13,274 research outputs found

    High Dimensional Expansion Implies Amplified Local Testability

    Get PDF
    In this work, we define a notion of local testability of codes that is strictly stronger than the basic one (studied e.g., by recent works on high rate LTCs), and we term it amplified local testability. Amplified local testability is a notion close to the result of optimal testing for Reed-Muller codes achieved by Bhattacharyya et al. We present a scheme to get amplified locally testable codes from high dimensional expanders. We show that single orbit Affine invariant codes, and in particular Reed-Muller codes, can be described via our scheme, and hence are amplified locally testable. This gives the strongest currently known testability result of single orbit affine invariant codes, strengthening the celebrated result of Kaufman and Sudan

    High Dimensional Expansion Implies Amplified Local Testability

    Get PDF
    In this work, we define a notion of local testability of codes that is strictly stronger than the basic one (studied e.g., by recent works on high rate LTCs), and we term it amplified local testability. Amplified local testability is a notion close to the result of optimal testing for Reed-Muller codes achieved by Bhattacharyya et al. We present a scheme to get amplified locally testable codes from high dimensional expanders. We show that single orbit Affine invariant codes, and in particular Reed-Muller codes, can be described via our scheme, and hence are amplified locally testable. This gives the strongest currently known testability result of single orbit affine invariant codes, strengthening the celebrated result of Kaufman and Sudan

    Local Testing for Membership in Lattices

    Get PDF
    Motivated by the structural analogies between point lattices and linear error-correcting codes, and by the mature theory on locally testable codes, we initiate a systematic study of local testing for membership in lattices. Testing membership in lattices is also motivated in practice, by applications to integer programming, error detection in lattice-based communication, and cryptography. Apart from establishing the conceptual foundations of lattice testing, our results include the following: 1. We demonstrate upper and lower bounds on the query complexity of local testing for the well-known family of code formula lattices. Furthermore, we instantiate our results with code formula lattices constructed from Reed-Muller codes, and obtain nearly-tight bounds. 2. We show that in order to achieve low query complexity, it is sufficient to design one-sided non-adaptive canonical tests. This result is akin to, and based on an analogous result for error-correcting codes due to Ben-Sasson et al. (SIAM J. Computing 35(1) pp1-21)

    Improved Local Testing for Multiplicity Codes

    Get PDF
    Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the values of low degree polynomials, evaluated in every point in ?_p^m. Similarly to Reed-Muller codes, multiplicity codes have a local nature that allows for local correction and local testing. Recently, [Karliner et al., 2022] showed that the plane test, which tests the degree of the codeword on a random plane, is a good local tester for small enough degrees. In this work we simplify and extend the analysis of local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show that multiplicity codes MRM_p(m, d, s) over prime fields with arbitrary d are locally testable by an appropriate k-flat test, which tests the degree of the codeword on a random k-dimensional affine subspace. The relationship between the degree parameter d and the required dimension k is shown to be nearly optimal, and improves on [Karliner et al., 2022] in the case of planes. Our analysis relies on a generalization of the technique of canonincal monomials introduced in [Haramaty et al., 2013]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs which exploit the algebraic structure of multiplicity codes

    Optimal Testing of Generalized Reed-Muller Codes in Fewer Queries

    Full text link
    A local tester for an error correcting code CΣnC\subseteq \Sigma^{n} is a tester that makes QQ oracle queries to a given word wΣnw\in \Sigma^n and decides to accept or reject the word ww. An optimal local tester is a local tester that has the additional properties of completeness and optimal soundness. By completeness, we mean that the tester must accept with probability 11 if wCw\in C. By optimal soundness, we mean that if the tester accepts with probability at least 1ϵ1-\epsilon (where ϵ\epsilon is small), then it must be the case that ww is O(ϵ/Q)O(\epsilon/Q)-close to some codeword cCc\in C in Hamming distance. We show that Generalized Reed-Muller codes admit optimal testers with Q=(3q)d+1q1+O(1)Q = (3q)^{\lceil{ \frac{d+1}{q-1}\rceil}+O(1)} queries. Here, for a prime power q=pkq = p^{k}, the Generalized Reed-Muller code, RM[n,q,d], consists of the evaluations of all nn-variate degree dd polynomials over Fq\mathbb{F}_q. Previously, no tester achieving this query complexity was known, and the best known testers due to Haramaty, Shpilka and Sudan(which is optimal) and due to Ron-Zewi and Sudan(which was not known to be optimal) both required qd+1qq/pq^{\lceil{\frac{d+1}{q-q/p} \rceil}} queries. Our tester achieves query complexity which is polynomially better than by a power of p/(p1)p/(p-1), which is nearly the best query complexity possible for generalized Reed-Muller codes. The tester we analyze is due to Ron-Zewi and Sudan, and we show that their basic tester is in fact optimal. Our methods are more general and also allow us to prove that a wide class of testers, which follow the form of the Ron-Zewi and Sudan tester, are optimal. This result applies to testers for all affine-invariant codes (which are not necessarily generalized Reed-Muller codes).Comment: 42 pages, 8 page appendi

