figure 2.1(d) shows

the final result of the sample point generation, where green points are Canny's sample points and

red points correspond to the other two types.

2.2 Mesh Generation via Delaunay Triangulation

15

The sample points found above are used to generate our initial mesh for a given image by

using the Delaunay triangulation. In the 2D case, we employed popular open source software [46]

in this thesis. Figure 2.2 shows the initial triangle mesh generated by the Delaunay triangulation.

As can be seen in Figure 2.2, the quality of the initial triangular mesh is not good enough. Hence

a mesh smoothing scheme performing on this initial mesh is necessary, as described below. The

smoothed mesh is expected to be not only well shaped and sized but also strictly attached to the

features (edges) of the image.

Fig 2.2: Initial triangle mesh generated by Delaunay triangulation.

2.3 Mesh Smoothing

We extend several traditional mesh smoothing methods, including Optimal Delaunay

Triangulations (ODT) and Centroid Voronoi Tessellations (CVT) [48, 49], to the image domain,

16

in order to enhance the quality of the mesh. While the traditional mesh smoothing techniques only

take the mesh quality into account, we develop two new methods based on the ODT and CVT

schemes to incorporate image feature information into mesh quality improvement. Both ODT and

CVT are topology-preserving, meaning that they only move mesh nodes without modifying the

mesh topology. In the context of image triangulation, we restrict ourselves to moving only

halftoning and uniform sample points but keeping Canny's points unchanged because of the

feature-preservation purpose.

2.3.1 Image-based CVT Scheme

The traditional CVT method traverses every vertex of the triangle mesh, denoted by x0, and

finds its new position as follows:

0

*

0

1

j

j j

T

x T C


 


 (9)

Where 0
 is the area of the one-ring neighborhood of x0, jT is the area of a triangle Tj in the

one-ring neighborhood of x0, and Cj is the centroid of the triangle Tj.

In order to take the image features into account, we add the gradient information of each

neighboring triangle of the one-ring neighborhood of x0 in to the traditional CVT method. Figure

2.3(a) displays how to calculate the gradient information of Tj. First we calculate the centroid of

this triangle, called Cj, and its gradient magnitude g(Cj). Secondly, we connect the three vertices

of this triangle with Cj yielding three sub-triangles:  abCj,  bx0Cj, and Cjx0a. Thirdly, we

calculate every sub-triangle’s centroid and their gradient magnitudes. Then the average of these

17

four gradient values (a red points and three green points in Figure 2.3(a)) is calculated to get the

triangle Tj 's gradient information g(Tj).

 (a)

 (b)

Fig 2.3: (a) The one-ring neighborhood of x0. Tj is one of the adjacent triangles in the neighborhood. Cj is

the centroid of the Tj . (b) The one-ring neighborhood of x0. xk is one of the neighboring vertices of x0. Skl

and Skr are the left and right triangles of edge x0, xk respectively.

The proposed image-based CVT scheme is as follows:

18

0

0

*

()

()

j

j

j j j

T

j j

T

T C g T

x
T g T





 






 (10)

2.3.2 Image-based ODT Scheme

Similar to the CVT scheme, the traditional ODT method is defined based on the one-ring

neighborhood of a vertex in the mesh as follows:

0

0

*

0 0

0

1
()()

2

k

k

x x

kl kr k

x

x x S S x x




   


 (11)

Where Skl is the left triangle of edge x0xk and Skr is the right triangle of edge x0xk (see Figure 2.3(b)).

In the proposed work, we modify the original ODT method by taking the gradient

information into account as below:

0

0

0

0

0

*

0

(() ())()

(() ())

k

k

k

k

x x

kl kl kr kr k

x

x x

kl kl kr kr

x

S g S S g S x x

x x

S g S S g S









   

 

  




 (12)

Where g (Skl) is the averaged gradient magnitude of left triangle of edge x0xk and g (Skr) is the

averaged gradient magnitude of right triangle of edge x0xk.

2.3.3 Edge Flipping Strategy

Although the traditional and our modified CVT/ODT methods are intended to move

vertices without changing the mesh topology, it is often beneficial to change the mesh topology by

using the widely-used edge-flipping technique. In our implementation, we traverse every vertex of

19

the mesh one by one using either image-based CVT or image-based ODT method. The CVT or

ODT method and edge-flipping scheme are applied to the mesh alternatively. Typically five

iterations of applying ODT/CVT and edge-flipping to the meshes would be sufficient, as

demonstrated below in the results.

The final results of the image-based CVT and ODT methods are shown in Figure 2.4(c)

and (e) respectively, for the initial mesh in Figure 2.4 (a). In both cases, the smoothed meshes have

good quality mesh. Moreover, the mesh nodes are better attached along the feature boundary in

the image. Also, dense sample points are placed near the image features and sparse sample points

are placed in the background or the regions of low-curvature features. From the point of view of

the image segmentation, the results retain the fidelity of the boundaries of the objects in Figure

2.4(c) and (e).

 (a) (b)

20

 (c) (d)

21

 (e) (f)

Fig 2.4: (a) Initial triangle mesh generated by Delaunay triangulation. (b) A closeup look of (a).

(c)Smoothed mesh by the CVT method based on the image features after five iterations. (d) A closeup look

of (c). (e) Smoothed mesh by the ODT method based on the image features after five iterations. (f) A

closeup look of (e).

2.4 Experimental Results

In this section, we provide the results of our method running on some biomedical images.

The number of iterations in the mesh smoothing step is set as 5. The code was written in C++ and

compiled in Windows Visual Studio 2010.

22

(a) (b)

 (c) (d)

 (e) (f)

23

(g)

Fig 2.5:Result of our method running on a 128*128 heart image. (a) The original image. (b) The result of

the sample point generation. Green points are Canny's sample points. Red points are halftoning and uniform

sample points. The time for Canny sample nodes generation is 15 ms. The time for PCA sampling is 12ms

(c) The result of initial mesh generated by Delaunay triangulation. The time for the generation of initial

mesh is 15 ms (d) Result of the image-based ODT method. The time for ODT smoothing is 16ms (e) Result

of the image-based CVT method. The time of the CVT smoothing is 16ms (f) A closeup look at the

rectangular region in (e). (g) A quantitative measure of the quality of the final triangulations. The minimum

angle is 4.57 degree. The maximum angle is 165.96 degree. The minimum size of the triangles is 0.499.

The maximum size of the triangles is 32.99.

Table 2.1: Running time of our mesh generation method on a 128*128 heart image

Steps Running time (ms)

Canny and halftoning nodes 15

PCA sampling 12

Initial mesh generation 15

24

ODT 16

CVT 16

Figure 2.5 displays the result of our method running on a 128*128 heart image (courtesy

of Dr. Andrew McCulloch, UCSD). In (a) we can see that the most important feature in this image

is the ventricle in the middle of this image. (b) shows the result of the sample points found. The

Canny's sample points (in green) occupy the most area of the left-top of this image. (c) is the result

of initial mesh generated by Delaunay triangulation. The mesh smoothing, as shown in (d) and (e),

provide better quality of the meshes. Also, the closeup view shows that the triangles are well

aligned along the boundary of the ventricle. The time spend in this example listed below the figure

shows my method is very fast.

 (a) (b)

25

 (c) (d)

 (e) (f)

Fig 2.6: Result of our method running on a 256* 256 knee image. (a) The original image. (b) The result of

the sample point generation. Green points are Canny's sample points. Red points are halftoning and uniform

sample points. The time for Canny sample nodes generation is 15 ms. The time for PCA sampling is 31 ms.

(c) The result of initial mesh generated by Delaunay triangulation. The time for the generation of initial

mesh is 15 ms. (d) Result mesh of the image-based ODT method. The time for ODT smoothing is 78 ms.

(e) Result mesh of the image-based CVT method. The time of the CVT smoothing is 62 ms (f) A closeup

look at the rectangular region in (e).

26

Table 2.2: Running time of our mesh generation method on a 256* 256 knee image.

Steps Running time (ms)

Canny and halftoning nodes 15

PCA sampling 31

Initial mesh generation 15

ODT 78

CVT 62

Secondly, we test the proposed method on a 256*256 knee MRI image taken from GE-

Healthcare. In Figure 2.6(c), the initial mesh has the same shortcoming as in the initial mesh of the

heart image. But this mesh quality is improved by the mesh smoothing, as seen in (d) and (e). A

closeup view of the mesh is shown in (f), from which one can see the alignment of the mesh with

image features.

Thirdly, in Figure 2.7(a), we show a 256*256 noisy image of partial cardiac cells (courtesy

of Dr. Masahiko Hoshijima, UCSD). (b) and (c) show the sample points found and the initial mesh

by Delaunay triangulation. The smoothed meshes in (d) and (e) show that the proposed method

can generate high quality meshes even for very noisy images.

27

 (a) (b)

 (c) (d)

28

 (e) (f)

Fig 2.7: Result of our method running on a 256*256 cardiac cell image. (a) The original image. (b) The

result of the sample point generation. Green points are Canny's sample points. Red points are halftoning

and uniform sample points. The time for Canny sample nodes generation is 46 ms. The time for PCA

sampling is 31 ms (c) Result of initial mesh generated by Delaunay triangulation. The time for the

generation of initial mesh is 15 ms (d) Result of the image-based ODT method. The time for ODT

smoothing is 47 ms (e) Result of the image-based CVT method. The time of the CVT smoothing is 47 ms

(f) A closeup look at the rectangular region in (e).

Table 2.3: Running time of our mesh generation method on a 256*256 cardiac cell image.

Steps Running time (ms)

Canny and halftoning nodes 46

PCA sampling 31

Initial mesh generation 15

ODT 47

CVT 47

29

Finally, we implement my method on a big image in Figure 2.8(a) we show a 1032*912

noisy image of cardiac cells. (b) and (c) show the sample points found and the initial mesh by

Delaunay triangulation. The smoothed meshes in (d) and (e) show that even deal with a very big

noisy image, the proposed method also can generate high quality mesh fast and it take 1404 ms in

all.

