
DISTRIBUTED FRIEND-TO-FRIEND FRAMEWORK

AND SERVICES USING SOCIAL NETWORKS

by

Matthew Jared Probst

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276265202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Matthew Jared Probst 2012

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Matthew Jared Probst

has been approved by the following supervisory committee members:

Sneha Kumar Kasera , Chair 7-November-2012

Date Approved

Alan Davis , Member 7-November-2012

Date Approved

John Regehr , Member 7-November-2012

Date Approved

Matthew Might , Member 7-November-2012

Date Approved

Evan L. Ivie , Member 7-November-2012

Date Approved

and by Alan Davis , Chair/Director of

the Department of School of Computing

and by Charles A. Wight, Dean of the Graduate School.

ABSTRACT

We develop a novel framework for friend-to-friend (f2f) distributed services (F3DS)

by which applications can easily offer peer-to-peer (p2p) services among social peers

with resource sharing governed by approximated levels of social altruism. Our frame-

work differs significantly from typical p2p collaboration in that it provides a founda-

tion for distributed applications to cooperate based on pre-existing trust and altruism

among social peers. With the goal of facilitating the approximation of relative levels of

altruism among social peers within F3DS, we introduce a new metric: SocialDistance.

SocialDistance is a synthetic metric that combines direct levels of altruism between

peers with an altruism decay for each hop to approximate indirect levels of altruism.

The resulting multihop altruism levels are used by F3DS applications to proportion

and prioritize the sharing of resources with other social peers. We use SocialDistance

to implement a novel flash file/patch distribution method, SocialSwarm. SocialSwarm

uses the SocialDistance metric as part of its resource allocation to overcome the neces-

sity of (and inefficiency created by) resource bartering among friends participating in

a BitTorrent swarm. We find that SocialSwarm achieves an average file download time

reduction of 25% to 35% in comparison with standard BitTorrent under a variety of

configurations and conditions, including file sizes, maximum SocialDistance, as well as

leech and seed counts. The most socially connected peers yield up to a 47% decrease in

download completion time in comparison with average nonsocial BitTorrent swarms.

We also use the F3DS framework to implement novel malware detection application—

F3DS Antivirus (F3AV)—and evaluate it on the Amazon cloud. We show that with

f2f sharing of resources, F3AV achieves a 65% increase in the detection rate of 0-

to 1-day-old malware among social peers as compared to the average of individual

scanners. Furthermore, we show that F3AV provides the greatest diversity of mal-

ware scanners (and thus malware protection) to social hubs—those nodes that are

positioned to provide strategic defense against socially aware malware.

To Keri, my best friend and companion.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . ix

LIST OF TABLES . xi

ACKNOWLEDGMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Challenges . 1
1.1.1 Challenge 1: Extracting and Quantifying Trust 2
1.1.2 Challenge 2: Resource Allocation Strategy 2
1.1.3 Challenge 3: Decentralized Messaging . 3

1.2 A Framework to Solve These Challenges . 3
1.2.1 Extracting and Quantifying Trust . 3
1.2.2 Resource Allocation Strategy . 4
1.2.3 Decentralizing Communication . 4

1.3 Evaluation . 4
1.3.1 SocialSwarm Overview . 5
1.3.2 F3AV Overview . 5
1.3.3 In-network Trust Maintenance . 6

1.4 Dissertation Statement . 7
1.5 Dissertation Contributions . 7
1.6 Dissertation Organization . 7

2. EXPLOITING ALTRUISM IN SOCIAL NETWORKS WITH
F3DS: A FRAMEWORK FOR FRIEND-TO-FRIEND DISTRIBUTED
SERVICES . 9

2.1 Introduction . 9
2.2 The F3DS Framework . 9

2.2.1 Social Relationship Identification . 11
2.2.2 Approximating SocialDistance . 12

2.2.2.1 Altruism between direct social peers. 12
2.2.2.2 Approximating SocialDistance between indirect (multihop)

peers. 12
2.2.2.3 Approximating altruism between indirect (multihop) peers. 13

2.2.3 IP Address and Key Exchange . 14

2.2.4 F2f Messaging . 14
2.2.5 Request Queuing and Prioritization . 14

2.3 F3DS Implementation . 15
2.3.1 Online Social Network Modules . 16
2.3.2 f2f Messaging . 16

2.4 Related Work . 17
2.5 Conclusions . 18

3. SOCIALSWARM: EXPLOITING DISTANCE IN SOCIAL NETWORKS
FOR COLLABORATIVE FLASH FILE DISTRIBUTION 19

3.1 Introduction . 19
3.2 Related Work . 22
3.3 SocialSwarm Design . 25

3.3.1 Overview . 25
3.3.2 Notations . 28

3.3.2.1 Overall rarity for each given chunk. 28
3.3.2.2 Social rarity for each given chunk. 30
3.3.2.3 Nonsocial rarity for each given chunk. 30

3.3.3 SocialSwarm Algorithm . 30
3.3.3.1 Adaptive bandwidth allocation. 30
3.3.3.2 Chunk prioritization. 32
3.3.3.3 Optimistic unchoke candidate selection. 34

3.4 Implementation and Test Setup . 34
3.4.1 Implementation . 34
3.4.2 Social Network Data Set . 35
3.4.3 Test Infrastructure . 40

3.5 Evaluation . 40
3.5.1 Evaluation Methodology and Criteria . 41
3.5.2 Comparison of Basic Download Time . 42
3.5.3 Effect of File Size . 45
3.5.4 Maximum SocialDistance . 46
3.5.5 Effect of Additional Seed Capacity . 46
3.5.6 Effect of Leeches . 47
3.5.7 Bandwidth Contribution and Unchoke Slot Allocation 50

3.6 Conclusions and Future Work . 50

4. LEVERAGING F3DS FOR DISTRIBUTED MALWARE DETECTION
IN F3AV: F3DS ANTIVIRUS . 53

4.1 Introduction . 53
4.2 F3AV Malware Detection System . 54

4.2.1 The Challenge of Socially Aware Malware 54
4.2.2 Motivation for F3AV . 54
4.2.3 Malware Detection Accuracy . 56
4.2.4 Object Scanning Latency . 56
4.2.5 Active Scan Requests . 56
4.2.6 Passive Scan Experience Sharing . 57
4.2.7 Modular Scanning Logic . 59

vi

4.2.8 Privacy Considerations . 62
4.3 F3AV Implementation . 63

4.3.1 Messaging . 63
4.3.2 DecisionHandler Modules . 63
4.3.3 AV Local Scan Handlers . 64
4.3.4 Browser Request Filtering . 64

4.4 Evaluation . 65
4.4.1 Malware Detection Accuracy . 65

4.4.1.1 Malware repository. 65
4.4.1.2 Local vs F3AV. 66

4.4.2 Object Scanning Latency . 66
4.4.3 Scanner Availability and Diversity . 70

4.4.3.1 Diverse scanner availability. 70
4.4.3.2 SocialHub protection – scanner diversity. 71
4.4.3.3 SocialHub protection – Scan Digests/Logs. 73

4.5 Related Work . 74
4.6 Conclusions and Future Work . 74

5. STATISTICAL TRUST ESTABLISHMENT IN WIRELESS SENSOR
NETWORKS . 75

5.1 Introduction . 75
5.2 Related Work . 77
5.3 Trust System . 79

5.3.1 Context-specific Trust . 79
5.3.2 Collection of Experiences . 80

5.3.2.1 Sensor readings. 80
5.3.2.2 Experience generation accuracy. 81
5.3.2.3 Observed data propagation accuracy (routing). 81
5.3.2.4 Observed accuracy of data aggregation. 81

5.3.3 Trust Computation Methodology . 82
5.3.3.1 Initial evaluation of experience records. 83
5.3.3.2 Incorporating experiences collected by third parties. 85
5.3.3.3 Incorporating distant observations. 86
5.3.3.4 Initial bootstrap of the trust system. 88
5.3.3.5 Limited memory for experience data. 89
5.3.3.6 Experience correlation. 89
5.3.3.7 Location awareness. 90
5.3.3.8 Energy considerations. 90

5.4 Evaluation of the Trust System . 90
5.4.1 Energy . 90
5.4.2 Positioning . 90
5.4.3 Simulation Events . 91
5.4.4 Trust Formulation . 91
5.4.5 Findings . 92

5.5 Conclusions and Future Work . 99

vii

6. CONCLUSIONS AND FUTURE WORK . 100

6.1 Other Applications of F3DS . 100
6.2 Application Level Misbehavior Monitoring . 101
6.3 Mobility . 101
6.4 Trends in Malware . 102
6.5 Centralized vs Distributed Social Networks . 103
6.6 Social Motivators for Strong Security . 104

REFERENCES . 105

viii

LIST OF FIGURES

2.1 F3DS Framework Overview . 10

3.1 SocialSwarm Interaction Overview . 27

3.2 CDF of Social Peer Count for 500 Nodes . 37

3.3 CDF of Social Peer Count for 5000 Nodes . 38

3.4 Number of Social Peers in Network Based on Max SocialDistance 38

3.5 Average Aggregate Altruism from Each Peer Based on Maximum So-
cialDistance . 39

3.6 Social vs Nonsocial CDF of 25MB file and 0 Leeches 42

3.7 Client Download Rate Comparison . 43

3.8 Chunk Rarity Reduction Comparison . 44

3.9 Effect of File Size on Peer Throughput . 45

3.10 Effect of Maximum SocialDistance on Peer Throughput 46

3.11 Social vs Nonsocial CDF of 25MB File and 100 Leeches 48

3.12 Effect of Leeches on Received Bandwidth . 49

3.13 Bandwidth Allocation and Social Unchokes . 51

4.1 F3AV Overview . 55

4.2 F3AV Experience Sharing . 60

4.3 F3AV State . 61

4.4 Local vs F3AV . 67

4.5 Latency vs Object Access Locality . 68

4.6 Latency vs Object Age . 69

4.7 Scanner Diversity Availability by Social Radius 71

4.8 Scanner Diversity Availability by Social Connectivity 72

4.9 Scan Digest/Log offers by Social Connectivity . 73

5.1 Building Trust via a Third Party . 85

5.2 Building Trust in a Remote Node . 87

5.3 Effect of Link Loss on Startup Trust Level . 93

5.4 Effect of Link Loss on Startup Trust Confidence Interval Width 94

5.5 Cache Size Effect on Startup Confidence Interval Width 95

5.6 System Life with Different Node Counts . 96

5.7 Cache Size Comparison . 97

5.8 Simulated Sensor Failure Reaction Time . 98

x

LIST OF TABLES

2.1 Notations . 12

3.1 Given Variables . 28

3.2 Measured Variables . 29

3.3 Derived Variables . 29

3.4 SocialSwarm in a Nutshell . 31

3.5 Baseline Test Parameters . 41

3.6 Average Download Time and Percent Improvement with a 99% confi-
dence interval . 43

3.7 Average Download Time and Improvement for Two Seeds 47

3.8 Average Download Time Based on # of Leeches 48

4.1 F3AV Parameters . 62

ACKNOWLEDGMENTS

First, I am grateful for the support, guidance, patience, and constructive critique

of my adviser, Sneha Kumar Kasera. Rather than pushing me toward specific topics

that he was most interested in, he supported and helped me pursue my own research

challenges and interests.