    Testing Linear-Invariant Non-Linear Properties

    Get PDF
    We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for "triangle freeness": a function f:\cube^{n}\to\cube satisfies this property if f(x),f(y),f(x+y)f(x),f(y),f(x+y) do not all equal 1, for any pair x,y\in\cube^{n}. Here we extend this test to a more systematic study of testing for linear-invariant non-linear properties. We consider properties that are described by a single forbidden pattern (and its linear transformations), i.e., a property is given by kk points v_{1},...,v_{k}\in\cube^{k} and f:\cube^{n}\to\cube satisfies the property that if for all linear maps L:\cube^{k}\to\cube^{n} it is the case that f(L(v1)),...,f(L(vk))f(L(v_{1})),...,f(L(v_{k})) do not all equal 1. We show that this property is testable if the underlying matroid specified by v1,...,vkv_{1},...,v_{k} is a graphic matroid. This extends Green's result to an infinite class of new properties. Our techniques extend those of Green and in particular we establish a link between the notion of "1-complexity linear systems" of Green and Tao, and graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the proceedings of STACS 200

    Enhanced Recursive Reed-Muller Erasure Decoding

    Get PDF
    Recent work have shown that Reed-Muller (RM) codes achieve the erasure channel capacity. However, this performance is obtained with maximum-likelihood decoding which can be costly for practical applications. In this paper, we propose an encoding/decoding scheme for Reed-Muller codes on the packet erasure channel based on Plotkin construction. We present several improvements over the generic decoding. They allow, for a light cost, to compete with maximum-likelihood decoding performance, especially on high-rate codes, while significantly outperforming it in terms of speed

    Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields

    Full text link
    Reed-Muller codes are some of the oldest and most widely studied error-correcting codes, of interest for both their algebraic structure as well as their many algorithmic properties. A recent beautiful result of Saptharishi, Shpilka and Volk showed that for binary Reed-Muller codes of length nn and distance d=O(1)d = O(1), one can correct polylog(n)\operatorname{polylog}(n) random errors in poly(n)\operatorname{poly}(n) time (which is well beyond the worst-case error tolerance of O(1)O(1)). In this paper, we consider the problem of `syndrome decoding' Reed-Muller codes from random errors. More specifically, given the polylog(n)\operatorname{polylog}(n)-bit long syndrome vector of a codeword corrupted in polylog(n)\operatorname{polylog}(n) random coordinates, we would like to compute the locations of the codeword corruptions. This problem turns out to be equivalent to a basic question about computing tensor decomposition of random low-rank tensors over finite fields. Our main result is that syndrome decoding of Reed-Muller codes (and the equivalent tensor decomposition problem) can be solved efficiently, i.e., in polylog(n)\operatorname{polylog}(n) time. We give two algorithms for this problem: 1. The first algorithm is a finite field variant of a classical algorithm for tensor decomposition over real numbers due to Jennrich. This also gives an alternate proof for the main result of Saptharishi et al. 2. The second algorithm is obtained by implementing the steps of the Berlekamp-Welch-style decoding algorithm of Saptharishi et al. in sublinear-time. The main new ingredient is an algorithm for solving certain kinds of systems of polynomial equations.Comment: 24 page

    A Number-Theoretic Error-Correcting Code

    Full text link
    In this paper we describe a new error-correcting code (ECC) inspired by the Naccache-Stern cryptosystem. While by far less efficient than Turbo codes, the proposed ECC happens to be more efficient than some established ECCs for certain sets of parameters. The new ECC adds an appendix to the message. The appendix is the modular product of small primes representing the message bits. The receiver recomputes the product and detects transmission errors using modular division and lattice reduction
    corecore