(a)

30

(b)

31

(c)

32

(d)

33

 (e)

Fig 2.8: Result of our method running on a 1032*912 cardiac cell image. (a) The original image. (b) The

result of the sample point generation. Green points are Canny's sample points. Red points are halftoning

and uniform sample points. The time for Canny sample nodes generation is 265 ms. The time for PCA

sampling is 437 ms. (c) The result of initial mesh generated by Delaunay triangulation. The time for the

generation of initial mesh is 140 ms (d) Result of the image-based ODT method. The time for ODT

smoothing is 641 ms (e) Result of the image-based CVT method. The time of the CVT smoothing is 562

ms

Table 2.4: Running time of our mesh generation method on a 1032*912 cardiac cell image.

Steps Running time (ms)

Canny and halftoning nodes 265

PCA sampling 437

34

Initial mesh generation 140

ODT 561

CVT 642

 I am going to introduce the 3D cases and experiment results with running time information

in chapter 4.

35

Chapter 3

Super-Pixels Based 2D Image Segmentation

In this chapter, every triangle in the triangular mesh generated by the above chapter is treated as a

node of a weighted graph. Each edge between two nodes represents the reversed difference

between two neighboring nodes. On the other words, the weight of edge between two neighboring

nodes is greater when the two nodes’ average intensities are more similar. Then a popular method:

S-t cut is adopted to do the graph cut on the above weighted graph and generates the final

segmentation result.

Fig 3.1: The weighted graph generation based on Super-Pixels (2D).

36

3.1 S-t Graph Cut Method

 After connecting the triangles in the triangular mesh generated in last chapter, we need to

set the weight for every edge between two super-pixels and generate the segmentation result edges

set by min-cut algorithm.

S-t cut is a popular graph cut method which accomplishes global optimization on a specific

energy function to generation optimal segmentation results. Below we give a brief summary of

this approach. The interested reader is referred to [14] for more details.

3.1.1 Background of Graph

Graph consists of a set of nodes V and a set of edges E. A graph can be represented as G

= <V, E>. In addition, S-t cut algorithm adds two terminals which are s (source) node and t (sink)

node to represent the object and background in image segmentation.

Fig 3.2: courtesy of [14], Example of S-t graph. Edges drawn by full lines are n-links and edges drawn by

dotted lines are t-links.

37

Figure 3.2 shows a pixel-based simple example of S-t graph. The left lattice represents the original

image with nine pixels. In order to generate the S-t graph, two terminals s and t are added into the

graph. S-t graph has two kinds of edges: n-links and t-links. T-links are the edge which connect

pairs of neighboring pixels from the original image. S-t graph connects s and t terminals with all

the pixels in the original image which is displayed by the edge drawn by dotted lines in figure 3.2.

These edges call t-links in the S-t graph. Next section introduces how to assign the weights to

edges including n-links and t-links in S-t graph. [14,105]

3.1.2 Edges Weight Assignment

 This section introduces how to assign the weight for every edge including t-link and n-

link according to the energy function introduced in [14]. The energy function of the S-t cut method

is following equation[14]:

() () ()E A R A B A   (13)

Each A is an assignment to each specific graph node in our method and it can be either

“Object” or “Background”. R(A) is region properties term and B(A) is the boundary properties

term.  is a parameter which  > 0. The formula of region properties term[14]:

() ()p p

p P

R A R A


 (14)

Where:

(" ") ln Pr(| " ")p pR obj I obj  (15)

(" ") ln Pr(| " ")p pR bkg I bkg  (16)

38

In the above formula, -lnPr() is negative log-likelihoods. In my method, the user should

choose the both object and background seeds (The number of the seeds is at least 1) manually. The

seeds which are chosen manually are adopted to create two intensities histograms for both object

and background. These two intensities histograms are used to calculate the Rp(“obj”) and

Rp(“bkg”) value.

In this method, two extra terminals s (object) and t (background) are added into the graph

and every node in the graph has two edges which connect both s and t. The weight between every

node and s is in the following[14]:

, 0

(" ")

p s

p

K if p O

W if p B

R bkg else

 


 
 

 (17)

K is greatest value among the all the edges’ weight to ensure that the chosen node manually

can be clustered into the type what users indicated. T

The edge weight between every node and s is in the following:

, 0

(" ")

p t

p

K if p B

W if p O

R obj else

 


 
 

 (18)

The formula of boundary properties term:

 
, (,)

,

()
p qp q A A

p q N

B A B 


 
 (19)

39

1
(,)

0

p q

p q

if A A
A A

otherwise



 


 (20)

B(A) represents the neighboring relationship between two nodes in the graph. In my

method, because we use average intensity of the pixels in a triangle to be the intensity of the node

in S-t graph, we use
pIAve and

qIAve to represent the intensity of a pair of neighboring super-pixels.

We use the following equation to calculate ,p qB .

 , 2

()
exp()

2

pI Iq

p q

Ave Ave
B




  (19)

3.1.3 Image segmentation based on Min-cut

After generating a weighted S-t graph based on the energy function mentioned in last section,

a new min-cut algorithm is introduced in this section to separate the graph into two trees [105].

Fig 3.3: courtesy of [105], Example of Search trees S and T. P are passive nodes and A are active nodes.

The blank nodes are free nodes.

40

Figure 3.3 is an example of two search trees min-cut algorithm. This algorithm builds two search

threes from S-t graph. At beginning, S search tree and T search tree only have the roots which are

s and t node demonstrated in figure 3.3. Both search trees will have internal nodes which are

passive nodes and external nodes which are active nodes when growing. The active nodes can

grow and connect its neighboring nodes. An augmenting path will be find if two nodes from

different trees meet. The algorithm implement the following three steps repeat [105].

1 Growth stage: grow the search trees S ant T to find s → t path.

2 Augmentation stage: augment the found path and break search trees into forest.

3 Adoption stage: trees S and T are restored.

The pseudocode of the Min-cut algorithm is[105]:

Initialize: S = {s}, T = {t}, A = {s, t}, O = ∅

while

1 grow the search trees S ant T to find s to t path.

2 if P = ∅ terminate

3 augment on P adopt orphans

 End

At beginning, S tree only have one node s and T have one node t. Both s and t are active and there

are no orphan node in the graph. TREE (p) has three choices: S, T or ∅ (p is free).

Growth stage [105]:

41

while A ≠ ∅

pick an active node p ∈ A

for every neighbor q such that tree cap(p → q) > 0

if TREE(q) = ∅ then add q to search tree as an active node:

TREE(q) = TREE(p), PARENT(q) = p, A = A ∪ {q}

if TREE(q) ≠ ∅ and TREE(q) ≠ TREE(p) return P = PATH (s→t)

end for

remove p from A

end while

return P = ∅

In this pseudocode, cap(p → q) is residual capacity of either edge (p, q) if TREE(p) = S or edge

(q, p) if TREE(p) = T. PATH(s → t) is the path connect from S search tree to T search tree. In the

growth stage, once an active node p is picked, all the neighboring nodes of p with the edge whose

residual capacity is greater than 0 will be added into the search tree. If path is find, this step stops.

Augmentation stage [105]:

find the bottleneck capacity ∆ on P

update the residual graph by pushing flow ∆ through P

for each edge (p, q) in P that becomes saturated

if TREE(p) = TREE(q) = S then set PARENT(q) := ∅ and O := O ∪ {q}

42

if TREE(p) = TREE(q) = T then set PARENT(p) := ∅ and O := O ∪ {p}

end for

Firstly, we push the flow through the new found path P. If any edge (p, q) becomes saturated, p or

q will be added to the orphan set. In the adoption stage, all the orphans in the orphan set will be

processed.

Adoption stage[105]:

while O ≠ ∅

pick an orphan node p ∈ O and remove it from O

scan all neighbors q of p such that TREE(q) = TREE(p):

– if tree cap(q → p) > 0 add q to the active set A

– if PARENT(q) = p add q to the set of orphans O and set PARENT(q) = ∅

TREE(p) = ∅, A = A − {p}

end while

In this step, all the orphans are processed. Neighboring nodes of p are traversed to find a

new node to be the parent node of p. If p can’t find a valid parent, all p’s children will be added to

O and p will become free.

43

3.2 Experimental Results

In this section, I display the experimental results of the image segmentation by our method

on some bio-medical examples. I also list the running time of the method given in this thesis

(including the node generation, mesh generation and graph cut) together and compares it with the

running time of the pixel-based image segmentation. I am not going to take the running time for

mesh smooth into account because the segmentation results by the initial meshes are good enough.

The good quality of the mesh has the huge benefits in the following modeling stage. For the sake

of speed, the initial mesh helps to achieve the real-time performance.

 (a) (b)

 (c) (d)

44

Fig 3.4: Result of image segmentation on a 128*128 heart image. (a) The original image. (b) The seeds

which are chosen manually. Red points are the object seeds and green points are background seeds. (c) The

result of super-pixel based image segmentation. The running time for segmentation is 15 ms (d) The result

of pixel based image segmentation. The running time for segmentation is 46 ms.

Table 3.1: Running time comparison between our superpixel-based 2D image segmentation with the

classical pixel-based 2D image segmentation on a 128*128 heart image.

Super-pixel Based Pixel Based

Size 128*128 128*128

Canny and halftoning nodes (ms) 15

PCA sampling (ms) 12

Initial mesh generation (ms) 15

S-t sut (ms) 15 46

Running time in all (ms) 57 46

Fig 3.4(a) displays a 128*128 original heart image. (b) shows the seeds which chosen by

the user manually. We choose three seeds (red) in the features and one seed (green) in the

background. (c) is the result of the image segmentation based on our super-pixel method. The

graph cut running time is 15 ms. If we take the running time from nodes generation, initial mesh

generation and S-t cut into account, the running time is 60 ms. It is a bit longer than the pixel based

segmentation which is 46 ms in this image which is displayed in (d) because this image’s size is

too small. However the quality of the result of the super–pixels based image segmentation is much

45

better than the pixel-based image segmentation if the number and the position of the seeds are

same. In (d), the segmentation result crosses the small gap between the two features which is not

as good as the result in (c).

