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Equivalence Testing for Functional Data With an Application to
Comparing Pulmonary Function Devices

Abstract
Equivalence testing for scalar data has been well addressed in the literature, however, the same cannot be said
for functional data. The resultant complexity from maintaining the functional structure of the data, rather than
using a scalar transformation to reduce dimensionality, renders the existing literature on equivalence testing
inadequate for the desired inference. We propose a framework for equivalence testing for functional data
within both the frequentist and Bayesian paradigms. This framework combines extensions of scalar
methodologies with new methodology for functional data. Our frequentist hypothesis test extends the Two
One-Sided Testing (TOST) procedure for equivalence testing to the functional regime. We conduct this
TOST procedure through the use of the nonparametric bootstrap. Our Bayesian methodology employs a
functional analysis of variance model, and uses a flexible class of Gaussian Processes for both modeling our
data and as prior distributions. Through our analysis, we introduce a model for heteroscedastic variances
within a Gaussian Process by modeling variance curves via Log-Gaussian Process priors. We stress the
importance of choosing prior distributions that are commensurate with the prior state of knowledge and
evidence regarding practical equivalence. We illustrate these testing methods through data from an ongoing
method comparison study between two devices for pulmonary function testing. In so doing, we provide not
only concrete motivation for equivalence testing for functional data, but also a blueprint for researchers who
hope to conduct similar inference.
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA WITH

AN APPLICATION TO COMPARING PULMONARY

FUNCTION DEVICES

By Colin B. Fogarty and Dylan S. Small

University of Pennsylvania

Equivalence testing for scalar data has been well addressed in the
literature, however, the same cannot be said for functional data. The
resultant complexity from maintaining the functional structure of the
data, rather than using a scalar transformation to reduce dimension-
ality, renders the existing literature on equivalence testing inadequate
for the desired inference. We propose a framework for equivalence
testing for functional data within both the frequentist and Bayesian
paradigms. This framework combines extensions of scalar method-
ologies with new methodology for functional data. Our frequentist
hypothesis test extends the Two One-Sided Testing (TOST) proce-
dure for equivalence testing to the functional regime. We conduct this
TOST procedure through the use of the nonparametric bootstrap.
Our Bayesian methodology employs a functional analysis of variance
model, and uses a flexible class of Gaussian Processes for both mod-
eling our data and as prior distributions. Through our analysis, we
introduce a model for heteroscedastic variances within a Gaussian
Process by modeling variance curves via Log-Gaussian Process pri-
ors. We stress the importance of choosing prior distributions that are
commensurate with the prior state of knowledge and evidence regard-
ing practical equivalence. We illustrate these testing methods through
data from an ongoing method comparison study between two devices
for pulmonary function testing. In so doing, we provide not only con-
crete motivation for equivalence testing for functional data, but also
a blueprint for researchers who hope to conduct similar inference.

1. Introduction. An equivalence test is a statistical hypothesis test whose
inferential goal is to establish practical equivalence rather than a statisti-
cally significant difference [Berger and Hsu (1996)]. These tests arise from
the fact that within the frequentist paradigm, failing to reject a null hy-
pothesis of no difference is not logically equivalent to accepting said null.
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Examples of scenarios requiring equivalence tests include the assessment of
a generic drug’s performance relative to a brand name drug and method
comparison studies, in which the agreement of a new device with the “gold-
standard” for measuring a particular phenomenon must be assured before
the new device can replace the old one.

Equivalence tests for scalar data typically involve the establishment of
upper and lower equivalence thresholds dependent on the metric of equiv-
alence being used. The inferential aim is to establish that the metric falls
within the upper and lower equivalence thresholds with a prespecified Type
I error rate. See Berger and Hsu (1996) for a comprehensive overview of com-
monly used procedures. Oftentimes the use of scalar data is adequate, but
in some instances the question of practical equivalence cannot be reduced
to a hypothesis regarding scalar data.

The motivation for this research arose from a method comparison study
between a new device for assessing pulmonary function, Structured Light
Plethysmography (SLP), and the industry standard for such assessments, a
spirometer. SLP holds many advantages over spirometry: it is noninvasive,
it can be used to diagnose patients of a wider range of age and health
levels, and it provides detailed information regarding specific regions of the
lung that may be malfunctioning. Before SLP may be used extensively for
diagnostic purposes it must be assured beyond a reasonable doubt that the
measurements obtained by SLP are practically equivalent to those produced
by a spirometer.

Doctors rely on a host of information that can be produced both by SLP
and by spirometry. Some of these measurements are scalar and, hence, their
equivalence can be addressed using available scalar methods; however, not all
diagnostic tools utilized are scalar. For example, the “Flow-Volume Loop” is
a phase plot of flow of air into and out of the lungs versus volume of air within
the lungs over time for each breath. This plot allows doctors to investigate
the relationship between flow and volume at various points in time during
a given breath, which can indicate whether one has normally functioning
lungs, suffers from an obstructive airway disease (such as asthma), suffers
from a restrictive lung disease (such as certain types of pneumonia), or rather
has another condition altogether. In fact, certain pulmonary ailments are
associated with certain shapes of these loops. Figure 1 shows Flow-Volume
Loops for healthy patients and for patients with varying pulmonary ailments
[Goudsouzian and Karamanian (1984)].

Alberola-Lopez and Martin-Fernandez (2003) discuss a frequentist ap-
proach for comparing two functions through the use of a Fourier basis ex-
pansion. Behseta and Kass (2005) propose a Bayesian method for assess-
ing the equality of two functions using a nonparametric regression method
known as Bayesian adaptive regression splines (BARS). Neither of these
approaches uses the idea of establishing practical equivalence; rather, both
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Fig. 1. Flow-Volume Loops corresponding to various levels of pulmonary health, calcu-
lated using a spirometer. [Reproduced from Goudsouzian, N. and Karamanian, A. (1984).
Physiology for the Anesthesiologist, 2nd ed. Appleton-Century-Crofts, Norwalk, CT, with
permission.]

papers test strict equality between the functions of interest, and in fact set
strict equality as the null hypothesis and lack thereof as the alternative.
In this paper, we propose a framework for functional equivalence testing
that is analogous to its univariate counterpart. This involves an extension
of scalar techniques to the functional realm and a modification of said tech-
niques when a simple extension is not possible. In so doing, the inferential
objective becomes to establish that a functional metric of equivalence lies
within a tolerance region with a prespecified Type I error rate. We then
discuss methods for equivalence testing within the frequentist and Bayesian
paradigms, and illustrate these techniques with data from the method com-
parison study between SLP and spirometry. We further introduce a Bayesian
model for heteroscedastic functional data inspired by the work of Barnard,
McCulloch and Meng (2000) that separately places priors on the correlation
structure and the underlying variance functions.

