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Abstract—Recent work have shown that Reed-Müller (RM)
codes achieve the erasure channel capacity. However, this perfor-
mance is obtained with maximum-likelihood decoding which can
be costly for practical applications. In this paper, we propose
an encoding/decoding scheme for Reed-Müller codes on the
packet erasure channel based on Plotkin construction. We present
several improvements over the generic decoding. They allow,
for a light cost, to compete with maximum-likelihood decoding
performance, especially on high-rate codes, while significantly
outperforming it in terms of speed.

I. INTRODUCTION

Introduced in 1951 by Mitani [1] and popularized by Reed
[2] and Müller [3], Reed-Müller codes are still used in many
applications (e.g. [4]). Their structural properties allow the use
of very simple but efficient coding and decoding algorithms.
Traditionally, Reed-Müller codes were mainly considered for
the Gaussian channel because they are able to reach their
Maximum-Likelihood (ML) decoding performance with fast
soft decision decoding algorithms [5], [6], [7]. But recently,
very interesting results have shown that Reed-Müller codes
achieve the capacity of the erasure channel [8], [9]. These
results were followed by new contributions on decoding algo-
rithms of these codes [9], [10].

Capacity-achieving erasure codes have interesting practical
applications. For example, they are used on higher layers
of communication protocols stacks for multicast or real-time
transmissions [11]. In this context, the data are transmitted
into packets and the erasure code is used to generate repair
packets from information packets. On the channel, called
packet erasure channel, each packet is correctly received or
erased. Classically, packet erasure codes are Fountain codes
[12], LDPC codes [13] or MDS (Reed-Solomon-based) codes
[14].

The main issue concerning the use of Reed-Müller codes
on the packet erasure channel is that the traditional decoding
algorithm achieving the capacity is based on an inversion
(through a Gaussian elimination) of the submatrix of generator
matrix corresponding to the received symbols and a matrix-
vector multiplication. The gaussian elimination, which has a
cubic complexity, is done only once for a codeword of packets
but the matrix-vector multiplication is done z times, where z
is the size of the packets. This operation can be very costly
when the code length increases.

The main contribution of this paper is to propose a sub-
quadratic decoding algorithms of Reed-Müller codes for the

packet erasure channel which obtain performances very close
to the capacity. For that, we extend some results presented in
[15]. The decoding algorithm make use of various structural
properties of Reed-Müller codes like the Plotkin recursive
decomposition [16] and the doubly transitive permutation
group. A similar technique was shown to obtain excellent
decoding performance on the Gaussian channel [5]. Decoding
based on recursive strategies was also successfully applied to
Polar codes, which have a structure similar to the one of Reed-
Müller codes [17].

Our main contribution is to show that, when used in a
different way and combined with additional tools (partial in-
formation passing and blank decoding), this techniques yields
decoding performance close to maximum likelihood on the
packet erasure channel with a very low complexity cost.

In the next Section, we present the Plotkin construction of
Reed-Muller codes and then our algorithm. In Section III,
we compare the recovering performance and the speed of
our decoding algorithm to the ML decoding with Gaussian
Elimination (GE). Finally, we draw some conclusions and
perspectives for this algorithm.

II. PROPOSED DECODING ALGORITHM

A. Introduction to Reed-Muller codes

Reed-Muller codes defined by parameters r and m, where
r ≤ m, are denoted by RM(r,m). The dimension k, and
the length n of RM(r,m) are given by k =

∑r
i=0

(
m
i

)
and

n = 2m.
One way to construct Reed-Muller codes is to use the

recursive decomposition introduced by Plotkin. For any m,
RM(0,m) is defined as the repetition code and RM(m,m)
is the identity code. In the general case, for 0 < r < m,
any codeword a ∈ RM(r,m) can be uniquily built from two
codewords u ∈ RM(r,m − 1) and v ∈ RM(r − 1,m − 1).
Precisely, we have:

RM(r,m) = {(u|u + v), u ∈ RM(r,m− 1),

v ∈ RM(r − 1,m− 1)}

By using the above decomposition in a recursive manner,
it follow that any RM code can be built from repetition and
identity codes. This also implies that any RM(m−1,m) code
is a Single Parity Check (SPC) code.



Over the erasure channel, a codeword a is received with
some erased positions. One can try to decode u and v with
a = (u|u + v) recursively.

For example, if a ∈ RM(1, 3), we have u ∈ RM(1, 2),
which is an SPC code, and v ∈ RM(0, 2), which is a repetition
code. Therefore, u can be decoded if it has at most one
lost position, and v can be decoded if at least one of its
position is known. Moreover, decoding new positions on either
u or v can reveal some new positions on the other vector,
as we have an

2 +i = ui + vi, for any 0 ≤ i < n
2 . This

decoding decomposition will be referred to as the classical
recursive algorithm. By nature, this algorithm has a O(n log n)
complexity.