 (a) (b)

 (c) (d)

Fig 3.5: Result of image segmentation on a 256*256 heart image. (a) The original image. (b) The seeds

which are chosen manually. Red points are the object seeds and green points are background seeds. (c) The

46

result of super-pixel based image segmentation. The running time for segmentation is 16 ms (d) The result

of pixel based image segmentation. The running time for segmentation is 203 ms.

Table 3.2: Running time comparison between our superpixel-based 2D image segmentation with the

classical pixel-based 2D image segmentation on a 256*256 cell image.

Super-pixel Based Pixel Based

Size 256*256 256*256

Canny and halftoning nodes (ms) 46

PCA sampling (ms) 31

Initial mesh generation (ms) 15

S-t sut (ms) 16 203

Running time in all (ms) 108 203

Fig 3.5(a) displays a 256*256 cell image. As we said before, this image is extremely noisy. (b) is

the seeds map which chosen by the user manually. We choose only one seed on both object and

background. (c) is the result of the image segmentation based on our super-pixel method. The

graph cut running time is 16ms. We take the overall running time into account and the running

time is 108 ms which is much fast than 203 ms by the pixel-based segmentation. The super-pixels

help to smooth the noisy image because of the average intensity strategy. Both of the qualities of

the image segmentation results are very good.

47

 (a) (b)

 (c) (d)

Fig 3.6: Result of image segmentation on a 256*256 knee image. (a) The original image. (b) The seeds

which are chosen manually. Red points are the object seeds and green points are background seeds. (c) The

result of super-pixel based image segmentation. The running time for segmentation is 16 ms (d) The result

of pixel based image segmentation. The running time for segmentation is 170 ms.

Table 3.3: Running time comparison between our superpixel-based 2D image segmentation with the

classical pixel-based 2D image segmentation on a 256*256 knee image.

48

Super-pixel Based Pixel Based

Size 256*256 256*256

Canny and halftoning nodes (ms) 15

PCA sampling (ms) 31

Initial mesh generation (ms) 15

S-t sut (ms) 16 170

running time in all (ms) 77 170

Fig 3.6(a) is a 256*256 knee image. (c) is the result of the image segmentation based on

our super-pixel method. The graph cut running time is 16 ms. Running time in all is 77 ms.

Comparing with the 170 ms by the pixel-based segmentation, our method is much faster.

49

 (a)

50

 (b)

51

(c)

(d)

Fig 3.7: Result of image segmentation on a 1032*912 cell image. (a) The original image. (b) The seeds

which are chosen manually. Red points are the object seeds and green points are background seeds. (c)

Result image of super-pixel based image segmentation. The running time for segmentation is 250 ms (d)

Result image of pixel based image segmentation. The running time for segmentation is 1980 ms.

Table 3.4: Running time comparison between our superpixel-based 2D image segmentation with the

classical pixel-based 2D image segmentation on a 1032*912 knee image.

Super-pixel Based Pixel Based

Size 1032*912 1032*912

Canny and halftoning nodes (ms) 265

52

PCA sampling (ms) 437

Initial mesh generation (ms) 140

S-t sut (ms) 250 1980

Running time in all (ms) 1092 1980

Fig 3.7(a) is a very big 1032*912 cell image. (b) is the seeds which are chosen manually.

Red points are the object seeds and green points are background seeds. (c) is the result of the image

segmentation based on our super-pixel method. The graph cut running time is 250 ms. The overall

running time including node generation, initial mesh generation and S-t cut is 1092 ms. The pixel-

based S-t cut image segmentation takes 1980 ms. So the bigger the image is, the more time saving

by using our super-pixels based image segmentation.

53

Chapter 4

Adaptive Meshes Generation and Image Segmentation on 3D

Images

In this chapter, a series of algorithms to generate high quality, feature-sensitive, and adaptive

tetrahedral mesh are introduced, where the 3D Canny edge detector is utilized to preserve

important feature boundaries. Each cluster of voxels within a tetrahedron is called a super-voxel,

which is treated as a node in a graph and weighted edges are formed between adjacent tetrahedras

(or super-voxels). A graph cut method S-t cut is then applied on the weighted graph to partition

the tetrahedral mesh, resulting in a segmentation of image volume.

Same as 2D case, the advantage of this method is not only to implement the 3D image

segmentation and feature extraction from the given bio-medical 3D volume. The object which is

extracted from the background by the method has already been meshed during this segmentation

procedure.

This method generates a bunch of nodes first and we treat these nodes as the tetrahedrons’

vertices in the tetrahedrons generation step. For sake of the accurate and adaptive requirement, the

most of the nodes should be strictly on the boundary of the features. We utilize 3D Canny edge

detector and 3D PCA sampling in order to generate enough but not excessive nodes. Same as the

2D case, the number of these nodes decides overall running time of this method. Our method runs

much faster than the classical voxel-based mesh generation and image segmentation method,

54

especially the very noisy cases. One of the very noisy example in the experimental results section

shows that the running time of our method is around nine times faster than classical voxel-based

method. The speed and real-time performance of this method is outstanding. On the other hand,

same as 2D case, the intensities in a super-voxel is averaged which can serves as a noise reduction

operator. Our method can deal with even extremely noisy 3D bio-medical volume. We set the

smaller sampling radius on curved-boundary or tiny features and the greater sampling radius on

straight-boundary or big features. The final experiment results shows that the quality of the both

surface and volumetric mesh are very high.

4.1 Nodes Generation

In this step, some voxels from the given 3D volume are picked to be the nodes. Because the

goal of this method is to generate an adaptive and feature-sensitive tetrahedral mesh, the quantity

and the position of the nodes become very important. The nodes picked in this step should be

strictly on the boundary of the features. Moreover, this method generates dense nodes on curved-

boundary or tiny features and sparse nodes on straight-boundary or big features likes the 2D case.

4.1.1 Canny Sample Nodes

This method utilizes 3D Canny edge detector. Fig 4.1 is a 128*128*128 thoracic cavity 3D

volume and we are only interested in lung.

55

 (a) (b) (c)

Fig 4.1: (a) The Iso-surface of a 128*128*128 thoracic cavity 3D volume. (b) The slice image of thoracic

cavity 3D volume. (c) The slice image of the result of 3D Canny edge detector. Blue rectangular region is

the curved-boundary or tiny features. Red rectangular region is the straight-boundary or big features.

From Fig 4.1(c), we realize that the marked voxels are strictly on the boundary of the

features. Likes 2D case, we can’t just treat all the voxels in this result as the nodes because we

don’t want the result tetrahedrons have very tiny angles. We need to do the sampling on the above

result. Moreover, we need to generate dense nodes on the curved-boundary or tiny features which

are displayed in the blue rectangular region in (c) and sparse nodes on the straight-boundary or big

features which are displayed in the red rectangular region in (c).

We utilize the 3D principal component analysis (PCA) to calculate the sampling radius.

When we decide whether we are going to keep the nodes or discard them, we need to take the

neighborhoods of every marked node into account. When we visit the arbitrary marked node

denoted as P in the canny map. We call P 's K×K×K neighborhoods: P1, P2... Pn. n is the number

of the neighborhoods of P . K is a parameter which is decided by the size of the features. We set

K=5 for all the examples in this thesis. The covariance matrix is calculated in the following formula

[22]:

56

3 3

1

()()
n

T

j j

j

P P P P 



  

(22)

1 , 2 , 3 are three eigenvalues of above covariance matrix. We assume these three

eigenvalues follow: 1 
2 

3 . The sampling radius R(P) is calculated by the following

equation:

 
   

   
1 3 1 3

1 3 1 3

2 / 0.3

3 0.3 / 0.5

4

R P

else

   

   

  


    



 (23)

4.1.2 Surfaces Nodes

After the PCA sampling, some extra nodes should be added on the six surfaces of the given

3D volume because this method needs them to generate the tetrahedrons in next step. Fig 4.2 shows

a slice image of the final result of nodes generation step.

Fig 4.2: A slice image of the 3D thoracic cavity volume with the adaptively nodes which are marked in red

including both Canny sample nodes and surfaces nodes.

57

Fig 4.2 shows that most of the nodes are on the boundary of the lung which we are

interested in and some nodes are distributed in the background. Here I provide a simple example

which is a single sphere.

 (a) (b)

Fig 4.3: (a) Iso-surface of a 128*128*128 sphere 3D volume. (b) The adaptive nodes including both Canny

sample nodes and surfaces nodes.

From Fig 4.3, we realize that the all nodes generated by the above step are on the surface

of the feature which is a sphere because this sphere example do not have any noise and other

features.

4.2 Mesh Generation via Delaunay Tetrahedralization

In this step, we treat the nodes generated from above step as the input. An open source

tetrahedral mesh generator is adapted to generate a quality tetrahedral mesh based on the input

nodes [50]. Fig 4.4 displays a slice of the Delaunay tetrahedralization result. The number of the

input nodes is 51625. After the implementation of the Delaunay tetrahedralization, we generate a

tetrahedral mesh whose faces number is 65050 and tetrahedrons number is 324577.

http://www.tetgen.org/
http://www.tetgen.org/

58

Fig 4.4 shows that the mesh quality is pretty good. This method uses the average of the

intensities of all the voxles in a tetrahedron to be the value of this super-voxel. It makes the

supervoxel-based method also has a smooth effect on the segmentation. The qualities and shapes

of the tetrahedrons are pretty good in Fig 4.4 (b).

 (a) (b)

Fig 4.4: (a) A slice of 128*128*128 thoracic cavity volume mesh generation via Delaunay tetrahedralization.