2. A framework for equivalence testing.

2.1. Equivalence testing for scalar data. In the scalar case, equivalence
testing begins by defining a metric whose value can be used to assess equiv-
alence between the two populations of interest, say, θ. Common choices
include the difference between group means, µ1 − µ2, and the difference of
logarithms of group means, log(µ1)− log(µ2) (provided one’s data are strictly
positive). One then chooses lower and upper thresholds, κl and κu, such that
we can reject or fail to reject nonequivalence depending on whether or not
θ falls between κl and κu. The null hypothesis is nonequivalence and the
alternative is equivalence:

H0 : θ /∈ (κl, κu),

Ha : θ ∈ (κl, κu).
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A common approach for conducting this hypothesis test within the frequen-
tist paradigm is known as a Two One-Sided Test (TOST) [Berger and Hsu
(1996)]. As the name suggests, this is a two step procedure. In no particular
order, one separately tests for the alternatives that θ < κu and θ > κl with
each test being conducted with size α. If one successfully rejects for both
tests, practical equivalence may then be suggested at size α; otherwise, one
fails to suggest practical equivalence. The lack of compensation in the sig-
nificance level of the individual tests (say, to α/2) follows immediately from
the theory of Intersection-Union Tests (or IUTs), which are tests for which
the null parameter space can be described as the union of disjoint sets, and
the alternative as the intersection of the complements of those sets. One can
see that an equivalence test is an IUT [Berger (1982)], as its null region is
Θ0 := {(−∞, κl]∪ [κu,∞)} and its alternative region is Θa := (κl, κu) =Θc

0.
The TOST testing procedure can suffer from a lack of power. Brown,

Hwang and Munk (1995) and Berger and Hsu (1996) propose procedures
which are uniformly more powerful for the scalar case, however, these meth-
ods are themselves quite complicated even when dealing with univariate
data, to such an extent that TOST continues to be the method of choice in
the vast majority of applications. We proceed within the TOST framework,
which not only has intuitive appeal but can also be naturally extended to a
test of equivalence for functional data within the frequentist paradigm.

The most common goal of equivalence testing is to prove equivalence of
means, but this may not be sufficient. Anderson and Hauck (1990) and Chow
and Liu (1992) both suggest that in addition to comparing mean responses,
the variance of the two responses should also be compared, as a device or
drug with smaller variability may be preferred. We will thus include a test
for equivalence of variance in our testing procedure.

2.2. Equivalence testing for functional data. We now extend the equiva-
lence testing framework to the functional regime. Let θ(·) denote a functional
measurement of similarity between the location parameters of two functions.
One potential choice for θ(·) is the difference between overall mean functions.
µ1(·)−µ2(·), but the choice of θ(·) should depend on the nature of the infer-
ence being conducted. Let κl(·) and κu(·) denote lower and upper equivalence
bands, which again vary over the same continuum as do the functional data.
These bands are chosen such that practical equivalence can be suggested
or refuted depending on whether or not θ(·) falls entirely within κl(·) and
κu(·).

For testing the equivalence of variability of the functional data, let λ(·)
be a measurement of similarity between spreads of the populations. Choices

may include
σ2
1(·)

σ2
2(·)

, the ratio between the variance functions of the two popu-

lations, or σ21(·)− σ22(·), the difference between the two variances. We again
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establish upper and lower bands, ζl(·) and ζu(·), within which we can suggest
practical equivalence of variance functions.

The null and alternative hypotheses for the tests of location and spread
can then be stated as follows:

H
θ

0
:∃t ∈ T ∋ θ(t) /∈ (κl(t), κu(t)),

H
θ

a :∀t ∈ T , θ(t) ∈ (κl(t), κu(t)),

H
λ

0 :∃t ∈ T ∋ λ(t) /∈ (ζl(t), ζu(t)),

H
λ

a :∀t ∈ T , λ(t) ∈ (ζl(t), ζu(t)).

Note that the above test, in aggregate, is an IUT; the alternative space is
{θ(·), λ(·) :∀t ∈ T , θ(t) ∈ (κl(t), κu(t)) ∩ λ(t) ∈ (ζl(t), ζu(t))}. In order to test
these hypotheses within the frequentist paradigm, we propose conducting
two TOST procedures, one each for the location and spread parameters.
Since this is an IUT, each of the four total hypothesis tests can be con-
ducted at significance level α to arrive at an overall size of α. Details of our
frequentist testing procedure can be found in Section 4. Sections 8 and 9
also discuss conducting this test as a Bayesian.

Falling outside of the equivalence region for variability need not be a
condemnation; to the contrary, whichever population has markedly smaller
variability could be favored on those grounds. If one were comparing a gold
standard to a new device and the new device had markedly lower variation,
that would strengthen the case for the introduction of the new device into the
market. Hence, in the case of method comparison studies, a simple one-sided
test of noninferiority may be sufficient for comparing residual variability.

Note that, in practice, functional data are measured along a finite grid
of values. Thus, the grid must be fine enough such that areas of potential
dissimilarity along the domain are not ignored.

3. Equivalence testing for volume over time functions. As was explained
in Section 1, we are interested in whether or not the Flow-Volume Loops
produced by spirometry are practically equivalent to those produced by
SLP in terms of location and variability. Measurements for volume over
time and flow over time were recorded in 2009 for 16 individuals, with the
devices set up such that each breath was simultaneously recorded by SLP
and spirometry. These data were not the result of a clinical trial and, hence,
our use of the data serves exposition of our methodology rather than an
argument for the equivalence of SLP and spirometry. Our analysis herein
focuses on using the 453 pairs of volume over time curves measured by both
devices on these 16 patients to assess the equivalence of SLP and spirometry.
Figure 2 shows the visual correspondence between these volume over time
plots for SLP and spirometry from an individual.
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Fig. 2. Volume over time obtained using SLP and spirometry for an individual.

The data require preprocessing before our analysis can proceed, as we
must break our recordings into individual breaths that are aligned between
devices and that are comparable in terms of their domains and scale; see the
supplementary materials [Fogarty and Small (2014)] for details. This results
in 453 pairs of breaths, where each breath is measured at 25 equispaced time
points, time is scaled to the interval [0,1], and time t for SLP corresponds
with time t for spirometry within each pair to the best of our ability.

3.1. A model for volume over time functions. We use a functional anal-
ysis of variance model with cross-covariance between pairs of functions for
our data. Functional analysis of variance models are appropriate when one’s
data are comprised of functional responses that are believed to differ from
one another solely due to certain categorical variables [Ramsay and Silver-
man (2005)]. Our model states that we can express the measured volume in
the lungs of person i using both devices (denoting SLP by 1 and spirometry
by 2) in the kth breath at time t ∈ T as follows:

[

vi,1,k(t)
vi,2,k(t)

]

=

[

αi,1(t)
αi,2(t)

]

+

[

ǫi,1,k(t)
ǫi,2,k(t)

]

,

[

αi,1(t)
αi,2(t)

]

=

[

µ1(t)
µ2(t)

]

+

[

εi,1(t)
εi,2(t)

]

.