B. Permutation Decoding

One interesting property of RM(r,m) codes is that they
admit the general affine group GA(m) as a permutation group
[18]. In other words, if a = (a0, a1, ..., an−1) ∈ RM(r,m),
then a′ = (aΠ(0), aΠ(1), ..., aΠ(n−1)) ∈ RM(r,m), where
Π(x) = Ax+b, A is a m×m binary invertible matrix and b a
vector of (F2)m. This group is known to be doubly-transitive,
i.e. there exists a permutation that sends any pair of positions
onto any other pair of positions.

It can be observed that the success of the recursive decoding
depends on the erasure pattern. Applying some specific per-
mutation on a received word can make successful a decoding
that has initially failed. The effects of permutations on the
iterative erasure decoding was studied in [19] for cyclic and
extended cyclic codes, but not for general Reed-Müller codes.

Example : Let us consider that a received pattern of
a ∈ RM(1, 3) is (a0,×,×,×,×, a5, a6, a7). Only one in
u = (a0,×,×,×) is known thus it can not be decoded.
Moreover, no positions of v, obtained by summing u and
(u + v), are known. Decoding is then impossible. Using the
permutation matrix

A =

1 0 0
1 1 0
0 0 1

 and b =

0
0
0

 ,

the vector to be decoded is then a′ =
(a0,×,×,×, a6, a7,×, a5) and thus u′ = (a0,×,×,×)
and u′ + v′ = (a6, a7,×, a5). By summing u′ and u′ + v′,
we obtain v′ = (a0 + a6,×,×,×). Since v′ is a codeword
of the RM(0, 2) which is the repetition code of length 4,
v′decoded = (a0 + a6, a0 + a6, a0 + a6, a0 + a6). By summing
v′decoded and the received u′+v′, we obtain an updated version
of u′, u′updated = (a0, a7 +a0 +a6,×, a5 +a0 +a6). Since u′

belongs to the RM(1, 2) which is a SPC code, we can decode
it as u′decoded = (a0, a7 +a0 +a6, a0 +a5 +a7, a5 +a0 +a6).
We can then rebuild the decoded version of u′+v′ and finally
apply the inverse permutation on a′ to obtain the decoded
word a.

The key challenge in the previous example is to find a
specific permutation, suited for the given erasure pattern.
Simulation results have shown that decoding is more efficient
by starting the decoding process with the decoding of v. As

a consequence, the main point is to determine a permutation
which maximizes the number of received positions in v for a
small complexity cost.

First we can notice that the vector b is useless. Indeed, for a
received word a = (u|u+v), the known positions of v are the
positions where ai and ai+ n

2
are known. We can observe that

the number of known positions of v will not change when the
vector b is added to all positions. Without loss of generality,
in the following, we restrict ourselves to the set of invertible
matrices A, i.e. the general linear group GL(m, 2). For all
binary invertible matrices of size m, we have to process the
images of the n positions. Following [18] which gives the
number of invertible matrices of size n, the complexity of
testing all possible matrices corresponding to a permutation
of size n is roughly O(n× 0.29× 2log2 n).

In order to avoid such a prohibitive cost, we propose a
lower complexity algorithm. Instead of testing the whole set of
invertible matrices, we only select the matrices that leave the
n
2 leftmost positions, i.e. the vector u, invariant. It means that
their first m−1 columns correspond to the first m−1 columns
of the identity matrix. Hence, the number of permutations
to be tested is equal to n

2 , since corresponding matrices are
completely determined by their last column, which must be
chosen outside the vector subspace spanned by the first m−1
columns. For each of these permutations, as the leftmost
positions are invariant, only the images of the n

2 rightmost
positions are processed. The complexity of testing this set of
matrices for one permutation of size n is thus O(n2

4 ). The
impact of this permutation selection on the global complexity
of the decoding process is discussed in Section II-D.

C. Partial Decoding

Orthogonally to the previous point, we propose a second
improvement to the algorithm. One of the weaknesses of the
raw recursive decoding algorithm is that, if one recursion fails,
the whole decoding fails. This is harmful for the performance
as for instance a recursion in v can fail but some new symbols
from other recursions may have been recovered. We propose
to pass this partial recovered information to the higher levels
of the recursion.

For example, let a be decomposed by u and v, which itself
is decomposed by v1 and v2. Let the decoding of v2 succeed
and v1 fail. v2 may bring some new symbols to v, which
can themselves bring new symbols to a and then improve the
decoding of u. Finally, if u reveals new symbols, they can be
useful for v and v1 and so forth. Simulation results have shown
that most of the time (over 95%), the number of recursive calls
is two, especially for higher levels of recursion, which also
means that the use of this mechanism is limited.

D. Blank Decoding

Unlike the previous improvements enhancing the decoding
capability, ”blank decoding” is focused on speed.

To explain this mechanism, let us consider a packet erasure
code generating n − k repair packets from k information
packets. By assuming that all packets have size z bits, the



encoding of the packet code can be seen as the parallel
encoding of z binary codewords of size n. Each one of the n
transmitted packets contains exactly one bit of each of the z
encoded vectors. The interest of this scheme is that the erased
packets produce the same erasure pattern on all the binary
codewords. In the decoding process of the packet code, this
property is used to pool together operations that are common
to the z decodings of the binary codewords.