Nodes number= 51625, tetrahedrons number=324577. (b) A closeup look at the rectangular region in (a)

4.3 Super-voxels Based 3D Segmentation on Meshed 3D Images

In the 3D segmentation step, similar with 2D case, we treat every tetrahedron as a node in

a weighted graph. The value for each node is the averaged intensity of the voxels in this super-

voxel. Every node of this graph except the nodes which are on the surfaces of the 3D volume have

exactly four neighborhoods. Then a popular global optimization method: S-t cut is adapted to do

the graph cut on the above weighted graph [14, 105].

59

4.4 Surface Smoothing

The surfaces of the results after graph cutting are usually not smooth enough. These 3D

cases utilizes the Laplacian smoothing to generate a better visual result. We are going to list the

results of several experimental examples in the next section. In this thesis, the iteration number of

Laplacian smoothing is 3 and Lambda is 0.5.

4.5 Experimental Results

In this chapter, we lists several experimental results of some 3D bio-medical image volume

examples. We also lists the running time of the method in this thesis (including the node generation,

mesh generation, graph cut and smoothing) and compares it with classical voxel-based 3D image

segmentation method. Compare with the pixel-based image segmentation, the running time of

mesh generation is trivial. So in the running time table, I only list the pixel-based image

segmentation running time to compare with the running time of the mesh generation method in

this thesis. All the results show that our method could fulfill the real-time performance requirement

and it also keeps the features accurately.

60

 (a) (b)

 (c) (d)

 (e) (f)

61

Fig 4.5: (a) Iso-surface of a 128*128*128 sphere 3D volume. (b) The result of classical voxel-based 3D

image segmentation. The running time is 3640. (c) The result of the supervoxel-based 3D image

segmentation. The running time of 3D Canny edge detector is 1438 ms, The running time of PCA sampling

is 62 ms. The running time of the generation of the tetrahedral mesh is 78 ms. Running time of S-t cut based

on the super-voxels is 16 ms. Running time of Laplacian smoothing is 78 ms. (d) A closeup look at the

rectangular region in (c). (e)The clipping result of volume mesh structure. (f) A closeup look at the

rectangular region in (e).

Fig 4.5 is a very simple example which is a sphere in a 128*128*128 3D volume. This

example don’t have any other features in the 3D volume. (b) is the result of the classical voxel-

based 3D image segmentation and the surface of it is not smooth enough. The running time of this

classical method is 3640ms. (c) is the result of the supervoxel-based 3D segmentation and its

surface is very smooth. The PCA sampling helps us a lot to reduce the number of the nodes. There

are only 2353 nodes and 10190 tetrahedrons in this example. The overall running time of our

method is 1672 ms and it is much faster than the classical voxel-based method. (d), (e) and (f)

shows that the quality and shape of the result mesh is very good.

 (a) (b)

62

 (c) (d)

 (e) (f)

 (g) (h)

63

 (i) (j)

Fig 4.6: is a 136*121*71 very noisy cell 3D volume. (a) and (b) Two slices of the cross sections of this 3D

volume. (c) The iso-surface of this 3D cell volume. (d) Slice of the Canny map.(e) The final picked nodes

result. (f) The result of classical voxel-based 3D image segmentation. The running time is 24078ms. (g)The

result of the supervoxel-based 3D image segmentation. The running time of 3D Canny edge detector is

500ms, The running time of PCA sampling is 985ms. The running time of the generation of the tetrahedral

mesh is 703ms. The running time of S-t cut based on the super-voxel is 594ms. Running time of Laplacian

smoothing is 31ms (h) A closeup look at the rectangular region in (g). (i)The clipping result of volume

mesh structure. (j) A closeup look at the rectangular region in (i).

Fig 4.6 is a very noisy 3D cell volume and our method also works well on this example.

Because the size of this cell volume example is much smaller than the previous sphere volume,

the speed of the 3D Canny edge detector is much faster than the sphere one. Noisy 3D volume

indicates that there are lots of tiny features in this example. As the result, this example generates

29981 nodes in (e) and 187193 tetrahedrons in the mesh. Because of a plenty of nodes, the speed

of the PCA sampling, mesh generation and S-t cut is much slower than the sphere one. The overall

running time of this example is 2806ms. The classical voxel-based image segmentation is even

worse. The running time of it is 24078ms. Our method is around nine times faster than the classical

voxel-based segmentation. (g), (h), (i), and (j) shows that the surface of the cell is smooth enough

and both volume and surface mesh’s quality are great. In this example, our method is much better

64

than the classical voxel-based segmentation in both speed and quality with same seeds given

manually in this volume.

 (a) (b)

 (c) (d)

65

 (e) (f)

 (g)

Fig 4.7: A 128*128*128 thoracic cavity 3D volume. (a) is the iso-surface map of this 3D volume. (b) The

final picked nodes result. (c) The result of classical voxel-based 3D image segmentation. The running time

is 14422ms. (d)The result of the supervoxel-based 3D image segmentation. The running time of 3D Canny

edge detector is 828ms. The running time of PCA sampling is 1422ms. The running time for the generation

of the tetrahedral mesh is 1203ms. S-t cut based on the super-voxel is 1031ms. Running time of Laplacian

smoothing is 78ms. (e) A closeup look at the rectangular region in (d). (f)The clipping result of volume

mesh structure. (g) A closeup look at the rectangular region in (f).

Fig 4.7 is 128*128*128 thoracic cavity 3D volume. Compare with (c) and (d), the result of the

super-voxel graph cut method which is introduced in this paper is much better than the classical

voxel-based 3D image segmentation. Moreover, the running time of the super-voxel method is

66

4562ms and the running time of the classical voxel-based 3D image segmentation is 14422ms.

Both the speed and quality of supervoxel-based 3D image segmentation method mentioned in this

paper is much better than the classical voxel-based one.

Table 4.1: Running time comparison between our supervoxel-based 3D image segmentation methods with

the classical voxel-based image segmentation method.

 Sphere Cells Thoracic cavity

Number of voxels 2097152 1168376 2097152

Supervoxel-based image

segmentation (Method in this thesis)

Number of tetrahedrons 10190 187193 324577

Running time of

Canny(ms)
1438 500 828

Running time of PCA

sampling(ms)
62 985 1422

Running time of

tetrahedral mesh

generation(ms)

78 703 1203

Running time of S-t

Cut(ms)
16 594 1031

Running time of

smoothing(ms)
78 31 78

Running time in all(ms) 1672 2806 4562

Classical voxel-based 3D image segmentation method(ms) 3640 24078 14422

Table 4.1 shows that the speed of supervoxel-based image segmentation method which is

much faster than the classical voxel-base image segmentation method in all the cases. Especially

when the 3D volume is very noisy which is one of the common attribute of the bio-medical 3D

image, the method introduced in this thesis works pretty well. We list the steps from nodes

generation, tetrahedral mesh generation, graph cut based on the super-voxels to smoothing.

67

Moreover, the experimental results also demonstrate that our method can generate very high

quality surface and volume meshes on bio-medical 3D volumes

68

Chapter 5

Image Edge Enhancement and Segmentation via Randomized

Shortest Paths

This chapter describes a new method for image edge enhancement and boundary

segmentation. Because this method can enhance the edge of the features, it can be used to generate

the feature boundary map instead of Canny edge detector in our mesh generation scheme.

Likes many interactive graph-based edge enhancement and segmentation methods, users are

asked to provide some foreground (or object) and background seeds. A set of randomly generated

points representing the foreground are paired with another set of random points representing the

background. The corresponding shortest paths of all the pairs are found and accumulated such that

image edges are more likely visited by the shortest paths and thus get enhanced. The final

segmentation is obtained from the enhanced edges. Several experiments are provided to

demonstrate the effectiveness of the proposed approach.

Our method also treats an input image as a weighted graph and utilizes shortest paths between

two pixels. However, our method differs from other approaches in that the source and sink of a

path are randomly generated and likely (but not exactly) represent the object and background

respectively. Each pixel is associated with an edge confidence (EC) value that is initialized as zero.

69

Whenever a shortest path is found, all pixels on the path are added by one on their EC value. The

final EC map of the whole image gives an enhanced edge map of the original image, and thus the

segmentation can be performed by simply running the shortest path twice on the object boundaries.

As the number of shortest paths executed affects the quality of the EC map (typically, the more

the number of paths, the better the EC map), our method can be thought of as a Monte Carlo

method.

Our method is based on the graph constructed from the original image. As most of other graph-

based methods, we treat each pixel as a node and the 4-connectivity between pixels as an edge in

a graph. First, we define a gradient-dependent value on every pixel in the image is as follows:

() exp(0.1*)G p I   (25)

where I is the gradient of the input image I. Then the edge
ije connecting two vertices

ip and
jp is assigned with the weight as:

2

)()(ji

ij

pGpG
e


 (26)

With the edge weight defined above, any shortest path between two pixels in the image

would try to go through the image edges as the gradient magnitudes are high and hence the edge

weights are low.

Different from other graph-based methods, the idea of our method is to use a number of

randomized shortest paths to enhance image edges. Every pixel p is associated with a so-called

edge confidence (EC) value, which is initialized as zero for every pixel. Whenever a pixel p is

visited by one shortest path, the corresponding EC value is accumulated by one. After all the

70

shortest paths are found and applied to the visited pixels, the EC value of a pixel will give a clue

of how strong this pixel lies on the image edges, hence producing enhanced edge map of the

original image. The key in this process is to determine the end points (source and sink) of the

shortest paths, as finding the shortest path between two given points is a standard procedure in

graph theory. Below we shall give the details of our algorithm in several steps.

5.1 Seeds Generation

5.1.1 Initial Seed Selection by Users

In this step, users should manually pick some seeds representing foreground (object) and

background (non-object) using different colors. Usually the number of the object seeds is less than

that of the background seeds. Typically just a few (< 10) object seeds are necessary but they should

be distributed evenly inside of the object of interest. The background seeds should be distributed

around the object. Figure 5.1 illustrates an example of initial seed selection on an electron

microscopic image of cardiac cells. As explained below, these seeds only have high probability to

be chosen as the object and background. They may not be used as the sources or sinks of the

shortest paths in the segmentation algorithm.