Second, I would like to thank my advisory committee for their support and

guidance. While I was working on my undergraduate degree, Dr. Evan Ivie was

my mentor. His love for computer systems and networks as well as his example of

humility and selfless service were some of the key reasons why I chose to pursue a

graduate degree.

Third, I am grateful for the example set by my father, Dr. Reed R. Probst, in

completing a PhD, as well as for the substantial proof reading and editing assistance

he provided on my publications and dissertation. I would also like to thank Sunny

Stimmler for her editing help as well.

Finally, I would like to thank Dr. Jun Cheol Park for his collaboration, advice,

and feedback during much of this research.

CHAPTER 1

INTRODUCTION

Over the past several years, there has been an explosion in the popularity and

utility of online social networks (OSNs) [1] [2]. OSNs have become the dominant

method for sharing photos [3], playing online games [4], finding employment [5], and

finding and communicating with individuals having similar hobbies and interests [6].

Traditional out-of-band communication methods—such as phone calls, traditional

mailed letters, and face-to-face conversations—are in many cases being replaced [7] [8]

by messaging over online social networks. Even electronic messaging and content

sharing that previously may have occurred directly in peer-to-peer (p2p) relationships

also are increasingly being replaced [9] by messaging and content sharing over OSNs

given the functionality these networks provide to interact and collaborate with a

group of social peers.

Although typical OSNs provide useful methods for peers to collaborate, the cen-

tralized, proprietary, and commercial nature of those networks prevents the direct

communication and sharing of resources that have been shown to be valuable in

p2p applications. Ideally, applications would be able to exploit both direct p2p

collaboration (for efficiency and scalability) and social awareness (for connections

to real-world social relationships) concurrently. Developing p2p applications that are

socially aware is, however, not trivial because of several challenges.

1.1 Challenges

In this section, we describe three key challenges in developing p2p applications

that are socially aware.

2

1.1.1 Challenge 1: Extracting and Quantifying Trust

The complete metadata on relationships among OSN participants is typically

held tightly [10] by the commercial entity running the network. Usually, there

are no published APIs for easily extracting metadata from multiple OSNs to create

independent applications. When openly published metadata on social relationships

does exist, it is typically both limited (direct peer only) and inaccurate—relying only

on simplistic user tagging of social relationships, which is known to poorly represent

real social interaction and trust. Applications that wish to exploit existing trust

among social peers must find and quantify better indicators of both direct and indirect

(multihop) trust.

1.1.2 Challenge 2: Resource Allocation Strategy

One valuable use case for p2p applications is that of direct resource (such as

bandwidth, CPU, memory, storage) sharing. The first generation of peer-to-peer

(p2p) applications assumed full trust between even anonymous users. Such sys-

tems [11, 12] typically failed due to problems with free-riders (leeches) as well as

the injection of malicious or inaccurate content. Second-generation p2p systems

such as BitTorrent [13] were developed to protect resources from abuse by forcing

resource trading. These resource protection mechanisms [14] create necessary ineffi-

ciencies when interfacing with completely untrusted peers. Thus, without effective

peer selection and resource allocation, the probability that resources will be wasted

increases (either lost to free-riding nodes or maliciously consumed, such as in a

DOS attack). The strategy used for allocation of resources can also have utility

within security related applications. Researchers studying containment of worms

on cellular networks have shown [15] that ideal containment can be achieved when

the most social nodes (the social-hubs) are patched first. Unlike cellular networks,

however, true p2p networks do not have the benefit of either central knowledge of

connectivity, centralized monitoring, or centralized management of protection mech-

anisms. Identifying methods to allocate protection resources to social-hubs in fully

distributed systems—those nodes that are positioned to provide strategic defense

against socially-aware malware—is a critical challenge. Decisions for the deployment

3

of protection mechanisms in a fully distributed network are much more challenging

than in networks that have centralized monitoring and management.

1.1.3 Challenge 3: Decentralized Messaging

The proprietary APIs of OSNs facilitate communication among peers only via the

OSN’s servers. OSNs commonly employ a traditional client-server (or client-cloud)

architecture. The commercial entity behind an OSN handles all message passing, ser-

vice arbitration, and request queuing among users and applications in that particular

“ecosystem.”

1.2 A Framework to Solve These Challenges

In this dissertation, we present a novel framework for friend-to-friend (f2f) dis-

tributed services (F3DS) to overcome these challenges for developers of new appli-

cations. We believe F3DS will enable a new genre of p2p applications that run

independently, but exploit social relationship metadata from existing online social net-

works. These new applications can leverage direct communication and collaboration

among participants. F3DS facilitates and maintains continuous direct f2f application

collaboration using social relationships extracted from existing social networks.

We now provide an overview of how F3DS overcomes each of the three challenges

presented in the previous section.

1.2.1 Extracting and Quantifying Trust

F3DS extracts social relationships from existing social networks to facilitate direct

collaboration. With the goal of facilitating the approximation of relative levels of

altruism among social peers, we introduce a new metric: SocialDistance. SocialD-

istance is a synthetic metric that combines direct levels of altruism between peers

with an altruism decay for each hop to approximate indirect levels of altruism. The

resulting multihop altruism levels are used by social peers to proportion and prioritize

the sharing of resources with other social peers. F3DS provides modules for social

relationship extraction and analysis—for SocialDistance approximation—that work

with several different OSNs.

4

1.2.2 Resource Allocation Strategy

Using SocialDistance as a heuristic, F3DS empowers applications to intelligently

select peers for collaboration and then prioritize resource sharing among those peers.

In the particular context of applications where resource sharing provides a security

protection benefit, we hypothesize that by prioritizing resource allocation based on

SocialDistance, F3DS will ensure that the most social nodes will be the most pro-

tected.

1.2.3 Decentralizing Communication

F3DS simplifies the implementation and deployment of f2f applications by provid-

ing the following services to initialize and maintain f2f communication: identification

and exchange of client IP addresses among social peers, generation and exchange

of asymmetric keys for authentication and encryption of f2f messages, and message

delivery and queuing services among social peers.

Our goal is as follows: Create a cross application framework that simplifies collab-

oration and promotes intelligent resource sharing among social peers. The resulting

framework can be applied to a variety of f2f services. F2f services that are resource

intensive (i.e., bandwidth, memory, CPU, storage capacity, storage I/O) are good

candidates for F3DS. Such applications might include: f2f backup systems, f2f content

caching and distribution, f2f intrusion detection/prevention systems (IDS/IPS), or f2f

malware detection.

1.3 Evaluation

To evaluate the utility of SocialDistance for resource allocation within a dis-

tributed application, we design and implement a novel flash file/patch distribution

method: SocialSwarm [16]. SocialSwarm leverages the SocialDistance metric to

approximate the relative levels of altruism among peers in a BitTorrent swarm,

so as to overcome the necessity of (and inefficiency created by) resource bartering

among friends. In SocialSwarm, we leverage the existing BitTorrent protocol for

communication among peers.

To evaluate the utility of the full F3DS framework (including SocialDistance

analysis, peer prioritization, and direct f2f messaging) we implement a distributed

5

malware detection application—F3DS Antivirus (F3AV)—on top of F3DS. F3AV

leverages the SocialDistance metric to facilitate friend-to-friend virus scanning. We

now provide an overview of these novel f2f applications.

1.3.1 SocialSwarm Overview

SocialSwarm facilitates file distribution among social peers as well as nonsocial

peers (swarms that contain both socially enabled peers and nonsocially connected

peers) by exploiting the well established BitTorrent incentives for collaboration be-

tween nonsocial peers. It also allows groups (teams) of peers with preestablished

altruism between each other to use resources more effectively by reducing the require-

ment of games between members of the same team. Assistance to peers is prioritized

proportional to social altruism. SocialSwarm can be described as a gather-then-share

technique. Nodes first work as a team to interact with anonymous nonsocial peers,

gathering socially rare chunks of the file being propagated. As the percentage of

chunks held by members of the social group gradually increases, SocialSwarm-enabled

group members turn inward and share the chunks altruistically among themselves.

Rather than giving social peers full preference for collaboration over nonsocial

peers, SocialSwarm’s gather-then-share approach with social peers exhibits levels of

altruism that are inversely proportional to the overall rarity of the file chunks. Our

approach gives faster file dissemination, because the social peers actively try to get file

chunks that are rare in the group, thus ultimately benefiting the group in later stages

when altruism comes into play. With these new ideas, our work is state-of-the-art for

flash dissemination of large files in a p2p network modeled over a social network.

In our evaluation of SocialSwarm, we find that the most socially connected peers

received the greatest benefit, in some cases providing up to a 47% decrease in average

download completion time per peer in comparison with average nonsocial BitTorrent

swarms.

1.3.2 F3AV Overview

To demonstrate the applicability and value of F3DS, we leverage it to design,

implement, and evaluate F3AV, a novel N-version distributed malware detection

system. F3AV provides collaborative malware detection among social peers with the

6

greatest levels or protection being provided to security-critical social hubs [17]—the

most social users on the network, which are the most likely to propagate large

quantities of malware when infected by socially aware malware1. Using F3AV, we

present and evaluate a novel method for varying the required diversity of virus

scanners based on the age of the object being scanned so as to achieve a balance

between high rates of malware detection and object scanning latency. Our evaluation

using the Amazon Cloud shows that by concurrently leveraging diverse scanners across

a social network, a user can achieve a 65% increase in the detection rate of 0- to

1-day-old malware as compared to the average detection rate of individual scanners.

We also show that F3AV provides the greatest scanner resources (including di-

versity of available scanners as well as overall quantity of results shared) to social

hubs—the most social peers in the social network. By providing the greatest scanner

resources to the social hubs, the protection of the entire social network is increased.

Our implementation of F3AV on top of F3DS is publicly available on the F3DS

website [18].