In this model [µ1(·), µ2(·)] represent the overall mean volume over time tra-
jectory for each device. We model the pairs {[αi,1(·), αi,2(·)]} as random ef-
fects, as we think of the individuals as draws from a larger population. The
terms {[ǫi,1,k(·), ǫi,2,k(·)]} are the mean zero error functions for the realized
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volume over time trajectory of each pair of devices, assumed to be indepen-
dent between breaths while allowing for both strong autocorrelation along
the domain of a given breath and cross-correlation between two breaths in a
given pair. This means that not only is there correlation between the value
of the functions at times t and t′ for each breath from a specific device,
but there will also be a correlation between the observation at time t from
SLP and the observation at time t′ from the spirometer. Denote the vari-
ance functions of these errors by [σ2ǫ,1(·), σ

2
ǫ,2(·)]. The terms {[εi,1(·), εi,2(·)]}

are the mean zero error functions for each patient’s pair of random effects,
assumed to be independent between patients while allowing for both strong
autocorrelation along the domain of a given breath and cross-correlation be-
tween random effects in a given pair. Denote the variance functions of these
random effects by [σ2α,1(·), σ

2
α,2(·)].

3.2. Defining equivalence bands. For our analysis, we define θ(·), µ1(·)−

µ2(·), λ(·), σ2ǫ,1(·)/σ
2
ǫ,2(·). In addition, we want to assure ourselves that the

variabilities of the random effect functions are similar between the two pop-
ulations; otherwise, there may be evidence of a systematic bias. As such,
we define a third metric of equivalence as ψ(·), σ2α,1(·)/σ

2
α,2(·). Research is

currently being conducted to ascertain proper values for upper and lower
equivalence bands for our measures of equivalence of location and spread.
These equivalence bands must be established via consultation of field ex-
perts (in our case, with pulmonary specialists). For the purpose of illus-
trating the methodology outlined herein, however, we set reasonable equiv-
alence bands based on the fact that the time points immediately before,
during, and immediately after maximal volume is attained are critical for di-
agnostic purposes: κl(t),−0.05cos(2πt)−0.15; κu(t), 0.05cos(2πt)+0.15;
ζu(t), 0.1cos(2πt) + 1.8; ζl(t), 1/(0.1cos(2πt) + 1.8).

We use the same sets of equivalence bands for the error variances and
the random effect variances, although in practice these should be chosen
separately. The class of equivalence bands need not be symmetric, as this
assumption may be unrealistic; we have merely done so for simplicity. Fig-
ure 3 shows the locational discrepancy between volume curves if the true
differences between devices truly were at the upper and lower thresholds of
equivalence we have specified.

4. Frequentist equivalence testing for functional data. We propose us-
ing the nonparametric bootstrap [Efron and Tibshirani (1993)] for assessing
equivalence by constructing pointwise confidence intervals for each metric
of equivalence, and then using the duality between confidence intervals and
pointwise hypothesis tests to conduct our inference. We begin with a test-
ing procedure for i.i.d. data, as we imagine many situations encountered in
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Fig. 3. A Volume curve and the corresponding curve with κl(·) and κu(·) applied.

practice will be of this form. We then discuss a procedure for testing within
a random effects model. Allowing for random effects is useful for repeated
measures data such as our pulmonary device data. Through our exposition,
we illustrate why pointwise coverage of our confidence intervals is actually
sufficient for guaranteeing that the resultant inference is of the desired size.

4.1. IID data, independence between populations. We use the difference
in mean functions, θ(·) , µ1(·) − µ2(·) and the ratio of variance functions

λ(·) ,
σ2
ǫ,1(·)

σ2
ǫ,2(·)

, as metrics for equivalence. Let y1,1(·), . . . , y1,n1(·) and y2,1(·),

. . . , y2,n2(·) denote the n1 and n2 observations from groups 1 and 2, respec-
tively, and let ȳ1(·)− ȳ2(·) denote the sample mean functions.

We use θ̂(·) , ȳ1(·)− ȳ2(·) and λ̂(·) ,
s2ǫ,1(·)

s2ǫ,2(·)
as our test statistics for the

hypothesis test, and use the nonparametric bootstrap to derive pointwise
confidence intervals for the corresponding parameters. We then use the du-
ality between one-sided confidence intervals and one-sided tests to reject or
fail to reject nonequivalence.

In each bootstrap simulation, we do the following:

1. Sample n1 curves with replacement from the curves in group 1, and
sample n2 curves with replacement from the modified curves in group 2.

2. Compute the pointwise mean curve from these samples and the point-
wise variance curves for each population. Denote these as {ȳ∗i (·)} and {s2∗i (·)}.

3. Compute θ̂∗(·), ȳ∗1(·)− ȳ∗2(·) and λ̂
∗(·),

s2∗1 (·)

s2∗2 (·)
.

4. Store this value.
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Next, we find upper and lower one-sided pointwise 100(1−α) confidence
intervals. Let qp[X(t)] denote the p-quantile for the distribution of X eval-
uated at time t. Then, we define our upper and lower pointwise confidence
intervals for θ(t) using a bias correcting percentile-based bootstrap as dis-
cussed in Davison and Hinkley (1997):

Cu
1−α(θ(t)) = [2θ̂(t)− qα[θ̂

∗(t)],∞),

C l
1−α(θ(t)) = (−∞,2θ̂(t)− q1−α[θ̂

∗(t)]).

At any particular poin t, Cu
1−α(θ(t)) and C

l
1−α(θ(t)) can be interpreted as the

set of all θ0 such that we fail to reject the null that θ(t)≤ θ0 and θ(t)≥ θ0,
respectively. As such, if our lower equivalence band at time t, κl(t), is outside
of Cu

1−α(θ(t)), then we can reject the null that θ(t) ≤ κl(t) at the point t.

Likewise, if κu(t) is outside of C l
1−α(θ(t)), then we can reject the null that

θ(t)≥ κl(t) at the point t.
Our upper and lower pointwise confidence interval for λ(t) take on a dif-

ferent form. This is because dispersion measures are not typically variance
stabilized. In such cases, conventional bootstrap intervals fail to attain their
advertised coverage probabilities in small samples. We imagine that most
test statistics for testing equivalence of dispersion will be based on the sam-
ple variance. For many distributions (including the normal), transforming
by the logarithm results in an estimator whose variance is stabilized. Hence,
we instead construct upper and lower one-sided confidence intervals for the
variance stabilized quantity log(λ(t)), and then utilize the monotonicity of
the log transform to result in confidence intervals for λ(t),

Cu
1−α(λ(t)) = [(λ̂(t))2 × q1−α[1/λ̂

∗(t)],∞),

C l
1−α(λ(t)) = (0, (λ̂(t))2 × qα[1/λ̂

∗(t)]].