Actually, before each packet block decoding, a blank block
(i. e. a block with packets of null size) decoding is processed
with the received loss pattern. During this process, the decoder
searches the best permutation to apply and the best partial
information passing strategy, according to the algorithms de-
scribed above and records it. If this decoding succeeds, the
actual decoding of the z binary codewords are simply done
by following the path traced by the blank pattern. If the blank
decoding fails, a partial decoding may however be possible. A
Gaussian Elimination may also be attempted, also in a blank
mode, either after or instead of this partial decoding.

As seen previously, the main point is to find the permuta-
tions recursively. Consequently the complexity of this blank
decoding is roughly O(n2 log n), processed only once per
packet block. This cost must be compared to the decodings
of the z binary codewords (each one having a complexity
O(n log n)). The impact of blank decoding on the global
decoding complexity of a packet block is evaluated in next
section.

III. RESULTS

We have compared our proposal with maximum likelihood
decoding using Gaussian Elimination (GE) on an Intel Core
2 Extreme @3.06Ghz on Mac OS X 10.6 in 64-bit mode.
Fig. 1 shows the decoding failure probabilities for RM(3, 7)
code (k = 64, n = 128), in terms of extra-packets. By
extra-packets, we mean the number of received symbols above
the source block size k, which corresponds to the erasure
channel capacity. We compare ML, which is optimal, with our
algorithm and the classical recursive algorithm. In addition,
we provide results for the recursive algorithm with only
permutation selection and only partial information passing.
We can see that our algorithm performs well compared to
the optimal GE and requires only 3 extra-symbols in average
to match the performances of GE. On the opposite, the raw
recursive algorithm is not able to recover anything with up
to 20% of extra-symbols. For RM(3, 7), the decoding speed
of both algorithms is provided in Table I. For the sake of
completeness, the encoding speed for the RM(3,7) code is
in the order of 4Gbps, and the decoding speed of a Reed-
Solomon code with the same parameters is around 350Mbps
[14].

In Table I, we provide a comparison of the decoding speed
and the average overhead between GE and our algorithm
for various Reed-Müller codes. All results are provided for
packets of 1500 bytes.

For the RM(6, 9) (k = 466, n = 512) code, we compare
the decoding speed of GE with our implementation. We

Fig. 1. Decoding failure rate of GE and recursive algorithms in terms of
extra-symbols for RM(3, 7)

Recursive Gaussian Elim. Recursive ML
speed speed overhead overhead

RM(3,6) 2021 Mbps 842 Mbps 5.41% 5.06%
RM(3,7) 1073 Mbps 544 Mbps 8.59% 4.75%
RM(4,7) 2393 Mbps 381 Mbps 3.45% 2.79%
RM(4,8) 1363 Mbps 215 Mbps 9.08% 1.44%
RM(5,8) 2774 Mbps 181 Mbps 2.44% 1.17%
RM(5,9) 1783 Mbps 85 Mbps 9.23% 0.45%
RM(6,9) 3291 Mbps 80 Mbps 1.90% 0.47%

RM(6,10) 3486 Mbps 44 Mbps 8.05% 0.18%

TABLE I
DECODING SPEED AND OVERHEAD FOR VARIOUS RM CODES

provide results for packets of 50, 500 and 1500 bytes which
represent classical VoIP, median Internet and LAN data units,
in Table II.

Packet Size Recursive Alg. Gaussian Elim. Speed Ratio
50 bytes 546 Mbps 8 Mbps 66x

500 bytes 2463 Mbps 51 Mbps 49x
1500 bytes 3291 Mbps 80 Mbps 41x

TABLE II
DECODING SPEED FOR RM(6, 9) CODE WITH 5% OF EXTRA-SYMBOLS

For this code, the speed up ratio between our code and
the GE is between 40x and 60x, depending on the packet
size. This variation can be explained by the fact that the
smaller is the packet size, the longer is the pre-decoding
phase compared to the actual decoding. This pre-decoding is
more complex for GE (a cubic complexity matrix inversion)
than the blank decoding for the recursive algorithm. Note,
however, that the blank decoding represents 86%, 38% and
17% of decoding time for recursive decoding for packet sizes
of 50, 500 and 1500 bytes. It is worth pointing out that for
the recursive decoding, only the encoded vector is recovered.
We do not take into account the final step which consists
in recovering the source symbols from the whole encoded



vector, which is in the magnitude of 8 Gbps for this code,
and thus far faster than the decoding.

In high code rates scenarios, our algorithm is able to decode
with only 1% − 2% more symbols than the optimal GE
decoding. Depending on the target application, one may be
interested to use this decoding algorithm, as it allows a ratio
of 5x - 20x decoding speed compared to GE.

IV. CONCLUSIONS

In this contribution, we have presented a recursive decoding
algorithm for Reed-Muller codes based on Plotkin construc-
tion. We have shown that the permutation selection and the
blank decoding dramatically improve the performances of
the decoder. In many scenarios, our algorithm can achieve
decoding performance close to the capacity, while achieving
speeds of several Gbps. Because of their high decoding speed,
Reed-Müller codes are an interesting alternative for the packet
erasure channel, when the decoding cost is a bottleneck (e.g.
in low power devices and real-time applications).
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