1.3.3 In-network Trust Maintenance

We recognize that maintenance of trust based only on a node’s own direct observa-

tion of peers’ behavior does not benefit from group knowledge—such as that provided

by voting or reputation sharing systems. Individual formation of trust, however, is

more resilient against bias of reputation and vote aggregators. For this reason, we

also create a novel method for individual nodes in a distributed system to maintain

trust with other nodes without relying on reputation sharing or voting methods. In

our method, nodes share authoritative individual experiences with other nodes and

combine collected experiences via a statistical model to maintain individualized trust

levels with other system participants. Specifically, we created and evaluated a novel

distributed algorithm [19] whereby nodes in a distributed system:

• Monitor their neighbor’s behavior (individual “experiences”).

• Store these experiences as “experience records.”

1Malware that propagates itself over social networks

7

• Share “experience records” with other peers.

• Compute on-going statistical trust and a confidence interval around the trust

mean based on direct and indirect experiences of peer behavior.

As part of future work, we envision enhancing F3DS to also leverage our novel

statistical trust model for on going trust maintenance. By adding these capabilities

to F3DS, nodes would be able to exploit statistical aggregation of both direct and

third party experiences to maintain on going levels of peer trust.

1.4 Dissertation Statement

We can design and build a distributed systems framework that benefits from

existing social relationships and altruism for newer, more effective p2p applications

and services.

1.5 Dissertation Contributions

In this dissertation, we make the following contributions:

• Develop F3DS—a framework for friend-to-friend distributed services.

• Develop and evaluate SocialSwarm, distributed application for flash file distri-

bution using the SocialDistance metric.

• Develop and evaluate F3AV—a novel social network–based distributed malware

detection system—using the full F3DS framework.

• Develop and evaluate a distributed approach for statistical trust establishment

within collaborative peer-to-peer systems.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows. Our design of F3DS—a novel

framework for friend-to-friend distributed services—is presented in detail in Chap-

ter 2. Chapter 2 also presents our method for approximating SocialDistance among

peers. In Chapter 3, we leverage the SocialDistance metric and show its utility for

8

dynamic resource allocation among distributed system participants by implementing

and evaluating a novel distributed application for flash file distribution—SocialSwarm.

We evaluate the full F3DS framework by using it to implement F3AV—a novel

social network–based distributed malware detection system. Details of the F3AV

design and the results of our evaluation are found in Chapter 4. In Chapter 5, we

present our distributed algorithm for statistical establishment of trust based on peer

behavior monitoring among distributed system participants and evaluate this method

in the context of wireless sensor networks. As mentioned previously, we envision

adding this distributed algorithm into F3DS as part of future work.

CHAPTER 2

EXPLOITING ALTRUISM IN SOCIAL NETWORKS

WITH F3DS: A FRAMEWORK FOR

FRIEND-TO-FRIEND

DISTRIBUTED

SERVICES

2.1 Introduction

In this chapter, we present a framework for friend-to-friend (f2f) distributed

services (F3DS) to overcome these challenges for developers of new applications. We

believe F3DS will enable a new genre of p2p applications that run independently, but

exploit social relationship metadata from existing online social networks. These new

applications can leverage direct communication and collaboration among participants.

F3DS facilitates and maintains continuous direct f2f application collaboration using

social relationships extracted from existing social networks.

This chapter is organized as follows. In Section 2.2, we provide the design details

of F3DS. The implementation of F3DS is detailed in Section 2.3. Section 2.4 gives an

overview of related work.

2.2 The F3DS Framework

Based on the goals outlined in Chapter 1, we design the F3DS framework using

the following two basic components, as shown in Fig. 2.1:

1. Friend Service Bus (FSB): FSB is a service that runs on each user’s client

device and connects F3DS-enabled applications directly with devices used by

social peers. The FSB identifies social relationships on existing social networks

10

 F3DS Enabled Client Device

F3DS APP FSB

(Friend Service Bus)

Bob

Alice

Jim

Kate

f2f Unicasts &
SocialCasts

Request
Queuing &

Prioritization

• Social
Relationship
Identification

• IP Address &
Key exchange

F3DS APP

Messages

Requests

Messaging

Request
Handler

App logic Peer Info

Figure 2.1. F3DS Framework Overview

11

and provides each application with a list of social peers including each peer’s

current IP address, public key, and a metric to quantify the social relationship

with that peer. The FSB provides f2f messaging services among social peers.

2. F3DS-enabled applications are those that are built on the F3DS framework

by using one or more services from the FSB to collaborate with social peers.

Each F3DS application can have its own purpose and objectives, ranging from

entertainment to productivity to security. Multiple F3DS applications can run

on each user’s client device and share the same FSB.

The FSB running on each social peer provides four core services to F3DS-enabled

applications: social relationship analysis, IP address and key exchange, f2f messaging,

and queuing and prioritization of requests from social peers. We describe each of these

four services in detail below.

2.2.1 Social Relationship Identification

Before nodes can collaborate directly with their peers, they must first identify true

social peers. F3DS depends on one or more social networks so as to identify active

social relationships among users (their relative levels of social connectivity). This can

be any social network over which users interact: such as Twitter, Facebook, Weibo,

Ren Ren, and Myspace. The traditional SMTP email social network can also be

used. A significant body of research has been conducted in analyzing and quantifying

relative levels of altruism—commonly referred to as distance—between social peers.

The notion of distance between social peers has a long history in social science and

was popularized with work originating in the 1920s by Emory Bogardus [20] on racial

and ethnic inequality. We design F3DS to support any analysis module that will yield

a quantifiable and relative level of altruism among social peers. For our particular

implementation of F3DS, we approximate relative levels of altruism among peers

within a social network using the “Social Distance” metric, which we now describe in

detail.

12

2.2.2 Approximating SocialDistance

The notations used to approximate SocialDistance between social peers are shown

in Table 2.1. We first approximate altruism between direct social peers followed by

approximating SocialDistance between in-direct (multihop) peers.

2.2.2.1 Altruism between direct social peers. Altruism between two so-

cial peers should not be considered a dichotomy but rather a scale ranging from

minimal to very high. Prompting system users to quantify levels of altruism for each

of their social peers would be cumbersome and impractical. Instead, F3DS calculates

a proportional and directed level of altruism between each given peer a and one of its

peers b via equation (2.1).

A(a, b) =
I(a, b)

I(a, all)
(2.1)

where I(a, b) is the number of reciprocal interactions a has had within a given time

window with b, and I(a, all) is the number of reciprocal interactions a has had with

all of its peers during the same window of time. Effectively, A(a, b) represents

the proportional willingness that a peer a has to share resources with each of its

direct peers. It is important to note that A(a, b) is from the perspective of a and is

asymmetric.

2.2.2.2 Approximating SocialDistance between indirect (multihop) peers.

The SocialDistance between two direct or indirect peers can be considered the inverse

of the altruism between those peers: Ds(a, b) =
1

A(a,b)
. Although SocialDistance itself

does not have any absolute meaning, it is a useful synthetic metric to assess relative

depreciation of altruism across intermediate peers and to determine which indirect

paths between peers yield the highest levels of altruism (the shortest SocialDistance

Table 2.1. Notations

Variable Description

A(a, b) Normalized level (0,1] of altruism a has towards a social peer b.
A(s) The short form of A(myself, s)

Ds(a, b) SocialDistance between a and b

13

paths). It is important to note that altruism between two peers, A(a, b), is asymmetric

and thus SocialDistance, Ds(a, b), is also asymmetric.

Given the known levels of SocialDistance across two pairs of social peers Ds(a, b)

and Ds(b, c), F3DS calculates a candidate multihop-directed SocialDistance from a

to c with equation (2.2); HopDecay is between 0 and 1 and is set by the evaluating

peer a.

Ds(a, c)candidate =
(

1
1

Ds(a,b)
× 1

Ds(b,c)
×HopDecay

)

(2.2)

The SocialDistance between any pair of peers (x, z) indirectly connected via a set

of intermediary peers I is defined as the highest altruism level among all known paths

between x and z. SocialDistance is calculated via equation (2.3).

Ds(x, z) =

∀i ∈ I : min

(

1
1

Ds(x,i)
× 1

Ds(i,z)
×HopDecay

)

where

(

1
1

Ds(x,i)
× 1

Ds(i,z)
×HopDecay

)

≤ DsMax (2.3)

HopDecay is thus applied for each additional hop in a given social network path.

Note that F3DS narrows its search to a computationally reasonable search space by

using a specified maximum useful SocialDistance (DsMax) beyond which peers are

not considered as social peers. These calculations are very similar to those of Dijkstra

to find shortest paths; however, instead of adding path lengths, F3DS multiplies

approximated levels of altruism.

For computing cumulative altruism values for a nonsocial peer who is multiple

hops away, we take the product of the individual altruism values along the path.

This conforms to the social network convention of having the decrease in altruism

value proportional to the relative distance. The same rationale holds for having a

linear HopDecay applied at each hop on the multinode path between two peers.

2.2.2.3 Approximating altruism between indirect (multihop) peers.

For all peers a and c for which there exists no direct social relationship, the Altruism

14

between a and c is defined as the inverse of the SocialDistance between those peers:

A(a, c) = 1
Ds(a,c)

Details on the social relationship identification modules in our implementation are

described in Section 2.3.1

2.2.3 IP Address and Key Exchange

To bootstrap direct f2f interaction after identifying true social peers, the FSB—

running on each peer device—needs to learn the current IP address and TCP port

numbers used by their social peers. The FSB on each peer also generates a simple

public/private key pair for f2f message encryption and shares the public key with

the user’s social peers. In F3DS, peers use established messaging mechanisms on

existing social networks to exchange IP address and public key information among

peers. Exchange of IP addresses and public key information is one of the functions

of the FSB.

2.2.4 F2f Messaging

We define f2f messaging as sending secure messages from one peer’s client device

directly to a friend’s client device and bypassing online social networks and message

queues. Using such direct and secure messaging reduces the possibility of eavesdrop-

ping by politically, commercially, or maliciously motivated 3rd parties. Direct f2f

messages also provide reduced network latency compared with traditional routing

over social networks. The FSB provides applications with two types of f2f messaging.

First, the FSB provides direct asynchronous messaging given a specific peer ID as

a target. Second, the FSB provides a method whereby F3DS-enabled applications

can send a single message to all of a user’s social peers within a given proximity of

SocialDistance.

2.2.5 Request Queuing and Prioritization

Given that clients have limited resources and the very common possibility that re-

quests from peers—across one or more applications—would exceed a client’s resource

capacity, it becomes critical to be able to arbitrate between the resources available

on a peer’s client device and requests for those resources from social peers. The FSB

15

accomplishes this arbitration via queuing and prioritization of requests.

The FSB receives incoming requests from peers into an ingress queue. The peer ID

and application ID associated with each request is authenticated via public/private

key request signing. Given that each peer has limited resources, the FSB prioritizes

the ingress queue entries based on the SocialDistance of each peer that sends requests.