These intervals can be used to test whether λ(t) is below the upper equiv-
alence band and above the lower equivalence band at any point t. If one is
concerned about the log transform providing variance stabilization, another
approach to constructing these confidence intervals would be to estimate
a variance stabilizing transformation within the bootstrap framework [see
Davison and Hinkley (1997), Tibshirani (1988)].

We now have tests for whether or not we have equivalence of location and
spread at any point t. To test for overall equivalence, we conduct tests at
each domain point based on the 100(1− α) pointwise interval at all points
t ∈ T and reject the null of nonequivalence only if all of the individual tests
result in a rejection. To see why there is no need to correct for simultaneous
comparisons, let T0∪Ta = T be a partition of the domain where T0 contains
the points for which the null hypothesis is true and Ta contains the points
for which the alternative is true for any true metric of equivalence in the set
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of nonequivalence. Then, the probability of a false rejection is bounded as
follows:

P(Type I error) = P(falsely reject all of T0, correctly reject all of Ta)

≤ P(falsely reject all of T0)

≤ P(falsely reject a particular t0 ∈ T0)

= α.

Hence, pointwise α tests of hypothesis guarantee size of at most α. In fact, if
one had further information regarding the correlation between test statistics,
these tests could be done at a size larger than α, since our decision to reject
nonequivalence is an intersection of tests. As an example, if our function
were defined on a grid of size |T |= 20, our test statistics were independent,
and we wanted an overall size of α = 0.05, we could then run our tests
using α∗ = α1/20 = 0.87. In the absence of such knowledge, conducting the
pointwise tests at size α is actually a tight upper bound. To see this, consider
an equivalence metric that is in the equivalence region at all points along the
domain except for t0, at which its value equals that of the equivalence band.
If the probabilities of correct rejection at all points T /{t0} are sufficiently
close to one, then essentially the type one error rate is the size of the test
at t0, which is α. In Section 10.1, we give an example where the overall size
approaches the upper bound α.

4.2. IID matched pairs. For paired functions (commonly arising in com-
parison studies where simultaneous measurements using two devices are
possible), slight alterations are required in the bootstrapping procedure.
We again use the difference in mean functions, θ(·) , µ1(·) − µ2(·) and

the ratio of variance functions λ(·) ,
σ2
1(·)

σ2
2(·)

, as metrics for equivalence. Let

{y1,i(·), y2,i(·)} be the paired curves, and let n denote the total number of
pairs. The bootstrap procedure is as follows:

1. Sample n pairs of curves with replacement from the original sample.
2. Compute the pointwise mean curve from these samples and the point-

wise variance curves for each population. Denote these as [ȳ∗1(·), ȳ
∗

2(·)] and
[s2∗1 (·), s2∗2 (·)].

3. Compute θ̂∗(·), ȳ∗1(·)− ȳ∗2(·) and λ̂
∗(·),

s2∗1 (·)

s2∗2 (·)
.

4. Record this value.

Now that our bootstrap samples have been acquired, the rest of the proce-
dure is identical to that explained in Section 4.1.
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4.3. Random effects with matched pairs. We now describe a nonpara-
metric bootstrap procedure for paired random effects and paired responses.
The procedure for nonmatched data would replace sampling pairs with sam-
pling individually from two populations and, hence, we omit its discussion
herein. See Chambers and Chandra (2013) for an overview of random effect
bootstrapping procedures.

Suppose our data consist of A individuals with pairs of random effects

[αi,1(·), αi,2(·)]
i.i.d.
∼ F with mean [µ1(·), µ2(·)] and variance [σ2α,1(·), σ

2
α,2(·)].

For each individual i ∈ [A], we observe ni pairs of curves with [yi,1,k(·),

yi,2,k(·)]
i.i.d.
∼ Gi with mean [αi,1(·), αi,2(·)] and variance [σ2ǫ,1(·), σ

2
ǫ,2(·)]. Let

N =
∑A

i=1 ni denote the total number of curves. Our test for equivalence

will, as before, focus on the location metric θ(·), µ1(·)−µ2(·) and metric of

equivalence of error variabilities, λ(·) ,
σ2
ǫ,1(·)

σ2
ǫ,2(·)

. As described in Section 3.2,

we also include a third metric, the ratio of random effect variances of the

two populations: ψ(·),
σ2
α,1(·)

σ2
α,2(·)

.

Let ȳj(·) ,
1
N

∑A
i=1

∑ni

k=1 yi,j,k(·) be the overall mean curve for coordi-

nate j and let ȳi,j ,
1
ni

∑ni

k=1 yi,j,k(·) be the mean curve for coordinate j

of individual i. Now, define SSEj(·),
∑A

i=1

∑ni

k=1(yi,j,k(·)− ȳj(·))
2, and let

SSAj(·) ,
∑A

i=1 ni(ȳi,j − ȳj)
2. Our estimators for these metrics of equiva-

lence will be based on their univariate random effect counterparts derived
via ANOVA. See Searle, Casella and McCulloch (1992) for a description of
methods for univariate random effect analysis. Begin by defining our esti-
mate of the random effect variance curve by s2α,j(·) = (SSA1(·)/(A − 1) −

SSE1(·)/(N − 1))/n∗, n∗ = (N − (
∑

n2i )/N)/(A − 1). Then, we define our

test statistics as λ̂(·) = SSE1(·)
SSE2(·)

and ψ̂(·) = s2α,1(·)/s
2
α,2(·). Our estimators for

the random effects will be α̂i,j(·) = ȳi,j(·). Based on these, we estimate our

location metric, θ(·), by θ̂(·) = 1
A

∑A
i=1(α̂i,1(·)− α̂i,2(·)).

Denote ri,j,k(·) = yi,j,k(·) − α̂i,j(·). We then consider these N pairs as a
reservoir from which to draw error functions in the bootstrap simulation,
rather than maintaining a correspondence between random effects and resid-
uals from that random effect’s group. This ignores the sample covariance
between residuals from the same group and slight heteroscedasticity if the
design is unbalanced. We doubt that this would have a substantial impact
on the inference being performed (which the simulation studies of Section 10
seem to suggest), but leave a proper investigation for future work.

Before beginning the bootstrap, we adjust our estimates of the random
effects such that the ratio of the variances of the pool of random effects
used in the bootstrap matches up with our estimate of the random effect
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variance. We define the following adjusted random effects:

âi,j(·) = ȳj(·)− (α̂i,j(·)− ȳj(·))
sα,j(·)

SD(α̂i,j(·))
.

