97 research outputs found

    Layout level design for testability strategy applied to a CMOS cell library

    Get PDF
    The layout level design for testability (LLDFT) rules used here allow to avoid some hard to detect faults or even undetectable faults on a cell library by modifying the cell layout without changing their behavior and achieving a good level of reliability. These rules avoid some open faults or reduce their appearance probability. The main purpose has been to apply that set of LLDFT rules on the cells of the library designed at the Centre Nacional de Microelectronica (CNM) in order to obtain a highly testable cell library. The authors summarize the main results (area overhead and performance degradation) of the application of the LLDFT rules on the cell

    Special session: Hot topics: Statistical test methods

    No full text
    International audienceThe process of testing Integrated Circuits involves a huge amount of data: electrical circuit measurements, information from wafer process monitors, spatial location of the dies, wafer lot numbers, etc. In addition, the relationships between faults, process variations and circuit performance are likely to be very complex and non-linear. Test (and its extension to diagnosis) should be considered as a challenging highly dimensional multivariate problem.Advanced statistical data processing offers a powerful set of tools, borrowed from the fields of data mining, machine learning or artificial intelligence, to get the most out of this data. Indeed, these mathematical tools have opened a number of novel and interesting research lines within the field of IC testing.In this special session, prominent researchers in this field will share their views on this topic and present some of their last findings. The first talk will discuss the interest of likelihood prevalence in random fault simulation. The second talk will show how statistical data analysis can help diagnosing test efficiency. The third talk will deal with the reliability of Alternate Test of AMS-RF circuits. The fourth and last talk will address the idea of mining the test data for improving design manufacturing and even test itself

    Integrated circuit reliability testing

    Get PDF
    A technique is described for use in determining the reliability of microscopic conductors deposited on an uneven surface of an integrated circuit device. A wafer containing integrated circuit chips is formed with a test area having regions of different heights. At the time the conductors are formed on the chip areas of the wafer, an elongated serpentine assay conductor is deposited on the test area so the assay conductor extends over multiple steps between regions of different heights. Also, a first test conductor is deposited in the test area upon a uniform region of first height, and a second test conductor is deposited in the test area upon a uniform region of second height. The occurrence of high resistances at the steps between regions of different height is indicated by deriving the measured length of the serpentine conductor using the resistance measured between the ends of the serpentine conductor, and comparing that to the design length of the serpentine conductor. The percentage by which the measured length exceeds the design length, at which the integrated circuit will be discarded, depends on the required reliability of the integrated circuit

    Design of a testchip for low cost IC testing.

    Get PDF
    With the continuous increase of the integration densities and complexities, the problem of testing integrated circuits has become much more acute and needs an economic solution with reliable performance. This paper presents the design of a TESTCHIP implementing a multiple polynomial, multiple seed based mixed-mode test technique. Fault simulation experiments on benchmark circuits show that the TESTCHIP is capable of detecting 100% of the faults using a much lower number of test vectors than in the approaches attempted by the other researchers. It also offers lower data storage requirements than that of conventional ATE. The TESTCHIP is capable of testing combinational circuits as well as sequential circuits with scan-path facilities

    Design for Test and Hardware Security Utilizing Tester Authentication Techniques

    Get PDF
    Design-for-Test (DFT) techniques have been developed to improve testability of integrated circuits. Among the known DFT techniques, scan-based testing is considered an efficient solution for digital circuits. However, scan architecture can be exploited to launch a side channel attack. Scan chains can be used to access a cryptographic core inside a system-on-chip to extract critical information such as a private encryption key. For a scan enabled chip, if an attacker is given unlimited access to apply all sorts of inputs to the Circuit-Under-Test (CUT) and observe the outputs, the probability of gaining access to critical information increases. In this thesis, solutions are presented to improve hardware security and protect them against attacks using scan architecture. A solution based on tester authentication is presented in which, the CUT requests the tester to provide a secret code for authentication. The tester authentication circuit limits the access to the scan architecture to known testers. Moreover, in the proposed solution the number of attempts to apply test vectors and observe the results through the scan architecture is limited to make brute-force attacks practically impossible. A tester authentication utilizing a Phase Locked Loop (PLL) to encrypt the operating frequency of both DUT/Tester has also been presented. In this method, the access to the critical security circuits such as crypto-cores are not granted in the test mode. Instead, a built-in self-test method is used in the test mode to protect the circuit against scan-based attacks. Security for new generation of three-dimensional (3D) integrated circuits has been investigated through 3D simulations COMSOL Multiphysics environment. It is shown that the process of wafer thinning for 3D stacked IC integration reduces the leakage current which increases the chip security against side-channel attacks