Requesters who have a smaller SocialDistance to a peer offering services will have a

higher probability of having their request being serviced. The FSB also throttles

incoming requests by both limiting the rate of new requests as well as monitoring

available resources on a node (CPU, Memory, disk I/O, network bandwidth). If

sufficient spare resources are not available (tunable thresholds), then the process

that dequeues requests—and passes them on to the specified application—sleeps for

a configurable interval. F3DS-enabled applications can send response messages to

previous service requests. Response messages enter the same ingress queue but always

receive the highest priority (being put in the front of the queue). Each request includes

a TTL (time-to-live) by the requester. This can be overridden (to a lower value) by

the request recipient. When the TTL of a request expires before being serviced by an

application, the request is dequeued and discarded. An application has no assurance

that an F3DS service request sent to other peers will be serviced at all or handled

within a desired time window. F3DS service requests are asynchronous and best-effort

only.

2.3 F3DS Implementation

To provide some level of OS independence, we choose to implement F3DS as a

set of python modules and services on top of an SQLite database. In this section, we

first describe this F3DS implementation and then describe our F3AV implementation

on top of F3DS. We publish our implementation on the F3DS web site [18].

Here, we provide a brief overview of our implementation of the F3DS social

relationship analysis modules and the F3DS mechanisms for f2f messaging. We leave

the majority of the design details to a separate extended version of this paper.

16

2.3.1 Online Social Network Modules

We implement F3DS to use proportional levels of reciprocal interactions between

peers to approximate altruism and nominal SocialDistance [16] between those peers.

We expand upon our earlier work by creating social network analysis modules as part

of the FSB implementation not only for Facebook, but also for Twitter and standard

email (SMTP + IMAP). For Twitter, reciprocal pairs of retweets as well as reciprocal

pairs of directed tweets are both identified as forms of reciprocal communication.

On Facebook, reciprocal pairs of wall postings are identified as reciprocal commu-

nication. With email, reciprocal pairs of email messages are identified as reciprocal

communication. This conception of SocialDistance is a departure from Bogardus’

original emphasis on its subjective, affective aspects. Nevertheless, we note that

there is a generally positive relationship between the frequency of social interaction

and the strength of a social tie (e.g., members of the same family will tend to have

more social interaction than members of the same political party). Granovetter’s

classic distinction between weak and strong ties [21] is based on factors that are

all positively associated with the frequency of social interaction. We use existing

messaging mechanisms with Twitter, Facebook, and email to share user IP addresses

as well as to distribute public encryption keys. We make the assumption that the

existing messaging mechanisms over these forms of social media are reliable and secure

enough for the purpose of IP address and key distribution. As part of this research,

we do not consider threat models that attack distribution of IP addresses and public

keys. For each peer that sends an IP address and public key, the FSB calculates

the multihop nominal SocialDistance and communicates the IP, key, and nominal

SocialDistance to each application (such as F3AV) via the shared database. The FSB

also sets a perceived SocialDistance in the database to equal that of the nominal

SocialDistance.

2.3.2 f2f Messaging

As part of the framework, each node runs a Lighttpd web server and provides

both XMLRPC services—for messaging, as well as file serving. When messages from

peers are received over XMLRPC into the FSB’s incoming request queue, they are

17

ordered based on the perceived SocialDistance of the peer that sent the messages.

For our initial implementation of the FSB, we use a fixed request servicing (dequeue)

rate. In future implementations, we plan to evaluate adapting request dequeing rates

based on resource (CPU, memory, etc) availability. The FSB provides a python-based

API to applications for enqueuing both f2f unicasts as well as f2f socialcasts. When

sending unicasts, applications specify the peer ID to which they want to send the

message. When sending socialcasts, applications specify maximum SocialDistance to

which they are willing to send the message, and the FSB will send that message to

each of the peers within that SocialDistance.

2.4 Related Work

The PeerSoN [22] system shares the F3DS goal of facilitating direct p2p interaction

between system users. However, PeerSoN lacks application supporting facilities for

social relationship extraction from existing OSNs. Cutillo et al. propose SafeBook [23]

a system for protecting communication privacy of social networking users via direct

p2p interaction. In contrast to F3DS, SafeBook relies on centralized administration

of trust among users via a Trust Information Service (TIS). F3DS is fully distributed

and does not have such requirements for trust in a single centralized service. Both

PeerSoN and SafeBook lack experimental implementations for use with real-world

applications.

Sprout [24] uses existing trust among social peers with the goal to provide reliable

cross network message routing services. This is in contrast to F3DS which has the

goal of providing a generic framework for any social p2p application service.

Yang et al. propose [25] a structure for information sharing between social network

users via direct p2p collaboration. As opposed to F3DS which leverages existing trust

among OSN users to provide p2p services, the goal of the system proposed by Yang

is to help individuals find relevant content and knowledgeable collaborators who are

willing to share their knowledge.

The notion of trust applied to social networks is a promising method to encourage

sharing. SPROUT [24] models a social network-based routing scheme where the path

selected has peers contributing to the highest computed gross trust value. We extend

18

the multihop notion of trust to generate altruism values for spatially distant nonpeers

by combining the intermediate altruism values and a linear decay factor proportional

to spatial distance. Different approaches to trust computation over multiple hop

distances have been tried. Walter et al. [26] calculate the trust of a node at a given

distance to be the product of the trust of all nodes along the path. Decay-based

multihop trust metrics have been studied extensively by Marti et al. [24]. Decay-based

models are advantageous because they adhere to the social network trust model of

having more confidence in nodes closer to the source. In calculating SocialDistance, we

choose to implement a linear decay-based model, which is shown in the aforementioned

work, to perform equally as well as the exponential decay-based model.

2.5 Conclusions

We have presented F3DS, a novel framework for friend-2-friend distributed ser-

vices, with resource sharing governed by approximated levels of pre-existing social

altruism among OSN participants.

In the next chapter, we present a novel flash file/patch distribution method,

SocialSwarm, which leverages altruism between peers in an OSN to overcome the

necessity of and the inefficiency created by negotiating for resources. SocialSwarm

facilitates efficient file distribution among social peers. In SocialSwarm, peers leverage

the SocialDistance metric to proportion and prioritize the sharing of resources with

other social peers.

CHAPTER 3

SOCIALSWARM: EXPLOITING DISTANCE

IN SOCIAL NETWORKS FOR

COLLABORATIVE FLASH

FILE DISTRIBUTION

Social networks can serve as an effective mechanism for distribution of vulnerabil-

ity patches and other malware immunization code. We propose a novel approach—

SocialSwarm—by which peers exploit distances to their social peers to approximate

levels of altruism and to collaborate on flash distribution of large files. SocialSwarm

supports heterogeneous BitTorrent swarms of mixed social and nonsocial peers. We

implement SocialSwarm as an extension to the Rasterbar libtorrent library—widely

used by BitTorrent clients—and evaluate it on a testbed of 500 independent clients

with social distances extracted from Facebook. We show that SocialSwarm can sig-

nificantly reduce the average file distribution time, not only among socially connected

peers, but also among other swarm participants.

3.1 Introduction

Online social networks (OSNs) are perpetually increasing in popularity and utility.

Unfortunately, most if not all OSNs have been heavily exploited for malicious pur-

poses. One of the oldest and certainly the most pervasive of all OSNs, SMTP-based

email, has been widely used to self-propagate malicious code, either automatically via

client vulnerabilities or manually via social engineering, in messages sent to unsus-

pecting or inexperienced users. When new malicious code enters a social network, it

commonly infects hub nodes—nodes with higher degrees of connectivity and malware

exposure—more quickly than those users with relatively few social peers.

20

Brumley et al. [27] have found a technique for automatic generation of malware

based on contents of a patch file. Computer users can therefore no longer expect

a generous time window for patching their systems before malware is released to

exploit the patch. It is becoming increasingly important to study and develop counter-

malware techniques such as flash [28] patch distribution, which, like malware itself,

exploits hub, cluster, and relative node distance properties to enhance security within

OSNs. Unfortunately, existing methods for fast distribution of large files, including

typical operating system and application patch files, suffer from two problems in

comparison with OSN-based malware propagation. First, systems such as BitTorrent,

and its existing derivatives, implement mechanisms to minimize free-riding; such

mechanisms create inefficiencies. Second, existing peer-to-peer (p2p) file distribution

systems do not ensure that social hubs receive the highest priority in receiving files;

such prioritization of patch distribution is necessary to effectively counter OSN-based

malware infection campaigns.

The mechanisms used to minimize free-riding are typically tit-for-tat and auction-

based p2p incentives [29]. Although these incentives are valuable and necessary in

fostering collaboration among purely self-interested individual peers, they come at

the price of reduced efficiency. In order to barter for resources, BitTorrent reserves

bandwidth in the form of unchoke slots [13]. This reserved bandwidth ensures

that peers with which a node is attempting to barter are provided resources of

reasonable value. Clients typically avoid increasing the number of unchoke slots

because increased numbers reduce the value of each individual unchoke slot thereby

increasing the difficulty of negotiating for higher levels of bandwidth. A client’s offer

of reserved bandwidth to one of its peers does not mean the bandwidth offered will

actually be used. The recipient of the bandwidth offer may not have a sustained

need for chunks held by the peer or a sustained capability of completely utilizing

the offered bandwidth. This holds true even for systems that track and attempt

to maintain peer reputation across different swarms [30]. For standard BitTorrent

clients that do not track peer reputation across swarms, there is some probability,

given optimistic unchoking, that peers will be offered and take bandwidth but will

not reciprocate. Such peers are known as leeches. One of the goals of most p2p

21

reputation-tracking systems is to handle leeches. Unfortunately, reputation-based

systems are only valuable when kept fresh with a stream of evidence. For infrequent

p2p users, reputation systems are commonly inaccurate and/or possibly punitive,

given the lack of accumulated reputation evidence.

In this chapter, we propose a novel flash file/patch distribution method, Social-

Swarm, which leverages altruism between peers in an OSN to overcome the necessity

of and the inefficiency created by negotiating for resources. SocialSwarm facilitates

efficient file distribution among social peers. Specifically, SocialSwarm enables groups

or teams of social peers with pre-established altruism between each other to use

resources more effectively by reducing the requirement of resource bartering between

members of the same team. Assistance to peers is prioritized proportionally to

social altruism. SocialSwarm also facilitates file distribution between social peers and

nonsocial peers using the well established BitTorrent mechanism of resource bartering.

SocialSwarm can be described as a gather-then-share technique. Nodes first work as

a team to interact with anonymous nonsocial peers, gathering socially rare chunks

of the file being propagated. As the percentage of chunks held by members of the

social group gradually increases, SocialSwarm-enabled group members turn inward

and share the chunks altruistically among themselves. In SocialSwarm, peers leverage

the SocialDistance metric to proportion and prioritize the sharing of resources with

other social peers.