Here, SD(α̂i,j(·)) is the standard deviation of our estimated group means
evaluated pointwise. This transformation guarantees that the variances of
the random effects used in the bootstrap are the same as our estimate of
that variance. As noted in Shao and Tu (1995) and Chambers and Chandra
(2013), this step is required to assure that the confidence intervals produced
by the bootstrap procedure are consistent. We then proceed as follows:

1. Sample A pairs of random effects from {[âi,1(·), âi,2(·)]} with replace-
ment. Call them {[âi,1(·), âi,2(·)]

∗}. The first pair drawn gets assigned n1 as
the number of pairs of curves to be drawn within that group, the second
gets assigned n2, etc.

2. For each i, draw ni pairs of residuals with replacement from {[ri,1,k(·),
ri,2,k(·)]}. Call these {[ri,1,k(·), ri,2,k(·)]

∗}.
3. Define [yi,1,k(·), yi,2,k(·)]

∗ = [âi,1(·), âi,2(·)]
∗ + [ri,1,k(·), ri,2,k(·)]

∗.
4. Estimate ȳ∗j (·), ȳ

∗

i,j(·),SSE
∗

j(·),SSA
∗

j (·) based on the bootstrap sample

{[yi,1,k(·), yi,2,k(·)]
∗}.

5. Estimate θ̂∗(·), λ̂∗(·), ψ̂∗(·) based on these quantities.

We can create pointwise 100(1−α) confidence intervals for θ(·) and λ(·)
just as we did in Section 4.1. For ψ(·), we define our confidence intervals in
the same manner as we did with λ(·),

Cu
1−α(ψ(t)) = [(ψ̂(t))2 × q1−α[1/ψ̂

∗(t)],∞),

C l
1−α(ψ(t)) = (0, (ψ̂(t))2 × qα[1/ψ̂

∗(t)]].

As before, these confidence intervals can be used to test whether ψ(t) is
below the upper equivalence band and above the lower equivalence band at
any point t.

5. A frequentist test of equivalence for lung volume functional data. We
now conduct our equivalence test using the methods described in Section 4
for paired random effects. We drew 10,000 bootstrap samples and used α=
0.05 to carry out these tests. We find that Figure 4 is a powerful visual
display of the results of this TOST procedure. In each plot, we display the
upper and lower equivalence bands. We also display the upper band of the

region C l
0.95(·) and the lower band of the region Cu

0.95(·). Recall that we
can reject the null if the upper equivalence band lies entirely outside the
region C l

0.95(·) and if the lower equivalence band lies entirely outside the
region Cu

0.95(·). Hence, it is sufficient to check whether or not either the
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Fig. 4. Equivalence Test for the difference of means (top left), ratio of error variances
(top right), and the ratio of random effect variance curves (bottom).

upper or lower equivalence band at any point intersect the region defined by
the overlap of the two one-sided confidence regions, which is shaded in the
plots. Intersection implies failure to reject, and lack thereof implies rejection
of nonequivalence in favor of equivalence.

Based on Figure 4, we conclude that we can suggest equivalence for our
locational metric, but fail to reject the null of nonequivalence for variabil-
ity of both errors and random effects. We believe it will always be the case
that a two-sided test for the variability of random effects is appropriate, as
deviations in either direction indicate substantial differences in the distri-
bution of the individual level mean curves; however, for certain applications
(ours included), lower error variance will be strictly preferred. If we thus
restrict ourselves to only having the ratio of error variances below the upper
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equivalence threshold, then we would also reject the null of noninferiority
of error variability. Note that there does appear to be an inflation of error
variance by a factor of 1.5 at the beginning of each breath for SLP relative
to spirometry. Though the ratio between the two variances is high at this
point, the actual magnitude of the variances at the beginning of these curves
is extremely small for both devices, which results in the high value for the
ratio of variances.

6. A Bayesian paradigm for equivalence testing. As in the frequentist
case, we suggest using functional measures of location and spread to assess
practical equivalence, however, carrying out a TOST hypothesis test is not
required within the Bayesian paradigm. Rather than conducting a stochastic
proof by contradiction, the Bayesian paradigm allows us to directly compute
posterior probabilities of our functional metrics of equivalence falling entirely
within specified equivalence ranges. That is, the Bayesian paradigm allows
for direct computation of P{Ha|Data} for each of the equivalence hypotheses.
In light of this, we propose that the researcher conduct the following three
steps when using the Bayesian framework for equivalence testing:

1. Define an equivalence region through expert consultation.
2. Define a probability value, call it γ, such that if P{Ha|Data} ≥ γ,

equivalence may be suggested. Using the suggestions of Jeffreys (1961) and
Kass and Raftery (1995), a value of γ = 0.75 or γ = 0.95 may be appropriate.

3. Specify prior distributions for the metrics of equivalence that are com-
mensurate with the researcher’s prior belief of the alternative being true
relative to the null.

The specifics of this implementation depend on the types of prior distri-
butions used to model the parameters and data. In Section 7 we discuss the
use of Gaussian Processes in modeling both our data and parameters and
describe a model that allows for specification of priors and posterior infer-
ence for our metrics of equivalence. Though Gaussian Processes are a rich
and flexible class of distributions for functional data, a valuable extension
of our work would be conducting Bayesian equivalence testing for functional
data using nonparametric models.

7. Bayesian functional equivalence testing for lung volume data. Kauf-
man and Sain (2010) discuss using functional ANOVA modeling within the
Bayesian paradigm. They begin by assuming that the functional data are
realizations of an underlying Gaussian process with a mean function de-
pending on the factor levels and a covariance function that describes the
dependence between points along the function’s domain. They further as-
sume that the covariance between errors can be aptly specified as a member
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of the class of Matérn covariance functions [Matérn (1986)]. The specifica-
tion of a correlation function works to impose smoothness between estimated
function values and to allow for interpolation at unobserved domain values.
Gaussian process priors with Matérn covariance functions are used for the
mean functions themselves, which allows for the incorporation of a priori
beliefs about both smoothness and location.

The assumption of homoscedastic variances along the function’s domain
is problematic for us, as allowing the error and random effect variances to
change with time is vital to our investigation of equivalence. We consider a
more flexible class of covariance and cross-covariance functions: Vi,j(t, t

′) =
σi(t)σj(t

′)Ri,j(t, t
′). Here, σǫ,i(t) is the error standard deviation function for

device j evaluated at time t, and Rǫ,i,j(t, t
′) is either the correlation function

for device j for observations at times t and t′ if i= j or the cross-correlation
function between the error at time t for device i and the error at time t′ for
device j if i 6= j.

