242 research outputs found

    The V-Network testbed for malware analysis

    Get PDF
    This paper presents a virtualised network environment that serves as a stable and re-usable platform for the analysis of malware propagation. The platform, which has been developed using VMware virtualisation technology, enables the use of either a graphical user interface or scripts to create virtual networks, clone, restart and take snapshots of virtual machines, reset experiments, clean virtual machines and manage the entire infrastructure remotely. The virtualised environment uses open source routing software to support the deployment of intrusion detection systems and other malware attack sensors, and is therefore suitable for evaluating countermeasure systems before deployment on live networks. An empirical analysis of network worm propagation has been conducted using worm outbreak experiments on Class A size networks to demonstrate the capability of the developed platform

    The V-network: a testbed for malware analysis

    Get PDF
    This paper presents a virtualised network environment that serves as a stable and re-usable platform for the analysis of malware propagation. The platform, which has been developed using VMware virtualisation technology, enables the use of either a graphical user interface or scripts to create virtual networks, clone, restart and take snapshots of virtual machines, reset experiments, clean virtual machines and manage the entire infrastructure remotely. The virtualised environment uses open source routing software to support the deployment of intrusion detection systems and other malware attack sensors, and is therefore suitable for evaluating countermeasure systems before deployment on live networks. An empirical analysis of network worm propagation has been conducted using worm outbreak experiments on Class A size networks to demonstrate the capability of the developed platform

    An Innovative Signature Detection System for Polymorphic and Monomorphic Internet Worms Detection and Containment

    Get PDF
    Most current anti-worm systems and intrusion-detection systems use signature-based technology instead of anomaly-based technology. Signature-based technology can only detect known attacks with identified signatures. Existing anti-worm systems cannot detect unknown Internet scanning worms automatically because these systems do not depend upon worm behaviour but upon the worm’s signature. Most detection algorithms used in current detection systems target only monomorphic worm payloads and offer no defence against polymorphic worms, which changes the payload dynamically. Anomaly detection systems can detect unknown worms but usually suffer from a high false alarm rate. Detecting unknown worms is challenging, and the worm defence must be automated because worms spread quickly and can flood the Internet in a short time. This research proposes an accurate, robust and fast technique to detect and contain Internet worms (monomorphic and polymorphic). The detection technique uses specific failure connection statuses on specific protocols such as UDP, TCP, ICMP, TCP slow scanning and stealth scanning as characteristics of the worms. Whereas the containment utilizes flags and labels of the segment header and the source and destination ports to generate the traffic signature of the worms. Experiments using eight different worms (monomorphic and polymorphic) in a testbed environment were conducted to verify the performance of the proposed technique. The experiment results showed that the proposed technique could detect stealth scanning up to 30 times faster than the technique proposed by another researcher and had no false-positive alarms for all scanning detection cases. The experiments showed the proposed technique was capable of containing the worm because of the traffic signature’s uniqueness

    Web attack risk awareness with lessons learned from high interaction honeypots

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2009Com a evolução da web 2.0, a maioria das empresas elabora negócios através da Internet usando aplicações web. Estas aplicações detêm dados importantes com requisitos cruciais como confidencialidade, integridade e disponibilidade. A perda destas propriedades influencia directamente o negócio colocando-o em risco. A percepção de risco providencia o necessário conhecimento de modo a agir para a sua mitigação. Nesta tese foi concretizada uma colecção de honeypots web de alta interacção utilizando diversas aplicações e sistemas operativos para analisar o comportamento do atacante. A utilização de ambientes de virtualização assim como ferramentas de monitorização de honeypots amplamente utilizadas providencia a informação forense necessária para ajudar a comunidade de investigação no estudo do modus operandi do atacante, armazenando os últimos exploits e ferramentas maliciosas, e a desenvolver as necessárias medidas de protecção que lidam com a maioria das técnicas de ataque. Utilizando a informação detalhada de ataque obtida com os honeypots web, o comportamento do atacante é classificado entre diferentes perfis de ataque para poderem ser analisadas as medidas de mitigação de risco que lidam com as perdas de negócio. Diferentes frameworks de segurança são analisadas para avaliar os benefícios que os conceitos básicos de segurança dos honeypots podem trazer na resposta aos requisitos de cada uma e a consequente mitigação de risco.With the evolution of web 2.0, the majority of enterprises deploy their business over the Internet using web applications. These applications carry important data with crucial requirements such as confidentiality, integrity and availability. The loss of those properties influences directly the business putting it at risk. Risk awareness provides the necessary know-how on how to act to achieve its mitigation. In this thesis a collection of high interaction web honeypots is deployed using multiple applications and diverse operating systems in order to analyse the attacker behaviour. The use of virtualization environments along with widely used honeypot monitoring tools provide the necessary forensic information that helps the research community to study the modus operandi of the attacker gathering the latest exploits and malicious tools and to develop adequate safeguards that deal with the majority of attacking techniques. Using the detailed attacking information gathered with the web honeypots, the attacking behaviour will be classified across different attacking profiles to analyse the necessary risk mitigation safeguards to deal with business losses. Different security frameworks commonly used by enterprises are analysed to evaluate the benefits of the honeypots security concepts in responding to each framework’s requirements and consequently mitigating the risk