We evaluate the effectiveness of SocialSwarm by implementing it as an extension

to the Rasterbar libtorrent library [31] and deploy it on a testbed of 500 clients. Each

client is assigned the identity of a real-world Facebook user and given connectivity

characteristics of real-world networks. We find that SocialSwarm achieves an average

file download time reduction of 25% to 35% in comparison with standard BitTor-

rent under a variety of configurations and conditions including file sizes, maximum

SocialDistance, as well as leech and seed counts. The most socially connected peers

yield up to a 47% decrease in download completion time in comparison with average

nonsocial BitTorrent swarms.

The rest of this chapter is organized as follows. In Section 3.2, we present relevant

related work. In Section 3.3, we introduce SocialDistance as an approximation

22

of levels of altruism between peers in a social network and present the details of

SocialSwarm which exploits the altruism approximations. Section 3.4 constitutes an

overview of our implementation of SocialSwarm. In Section 3.5, we evaluate the

performance of SocialSwarm. We conclude with a list of several areas for further

investigation in Section 3.6.

3.2 Related Work

P2P networks, when compared to static single-source models, have exhibited faster

transmission time and greater robustness in dissemination of large files [32]. These

advantages have been repeatedly acknowledged in research on security patch propa-

gation where the standard model for patch dissemination is p2p in nature [33, 34].

Gossip-based protocols have been successful in improving BitTorrent’s file dissem-

ination time. For example, CREW [35], a gossip-based protocol, clearly outperforms

other p2p protocols including BitTorrent for small-sized (1MB) files. However, for

bigger file sizes, CREW incurs a higher overhead than nongossip-based protocols.

Lind et al. [36] show how small messages spread over social networks through gossip.

Our work, however, focuses on the propagation of large files, which have very different

propagation characteristics in comparison with small files and messages.

BitThief [37] highlights the free rider vulnerability of BitTorrent by demonstrating

that entire files can be downloaded without reciprocation. Augmenting BitTorrent to

handle the free riding problem has been the focus of numerous research exercises [38,

39]. The key idea of these solutions is to establish a trust value that a peer accumulates

over the course of time. The trust metric thus penalizes peers that do not share and

rewards those who are active sharers. Although the notion of trust is a step in the

right direction, the peers that participate in a typical p2p swarm change constantly

and the benefit of having a trust metric is often lost.

Zhu et al. [17] propose a novel method of worm containment in cellular networks

by prioritizing the patching of mobile peers based on their social connectivity. Our

technique of collaborative patch distribution—based on social trust on a high level—

exploits the same connectedness property proposed by Zhu, but unlike his work, we

do not assume any global or centralized knowledge of social connectivity between

23

peers.

Friedman [40] describes the motivation of utilizing the social network as an excel-

lent medium for patch distribution. One of the more convincing reasons presented is

that OSNs like real life social networks tend to follow social norms. If computer

security is treated as a given norm, a good peer would expeditiously forward a

patch file to its social peers: first, to enhance the overall security of the social

ecosystem, and, more importantly, to protect itself by having peer nodes that are

malware-immune. Our work matches the efficiency of a p2p system with the complex

dynamics of a social swarm to create a unique and robust file distribution system.

Different methodologies have been tried to incentivize sharing in social networks.

2Fast encourages sharing in a traditional p2p network by introducing the concept

of “helper” peers, which assist “collector” peers—nodes interested in downloading a

particular file [41]. The helpers use their idle bandwidth to collect chunks under the

direction of the collectors with the ulterior motive that the collectors will help when

the helpers need to download a file.

KARMA [42] proposes an incentive system with a more fluid “currency-like”

mechanism, where a node can transfer some of its positive currency balance to

bootstrap a lower placed node. Our work uses a multihop-based incentive metric

that automatically confers the advantage of being associated with a higher placed

node or even being part of a higher trust path.

The Tribler [43] system extends 2Fast to social networks by applying the concept

of helper and collector peers to social cliques extracted from p2p networks by grouping

peers of similar characteristics. Although the concept of a drone helper to retrieve

content is useful for assisting a peer with the retrieval of some content, it does not

assist a large group of social peers in identifying and retrieving socially rare chunks.

We share with Tribler the common goal of harnessing a social network for file

distribution, but our work differs from Tribler’s in several meaningful ways. The

collaborative download in Tribler needs “helper” nodes that do not participate in the

actual file being distributed. This is in contrast to our work, where all the nodes in the

swarm actively collaborate in the file being shared. Another important operational

aspect of Tribler is that the helper nodes need explicit approval from the collector

24

node regarding the uniqueness and rarity of a file chunk before downloading it on

behalf of the collector node. We develop the notion of social rarity of a chunk that

gives a node sufficient confidence to download a chunk that is socially relevant to

the clique to which it belongs. Tribler’s incentive mechanism does not allow for a

transitive relationship between a prospective collector node and a helper node. All

incentives that are reclaimed correspond to the direct interactions in the past between

the nodes in purview.

The standard BitTorrent protocol uses a fixed and small number (typically 5

to 8) of unchoke slots for playing tit-for-tat with swarm members. When a peer

joins a swarm, it initially chooses a random chunk to download and then begins to

offer this chunk to barter with other swarm members. During these initial stages of

bootstrapping swarm entry and tit-for-tat negotiation, some portion of the peer’s

upload bandwidth is underutilized given the small and fixed number of unchoke

slots. As has been shown in the SeCond [44] protocol, a more efficient use of p2p

bandwidth is to freely share it with swarm peers regardless of reciprocity. Although

free bandwidth sharing is more efficient, it is vulnerable to exploitation by any purely

self-interested swarm member. Tit-for-tat thus serves as a required and effective

enforcement mechanism for minimizing the level of free-riding possible in a swarm

whose members are purely self interested.

Karame et al. [45] defend the analytical rationale behind decomposing p2p peers

engaged in a collaborative download into “small coalitions” to give a near-optimal file

distribution time. The key idea of this work is that the aggregation of locally optimal

solutions obtained in the smaller teams form a globally optimal solution, which is

often very expensive to compute if the problem is not decomposed. Our work builds

upon these conclusions by engaging social peers to work together as teams.

Dynamic configuration of p2p peers of similar characteristics into teams has been

shown to limit free riding in collaborative downloads [46]. A common approach tried

in team-based collaborative downloads is to presume altruism with social peers while

employing tit-for-tat policy with nonsocial peers. This model has been studied by

Galuba et al. [47] where preference is always given to peers. In contrast, we employ

a “gather-then-share” approach with social peers where the altruism exhibited with

25

social peers is inversely proportional to the overall rarity of the file chunks. Our

approach gives faster file dissemination because the social peers actively try to get

file chunks that are rare in the group, which ultimately benefits the group in later

stages when altruism comes into play.

3.3 SocialSwarm Design

SocialSwarm combines tit-for-tat/auction between nonsocial peers with an altru-

istic sharing of resources among social peers. A SocialSwarm client freely offers

bandwidth to its social peers based on each of their SocialDistances. For nonsocial

peers as well as those who are distant socially, a peer uses the standard BitTorrent

method of engaging in tit-for-tat to negotiate bandwidth. In Section 3.3.1 we provide

an overview of the design of SocialSwarm, which is followed, in Section 3.3.2, by

details on the notations we use. Finally, Section 3.3.3 provides the core details of how

these notations are combined and used within SocialSwarm.

3.3.1 Overview

With the goal of maximizing collaboration between social peers by reducing the

inefficiencies of BitTorrent while still maintaining game-based techniques to encourage

the cooperation of nonsocial peers, we have developed the following design character-

istics for SocialSwarm.

• Full compatibility with the BitTorrent protocol: SocialSwarm is designed to

leverage the existing benefits of the BitTorrent protocol, while enhancing the

capabilities of BitTorrent clients to collaborate with social peers. SocialSwarm

thus adapts to mixed swarms of socially connected and nonsocially connected

peers.

• Social network independence: With its modular social network analyzer, So-

cialSwarm can exploit the history of connectivity and interaction among social

peers within any capable social networking system, obviating reliance on any

particular social protocol or messaging system.

26

• Coordination of chunk collection among social peers: Like standard BitTor-

rent, SocialSwarm begins by relying on peers seeking chunks of data that are

rare system-wide. Over time, however, SocialSwarm increasingly seeks after

chunks that are rare among social peers only—socially rare chunks. Thus,

as a file download progresses, a peer transitions its focus from globally rare

chunks towards socially rare chunks. This transition of chunk collection focus

is the “gather” portion of the “gather-then-share” approach and is detailed in

Section 3.3.3.2.

• Adaptive unchoke slot count and upload bandwidth allocation: Like standard

BitTorrent, SocialSwarm begins by allocating a fixed number of unchoke slots for

playing tit-for-tat/auction games with nonsocially connected peers. Over time

as more chunks are acquired by social peers, SocialSwarm gradually decreases

the number of unchoke slots allocated to tit-for-tat/auction and repurposes the

bandwidth associated with those slots, offering unchoke slots freely to social

peers who are granted bandwidth with a priority based on SocialDistance. This

adaptive bandwidth allocation is the “share” portion of the “gather-then-share”

approach and is detailed in Section 3.3.3.1.

• Targeted nonsocial peer selection for optimistic unchoke: Rather than a com-

monly used metric of time-since-last-unchoke for optimistic unchoke peer se-

lection, SocialSwarm is designed to select peers probabilistically based on the

social rarity of file pieces that they hold. Details of this peer selection method

are given in Section 3.3.3.3.

Fig. 3.1 presents an example of how SocialSwarm running on Bob’s client retrieves

social peer interaction history from social networks on behalf of Bob. When a file

distribution swarm starts, Bob’s SocialSwarm client identifies Bob’s social peers in the

swarm, coordinates chunk collection with them, and altruistically shares bandwidth

with them. The SocialSwarm clients interact with each other as well as with standard

(nonsocial) BitTorrent clients. In this example, Jim’s SocialSwarm client also has a

connection to a leech. Although Jim initially uses resource bartering and preallocates

resources to negotiate with the leech, over time, Jim reserves less bandwidth for

27

Figure 3.1. SocialSwarm Interaction Overview

28

resource bartering and openly shares its bandwidth with its social peers. By reserving

fewer resources for specific peers, Jim’s risk is diversified given that his reliance on

any particular node is reduced. Thus, even though Jim is not explicitly aware of the

leech, SocialSwarm’s diversified collaboration allows it to be less affected by the leech

in comparison with standard BitTorrent clients.