71

Figure 5.1 Initial seeds selection on an electron microscopic image of cardiac cells (image size: 177*180

pixels).

5.1.2 Generating Marching Distance Maps

The user-selected seeds mentioned above roughly tell us where the foreground and

background are in the image. The pairs formed between them, however, may not be statistically

sufficient to enhance the edges for accurate segmentation. To add new pairs for the shortest paths,

we must know where the end (source or sink) points are and whether they are in foreground or

background. The classification of a position (i, j) is achieved by using the marching distance as

defined below:

Definition: Given a 2D scalar image I, the marching distance between two points A and B

in the function domain is defined by [103]:

}min{),(





BA

I

I dseBAMD (27)

72

where 
BA

 is the integral along a path from A to B. The minimization is conducted over all the

paths from A to B. Apparently the marching distance favors a path that goes through low-gradient

(or non-edge) regions. In other words, if two points are in the same feature, the marching distance

between them should be small.

Given a seed pixel S in an image, the marching distance from S to all other pixels is so-called

marching distance map, which is similar to the shortest path distance from S to all other pixels in

the graph representation of the image. The marching distance map can be efficiently computed by

using the fast marching method [104].

 (a) (b)

Figure 5.2: (a) Marching distance map from the user-picked object seeds. (b) Marching distance map from

the user-picked background seeds. The seeds are shown in Figure 5.1. The blue color means smaller

marching distances and by contrast the red color indicates larger marching distances.

Figure 5.2 shows the marching distance maps by treating the initial object seeds and the

initial background seeds as the seeds for the fast marching method [104], where the object and

background seeds are picked by a user as shown in Figure 5.2 The colors in both maps are defined

as: blue color means small marching distance and red color means larger marching distance. In

other words, the blue pixels have higher chance to be classified as objects while red pixels are

more likely to be the background in the given image.

73

5.1.3 Random Seed Selection

The marching distance maps shown in Figure 5.2 are then utilized to randomly generate source

and sink points that will be used to form the shortest paths. Basically the value of each pixel in the

marching distance map tells us the probability of that pixel being the source or sink point. The

lower the value is, the higher the probability would be. Below we briefly explain the steps of

generating source points (representing the object).

1. Randomly choose a pixel from the image. We denote this random pixel as P. Let M(P) be the value
of P in the marching distance map (see Fig 5.2).

2. We then generate a random number V(P)[0, T], where T is a pre-defined threshold. If M(P) ≤
V(P), then the pixel P is chosen as a source point (representing the object). Otherwise, ignore P.

3. Repeat (1-2) until sufficient number of source points are chosen.

A similar procedure is applied to generate a set of sink points (representing the background).

Figure 5.3 shows an example of source (in red) and sink (in blue) points. Note that because of the

random number generation, some source points lie in the background and some sink points lie in

the foreground (object) regions. These wrong classification would affect the segmentation. But as

we will see below, our final segmentation is a total contribution of all the shortest paths formed by

the source and sink points. Just a small number of wrong classification would not make much

difference to the final results. To that sense, our method is a Monte Carlo based method.

74

Figure 5.3: The generation of source (in red, representing object) and sink (in blue, representing background)

points by using random number generation.

5.2 Image Edge Enhancement by Shortest Paths

The source and sink points generated above (see Figure 5.3 too) are paired and used to find

the shortest paths by using the edge weight as defined in Equation (24). For example, if we have

n source points and m sink points, then n×m pairs will be considered and hence n×m shortest paths

will be detected in the graph. The algorithm we use to generate a shortest path is the Shortest Path

Faster Algorithm (SPFA).

Figure 5.4 shows the shortest path between one of source (object) point and one of sink

(background) points. We can see that this path favors passing through the boundary of the object

because according to equation (2), the edge weights are small on the boundary of the object.

75

Figure 5.4: The shortest path between one of the source (object) points and one of the sink (background)

points. Note the path favors going through the boundary of the object due to the small edge weights on the

boundary.

Figure 5.5 shows m shortest paths between one of the source points and all the m sink

points chosen by the random method described above. Although we see many branches on the

paths, all paths do prefer to go through the boundary of the object.

Figure 5.5: Shortest paths between one of the source points (representing the object) and all the sink points

(representing the background).

76

We then create a new image EC(i, j), representing the edge confidence of the pixel (i, j),

initialized as zero. For every one of the n×m shortest path, if a pixel (i, j) is on the path, we add

one to its edge confidence value EC(i, j). After all n×m shortest paths are checked, we will have a

gray-scale image EC(i, j), in which a large value indicates a high probability of the pixel being on

the object boundary. Figure 5.6 shows such an example after the EC(i, j) image is rescaled to [0,

255]. From this figure we can see that the image edges are enhanced due to the preference of the

shortest paths going through the object boundary. It is obvious now that our algorithms works like

a Monte Carlo method: the result becomes more and more accurate as the number of samples (in

our case , the shortest paths) increases. Also, the more uniform the random numbers are, the better

the result would be.

Figure 5.6: The edge confidence (EC) map formed by adding one to pixels where a shortest path goes

through.

5.3 Edge Detection from the Enhanced Edges

After the image edges are enhanced by using the randomized shortest paths, we detect the

object boundary by running the shortest path one more time. First, we search the edge confidence

(EC) image to find out the brightest pixel (denoted by A) and we assume that this point be on the

77

boundary of the object. Then we search the neighborhood of this pixel and find out the brightest

neighboring pixel (denoted by B). Then we form another graph by using the EC image. In this

graph, the edge weight is the inverted gray-scale value in the EC image, such that the edges on the

object boundary have smaller edge weights. In particular, an edge where one of the end points has

zero EC value is assigned the weight infinite. Also, the edge between A and B mentioned above is

also assigned the weight infinite. With these specifications, the shortest path between A and B in

this new graph would result in the segmentation as shown in Figure 5.7 below.

Figure 5.7: Final segmentation result by using the randomized shortest paths, an algorithm based on the

Monte Carlo method.

5.4 Experimental Results

In this section we will test the proposed algorithm on several biomedical images to show the

effectiveness of our method. Figure 5.8 shows a noisy image of cardiac cell with 264*235 pixels.

In Figure 5.8(a) we choose 3 initial object seeds (in red) and a number of initial background seeds

(in blue). With these seeds, we generate the marching distance maps for both the object and the

background, as shown respectively in Figure 5.8 (b) and (c). These maps are then used to randomly

78

generate the source (in red) and sink (in blue) points, representing the object and background

respectively, as seen in Fig 5.8(d). In this example, there are a total of 50 source and 100 sink

points. These points are paired and the corresponding 5,000 shortest paths are found in about 1.6

seconds. Figure 5.8(e) and (f) show the rescaled edge confidence image and the final edge

detection result of our method.

 (a) (b)

79

 (c) (d)

 (e) (f)

Figure 5.8 Illustration of our algorithm on a cardiac cell with 264*235 pixels. (a) Initial object (in red) and

background (in blue) seeds picked by the user. (b) The marching distance map from the object seeds. (c)

The marching distance map from the background seeds. (d) The randomly generated source (in red) and

sink (in blue) points by using the marching distance maps. (e) The computed edge confidence image by

adding all shortest paths together. (f) The final edge detection result.

80

Figure 5.9 shows another example of noisy cardiac cell image with 125*145 pixels. Figure

5.9(a) shows the initial seeds (one object seed and a number of background seeds) picked by the

user. Figure 5.9(b) and (c) show the marching distance maps by treating the user-picked seeds as

the seeds for the fast marching method. Figure 5.9(d) shows the randomly generated source (red)

and sink (blue) points by using the marching distance maps as the probability. The computed edge

confidence map that combines all the shortest paths is shown in Figure 5.9(e). Figure 5.9(f) shows

that the edge detection result. In this example, we generates 50 source points and 100 sink points,

and it takes about 0.64 second to find all the 5,000 shortest paths.

 (a) (b)

81

 (c) (d)

 (e) (f)

Figure 5.9: Illustration of our algorithm on a cardiac cell with 125*145 pixels. (a) Initial object (in red) and

background (in blue) seeds picked by the user. (b) The marching distance map from the object seeds. (c)

The marching distance map from the background seeds. (d) The randomly generated source (in red) and

sink (in blue) points by using the marching distance maps. (e) The computed edge confidence image by

adding all shortest paths together. (f) The final edge detection result.

Figure 5.10 shows how to deal with two adjacent features. The image considered is an MRI

image of a mouse's heart. Although the noise is not a big issue in this image, the closely-located

features (namely, the left ventricle near the center surrounded by the right ventricle) do impose

82

some difficulties on boundary segmentation using our method. In this example, we randomly

generated 50 source (object) points and 100 sink (background) points, and the total time for

shortest path detection is 0.29 second.

 (a) (b) (c)

 (d) (e)

Figure 5.10: Illustration of our algorithm on an MRI image of the heart with 128*128 pixels. (a) Initial

object (in red) and background (in blue) seeds picked by the user. (b) The marching distance map from the

object seeds. (c) The marching distance map from the background seeds. (d) The randomly generated source

(in red) and sink (in blue) points by using the marching distance maps. (e) The final edge detection result

of the left ventricle.

In this chapter, I described a new graph-based algorithm to enhance the edges of a feature

in an image by using the shortest paths of random source and sink points. This method can be used

to replace the Canny edge detector in our mesh generation scheme. This method likes the

traditional Monte Carlo method in that the resulting edge confidence image and hence the final

83

edge detection result become more accurate as the number of random shortest paths increases.