To simplify notation, let Ξ denote the set containing all of our parame-
ters. Then, we can write our Multivariate Gaussian Process model for our
responses:

[

vi,1,k(·)
vi,2,k(·)

]
∣

∣

∣

∣

Ξ
indep
∼ MVGP

([

αi,1(·)
αi,2(·)

]

,

[

Vǫ,1,1(·, ·) Vǫ,1,2(·, ·)
Vǫ,1,2(·, ·) Vǫ,2,2(·, ·)

])

.

Note that, in practice, our response functions are measured only at a pre-
determined set of grid points, t = {t1, . . . , tT} ⊂ T . To distinguish this, let
the notation [vi,1,k(t),vi,2,k(t)] represent the vector whose coordinates are
the response as measured at each of the T grid points, and let the anal-
ogous notation hold for the functional parameters of our models. Hence,
[vi,1,k(t),vi,2,k(t)]

′ represents a 2T × 1 vector. Using the decomposition
proposed in Barnard, McCulloch and Meng (2000), our covariance func-
tions evaluated at t can be described in matrix notation as Vǫ,i,j(t, t) ,
Diag(σǫ,i(t))Rǫ,i,j(t, t)Diag(σǫ,j(t)), where Diag(σǫ,j(t)) denotes a T × T
matrix whose diagonal elements are σǫ,j(t).

Our assumption of a Multivariate Gaussian Process results in [vi,1,k(t),
vi,2,k(t)] following a Multivariate Normal distribution when we consider ob-
servations at the set of gridpoints t with the fixed grid analogues for the
mean and covariance structure.

8. Bayesian methodology.

8.1. Correlation structure. Our data set consists of a total of 453 breaths
collected from 16 individuals, where each breath was measured at 25 equis-
paced time points using both SLP and spirometry. Our desire to model cross-
covariances between devices results in our matrices of observations being 50
dimensional. For modeling the error correlation, this is not an issue, as we
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have 453 observations, however, as we only have 16 individuals, a simplifying
assumption must be made to proceed. In many functional data settings, the
goal of the data analysis is mean function estimation and prediction at new
locations (kriging). To facilitate this, modelers typically restrict themselves
to a particular class of correlation functions. Unfortunately, the distribu-
tion of posterior variance functions is highly dependent on the correlation
structure. Hence, misspecification of the correlation model can result in es-
timates for variance parameters that are biased and wildly misleading. As
we would like to conduct inference for the ratio of variance functions of both
errors and random effects, we are left searching for an alternative. More ad-
vanced methods that make no assumptions on the correlation function class
have been suggested in the geostatistics literature [see Nychka, Wikle and
Royle (2002), Paciorek and Schervish (2006), Fuentes and Smith (2001),
Fuentes (2002)] and elsewhere [see Morris and Carroll (2006), Chen and
Müller (2012)], but none of these works have directly focused on the accu-
racy of the resultant variance estimates. Estimation of correlation functions
for repeatedly observed functional data remains an active area of research,
particularly in the regime where the number of functional observations is
small relative to the grid size.

Our recommendation is that if the researcher has sufficient data to flexibly
model the correlation structure of both the random effects and the errors,
then this should be the course pursued. As we do not, we instead make a
modeling decision that will facilitate valid inference for our variance func-
tions. We assume the following structure for the correlation of our errors
and random effects:

Ri,j(t, t
′) =







1, i= j, t= t′,
ρ(t), i 6= j, t= t′,
0, otherwise.

We thus primarily focus on the marginal distributions for estimation of our
mean functions and variances. This has the obvious drawback of not fully
exploiting the functional nature of our data, but allows for estimation of
marginal variances without the risk of biases due to misspecification of the
correlation structure. This is an interesting instance where the simplifying
assumptions made to facilitate inference would not necessarily align with
ones made if the goal was estimation of mean functions or prediction of
values at unmeasured locations. In the latter case, one would likely enforce
a restriction to a specific class of correlation functions which would result in
both smooth curve estimates and a principled manner by which interpolation
and prediction could be performed; however, this would result in misleading
estimates for the variance components of the model, which is unacceptable
for testing equivalence of variance functions. In Section 10 we investigate
the ramifications of this modeling decision on the resultant inference.
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8.2. Prior distributions. Specification of priors for σǫ,1(·) and σǫ,2(·) must
be done carefully, as practical equivalence of error variability is tested using
a function of these parameters. We model these functions as themselves be-
ing realizations of independent stochastic processes. Specifically, we extend
the work of Barnard, McCulloch and Meng (2000) to the functional regime
by modeling the standard deviation curves as emanating from Log-Gaussian
Processes:

log(σ2ǫ,1(·)) ∼ GP(τǫ(·), s
2
ǫΓǫ(·, ·)),

log(σ2ǫ,2(·)) ∼ GP(τ2ǫ (·)− δǫ(·), s
2
ǫΓǫ(·, ·)),

log(σǫ,1(·))⊥⊥ log(σǫ,2(·)),

p(τǫ(·)) ∝ 1,

δǫ(·) ∼ 1
21{δǫ(·) = log(ζl(·))}+

1
21{δǫ(·) = log(ζu(·))},

where Γǫ(·, ·) =
1
2(|t− t

′|/aǫ)
2K2(d(t, t

′)/aǫ) is a standard Matérn correlation
function [Matérn (1986)] with smoothness parameter ν = 2.

We use the ratio
σ2
ǫ,1(·)

σ2
ǫ,2(·)

as our comparative measure for the error variability

of the two devices. Our prior on the standard deviations yields the following
prior for this ratio:

σ2ǫ,1(·)

σ2ǫ,2(·)
∼

1

2
(Log-GP(log(ζl(·)),2s

2
ǫRσ(·, ·)))

+
1

2
(Log-GP(log(ζu(·)),2s

2
ǫRσ(·, ·))).

This is a 50/50 mixture of two Log-Gaussian Processes with medians at the
upper and lower equivalence thresholds respectively. Hence, we can place
prior probabilities on falling within the equivalence region by careful choices
of s2ǫΓǫ(·, ·). Borrowing from the frequentist paradigm in which it is incum-
bent upon the researcher to prove his or her hypothesis beyond a reasonable
doubt, we set the values of these hyperparameters such that the a priori
probability of equivalence is quite small. We set s2ǫ = 5 and aǫ = 0.1, which
results in a prior probability of falling entirely within the equivalence region
of P{σ2ǫ,1(t)/σ

2
ǫ,2(t) ∈ (ζl(t), ζu(t))} ≈ 5× 10−8.

For the correlations resulting from the paired nature of our data, we set
ρǫ(t)∼ U [−1,1] for all t.