3.3.2 Notations

Tables 3.1, 3.2, and 3.3 respectively provide an overview of the given, measured,

and derived variables used by SocialSwarm. All variables are from the perspective of

each node in the system. Each node independently receives, measures, and derives

its own set of variables. Each measured variable is over a time period of ti. Each

derived variable is recalculated each ti. The given and measured variables that could

not be fully described in the table are described in detail in this section. The next

section (3.3.3) describes the derived variables along with the SocialSwarm algorithm.

3.3.2.1 Overall rarity for each given chunk. Each peer first calculates

A(b) for all peers b in its social network using the methodolgy presented in Sec-

Table 3.1. Given Variables

Variable Description

A(a, b) Normalized level (0,1] of altruism a has towards a social peer b.
A(s) The short form of A(myself, s)

Ds(a, b) SocialDistance between a and b
DsMax Maximum SocialDistance whereby a client considers peers to be part

of its social network.
C Set of chunks in the file being downloaded. Knowledge of this set is

provided by the .torrent file used to start the swarm.
ti The time interval i. The interval used here is the optimistic unchoke

interval (commonly 30 seconds).
S The set of social peers (Ds << ∞) that are using a SocialSwarm-enabled

BitTorrent client. To form S, a list of all peers is retrieved from the
torrent tracker; nonsocial peers are excluded.

N The set of all other (nonsocial) peers participating in the swarm
(where SocialDistance = ∞). To form S, a list of all peers is retrieved
from the torrent tracker, and social peers are excluded.

29

Table 3.2. Measured Variables

Variable Description

V (ti, c, n) 0 or 1 indicating the availability of a particular chunk, c,
at a particular peer, n, at time interval ti.
This information is shared between peers and the tracker
as part of the BitTorrent protocol.

Bs(ti) The percentage of a client’s upload bandwidth
used at ti for altruistic sharing with its social peers.
(each client measures its own bandwidth)

Bn(ti) The percentage of a client’s upload bandwidth
used at ti for bartering with its nonsocial peers.
(each client measures its own bandwidth)

Ro(ti, c) The overall rarity of a chunk c across all peers,
social and nonsocial, at ti.

Rs(ti, c) The social rarity of a chunk c across its set S of social
peers at ti.

Rn(ti, c) The nonsocial rarity of a chunk c across its set N of
nonsocial peers at ti.

Table 3.3. Derived Variables

Variable Description

Rw(ti, c) The combined weighted rarity at ti.
RA(ti) The average social rarity across all the chunks C at ti.
H(ti, p) The weighted rarity of chunks held by a peer p at ti.

30

tion 2.2.2. For each given chunk c, a peer calculates the overall rarity of the chunk

across all peers in the swarm (peers in S and N) via equation (3.1).

Ro(ti, c) =

{

1 if |S ∪N | = 0

1−
∑

n∈S∪N
V (ti,c,n)

|S∪N |
otherwise

(3.1)

3.3.2.2 Social rarity for each given chunk. For each given chunk c, a peer

calculates the rarity of the chunk across its set S of social peers using equation (3.2).

Rs(ti, c) =










1 if
∑

s∈S A(s) = 0

1−
∑

s∈S
A(s)∗V (ti ,c,s)∑
s∈S

A(s)
otherwise

(3.2)

This equation allows each node to weigh the priority of each chunk proportionally

with the altruism expressed towards each of the node’s online and in-swarm social

peers. The chunks that are rare to social peers connected by shorter SocialDistances,

and thus higher levels of altruism, are assigned a higher priority than the chucks that

are rare to peers connected by higher SocialDistances.

3.3.2.3 Nonsocial rarity for each given chunk. A peer calculates the

rarity of a given chunk across its set N of nonsocial peers using equation (3.3).

Rn(ti, c) =

{

1 if |N | = 0

1−
∑

n∈N
V (ti,c,n)

|N |
otherwise

(3.3)

3.3.3 SocialSwarm Algorithm

SocialSwarm varies the behavior of standard BitTorrent in three basic ways.

Table 3.4 lists these three changes with their respective input heuristics. Each of

these actions and heuristics is described in detail below:

3.3.3.1 Adaptive bandwidth allocation. SocialSwarm leverages munificence

between social peers by dynamically allocating a portion of available bandwidth

toward free bandwidth sharing with social peers.

Karame et al. [45] show that combining locally optimal solutions of the smaller

social teams would give a globally optimal solution for the entire social network.

Hence, we introduce a concept of social rarity that is unique to different cliques in

31

Table 3.4. SocialSwarm in a Nutshell

SocialSwarm Action Input Heuristic

1 Vary % bandwidth offered % of game completed (from social
to social vs nonsocial peers group perspective)

2 Vary the set of targeted chunks Bandwidth % used
based on the group (social or by social &
nonsocial) being collaborated nonsocial peers

with currently
3 Probabilistically unchoke Rank peers based

the nonsocial peers that on the rarity of
hold the most desired the chunks that they

chunks hold

32

the social graph and is easy to compute. We also incorporate the overall rarity of a

chunk to get a fair representation of actual rarity.

As the allocation level of bandwidth for social peers increases and is actively

used, the number of unchoke slots available for bartering with nonsocial swarm peers

decreases. To determine what portion of its available upload bandwidth a client

should allocate to social peers, SocialSwarm uses the average rarity of chunks across

social peers as a heuristic. Effectively the assessment of the rarity of all chunks across

social peers is how SocialSwarm determines the stage of the game.

A SocialSwarm client estimates the average social rarity for all chunks at each

ti by normalizing the social rarity of all individual chunks by the chunk count using

equation (3.4).

RA(ti) =

∑

c∈C Rs(ti, c)

|C|
(3.4)

A SocialSwarm client then allocates a certain maximum percentage of its band-

width (MaxSocialBandwidth=(1−RA(ti))) for use with its social peers. Using levels

of altruism towards social peers, a SocialSwarm client will put its social peers into an

ordered list. Starting at the top of this list (those peers with the highest altruism), a

peer will unchoke its social peers one by one until either the predetermined MaxSo-

cialBandwidth percentage of upload capacity has fully been consumed by its social

peers or a maximum limit on unchoked social peers is reached. This method ensures

that the peers with the highest amount of aggregate social altruism—typically those

peers who have a higher degree of connectivity—are allocated the greatest bandwidth

and thus are potentially able to receive the file faster than peers with lower degrees

of social connectivity.

All bandwidth not allocated or consumed by social peers is allocated to traditional

BitTorrent unchoke slots (of reasonable size) and used for bandwidth bartering.

3.3.3.2 Chunk prioritization. When social clients initially join swarms and

when social bandwidth available from social peers is scarce, they must barter for

bandwidth and chunks with nonsocial peers. Initially, clients will target chunks that

are rare across nonsocial peers. As social peers acquire an increasing percentage of

chunks, the average rarity of chunks across social nodes decreases and more bandwidth

is allocated toward social purposes. As social peers increase their usage of this

33

bandwidth, a client will increasingly target chunks that are rare across social peers

(as opposed to chunks that are rare across nonsocial peers).

SocialSwarm is thus analogous to a real-world tribe or clan whose members ini-

tially barter with nonclan members for goods not yet available in the clan. As more

goods are obtained by clan members, they gradually decrease their external bartering

and increase the amount of free sharing of goods within the clan. The amount of

bartering with external, self-interested entities is thus determined by the availabilty of

goods (chunks) within the clan. Here, availability is defined as both chunk possession

and ability to share (bandwidth availability).

A SocialSwarm client accomplishes this collaboration by varying its calculation

of chunk rarity based on the percentage of bandwidth actively being used by social

peers, denoted by Bs(ti), and the percentage of bandwidth used by nonsocial peers,

denoted by Bn(ti). Both Bn(ti) and Bs(ti) may be 0% concurrently if none of a node’s

bandwidth is being used by any of its peers.

The level of influence that social peers’ chunk holdings exert over a node’s con-

cept of chunk rarity increases as the level of bandwidth sharing among social peers

increases. When the majority of its bandwidth is used for bartering with nonsocial

peers (when Bn(ti) is large), a SocialSwarm client will focus mostly on chunks that are

rare across nonsocial nodes by making Rn(ti, c) dominant. Alternatively, when the

majority of its bandwidth is used for collaboration with social peers (when Bs(ti)

is large), a SocialSwarm client will focus mostly on chunks that are rare across

social nodes by making Rs(ti, c) dominant. When little of its bandwidth is in use

(when both Bn(ti) and Bs(ti) are small), a SocialSwarm client will use the traditional

BitTorrent algorithm of focusing on chunks rare to the swarm overall by making

Ro(ti, c) dominant.

Thus, using its current Bs(ti) and Bn(ti) bandwidth percentages as weights, a

SocialSwarm client combines the social, nonsocial, and overall rarities to form a

combined weighted rarity for each given chunk using equation (3.5).

34

Rw(ti, c) = Rn(ti, c)∗Bn(ti)+

Rs(ti, c)∗Bs(ti)+

Ro(ti, c)∗(1−Bn(ti)−Bs(ti)) (3.5)

A SocialSwarm client prioritizes the download of chunks from its connected peers

based on their combined weighted rarity, Rw(ti, c). This allows a client to coordinate

its collection of socially rare chunks with its social peers.

3.3.3.3 Optimistic unchoke candidate selection. Typical BitTorrent im-

plementations use either random selection or a longest-since-unchoke heuristic in de-

ciding which peer should be optimistically unchoked for the next round. SocialSwarm

instead probabilistically selects a peer out of a prioritized list ordered on availability

of rare chunks at each peer. Thus, a peer will target a peer with the largest group

of rare chunks at each time interval ti by calculating the level of rare chunks held by

each peer using equation (3.6).

For p ∈ S ∪N,

H(ti, p) =

∑

c∈C V (ti, c, p)×Rw(ti, c)

|C|

(3.6)

Using its list of social peers ordered on H(ti, p), a peer will randomly choose the

next peer for probabilistic unchoke using proportional selection based also on H(ti, p).

3.4 Implementation and Test Setup

In this section, we first present details of our SocialSwarm implementation. Sec-

ond, we provide an overview of our test infrastructure. Next, we discuss the social

network data set used to drive our tests, and finally, we analyze the performance of

SocialSwarm in comparison with the standard BitTorrent protocol.

3.4.1 Implementation

We implement the SocialSwarm algorithm as an extension to the Rasterbar libtor-

rent library [31] version 0.13.1. Libtorrent is a library leveraged by a variety of

different GUI- and text-based front ends to provide full BitTorrent functionality.

Enhancing libtorrent with SocialSwarm as an extension allows SocialSwarm to be used

with a variety of existing BitTorrent clients. To evaluate the SocialSwarm BitTorrent

35

extension, we use an unmodified version of qBittorrent v1.1.0, a Qt-based libtorrent

front end [48].