Therefore, our approach is very scalable and can be very easily implemented in parallel computing

84

Chapter 6

Conclusion

2D and 3D mesh generations, and image segmentation are hot research topics in the computer

vision and image processing area. How to create the high quality meshes and accurate image

segmentation results with a real-time running time become very important. We list a series of the

steps from nodes generation, mesh generation to graph cut based on the super-pixels. This

algorithm not only results in an accurate image segmentation output, but also generates good

quality mesh (both surface and volumetric mesh). Moreover, through the experimental result, the

speed of this algorithm is much faster than the speed of classic pipeline and our approach could

fulfill the real-time requirement. The experimental results also certificate that our method can

generate very high quality surface and volume meshes and accurate image segmentation results on

the various bio-medical 2D image and 3D volumes.

85

References

[1]: Haidekker M.A., Medical Imaging Technology, SpringerBriefs in Physics, 2013

[2]: Chandler D. and R.W. Roberson, Bioimaging: Current Concepts In Light & Electron

Microscopy, Jones & Bartlett Learning, 2008

[3]: E.N. Mortenson and W.A. Barrett. Interactive segmentation with intelligent scissors.

Graphical Models and Image Processing, pages 349-384, 1998

[4]: C Rother, V Kolmogorov. Grabcut: Interactive foreground extraction using iterated graph cuts

. ACM Transactions on Graphics, vol. 23, pp. 309–314, 2004

[5]: Gonzalez, R.C. and R.E. Woods, Digital image processing, Addison-Wesley, 1992.

[6]: Z. Yu and C. Bajaj, Image Segmentation Using Gradient Vector Diffusion and Region

Merging, in Proceedings of International Conference on Pattern Recognition, pp. 941-944, 2002.

[7]: R. Malladi, J.A. Sethian, and B.C. Vemuri, Shape modeling with front propagation: A level

set approach. IEEE Trans. Pattern Anal. Machine Intell.,. 17(2), pp. 158-175, 1995.

[8]: N. Volkmann, A novel three-dimensional variant of the watershed transform for segmentation

of electron density maps. J Struct Biol,. 138, pp. 123-129, 2002.

[9]: J. Shi and J. Malik, Normalized cuts and image segmentation. Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 731-737, 1997.

[10]: A.S. Frangakis et al., Identification of macromolecular complexes in cryoelectron tomograms

of phantom cells. Proc Natl Acad Sci U S A, 99(22): pp. 14153-14158, 2002.

[11]: Kass, M., A. Witkin, and D. Terzopoulos, Snakes: active contourmodels. Int’l J. of Computer

Vision, 1988. 1: p. 321-331.

http://www.sciencedirect.com/science/article/pii/S1077316998904804
http://dl.acm.org/citation.cfm?id=1015720

86

[12]: Sethian, J.A., Level Set Methods and Fast Marching Methods (2nd edition). 1999: Cambridge

University Press.

[13]: Yu, Z. and C. Bajaj, Automatic Ultrastructure Segmentation of Reconstructed Cryo-EM

Maps of Icosahedral Viruses. IEEE Transactions on Image Processing, 2005. 14(9): p. 1324-1337.

[14]: Y.Boykov, G. Funka-Lea. Graph Cuts and Efficient N-D Image Segmentation, International

Journal of Computer Vision, vol. 70, no. 2, pp. 109-131, 2006

[15]: A.Delong, Y. Boykov. A Scalable graph-cut algorithm for N-D grids, Proceeding of

Computer Vision and Patten Recognition, pages 1-8, 2008

[16]: O.Juan, Y. Boykov. Active graph cuts, Proceeding of Computer Vision and Patten

Recognition, pages 1023-1029, 2006

[17]: L.Grady. Random walks for image segmentation.IEEE Transactions on Pattern Anal.

Machine Intell., 28(11):1768–1783, 2006.

[18]: X.Bai and G. Sapiro. A geodesic framework for fast interactive image and video

segmentation and matting. In Proceedings of International Conference on Computer Vision, pages

1-8, 2007.

[19]: A.K. Sinop and L. Grady. A seeded image segmentation framework unifying graph cuts and

random walker which yields a new algorithm. In Proceedings of International Conference on

Computer Vision, pages 1-8, 2007.

[20]: C.Couprie, L. Najman, L. Grady, and H. Talbot, Power watersheds: A new image

segmentation framework extending graph cuts, random walker and optimal spanning forest, In

Proceedings of International Conference on Computer Vision, pages 731-738, 2009.

87

[21]: Shi,J. and J. Malik, Normalized cuts and image segmentation. Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 1997: p. 731-737.

[22]: Shi,J. and J. Malik, Normalized cuts and image segmentation. IEEE Trans. on Pattern Anal.

Machine Intell., 2000. 22(8): p. 888-905.

[23]: Stein A., Hoiem D., and Hebert M., Learning to Find Object Boundaries Using Motion Cues.

IEEE International Conference on Computer Vision (ICCV), October, 2007. p. 1-8.

[24]: Ren X. and Malik J., Learning a Classification Model for Segmentation . In Proc. 9th Int.

Conf. Comp. Vision, 2003. p. 10-17.

[25]: Rohkohl, C. and Engel, K.: Efficient Image Segmentation Using Pairwise Pixel Similarites.

In the 29th DAGM Symposium on Pattern Recognition, F.A. Hamprecht, C. Schnorr, and B. Jahne

(Eds.), LNCS 4713, 2007. p. 254–263.

[26]: Ramponi G. and S. Carrato, An adaptive irregular sampling algorithm and its application to

image coding, Image and Vision Computing, 19(7): 451?60, 2001

[27]: Yang Y., Miles N. Wernick, and Jovan G. Brankov. A fast approach for accurate content-

adaptive mesh generation, IEEE Transactions on Image Processing, 12(8):866-881, 2003

[28]: Kim T.-S. and W. H. Lee, 3-D MRI and DT-MRI Content-adaptive Finite Element Head

Model Generation for Bioelectromagnetic Imaging, Recent Advances in Biomedical Engineering,

2009

[29]: Cuadros-Vargas A.J., L. G. Nonato, R. Minghim and T. Etiene, Imesh: An Image Based

Quality Mesh Generation Technique, Proceedings of the XVIII Brazilian Symposium on Computer

Graphics and Image Processing, 2005

88

[30]: Tu X. and M.D. Adams, Improved Mesh Models of Images Through the Explicit

Representation of Discontinuities, Canadian Journal of Electrical and Computer Engineering,

36(2): 78 - 86, 2013.

[31]: Garland M., P.S. Heckbert, Fast Polygonal Approximation of Terrains and Height Fields,

CMU-CS-95-181, 1995

[32]: Adams M.D., A Highly-Effective Incremental/Decremental Delaunay Mesh-Generation

Strategy for Image Representation, Signal Processing, 93(4): 74964, 2013

[33]: Sarkis M, K. Diepold, Content Adaptive Mesh Representation of Images Using Binary Space

Partitions, IEEE Trans Image Process., 18(5):1069-79, 2009

[34]: Bougleux, S., Peyre, G., Cohen, L.D., Image Compression with Anisotropic Geodesic

Triangulations, IEEE 12th International Conference Computer Vision, pages 2343 - 2348, 2009

[35]: Li P., Adams M.D., A Tuned Mesh-Generation Strategy for Image Representation Based on

Data-Dependent Triangulation, IEEE Trans Image Process., 22(5):2004-2018, 2013

[36]: Demaret L., N. Dyn and A. Iske, Image Compression by Linear Splines over Adaptive

Triangulations, Signal Processing, 86(7): 1604616, 2006

[37]: L. Demaret and A. Iske, Anisotropic Triangulation Methods in Adaptive Image

Approximation, In Approximation Algorithms for Complex Systems, Springer Proceedings in

Mathematics Volume 3, pp 47-68, 2011

[38]: Adams M.D., A Flexible Content-Adaptive Mesh-Generation Strategy for Image

Representation, IEEE Transactions on Image Processing, 20(9): 2414 - 2427, 2011

89

[39]: L. Chen, J. Xu, Optimal Delaunay triangulations, Journal of Computational Mathematics 22

(2) (2004) 299–308.

[40]: Chen L., J. Xu, Optimal Delaunay triangulation, Journal of Computational Mathematics,

22(2): 299-308, 2004

[41]: Gao Z., Z. Yu, and M. Holst, Quality Tetrahedral Mesh Smoothing via Boundary-Optimized

Delaunay Triangulation, Computer Aided Geometric Design, 29(9):707-721, 2012

[42]: Gao Z., Z. Yu, and M. Holst, Feature-Preserving Surface Mesh Smoothing via Suboptimal

Delaunay Triangulation, Graphical Models, 75(1): 23-38, 2013

[43]: Goksel O., and S.E. Salcudean, Image-Based Variational Meshing, IEEE Transactions on

Medical Imaging, 30(1): 11-21, 2011

[44]: Yang Y., Miles N. Wernick, and Jovan G. Brankov. A fast approach for accurate content

adaptive mesh generation, IEEE Transactions on Image Processing,12(8):866-881, 2003

[45]: Floyd R. and L. Steinberg, An adaptive algorithm for spatial gray scale, in SID Int. Symp.

Digest of Tech. Papers, pp. 367, 1975

[46]: Shewchuk J., Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay

Triangulator. http://www.cs.cmu.edu/ quake/triangle.html

[47]: Hang Si, A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator http://wias-

berlin.de/software/tetgen/

[48]: Chen L., Mesh smoothing schemes based on optimal Delaunay triangulations, Proceedings

of the 13th International Meshing Roundtable, pages 109-120, 2004

http://www.wias-berlin.de/~si

90

[49]: Chen L., J. Xu, Optimal Delaunay triangulation, Journal of Computational Mathematics,

22(2): 299-308, 2004

[50]: Hang Si, A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator http://wias-

berlin.de/software/tetgen/

[51]: J.O. Dada, P. Mendes, Multi-scale modelling and simulation in systems biology, Integrative

Biology 3 (2011) 86–96.

[52]: W.K. Liu, T.R. Lee, A.M. Kopacz, H. Kim, W. Stroberg, H.B.Man, D. Ho, M.K. Kim, J.H.

