4,283 research outputs found

    A new test for the homogeneity of inverse gaussian scale parameters based on computational approach test

    Get PDF
    In this paper, we focused on testing homogeneity of scale parameters of k Inverse Gaussian distributions (IGDs) since this distribution is one of the most common distribution for analyzing nonnegative right-skewed data. We have proposed a new test statistic based on the Computational Approach Test (CAT), which is a type of parametric bootstrap method, for testing homogeneity of scale parameters of k IGDs. Simulation results have been presented to compare the performances of the proposed method and existing methods such as the likelihood ratio test, modified likelihood ratio test and generalized likelihood ratio test in terms of type I error rate and power. The results showed that the proposed CAT is better than the others in terms of the type I error rates and powers in some cases

    A Simple Test for the Absence of Covariate Dependence in Hazard Regression Models

    Get PDF
    This paper extends commonly used tests for equality of hazard rates in a two-sample or k-sample setup to a situation where the covariate under study is continuous. In other words, we test the hypothesis that the conditional hazard rate is the same for all covariate values, against the omnibus alternative as well as more specific alternatives, when the covariate is continuous. The tests developed are particularly useful for detecting trend in the underlying conditional hazard rates or changepoint trend alternatives. Asymptotic distribution of the test statistics are established and small sample properties of the tests are studied. An application to the e¤ect of aggregate Q on corporate failure in the UK shows evidence of trend in the covariate e¤ect, whereas a Cox regression model failed to detect evidence of any covariate effect. Finally, we discuss an important extension to testing for proportionality of hazards in the presence of individual level frailty with arbitrary distribution

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    Quantile Regression in the Presence of Sample Selection

    Get PDF
    Most sample selection models assume that the errors are independent of the regressors. Under this assumption, all quantile and mean functions are parallel, which implies that quantile estimators cannot reveal any (per definition non-existing) heterogeneity. However, quantile estimators are useful for testing the independence assumption, because they are consistent under the null hypothesis. We propose tests for this crucial restriction that are based on the entire conditional quantile regression process after correcting for sample selection bias. Monte Carlo simulations demonstrate that they are powerful and two empirical illustrations indicate that violations of this assumption are likely to be ubiquitous in labor economics.Sample selection, quantile regression, independence, test

    A Simple Test for the Absence of Covariate Dependence in Hazard Regression Models

    Get PDF
    This paper extends commonly used tests for equality of hazard rates in a two-sample or k-sample setup to a situation where the covariate under study is continuous. In other words, we test the hypothesis that the conditional hazard rate is the same for all covariate values, against the omnibus alternative as well as more specific alternatives, when the covariate is continuous. The tests developed are particularly useful for detecting trend in the underlying conditional hazard rates or changepoint trend alternatives. Asymptotic distribution of the test statistics are established and small sample properties of the tests are studied. An application to the e¤ect of aggregate Q on corporate failure in the UK shows evidence of trend in the covariate e¤ect, whereas a Cox regression model failed to detect evidence of any covariate effect. Finally, we discuss an important extension to testing for proportionality of hazards in the presence of individual level frailty with arbitrary distribution.Covariate dependence; Continuous covariate; Two-sample tests; Trend tests; Proportional hazards; Frailty/ unobserved heterogeneity; Linear transformation model

    BFpack: Flexible Bayes Factor Testing of Scientific Theories in R

    Get PDF
    There have been considerable methodological developments of Bayes factors for hypothesis testing in the social and behavioral sciences, and related fields. This development is due to the flexibility of the Bayes factor for testing multiple hypotheses simultaneously, the ability to test complex hypotheses involving equality as well as order constraints on the parameters of interest, and the interpretability of the outcome as the weight of evidence provided by the data in support of competing scientific theories. The available software tools for Bayesian hypothesis testing are still limited however. In this paper we present a new R package called BFpack that contains functions for Bayes factor hypothesis testing for the many common testing problems. The software includes novel tools for (i) Bayesian exploratory testing (e.g., zero vs positive vs negative effects), (ii) Bayesian confirmatory testing (competing hypotheses with equality and/or order constraints), (iii) common statistical analyses, such as linear regression, generalized linear models, (multivariate) analysis of (co)variance, correlation analysis, and random intercept models, (iv) using default priors, and (v) while allowing data to contain missing observations that are missing at random

    Identifying distributional characteristics in random coefficients panel data models

    Get PDF
    We study the identification of panel models with linear individual-specific coefficients, when T is fixed. We show identification of the variance of the effects under conditional uncorrelatedness. Identification requires restricted dependence of errors, reflecting a trade-off between heterogeneity and error dynamics. We show identification of the density of individual effects when errors follow an ARMA process under conditional independence. We discuss GMM estimation of moments of effects and errors, and introduce a simple density estimator of a slope effect in a special case. As an application we estimate the effect that a mother smokes during pregnancy on child's birth weight.
    corecore