For our random effects, {[αi,1(·), αi,2(·)]}, we use a Hierarchical Gaussian
Process prior:

[

αi,1(·)
αi,2(·)

]

i.i.d.
∼ GP

([

µ1(·)
µ2(·)

]

,

[

Vα,1,1(·, ·) Vα,1,2(·, ·)
Vα,1,2(·, ·) Vα,2,2(·, ·)

])

.
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The priors on the variance functions of our random effects, [σ2α,1(·), σ
2
α,2(·)],

and the correlation structure are identical to the one used for the error vari-
ances.

The posterior distribution for the difference between the device specific

curves, µ1(·)−µ2(·), is of interest for assessing locational equivalence. Thus,

proper attention must be paid to the prior placed on {µ1(·), µ2(·)} such

that the prior does not unduly force the posterior distribution toward the

prespecified equivalence region. Our priors for µ1(·) and µ2(·) are as follows:

µ1(·) ∼ GP(µ0(·), s
2
µΓµ(·, ·)),

µ2(·) ∼ GP(µ0(·)− δµ(·), s
2
µΓµ(·, ·)),

µ1(·)⊥⊥ µ2(·),

p(µ0(·)) ∝ 1,

δµ(·) ∼ 1
21{δµ(·) = κl(·)}+

1
21{δµ(·) = κu(·)},

where Γµ(t, t
′) is a Matérn correlation function with smoothness parameter

ν = 2. This then implies that our difference of means has the following prior:

µ1(·)− µ2(·)∼
1
2(GP(κl(·),2s

2
µΓµ(·, ·))) +

1
2(GP(κu(·),2s

2
µΓµ(·, ·))).

In other words, our prior on the difference in device means is a 50/50 mixture
of two Gaussian Processes, with means at the upper and lower equivalence

thresholds respectively. We choose a prior that places 1% likelihood in the

equivalence region and the remaining 99% outside of it. To achieve this, we

fixed a value of aµ = 0.3, and then used the uniroot() and pmvnorm() func-

tions in R [R Development Core Team (2011)] to solve for the value of s2µ such
that P{µ1(t)−µ2(t) ∈ (κl(t), κu(t))}= 0.01. This value was found to be 0.1.

Note that if one has a sense of an appropriate basis for the mean functions,

one could place a prior µ0(·) ∼ N (
∑

akφk(·), σ
2
µ) instead of p(µ0(·)) ∝ 1.

This could allow for regularization of the functional fits based on this basis

while not restricting them to entirely follow said basis, and would still facil-

itate our strategy of putting priors on equivalence commensurate with prior
knowledge.

8.3. Posterior sampling. Before conducting inference based on our model
specification, we must devise a sampling schema for the posterior distri-

bution of our parameters. We use a Metropolis-within-Gibbs sampling al-

gorithm; see the supplementary materials [Fogarty and Small (2014)] for

details.
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Fig. 5. 95% simultaneous credible bands for µ1(·)− µ2(·) (top left), σ2
ǫ,1(·)/σ

2
ǫ,2(·) (top

right), and σ2
α,1(·)/σ

2
α,2(·) (bottom), along with upper and lower equivalence bands.

9. Posterior analysis. To conduct our posterior analysis, we ran our
Gibbs sampler from three distinct starting values for 10,500 iterations per
starting value (for a total of 31,500 iterations). We discarded the first 500 it-
erations as burn-in for each chain and took every 10 samples thenceforth for
a total of 1000 samples per starting value, which were then chained together,
resulting in 3000 roughly independent samples. See the supplementary ma-
terial [Fogarty and Small (2014)] for convergence diagnostics.

Figure 5 shows the posterior distribution for the three metrics of inter-
est. We summarize the posterior distributions of our metrics of equivalence
by the posterior mean curve and 95% simultaneous posterior bands. These
bands are computed using the multiplier based method of Buja and Rolke
(2003). The posterior bands are unnecessary for inference, as the computa-
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tion of P{Ha|Data} depends solely on how many posterior curves fall within
the equivalence region, but nonetheless provide a useful graphical aid. For
our locational metric, µ1(·)− µ2(·), we found that all 3000 of our samples
from the posterior distribution fell within the prespecified equivalence range,
suggesting overwhelming evidence in favor of the hypothesis that these two
curves, in terms of location, can be considered practically equivalent. For
the ratio of error variances, σ2ǫ,1(·)/σ

2
ǫ,2(·), we note that if it is the case that

lower variability is strictly more desirable, then 2998 out of 3000 samples
fall strictly below the upper equivalence band; however, if one desires adher-
ence to the lower equivalence band as well, then our posterior probability of
equivalence is 0.0007, since our posterior bands regularly violate the lower
tolerance threshold toward the middle of the breaths (around t= 0.5). For
the ratio of random effect variances, σ2α,1(·)/σ

2
α,2(·), we note that although

the posterior median falls well within the equivalence range, only 18.2% of
the posterior samples fell entirely within the equivalence region. Hence, al-
though we can suggest equivalence of both means and error variances, we
lack sufficient power to suggest equivalence of random effect variances.

10. Comparing the frequentist and Bayesian methods. We have pre-
sented methods for equivalence testing within the frequentist and Bayesian
paradigms. From a pragmatic perspective, the relative computational in-
tensity of both methods is of interest to practitioners. In this respect, our
frequentist method is dominant, as within each bootstrap iteration, only sim-
ple vector operations are required. The Bayesian approach requires sampling
from multivariate distributions, matrix multiplication, matrix inversion, and
determinant calculation within each step. Furthermore, thinning of one out
of every 10 iterations was required. Hence, to get the same effective sam-
ple size, we needed to do 10 times as many iterations for the frequentist
procedure as we did for the Bayesian one. To attain 1000 independent sam-
ples via the Bayesian methodology, we needed to run 10,500 iterations of
our sampling algorithm, which took 22.6 minutes on a personal laptop with
4 GB RAM and a 2.7 GHz processor. The bootstrap procedure took 16.1
seconds to run 1000 iterations on the same laptop. This discrepancy will
only increase as the granularity of the grid the user implements increases,
as both determinant and inverse calculation are O(p3) in their simplest im-
plementation.

Frequentist and Bayesian inference are not coherent with one another, in
that frequentist inference has a built in preference for the null hypothesis.
For the frequentist, the null is the status quo, and the goal of the inference
is to refute it via a “proof by contradiction.” The Bayesian framework, on
the other hand, allows the user to put varying degrees of a priori preference
on one hypothesis versus the other. In our Bayesian analysis we have placed
heavy preference on the null and thus require very strong evidence from
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the data to put the posterior probability in the proper region, but this may
not always be appropriate. The Bayesian paradigm allows for a principled
manner for incorporating the results of past studies in the form of the pri-
ors placed on equivalence vs nonequivalence, a feature not offered by the
frequentist framework.