SocialSwarm-enabled libtorrent receives a list of known social peers, including

relative SocialDistances for each peer and the peer’s most recent known global IP

address. SocialSwarm compares its list of known social peer IP addresses with the IP

addresses of each of the peers in BitTorrent swarms as received from the BitTorrent

tracker to find social peers who are participating in each swarm. Once a social peer is

identified, SocialSwarm-enabled libtorrent uses a new flag on the BitTorrent extended

peer handshake to determine if the social peer is SocialSwarm-enabled. If a social

peer is identified, but does not support the SocialSwarm protocol, then SocialSwarm

libtorrent will treat the peer as a nonsocial peer. Apart from matching IP addresses

and checking its SocialSwarm flag, SocialSwarm currently does no other social peer

verification. A social network analyzer is developed to take a set of user interactions

within the social network—in this case Facebook wall postings—and first calculate

proportional levels of direct altruism between the Facebook users in the data set and

then calculate levels of indirect altruism. More details are found in the next section.

3.4.2 Social Network Data Set

To evaluate SocialSwarm, we use an anonymized data set from interactions—

wall postings—of 500 Facebook users [49]. For each social network member, we

analyze the number of reciprocal wall postings within a given time period. Each

pair of reciprocal postings is considered a single interaction. These interactions are

used to determine the single-hop/direct levels of altruism between Facebook users.

We use the inverse of this altruism as our single-hop/direct SocialDistance between

peers. Using these single-hop SocialDistances, we calculate the multihop altruism and

SocialDistances using a HopDecay of 0.95 with the method described in Section 3.3.

After constructing the social tree for all users in the Facebook data set, we choose a

single peer and do a breadth first walk over the tree until a total of 500 social peers

is selected (traversed). We then assign each of these 500 social peers to a virtual

SocialSwarm client for our evaluation. Each node has knowledge only of its own

social peers (rather than global knowledge) and considers all other nodes outside of

36

its maximum SocialDistance as “nonsocial.”

Each client is assigned a unique virtual machine with a unique IP address. We

make the assumption that the social network analyzer has a method of determining a

public IP address for known social peers. This IP address determination would occur

either via extraction from existing social network interactions or some extension to

those interactions that enables extraction of peer IP addresses for direct and indirect

social peers. IP address identification of users is dependent on the social network

being used. Email, for example, commonly includes the IP address of the original

sender as one of the headers. This is also true for certain webmail systems, such

as Hotmail and Yahoo mail. There are methods of obtaining users’ IP addresses on

MySpace [50, 51] and until recently, IP addresses of Facebook users could be directly

extracted from the email notifications sent on activity between social peers, such as

wall postings [52]. This information, when coupled with the peer interaction data

set, could uniquely give the IP addresses of the users helping to bootstrap our social

network. To incorporate dynamically changing IP addresses, Koolean [53] proposes

a solution whereby each user is associated with a permanent identifier and coupled

with a challenge-response mechanism with the social peers, the user is verified, and

the current IP address of the user is deemed authentic. The updated connection

details of the newly joined peer are distributed across the social network. Because

the main focus in our work is to demonstrate faster file distribution, we have not

yet incorporated automatic identification of social peer IP addresses into the social

network analyzer.

The 500 users in our experiments were extracted from a much larger data set of

Facebook wall postings which contained over 43,000 nodes in total. We thus utilized

less than 1.2% of the total social network data set. Unlike our evaluation nodes,

real-world users of SocialSwarm would not be restricted to searching for social peers

among an isolated group of 500 nodes, but rather could search for and utilize any

available peers on their full social network within their chosen max SocialDistance.

For example, by increasing the number of social network nodes that we included in our

analysis to 5000 and given no variation in maximum SocialDistance, we found a 55%

average increase in the number of peers a node would consider as its peers. Fig. 3.2

37

shows the number of single-hop/direct and multihop peers each node considers as part

of its social network given a maximum SocialDistance. Fig. 3.3 shows the number of

peers each node considers as part of its social network when the subset of the data

is expanded to include 5000 nodes total. Although our experiments constrained each

node to search only for social peers within a very small subset of the social network,

and given the differences between Fig. 3.2 and Fig. 3.3, it is clear that in real-world

deployments of SocialSwarm nodes would have many additional peers from which to

choose.

A peer continues a shortest-path-first search of its social network adding new

social peers until some maximum allowable SocialDistance is reached. Based on this

Facebook data set, Fig. 3.4 shows the average number of social peers each user has

in relation to the maximum allowable SocialDistance. Although the number of addi-

tional peers continues to increase at a reasonable rate with greater SocialDistances,

the relative altruism expressed toward those additional peers significantly degrades.

Fig. 3.5 shows the average altruism expressed by each node to its social peers as the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 N
od

es

Count of Social Peers

Direct Social Peers
DsMax: 100
DsMax: 200
DsMax: 400
DsMax: 600

Figure 3.2. CDF of Social Peer Count for 500 Nodes

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 N
od

es

Count of Social Peers

Direct Social Peers
DsMax: 100
DsMax: 200
DsMax: 400
DsMax: 600

Figure 3.3. CDF of Social Peer Count for 5000 Nodes

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 N
um

be
r

of
 S

oc
ia

l P
ee

rs

Maximum SocialDistance (DsMax)

HopDecay: 0.99
HopDecay: 0.95
HopDecay: 0.90

Figure 3.4. Number of Social Peers in Network Based on Max SocialDistance

39

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 A
gg

re
ga

te
 A

ltr
ui

sm
 E

xp
re

ss
ed

 b
y

E
ac

h
N

od
e

Maximum SocialDistance (DsMax)

HopDecay: 0.99
HopDecay: 0.95
HopDecay: 0.90

Figure 3.5. Average Aggregate Altruism from Each Peer Based on Maximum
SocialDistance

40

maximum SocialDistance is varied. This figure shows a drop off in altruism increase

beyond a maximum SocialDistance of 150 to 200.

It is important to note that SocialSwarm is not dependent on any specific social

peers being online or available; SocialDistance is used for prioritizing bandwidth

offered. Any unused bandwidth due to offline peers will be offered to other social

peers who are online, even if they have a higher SocialDistance. If no social peers are

online or if those that are online are not consuming bandwidth, then SocialSwarm

will revert to interacting with nonsocial peers exclusively.

3.4.3 Test Infrastructure

Our testbed consists of 20 high-performance servers. Each server has 24GB of

RAM and 8 Intel-based Xeon CPU cores (two quad core Xeon L5420 processors

per system). All servers are fully connected through a gigabit switch with a fully

connected 68Gbps back-plane. A torrent tracker is run on a separate machine that

also has full gigabit connectivity to the same network switch. On each server, we

create 25 virtual clients for a total of 500 virtual clients. Each client runs Debian

Linux version 5.0.3 inside of an OpenVZ virtual container. The storage for each

virtual container is located on a set of high performance SAN arrays with 15K rpm

drives to ensure that the probability of I/O contention is minimized. Network tuning

and shaping is put in place so that each virtual client can be tuned independently with

each of the following metrics: incoming maximum throughput, outgoing maximum

throughput, incoming packet latency, and outgoing packet latency.

CPU, network, memory, and disk I/O are monitored on all servers to ensure that

resource contention between the virtual environments did not occur.

3.5 Evaluation

We evaluate SocialSwarm using the infrastructure described in Section 3.4.3. We

now provide an overview of our testing methodology, followed by the results of our

evaluation.

41

3.5.1 Evaluation Methodology and Criteria

In order to evaluate the flash-file distribution speeds of SocialSwarm in comparison

with standard BitTorrent, we preload a single peer in the system with the file contents,

making it the sole seed for the system. We then start all clients within 10 seconds of

each other. We assume that in real-world use, external mechanisms for communicating

torrent availability and automatic triggering of swarm participation exist. Likely such

a mechanism would use messaging capabilities of the social networks themselves. In

all experiments, we use the parameters, shown in Table 3.5, as input to each of the

tests, unless otherwise specified.

The network configuration (including latency between peers) was made indepen-

dent of each node’s social connectivity. A vast majority (489 peers) of the 500 peers

are assigned a maximum upload bandwidth of 256Kbit (32KB) per second and a

maximum download bandwidth of 1Mbit (128KB) per second. The remaining 11

peers are assigned a maximum upload bandwidth of 2.5MB/second and a maximum

download bandwidth of 5MB/second. One of these 11 high-speed peers is chosen as

the seed. These bandwidth capabilities attempt to simulate a mix of home users with

slower Internet connections combined with a few corporate/educational/FTTH (fiber-

to-the-home) users (including the seed) with much faster Internet connections [54].

Each data point provided in this section represents an average across 10 runs, with

each run using an identical configuration of nodes including seeds.

Table 3.5. Baseline Test Parameters

Parameter Value

File Size 25 MB
RTT Interpeer Latency 48 ms
Altruism HopDecay 0.95

Maximum SocialDistance (DsMax) 400
Maximum Number of Concurrently 30

Unchoked Social Peers
Leeches (Noncontributing Peers) 0

Seed Bandwidth 2.5MB/sec

42

3.5.2 Comparison of Basic Download Time

In this section, we evaluate the average download time of SocialSwarm compared

to that of standard BitTorrent. One of our first tests is to compare the average time

required for a single file to be dispersed to all participating peers.

Fig. 3.6 provides a cumulative density function (CDF) of the 500 peer file distri-

bution time for a fully socially enabled run as well as a nonsocially enabled run.

As shown in Table 3.6, the average download time of SocialSwarm for the 499

peers is reduced by 25.7% compared to BitTorrent. The performance gain (33.5%)

for the most socially connected peers (top 1%) is greater than the one (15.7%) of the

least socially connected peers (bottom 1%).

Fig. 3.7 shows the average download rate per peer over time. The first minute or

so of the experiment shows a significant spike and fluctuation in the download rate

for all peers. This is due to the fact that all peers are initiating connections with the

tracker as well as with each other. All peers are sharing chunk availability maps with

every other peer with which they initiate connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 N
od

es

Time (seconds)

Nonsocial
Social

Figure 3.6. Social vs Nonsocial CDF of 25MB file and 0 Leeches

43

Table 3.6. Average Download Time and Percent Improvement with a 99% confidence
interval

Nonsocial Social Top 1% Bottom 1%
Social Social

Download Time (sec) 654±11 486±3 435±17 551±22
Improvement (%) base 25.7 33.5 15.7

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

D
ow

nl
oa

d
R

at
e

(K
B

/s
)

Time (seconds)

Nonsocial
Social

Figure 3.7. Client Download Rate Comparison

44

After about 180 seconds, the nonsocial peers level out in their sustained bandwidth

usage. The social peers, however, slowly allocate more bandwidth to social peers as

the average social rarity of chunks decreases; this is shown in Fig. 3.8. It is this

bandwidth surge—the peak of which is around 400 seconds into the test—that allows

social peers to complete earlier and turn into seeds earlier.

