141,691 research outputs found

    Testing Reactive Probabilistic Processes

    Full text link
    We define a testing equivalence in the spirit of De Nicola and Hennessy for reactive probabilistic processes, i.e. for processes where the internal nondeterminism is due to random behaviour. We characterize the testing equivalence in terms of ready-traces. From the characterization it follows that the equivalence is insensitive to the exact moment in time in which an internal probabilistic choice occurs, which is inherent from the original testing equivalence of De Nicola and Hennessy. We also show decidability of the testing equivalence for finite systems for which the complete model may not be known

    Deciding equivalence-based properties using constraint solving

    Get PDF
    Formal methods have proved their usefulness for analyzing the security of protocols. Most existing results focus on trace properties like secrecy or authentication. There are however several security properties, which cannot be defined (or cannot be naturally defined) as trace properties and require a notion of behavioural equivalence. Typical examples are anonymity, privacy related properties or statements closer to security properties used in cryptography. In this paper, we consider three notions of equivalence defined in the applied pi calculus: observational equivalence, may-testing equivalence, and trace equivalence. First, we study the relationship between these three notions. We show that for determinate processes, observational equivalence actually coincides with trace equivalence, a notion simpler to reason with. We exhibit a large class of determinate processes, called simple processes, that capture most existing protocols and cryptographic primitives. While trace equivalence and may-testing equivalence seem very similar, we show that may-testing equivalence is actually strictly stronger than trace equivalence. We prove that the two notions coincide for image-finite processes, such as processes without replication. Second, we reduce the decidability of trace equivalence (for finite processes) to deciding symbolic equivalence between sets of constraint systems. For simple processes without replication and with trivial else branches, it turns out that it is actually sufficient to decide symbolic equivalence between pairs of positive constraint systems. Thanks to this reduction and relying on a result first proved by M. Baudet, this yields the first decidability result of observational equivalence for a general class of equational theories (for processes without else branch nor replication). Moreover, based on another decidability result for deciding equivalence between sets of constraint systems, we get decidability of trace equivalence for processes with else branch for standard primitives

    Markovian Testing Equivalence and Exponentially Timed Internal Actions

    Full text link
    In the theory of testing for Markovian processes developed so far, exponentially timed internal actions are not admitted within processes. When present, these actions cannot be abstracted away, because their execution takes a nonzero amount of time and hence can be observed. On the other hand, they must be carefully taken into account, in order not to equate processes that are distinguishable from a timing viewpoint. In this paper, we recast the definition of Markovian testing equivalence in the framework of a Markovian process calculus including exponentially timed internal actions. Then, we show that the resulting behavioral equivalence is a congruence, has a sound and complete axiomatization, has a modal logic characterization, and can be decided in polynomial time

    Full abstraction for fair testing in CCS

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent presheaf semantics and as a concurrent game semantics. It is here proved that a behavioural equivalence induced by this semantics on CCS processes is fully abstract for fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the 'rule of the game'. From any playground, two languages, equipped with labelled transition systems, are derived, as well as a strong, functional bisimulation between them.Comment: 15 pages, to appear in CALCO '13. To appear Lecture notes in computer science (2013

    Equivalence Testing for Functional Data With an Application to Comparing Pulmonary Function Devices

    Get PDF
    Equivalence testing for scalar data has been well addressed in the literature, however, the same cannot be said for functional data. The resultant complexity from maintaining the functional structure of the data, rather than using a scalar transformation to reduce dimensionality, renders the existing literature on equivalence testing inadequate for the desired inference. We propose a framework for equivalence testing for functional data within both the frequentist and Bayesian paradigms. This framework combines extensions of scalar methodologies with new methodology for functional data. Our frequentist hypothesis test extends the Two One-Sided Testing (TOST) procedure for equivalence testing to the functional regime. We conduct this TOST procedure through the use of the nonparametric bootstrap. Our Bayesian methodology employs a functional analysis of variance model, and uses a flexible class of Gaussian Processes for both modeling our data and as prior distributions. Through our analysis, we introduce a model for heteroscedastic variances within a Gaussian Process by modeling variance curves via Log-Gaussian Process priors. We stress the importance of choosing prior distributions that are commensurate with the prior state of knowledge and evidence regarding practical equivalence. We illustrate these testing methods through data from an ongoing method comparison study between two devices for pulmonary function testing. In so doing, we provide not only concrete motivation for equivalence testing for functional data, but also a blueprint for researchers who hope to conduct similar inference

    Probing Electroweak Symmetry Breaking Mechanism at the LHC: A Guideline from Power Counting Analysis

    Full text link
    We formulate the equivalence theorem as a theoretical criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting method for the chiral Lagrangian formulated electroweak theories. Armed with these, we perform a systematic analysis on the sensitivities of the scattering processes W±W±→W±W±W^\pm W^\pm \rightarrow W^\pm W^\pm and qqˉâ€Č→W±Zq\bar{q}'\rightarrow W^\pm Z for testing all possible effective bosonic operators in the chiral Lagrangian formulated electroweak theories at the CERN Large Hadron Collider (LHC). The analysis shows that these two kinds of processes are "complementary" in probing the electroweak symmetry breaking sector.Comment: Extended version, 11-page-Latex-file and 3 separate PS-Figs. To be Published in Mod.Phys.Lett.