With these caveats in mind, we investigate the size and power of our
methodologies, using the threshold of α= 0.05 in the frequentist procedure.
For our Bayesian procedure, we use γ = 0.95 as our threshold for the pos-
terior probability of equivalence. In our investigation, we continue to place
heavy a priori preference on nonequivalence for our Bayesian methodology.

10.1. Type I error. We restrict our investigation to the Type I error rates
of our tests for location and error variances. We simulate 20 matched pair
random effects, and then simulate 20 matched functional responses for each
subpopulation. This results in 400 breaths total. To investigate the true
size of our methods, we define a sequence of true values for our metrics of
equivalence where equivalence is violated at one point along the domain, and
the other points move farther and farther into the equivalence region. These
sequences and numerical labels are shown in Figure 6. The remaining values
of parameters needed for simulation are based on the posterior means from
our data set. Additionally, we used an estimate of the correlation structure of
our error functions as the true correlation for simulating both error functions
and random effect functions. This allows us to assess the robustness of our
Bayesian procedure to the assumption of Section 8.1

For each of the nine function values in the sequence, we simulated 500 data
sets and ran both the frequentist and Bayesian methdologies on them. Fig-
ure 6 shows the result of this study. We see that for testing the equivalence
of mean functions, the Bayesian procedure is far more conservative than our
frequentist procedure, which appears to be due to the assumption on the
correlation structure made in our Bayesian procedure. As expected, the fre-
quentist procedure is initially conservative, but has size that approaches 0.05
as the test becomes increasingly reliant on our data’s behavior at one domain
point (the one at which equivalence is violated). Figure 6 also demonstrates
that the test is roughly unbiased in terms of purported size. For testing the
equivalence of variances, the Bayesian and frequentist procedures initially
exhibit similar Type I error rates, and also both appear to be slighty anti-
conservative; however, the Bayesian procedure is anti-conservative to a far
more egregious degree by the end of the sequence of functions, having an
estimated size of 0.072 for the 9th function in the sequence versus an esti-
mated size of 0.056 for the frequentist procedure at this value for the true
ratio of error variances.
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Fig. 6. Sequence of true values and corresponding Type I error rates for µ1(·) − µ2(·)
(top) and σ2

ǫ,1(·)/σ
2
ǫ,2(·) (bottom) along with upper and lower equivalence bands used for

Type I error study.

10.2. Power. To investigate the power of our methods, we define a se-

quence of true values for our metrics of equivalence that fall entirely between

the upper and lower equivalence thresholds. These sequences and numerical

labels are shown in Figure 7. The rest of our simulation procedure mirrors

that of our simulation for testing the Type I error rate. Figure 7 shows

the results of this study. We see that for testing equivalence of means, the

frequentist procedure appears to be substantially more powerful than its

Bayesian counterpart. For testing equivalence of variances, the frequentist

and Bayesian procedures behave quite similarly, with no clear indication

that one procedure is any more powerful than the other.
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Fig. 7. Sequence of true values and corresponding power of µ1(·) − µ2(·) (top) and
σ2
ǫ,1(·)/σ

2
ǫ,2(·) (bottom) along with upper and lower equivalence bands used for the power

study.

11. Discussion. We have presented a broad framework for equivalence
testing when one’s data are intrinsically functional. This framework begins
with definitions of metrics of equivalence, and correspondingly with the es-
tablishment of upper and lower equivalence bands which are themselves func-
tions of the continuum over which the functional data is defined. We have
stressed the importance of using metrics that are able to discern similarity
of location and of spread, as neither individually is sufficient for suggesting
equivalence. We illustrated the proper use of these frameworks using data
from a method comparison study assessing the performance of a new de-
vice for testing pulmonary function, SLP, relative to the gold standard for
pulmonary diagnoses, the spirometer.



24 C. B. FOGARTY AND D. S. SMALL

Our model presently makes an assumption that all individuals are drawn
from the same population. For our application this makes sense, as we are
solely looking at healthy individuals. For other applications, the individuals
for which repeated measurements are attained may be draws from multiple
populations. In our application, one could potentially have individuals of
varying degrees of pulmonary health (e.g., healthy, asthmatic, smokers). Our
model can easily adapt to this, as this simply requires adding an additional
level to the hierarchy. We could either say that health level specific means
are drawn from a population with an overall mean, and then individual
means are drawn from these health level specific populations, or we could
model the health level means as fixed effects and result in a functional mixed
effects model.

Using the difference between mean functions to test locational disparity
is a natural choice, and the extent to which magnitude of differences are im-
portant can be controlled by tightening or loosening the equivalence bands.
For testing the disparity between variances of both errors and random ef-
fects, we have followed the prevalent choice in the scalar equivalence testing
literature [see Chow and Liu (1992)] and have used the ratio between vari-
ances, σ21(·)/σ

2
2(·). On the one hand, this unitless measure has appeal in that

it has potential for standardization across applications. On the other hand,
we lose a sense of the absolute difference between the quantities. For some
applications, the difference between a variance of 0.01 and 0.02 could be in-
consequential, yet the difference between 0.04 and 0.08 could be enough to
warrant using one device over another. If one were using ratios for assessing
a discrepancy, however, these quantities would be identically different. We
thus suggest that the difference between variances, σ21(·) − σ21(·), may be
an additional metric for equivalence that could be used in tandem with the
ratio of variances to test for equivalence of variability.

Note that there may be additional facets of the underlying distributions of
functions to be addressed beyond location and variability, depending on the
application. For example, one may be interested not only in the difference
in the mean functions being within an equivalence region, but also in the
derivative of the difference between mean functions being small in absolute
value. We leave the development of proper methodology for these questions
as a topic for future research, but the strategy of supplying upper and lower
equivalence bands would certainly be appropriate.

We hope that this paper serves as a valuable contribution to the literature
on equivalence testing and that its extension to the realm of functional
data will be useful for a host of applied users, including but not limited
to practitioners looking to compare devices whose measurements cannot
be summarized as scalar quantities. Comparison studies are of the utmost
importance, as oftentimes the emergence of newer and better devices can
have salubrious outcomes for society in general. Our goal is that this paper
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properly emphasizes the importance of equivalence testing in general, and
provides traction for researchers who aim to suggest that two populations
of functions are practically equivalent rather than to suggest that they are
different.
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SUPPLEMENTARY MATERIAL

Supplement to “Equivalence testing for functional data with an applica-

tion to comparing pulmonary function devices”

(DOI: 10.1214/14-AOAS763SUPP; .pdf). We provide a description of the
preprocessing that our data underwent, a detailed derivation of our
Metropolis-within-Gibbs sampling algorithm, and diagnostic plots showing
convergence of our Gibbs sampler when used on our data.
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