    Developing Systems for Cyber Situational Awareness

    Get PDF
    In both military and commercial settings, the awareness of Cyber attacks and the effect of those attacks on the mission space of an organization has become a targeted information goal for leaders and commanders at all levels. We present in this paper a defining framework to understand situational awareness (SA)—especially as it pertains to the Cyber domain—and propose a methodology for populating the cognitive domain model for this realm based on adversarial knowledge involved with Cyber attacks. We conclude with considerations for developing Cyber SA systems of the future

    Algorizmi: A Configurable Virtual Testbed to Generate Datasets for Offline Evaluation of Intrusion Detection Systems

    Get PDF
    Intrusion detection systems (IDSes) are an important security measure that network administrators adopt to defend computer networks against malicious attacks and intrusions. The field of IDS research includes many challenges. However, one open problem remains orthogonal to the others: IDS evaluation. In other words, researchers have not yet succeeded to agree on a general systematic methodology and/or a set of metrics to fairly evaluate different IDS algorithms. This leads to another problem: the lack of an appropriate IDS evaluation dataset that satisfies the common research needs. One major contribution in this area is the DARPA dataset offered by the Massachusetts Institute of Technology Lincoln Lab (MIT/LL), which has been extensively used to evaluate a number of IDS algorithms proposed in the literature. Despite this, the DARPA dataset received a lot of criticism concerning the way it was designed, especially concerning its obsoleteness and inability to incorporate new sorts of network attacks. In this thesis, we survey previous research projects that attempted to provide a system for IDS offline evaluation. From the survey, we identify a set of design requirements for such a system based on the research community needs. We, then, propose Algorizmi as an open-source configurable virtual testbed for generating datasets for offline IDS evaluation. We provide an architectural overview of Algorizmi and its software and hardware components. Algorizmi provides its users with tools that allow them to create their own experimental testbed using the concepts of virtualization and cloud computing. Algorizmi users can configure the virtual machine instances running in their experiments, select what background traffic those instances will generate and what attacks will be launched against them. At any point in time, an Algorizmi user can generate a dataset (network traffic trace) for any of her experiments so that she can use this dataset afterwards to evaluate an IDS the same way the DARPA dataset is used. Our analysis shows that Algorizmi satisfies more requirements than previous research projects that target the same research problem of generating datasets for IDS offline evaluation. Finally, we prove the utility of Algorizmi by building a sample network of machines, generate both background and attack traffic within that network. We then download a snapshot of the dataset for that experiment and run it against Snort IDS. Snort successfully detected the attacks we launched against the sample network. Additionally, we evaluate the performance of Algorizmi while processing some of the common usages of a typical user based on 5 metrics: CPU time, CPU usage, memory usage, network traffic sent/received and the execution time

    Gotham Testbed: a Reproducible IoT Testbed for Security Experiments and Dataset Generation

    Full text link
    The scarcity of available Internet of Things (IoT) datasets remains a limiting factor in developing machine learning based security systems. Static datasets get outdated due to evolving IoT threat landscape. Meanwhile, the testbeds used to generate them are rarely published. This paper presents the Gotham testbed, a reproducible and flexible network security testbed, implemented as a middleware over the GNS3 emulator, that is extendable to accommodate new emulated devices, services or attackers. The testbed is used to build an IoT scenario composed of 100 emulated devices communicating via MQTT, CoAP and RTSP protocols in a topology composed of 30 switches and 10 routers. The scenario presents three threat actors, including the entire Mirai botnet lifecycle and additional red-teaming tools performing DoS, scanning and various attacks targeting the MQTT and CoAP protocols. The generated network traffic and application logs can be used to capture datasets containing legitimate and attacking traces. We hope that researchers can leverage the testbed and adapt it to include other types of devices and state-of-the-art attacks to generate new datasets that reflect the current threat landscape and IoT protocols. The source code to reproduce the scenario is publicly accessible

    Doctor of Philosophy

    Get PDF
    dissertationWe develop a novel framework for friend-to-friend (f2f) distributed services (F3DS) by which applications can easily offer peer-to-peer (p2p) services among social peers with resource sharing governed by approximated levels of social altruism. Our frame- work differs significantly from typical p2p collaboration in that it provides a founda- tion for distributed applications to cooperate based on pre-existing trust and altruism among social peers. With the goal of facilitating the approximation of relative levels of altruism among social peers within F3DS, we introduce a new metric: SocialDistance. SocialDistance is a synthetic metric that combines direct levels of altruism between peers with an altruism decay for each hop to approximate indirect levels of altruism. The resulting multihop altruism levels are used by F3DS applications to proportion and prioritize the sharing of resources with other social peers. We use SocialDistance to implement a novel flash file/patch distribution method, SocialSwarm. SocialSwarm uses the SocialDistance metric as part of its resource allocation to overcome the neces- sity of (and inefficiency created by) resource bartering among friends participating in a BitTorrent swarm. We find that SocialSwarm achieves an average file download time reduction of 25% to 35% in comparison with standard BitTorrent under a variety of configurations and conditions, including file sizes, maximum SocialDistance, as well as leech and seed counts. The most socially connected peers yield up to a 47% decrease in download completion time in comparison with average nonsocial BitTorrent swarms. We also use the F3DS framework to implement novel malware detection application- F3DS Antivirus (F3AV)-and evaluate it on the Amazon cloud. We show that with f2f sharing of resources, F3AV achieves a 65% increase in the detection rate of 0- to 1-day-old malware among social peers as compared to the average of individual scanners. Furthermore, we show that F3AV provides the greatest diversity of mal- ware scanners (and thus malware protection) to social hubs-those nodes that are positioned to provide strategic defense against socially aware malware
    corecore