    SPICE Model of Memristor with Nonlinear Dopant Drift

    Get PDF
    A mathematical model of the prototype of memristor, manufactured in 2008 in Hewlett-Packard Labs, is described in the paper. It is shown that the hitherto published approaches to the modeling of boundary conditions need not conform with the requirements for the behavior of a practical circuit element. The described SPICE model of the memristor is thus constructed as an open model, enabling additional modifications of non-linear boundary conditions. Its functionality is illustrated on computer simulations

    Self-Test Libraries Analysis for Pipelined Processors Transition Fault Coverage Improvement

    Get PDF
    Testing digital integrated circuits is generally done using Design-for-Testability (DfT) solutions. Such solutions, however, introduce non-negligible area and timing overheads that can be overcome by adopting functional solutions. In particular, functional test of integrated circuits plays a key role when guaranteeing the device's safety is required during the operative lifetime (in-field test), as required by standards like ISO26262. This can be achieved via the execution of a Self-Test Library (STL) by the device under test (DUT). Nevertheless, developing such test programs requires a significant manual effort, and can be non-trivial when dealing with complex modules. This paper moves the first step in defining a generic and systematic methodology to improve transition delay faults' observability of existing STLs. To do so, we analyze previously devised STLs in order to highlight specific points within test programs to be improved, leading to an increase in the final fault coverage

    High Speed Test Interface Module Using MEMS Technology

    Get PDF
    With the transient frequency of available CMOS technologies exceeding hundreds of gigahertz and the increasing complexity of Integrated Circuit (IC) designs, it is now apparent that the architecture of current testers needs to be greatly improved to keep up with the formidable challenges ahead. Test requirements for modern integrated circuits are becoming more stringent, complex and costly. These requirements include an increasing number of test channels, higher test-speeds and enhanced measurement accuracy and resolution. In a conventional test configuration, the signal path from Automatic Test Equipment (ATE) to the Device-Under-Test (DUT) includes long traces of wires. At frequencies above a few gigahertz, testing integrated circuits becomes a challenging task. The effects on transmission lines become critical requiring impedance matching to minimize signal reflection. AC resistance due to the skin effect and electromagnetic coupling caused by radiation can also become important factors affecting the test results. In the design of a Device Interface Board (DIB), the greater the physical separation of the DUT and the ATE pin electronics, the greater the distortion and signal degradation. In this work, a new Test Interface Module (TIM) based on MEMS technology is proposed to reduce the distance between the tester and device-under-test by orders of magnitude. The proposed solution increases the bandwidth of test channels and reduces the undesired effects of transmission lines on the test results. The MEMS test interface includes a fixed socket and a removable socket. The removable socket incorporates MEMS contact springs to provide temporary with the DUT pads and the fixed socket contains a bed of micro-pins to establish electrical connections with the ATE pin electronics. The MEMS based contact springs have been modified to implement a high-density wafer level test probes for Through Silicon Vias (TSVs) in three dimensional integrated circuits (3D-IC). Prototypes have been fabricated using Silicon On Insulator SOI wafer. Experimental results indicate that the proposed architectures can operate up to 50 GHz without much loss or distortion. The MEMS probes can also maintain a good elastic performance without any damage or deformation in the test phase

    PSPICE modeling of meminductor

    Get PDF
    corecore