Chung, P. Decuzzi, Multiscale framework for biomedical simulation from molecular dynamics to

continuum mechanics, Journal of the Serbian Society for Computational Mechanics 5 (2) (2011)

61–80.

[53]: D. Whitley, Analysing molecular surface properties, Drug Design Strategies: Computational

Techniques and Applications. RSC Drug Discovery, The Royal Society of Chemistry, Cambridge,

2012, pp. 184–209.

[54]: V. d’Otreppe, R. Boman, J.-P. Ponthot, Generating smooth surface meshes from multi-region

medical images, International Journal for Numerical Methods in Biomedical Engineering 28 (6–

7) (2012) 642–660.

[55]: X. Feng, K. Xia, Y. Tong, G.W. Wei, Geometric modeling of subcellular structures,

organelles, and multiprotein complexes, International Journal for Numerical Methods in

Biomedical Engineering 28 (12) (2012) 1198–1223.

[56]: E. Johnson, Y. Zhang, K. Shimada, Estimating an equivalent wall-thickness of a cerebral

aneurysm through surface parameterization and a non-linear spring system, International Journal

for Numerical Methods in Biomedical Engineering 27 (7) (2011) 1054–1072.

http://www.wias-berlin.de/~si
http://wias-berlin.de/software/tetgen/
http://wias-berlin.de/software/tetgen/

91

[57]: I. Sazonov, P. Nithiarasu, Semi-automatic surface and volume mesh generation for subject-

specific biomedical geometries, International Journal for Numerical Methods in Biomedical

Engineering 28 (1) (2012) 133–157.

[58]: I. Sazonov1, S.Y. Yeo, R.L. Bevan, X. Xie, R. van Loon, P. Nithiarasu, Modelling pipeline

for subject-specific arterial blood flow-A review, International Journal for Numerical Methods in

Biomedical Engineering 27 (12) (2011) 1868–1910.

[59]: T.E. Tezduyar, K. Takizawa, T. Brummer, P.R. Chen, Space-time fluid–structure interaction

modeling of patient-specific cerebral aneurysms, International Journal for Numerical Methods in

Biomedical Engineering 27 (11) (2011) 1665–1710.

[60]: A.B. Albu, T. Beugeling, A morphology-based approach for interslice interpolation of

anatomical slices from volumetric images, IEEE Transactions on Medical Imaging 55 (8) (2008)

2022–2038.

[61]: S. Valette, J.M. Chassery, R. Prost, Generic remeshing of 3D triangular meshes with metric-

dependent discrete Voronoi diagrams, IEEE Transactions on Visualization and Computer

Graphics 14 (2008) 369–381.

[62]: D.-M. Yan, B. Lévy, Y. Liu, F. Sun, W. Wang, Isotropic remeshing with fast and exact

computation of restricted Voronoi diagram, Computer Graphics Forum 28 (5) (2009)1445–1454.

[63]: Delaunay, B.: Sur la sphere vide. Classe des Science Mathematics 16et Naturelle 7 (1934)

793–800

92

[64]: Rippa, S.: Adaptive approximation by piecewise linear polynomials on triangulations of

subsets of scattered data. SIAM Journal on Scientific and Statistical Computing 13 (1992) 1123–

1141

[65]: Garland, M., Heckbert, P.: Fast polygonal approximation of terrains and height fields.

Technical Report CMU-CS-95-181, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA, USA (1995)

[66]: P. Alliez, D. Cohen-Steiner, M. Yvinec, M. Desbrun, Variational tetrahedral meshing, ACM

Transactions on Graphics 24 (3) (2005) 617–625.

[67]: W. Choi, D. Kwak, I. Son, Y. Im, Tetrahedral mesh generation based on advancing front

technique and optimization scheme, International Journal for Numerical Methods in Engineering

58 (2003) 1857–1872.

[68]: P. Frey, H. Borouchaki, P. George, Delaunay tetrahedralization using an advancing front

approach, Proceedings of the 5th 2International Meshing Roundtable, 1996, pp. 1–46.

[69]: S.K. Boyd, R. Muller, Smooth surface meshing for automated finite element model

generation from 3D image data, Journal of Biomechanics 39 (2006) 1287–1295.

[70]: N. Molino, R. Bridson, J. Teran, R. Fedkiw, A crystalline, red green strategy for meshing

highly deformable objects with tetrahedra, Proceedings of the 12th International Meshing

Roundtable, 2003, pp. 3–114.

[71]: M. Yerry, M. Shephard, Automatic three-dimensional mesh generation by the modified-

Octree technique, International Journal for Numerical Methods in Engineering 20 (11) (1984)

1965–1990.

93

[72]: Y. Zhang, C. Bajaj, S. Sohn, 3D finite element meshing from imaging data, Computer

Methods in Applied Mechanics and Engineering 194 (48–49) (2005) 5083–5106.

[73]: F. Labelle, J. Shewchuk, Isosurface stuffing: fast tetrahedral meshes with good dihedral

angles, ACM Transactions on Graphics 26 (3) (2007), 57, 1–57, 10.

[74]: L.A. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping and

smoothing, International Journal for Numerical Methods in Engineering 40 (21) (1997) 3979 -

4002.

[75]: B.M. Klingner, J.R. Shewchuk, Aggressive tetrahedral mesh improvement, Proceedings of

the 16th International Meshing Roundtable, 2008, pp. 3–23.

[76]: L.P. Chew, Guaranteed-quality Delaunay meshing in 3D, Proceedings of the 13th Annual

Symposium on Computational Geometry, 1997, pp. 391–393.

[77]: J.M. Escobar, R. Montenegro, G. Montero, E. Rodríguez, J.M. Gonzáez-Yuste, Smoothing

and local refinement techniques for improving tetrahedral mesh quality, Computers and Structures

83 (28–30) (2005) 2423–2430.

[78]: D. Nave, N. Chrisochoides, L.P. Chew, Guaranteed-quality parallel Delaunay refinement for

restricted polyhedral domains, Computational Geometry: Theory and Applications 28 (2–3)

(2004) 191–215.

[79]: R.E. Bank, R.K. Smith, Mesh smoothing using a posteriori error estimates, SIAM Journal on

Numerical Analysis 34 (3) (1997) 979–997.

[80]: L.A. Freitag, on combining Laplacian and optimization-based mesh smoothing techniques,

Trends in Unstructured Mesh Generation (1997) 37–43.

94

[81]: D.A. Field, Laplacian smoothing and Delaunay triangulations, Communications in Applied

Numerical Methods 4 (6) (1988) 709–712.

[82]: P. Hansbo, Generalized Laplacian smoothing of unstructured grids, Communications in

Numerical Methods in Engineering 11 (5) (1995) 455–464.

[83]: L.R. Herrmann, Laplacian-isoparametric grid generation scheme, Journal of the Engineering

Mechanics Division 102 (5) (1976) 749–907.

[84]: H. Xu, T.S. Newman, An angle-based optimization approach for 2D finite element mesh

smoothing, Finite Elements in Analysis and Design 42 (2006) 1150–1164.

[85]: Z. Yu, M.J. Holst, J.A. McCammon, High-fidelity geometric modeling for biomedical

applications, Finite Elements in Analysis and Design 44 (11) (2008) 715–723.

[86]: T. Zhou, K. Shimada, An angle-based approach to two-dimensional mesh smoothing,

Proceedings of the 9th International Meshing Roundtable, 2000, pp. 373–384.

[87]: Q. Du, D. Wang, Tetrahedral mesh generation and optimization based on centroidal Voronoi

tessellations, International Journal for Numerical Methods in Engineering 56 (2003) 1355–1373.

[88]: Y. Zhang, T.J.R. Hughes, C.L. Bajaj, An automatic 3D mesh generation method for domains

with multiple materials, Computer Methods in Applied Mechanics and Engineering 199 (5–8)

(2010) 405–415.

[89]: L. Rineau, M. Yvinec, A generic software design for Delaunay refinement meshing,

Computational Geometry: Theory and Applications 38 (2007) 100–110.

[90]: H. Si, K. Gartner, Meshing piecewise linear complexes by constrained Delaunay

tetrahedralizations, Proceedings of the 14th International Meshing Roundtable, 2005.

95

[91]: Y. Zhang, C. Bajaj, S. Sohn, 3D finite element meshing from imaging data, Computer

Methods in Applied Mechanics and Engineering 194 (48–49) (2005) 5083–5106.

[92]: L. Rineau, M. Yvinec, A generic software design for Delaunay refinement meshing,

Computational Geometry: Theory and Applications 38 (2007) 100–110.

[93]: Wang, J., Liu, G.: On the optimal shape parameters of radial basis functions used for 2d

meshless methods. Computer Methods in Applied Mechanics and Engineering 191 (2002) 2611–

2630

[94]: Casciola, G., Montefusco, L., Morigi, S.: Edge-driven image interpolation using adaptive

anisotropic radial basis functions. Journal of Mathematical Imaging and Vision 36 (2010) 125–

139

[95]: Casciola, G., Lazzaro, D., Montefusco, L., Morigi, S.: Shape preserving surface

reconstruction using locally anisotropic RBF interpolants. Computers & Mathematics with

Applications 51 (2006) 1185–1198

[96]: Casciola, G., Montefusco, L., Morigi, S.: The regularizing properties of anisotropic radial

basis functions. Applied Mathematics and Computation 190 (2007) 1050–1062

[97]: M. Xu and Z. Yu, "3D Image Segmentation Based on Feature-Sensitive and Adaptive

Tetrahedral Meshes”, IEEE International Conference on Image Processing, Phoenix, 2016.

[98]: M. Xu, Z. Gao, and Z. Yu, "Feature-Sensitive and Adaptive Mesh Generation of Grayscale

Images", The 4th Conference on Computational Modeling of Objects Presented in Images:

Fundamentals, Methods and Applications, Pittsburgh, LNCS 8641, pages 204-215, 2014.

96

[99]: K. Liu, M. Xu, and Z. Yu, "Feature-preserving Image Restoration from Adaptive Triangular

Meshes", ACCV Workshop on Emerging Topics on Image Restoration and Enhancement,

Singapore, 2014.