    An intensionally fully-abstract sheaf model for π (expanded version)

    Get PDF
    International audienceFollowing previous work on CCS, we propose a compositional model for the π-calculus in which processes are interpreted as sheaves on certain simple sites. Such sheaves are a concurrent form of innocent strategies, in the sense of Hyland-Ong/Nickau game semantics. We define an analogue of fair testing equivalence in the model and show that our interpretation is intensionally fully abstract for it. That is, the interpretation preserves and reflects fair testing equivalence; and furthermore, any innocent strategy is fair testing equivalent to the interpretation of some process. The central part of our work is the construction of our sites, relying on a combinatorial presentation of π-calculus traces in the spirit of string diagrams

    Equivalence of infinite-state systems with silent steps

    Get PDF
    This dissertation contributes to analysis methods for infinite-state systems. The dissertation focuses on equivalence testing for two relevant classes of infinite-state systems: commutative context-free processes, and one-counter automata. As for equivalence notions, we investigate the classical bisimulation and simulation equivalences. The important point is that we allow for silent steps in the model, abstracting away from internal, unobservable actions. Very few decidability results have been known so far for bisimulation or simulation equivalence for infinite-state systems with silent steps, as presence of silent steps makes the equivalence problem arguably harder to solve. A standard technique for bisimulation or simulation equivalence testing is to use the hierarchy of approximants. For an effective decision procedure the hierarchy must stabilize (converge) at level omega, the first limit ordinal, which is not the case for the models investigated in this thesis. However, according to a long-standing conjecture, the community believed that the convergence actually takes place at level omega+ omega in the class of commutative context free processes. We disprove the conjecture and provide a lower bound of omega * omega for the convergence level. We also show that all previously known positive decidability results for BPPs can be re-proven uniformly using the improved approximants techniques. Moreover dissertation contains an unsuccesfull attack on one of the main open problems in the area: decidability of weak bisimulation equivalence for commutative context-free processes. Our technical development of this section is not sufficient to solve the problem, but we believe it is a serious step towards a solution. Furtermore, we are able to show decidability of branching (stuttering) bisimulation equivalence, a slightly more discriminating variant of bisimulation equivalence. It is worth emphesizing that, until today, our result is the only known decidability result for bisimulation equivalence in a class of inifinite-state systems with silent steps that is not known to admit convergence of (some variant of) standard approximants at level omega. Finally we consider weak simulation equivalence over one-counter automata without zero tests (allowing zero tests implies undecidability). While weak bisimulation equivalence is known to be undecidable in this class, we prove a surprising result that weak simulation equivalence is actually decidable. Thus we provide a first example going against a trend, widely-believed by the community, that simulation equivalence tends to be computationally harder than bisimulation equivalence. In short words, the dissertation contains three new results, each of them solving a non-trivial open problem about equivalence testing of infinite-state systems with silent steps

    Pengujian Pada Sistem Informasi Administrasi Perpustakaan Menggunakan Metode Black Box Testing Equivalence Partitioning (Studi Kasus: SMP Al Falah Ketintang Surabaya)

    Get PDF
    As one of the educational institutions of SMP Al Falah Ketintang Surabaya also always tries to keep up with the times as evidenced by the existence of a library administration information system website that can make it easier for librarians to manage book data management and library administration processes of SMP Al Falah Ketintang Surabaya. In an effort to support library management, it is necessary to test the new website, software testing is needed to ensure that the system developed can support business processes in accordance with the requirements with the aim of providing feedback on the advantages or shortcomings that exist in the application. In software testing, the process of checking whether the software is in accordance with the specifications and intended purposes, incomplete and ineffective software can cause various problems that cause various losses. In this study, testing was chosen with the Black Box Testing method Equivalence Partitioning or often called Equivalence Class Partitioning (ECP) is a technique or method that produces test data from several system needs by dividing input data and testing the data, from this method there are several combinations that can occur in Equivalence Partitioning, namely valid and invalid input values. Testing also uses Automation Testing techniques utilizing automation tools, namely Katalon Studio to execute test cases in order to save testing time. This study has 5 stages including determining the test base, defining partitions, making test cases, testing and calculating effectiveness values. The test results obtained were found 5 errors in 63 test cases and an overall effectiveness value of 89.9% with this value it can be concluded that the administrative information system website obtained a "Very Effective" achievement level
    • 

    corecore