[100]: M. Xu, J. Wang, and Z. Yu, "Image Edge Enhancement and Segmentation via Randomized

Shortest Paths", The 5th International Conference on BioMedical Engineering and Informatics,

pages 290-294, China, 2012.

[101]: Z. Yu, M. Xu, and Z. Gao, "Biomedical Image Segmentation via Constrained Graph Cuts

and Pre-segmentation", Proc. of the 33rd Int’l Conf. of IEEE Engineering in Medicine and Biology

Society, pages 5714-5717, Boston, 2011.

[102]: Z. Yu, J. Wang, Z. Gao, M. Xu, and M. Hoshijima, "New Software Developments for

Quality Mesh Generation and Optimization from Biomedical Imaging Data", Computer Methods

and Programs in Biomedicine, 2013.

[103]: Z. Yu and C. Bajaj, Automatic Ultrastructure Segmentation of Reconstructed Cryo-EM

Maps of Icosahedral Viruses. IEEE Transactions on Image Processing,. 14(9): pp. 1324-1337,

2005.

[104]: R. Malladi and J.A. Sethian. A real-time algorithm for medical shape recovery, in Proc. of

Int’l Conf. on Computer Vision, pp. 304–310, 1998

[105]: Yuri Boykov and Vladimir Kolmogorov. An Experimental Comparison of Min-Cut/Max-

Flow Algorithms for Energy Minimization in Vision, IEEE Transactions on PAMI, Vol. 26, No.

9, pp. 1124-1137, Sept. 2004

97

[106] Baghaie, Ahmadreza, Roshan M. D'souza, and Zeyun Yu. "Sparse and low rank

decomposition based batch image alignment for speckle reduction of retinal OCT images." 2015

IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE, 2015.

[107] Baghaie, Ahmadreza, Zeyun Yu, and Roshan M. D’Souza. "State-of-the-art in retinal optical

coherence tomography image analysis." Quantitative imaging in medicine and surgery 5.4 (2015):

603.

[108] Baghaie, Ahmadreza, and Zeyun Yu. "Structure tensor based image interpolation

method." AEU-international Journal of Electronics and Communications 69.2 (2015): 515-522.

[109] Baghaie, Ahmadreza, Zeyun Yu, and Roshan M. D’souza. "Fast mesh-based medical image

registration." International Symposium on Visual Computing. Springer International Publishing,

2014.

[110] Baghaie, Ahmadreza, Roshan M. D'souza, and Zeyun Yu. "Application of Independent

Component Analysis techniques in speckle noise reduction of retinal OCT images." Optik-

International Journal for Light and Electron Optics 127.15 (2016): 5783-5791.

[111] Baghaie, Ahmadreza, Roshan M. D’Souza, and Zeyun Yu. "Dense correspondence and

optical flow estimation using gabor, schmid and steerable descriptors." International Symposium

on Visual Computing. Springer International Publishing, 2015.

[112] Baghaie, Ahmadreza. "Markov Random Field Model-Based Salt and Pepper Noise

Removal." arXiv preprint arXiv:1609.06341 (2016).

[113] Baghaie, Ahmadreza, and Zeyun Yu. "Curvature-based registration for slice interpolation of

medical images." International Symposium Computational Modeling of Objects Represented in

Images. Springer International Publishing, 2014.

98

Appendices

99

Appendix A: Publications

[1] M. Xu and Z. Yu, "3D Image Segmentation Based on Feature-Sensitive and Adaptive

Tetrahedral Meshes”, IEEE International Conference on Image Processing, Phoenix, 2016.

[2] M. Xu, Z. Gao, and Z. Yu, "Feature-Sensitive and Adaptive Mesh Generation of Grayscale

Images", The 4th Conference on Computational Modeling of Objects Presented in Images:

Fundamentals, Methods and Applications, Pittsburgh, LNCS 8641, pages 204-215, 2014.

[3] K. Liu, M. Xu, and Z. Yu, "Feature-preserving Image Restoration from Adaptive Triangular

Meshes", ACCV Workshop on Emerging Topics on Image Restoration and Enhancement,

Singapore, 2014.

[4] M. Xu, J. Wang, and Z. Yu, "Image Edge Enhancement and Segmentation via Randomized

Shortest Paths", The 5th International Conference on BioMedical Engineering and Informatics,

pages 290-294, China, 2012.

[5] Z. Yu, M. Xu, and Z. Gao, "Biomedical Image Segmentation via Constrained Graph Cuts and

Pre-segmentation", Proc. of the 33rd Int’l Conf. of IEEE Engineering in Medicine and Biology

Society, pages 5714-5717, Boston, 2011.

[6] Z. Yu, J. Wang, Z. Gao, M. Xu, and M. Hoshijima, "New Software Developments for Quality

Mesh Generation and Optimization from Biomedical Imaging Data", Computer Methods and

Programs in Biomedicine, 2013.

100

Curriculum Vitae

101

MING XU

xuminguwm@gmail.com

Cell: (414)334–3190

EDUCATION:

• University of Wisconsin-Milwaukee, Ph.D. candidate

Computer Science

GPA: 3.769/4.0, September 2010 - 2016

Concentration in biomedical modeling and visualization, 2D and 3D image

segmentation, 3D surface and volumetric meshes generation and image processing.

Minor: Mathematical Science

• University of Shanghai for Science and Technology, ME

Computer Application Technology

September 2006 - February 2009

• Fudan University

Computer Science and Technology

September 2001 - July 2005

SKILLS:

• C

• C++

• Java

• OpenGL 4.0+, Shader

• OOP Design, MVC Programming, Git, MFC, SQL, Html, Linux, UI Design (MFC, GLUT),

Unit Testing (JUnit), Visual Studio, GCC, Eclipse, LISP

mailto:xuminguwm@gmail.com
http://www.vogella.com/tutorials/JUnit/article.html

102

PROFESSIONAL EXPERIENCE:

Biomedical Modeling and Visualization Laboratory (2012.05-2014.10)

University of Wisconsin-Milwaukee

• Software development and maintenance: Bimos (C++, MFC and OpenGL) which is for

generating and optimizing surface and volumetric meshes from three-dimensional (3D)

biomedical imaging data.

Research Assistant:

Biomedical Modeling and Visualization Laboratory (2010.09-2011.08)

University of Wisconsin-Milwaukee

• Designed and implemented (C++) 2D image segmentation method of the project

“Image-based modeling of Ca2+ signaling in ventricular myocytes” funded by National

Institutes of Health-National Heart, Lung and Blood Institute.

• Assisted in surface and volumetric meshes generation.

Biomedical Modeling and Visualization Laboratory (2010.09-2016.05)

University of Wisconsin-Milwaukee

• Designed and implemented (C++) SPFA shortest path based 2D image segmentation

method.

• Improved and implemented (C++) a feature-preserving anisotropic filter.

• Designed and implemented (C++) multi-object 2D and 3D image segmentation method

based on Fast Marching.

ACADEMIC APPOINTMENTS:

Teaching Assistant:

University of Wisconsin-Milwaukee (2011.09-2016.05)

• CS250: Introductory Computer Programming in Java

 (Spring 2013, Fall 2013, Spring 2014, Fall 2014, Fall 2015, Spring 2016)

https://www.google.com/url?url=http://scholar.google.com/scholar_url%3Furl%3Dhttp://w3.cs.huji.ac.il/~daphna/course/CoursePapers/Coupled%252520Detection%252520and%252520Trajectory%252520Estimation%252520for%252520Multi-Object%252520Tracking.pdf%26hl%3Den%26sa%3DX%26scisig%3DAAGBfm2gjBO71ZvuBX23lzxnMXCAghJeUA%26nossl%3D1%26oi%3Dscholarr&rct=j&q=&esrc=s&sa=X&sqi=2&ved=0ahUKEwjT9omQ-8jOAhUKQiYKHcjTBtoQgAMIHCgBMAA&usg=AFQjCNE6_nQFCrolQUvo_PQRUQxKben1rQ
http://www.baidu.com/link?url=ewGiCQsY4dNlm1KKgbgopI-Z73McroUZstx0KeglW-tg44Lq_WNwvCu0a-4UBFX5pSwWQw-uDtTVaRKi7WlWFa

103

This course seeks to teach its students basic programming skills using a structured high-

level language (Java) including basic input and output, variables of the primitive types,

control statements, conditionals (if, if-else), iteration (while, for, do-while), user-defined

method, arrays, sorting and binary search.

• CS351: Data Structures and Algorithms in Java

 (Spring 2014, Spring 2015)

This course teaches programming in a structured, high-level, object-oriented language.

Implementation of data structures and algorithms and their application including ADTs

introduction, dynamic array, iterators, linked list, generics, stacks and queues, trees,

hashing, graphs and sorting.

• CS459: Fundamentals of Computer Graphics in OpenGL

 (Fall 2011, Spring 2012, Fall 2012, Spring 2013, Fall 2013, Fall 2014, Fall 2015)

This course uses Visual Studio C/C++ and an industry-standard graphics package OpenGL

to introduce students the principles of mathematics of geometric transformations, viewing,

illumination, splines, and certain implementation algorithms including line-drawing and

scan-line fill of convex polygons, clipping algorithm, basic illumination models, surface

lighting effects, quadric surfaces, texture mapping and Bezier curves.

ACHIEVEMENTS:

• UW-Milwaukee Annual Scholarship $20,000

• 2013 Chancellor Award $2,000

• 2014 CEAS Dean’s Scholarship $2,000

• 2015 CEAS Dean’s Scholarship $1,000

	University of Wisconsin Milwaukee
	UWM Digital Commons
	12-1-2016

	Feature-sensitive and Adaptive Image Triangulation: A Super-pixel-based Scheme for Image Segmentation and Mesh Generation
	Ming Xu
	Recommended Citation

	tmp.1488313814.pdf.uzgbB