The results of the first 60 seconds of average social rarity are inaccurate due

to lack of social peer and chunk availability information during system start-up and

initialization. Social peers must find and establish connections with other social peers,

then receive piece availability bitmaps from those social peers before declaring that

chunks are truly socially rare.

These figures show that for both social and nonsocial swarms, rarity of chunks

nears zero around 200 seconds before the download rate nears zero. This is because

rarity is averaged across both downloading clients and seeds. Swarm participants

that become seeds earlier do not necessarily decrease the average bandwidth used per

node. The unchoke slots vacated by these newly formed seeds are quickly reoccupied

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
ar

ity

Time (seconds)

Average Nonsocial Rarity
Average Social Rarity

Figure 3.8. Chunk Rarity Reduction Comparison

45

by other peers, and the new seeds reduce the average rarity of chunks.

3.5.3 Effect of File Size

In order to see the impact of file size on the performance of flash file distribution,

we use four different file sizes from 25M to 100M, increased by 25M, as shown

in Fig. 3.9. The x-axis represents the file size and the y-axis shows the average

peer throughput (KB/s). With an increase of file size from 25MB to 100MB, the

performance of standard BitTorrent increased by 4% on average and the performance

between social nodes increased by 9% on average.

It is observed that the greatest increase in bandwidth is realized by the most

socially connected peers. The 1% of peers in the system with the highest degree of

social connectivity realized a 16% increase in performance between a 25MB file and

a 100MB file.

 30

 40

 50

 60

 70

 80

 90

A
ve

ra
ge

 P
ee

r
T

hr
ou

gh
pu

t (
K

B
/s

)

File Size (MB)

25 50 75 100

Most Socially Connected (Top 1%)
Average Social

Least Socially Connected (Bottom 1%)
Nonsocial

Figure 3.9. Effect of File Size on Peer Throughput

46

3.5.4 Maximum SocialDistance

Maximum SocialDistance (DsMax) is one of the important parameters in Social-

Swarm. By way of review, this is the maximal SocialDistance whereby a peer would

consider a peer to be part of its social network. Maximum SocialDistance can thus

be considered as a radius from a peer to the perimeter of its social network.

Fig. 3.10 shows the average per peer throughput as maximum SocialDistance is

increased. A maximum SocialDistance of 0 is effectively the same as disabling the

SocialSwarm protocol. It can be seen that even low maximums of SocialDistance—

such as 25—yield considerable improvements in per-client throughput compared with

nonsocial clients. As bandwidth utilization improves while increasing the maximum

SocialDistance, the percentage of improvement decreases at each step.

3.5.5 Effect of Additional Seed Capacity

Table 3.7 shows the negligible effect of adding a second high bandwidth seed into

the system. This reinforces the fact that BitTorrent’s performance is much more

 35

 40

 45

 50

 55

 60

 65

A
ve

ra
ge

 P
ee

r
T

hr
ou

gh
pu

t (
K

B
/s

)

Max SocialDistance (DsMax)
0 25 50 100 200 400 600

Most Socially Connected (Top 1%)
Average Social

Least Socially Connected (Bottom 1%)

Figure 3.10. Effect of Maximum SocialDistance on Peer Throughput

47

Table 3.7. Average Download Time and Improvement for Two Seeds

Nonsocial Social

1 Seed (sec) 654 491
2 Seeds (sec) 649 486

Improvement (%) 0.6 1.1

dependent on p2p bandwidth and unchoke slot availability than on seed bandwidth.

3.5.6 Effect of Leeches

We conduct several experiments to identify how SocialSwarm compares with

standard BitTorrent when faced with varied numbers of nonsocial leeches (additional

peers each consuming bandwidth from the system but not contributing reciprocally).

We make the assumption that unless they are infected with malware, SocialSwarm-

enabled peers will typically behave properly and share their bandwidth resources

altruistically with their social peers (and not leech bandwidth from social peers).

As shown in Fig. 3.11, the CDF between social and nonsocial torrent download

times follows the same pattern as the baseline 25MB tests (Fig. 3.6). Table 3.8

compares the average download time between the base run of 0 leeches with the

download time when 100 and 200 leeches are present, respectively.

Fig. 3.12 shows the relative throughput degradation as number of leeches is in-

creased (from 0 to 100 and from 0 to 200). The throughput percentages in this

graph are relative to runs without leeches in the swarm. Thus, although nonsocial

swarms have a lower throughput than social swarms, the 0 leech mark in this graph

is shown at 100%, representing no performance degradation in comparison with each

swarm type’s base case. Leeches are intentionally configured with a very small level of

upload bandwidth capacity. Leeches are added to the swarm before the 500 peers are

started. This is done with the goal of intentionally establishing connections to and

consuming bandwidth from the seed before other nodes start. In the case of socially

enabled swarms, we assume that although leeches may have social relationships with

each other, they have no social relationships to other peers within the swarm. It

is clear that nonsocially enabled peers have the greatest performance degradation

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 N
od

es

Time (seconds)

Nonsocial
Social

Figure 3.11. Social vs Nonsocial CDF of 25MB File and 100 Leeches

Table 3.8. Average Download Time Based on # of Leeches

Leech Count Nonsocial Time (sec) Social Time (sec)

0 658 489
100 755 535
200 870 566

49

 70

 75

 80

 85

 90

 95

 100

R
el

at
iv

e
T

hr
ou

gh
pu

t (
%

)

Number of Leeches

0 100 200

Most Socially Connected (Top 1%)
Average Social

Least Socially Connected (Bottom 1%)
Nonsocial

Figure 3.12. Effect of Leeches on Received Bandwidth

50

(25%) when faced with leeches. The most socially connected peers have the least

performance degradation (6%). This performance degradation delta is attributed to

the fact that peers with higher levels of social connectivity have a larger number of

peers with which they may altruistically share bandwidth. Based on the assumption

that social peers are less likely to exhibit malicious behavior than unknown nonsocial

peers, SocialSwarm clients target known social peers when deciding those peers with

which to establish outgoing and incoming connections. This may increase aversion

to leeches. By unchoking a higher number of peers concurrently in comparison with

standard BitTorrent, SocialSwarm distributes the upload and download bandwidth

used across a larger number of peers, thus diversifying the risk that any individual

malicious peer might adversely affect a client’s performance.

3.5.7 Bandwidth Contribution and Unchoke Slot Allocation

Fig. 3.13 shows, for a given SocialSwarm, the average percentage of bandwidth

used for interacting with nonsocial peers and, stacked on top of that, the additional

percentage of bandwidth used for interacting with nonsocial peers. This figure shows

that SocialSwarm does not replace interaction with nonsocial peers, but rather in-

creases the percentage of bandwidth utilized on each peer. Fig. 3.13 also shows the

average number of social peers a node will unchoke over time. An offer of bandwidth

to a social peer in no way guarantees that the bandwidth will actually be used by the

offer recipient. The number of social peers that actively use the offered bandwidth is

lower than the number of nodes, also shown in Fig. 3.13, that are offered bandwidth.

Clearly, out of the total number of social peers a node might have—as shown in

Fig 3.2—only a very small percentage of those peers would need to be online to allow

SocialSwarm to be effective.

3.6 Conclusions and Future Work

In this paper, we introduced SocialSwarm, a novel approach to flash file dis-

semination that exploits SocialDistance, which we extract from altruism between

social peers, so as to relax the required, but inefficient, reservation of bandwidth

for resource bartering in BitTorrent. We implemented SocialSwarm as an extension

51

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000
 0

 2

 4

 6

 8

 10

 12

P
er

ce
nt

ag
e

of
 U

pl
oa

d
C

ap
ac

ity
 (

%
)

N
um

be
r

of
 U

nc
ho

ke
d

S
oc

ia
l P

ee
rs

Time (seconds)

Total Upload BW in SocialSwarm (%)
Nonsocial Upload BW in SocialSwarm (%)

Avg # of Unchoked Social Peers

Figure 3.13. Bandwidth Allocation and Social Unchokes

52

to the libtorrent library, applied a social network topology and interaction history

obtained from Facebook, and evaluated it on a testbed of 500 independent virtual

clients. We showed that SocialSwarm reduces average file download time by 25% to

35% compared to that of standard BitTorrent under varied conditions—file sizes, max

SocialDistance, and leech and seed counts.

In the future, we will investigate the effect of socially enabled leeches on Social-

Swarm. Given that malicious code commonly uses social networks for propagation,

clusters of social peers have the possibility of becoming infected. Our future work

will also include finding a dynamic way to modify peer SocialDistance/altruism levels

based on observed behavior between individual peers as well as among clusters of

social peers.

SocialSwarm is a single application that was designed and implemented to directly

use SocialDistance. Developing social relationship analysis and peer identification into

individual applications such as SocialSwarm is not as efficient as leveraging a common

framework for such functions. In the next chapter, we evaluate F3DS by using it to

implement F3AV—a novel social network based distributed malware detection system.

The results of our evaluation of F3AV are also found in the next chapter.

CHAPTER 4

LEVERAGING F3DS FOR DISTRIBUTED

MALWARE DETECTION IN F3AV: F3DS

ANTIVIRUS

4.1 Introduction

To demonstrate the applicability and value of F3DS, we leverage it to design,

implement, and evaluate F3AV (F3DS Antivirus), a novel N-version distributed mal-

ware detection system. F3AV provides collaborative malware detection among social

peers with the greatest levels or protection being provided to security-critical social

hubs [17]—the most social users on the network, which are the most likely to prop-

agate large quantities of malware when infected by socially aware malware1. Using

F3AV we present and evaluate a novel method for varying the required diversity

of virus scanners based on the age of the object being scanned so as to achieve a

balance between high rates of malware detection and object scanning latency. Our

evaluation using the Amazon Cloud shows that by concurrently leveraging diverse

scanners across a social network, a user can achieve a 65% increase in the detection

rate of 0- to 1-day-old malware as compared to the average detection rate of individual

scanners. Our implementation of F3AV on top of F3DS is publicly available on the

F3DS web site [18].

The rest of this chapter is organized as follows. Section 4.2 provides an overview of

the F3AV design. The implementation of F3AV is detailed in Section 4.3. We evaluate

F3AV using the Amazon EC2 cloud and provide the results in Section 4.4. Section 4.5

1Malware that propagates itself over social networks

54

gives an overview of related work. We provide our conclusions and delineate candidate

areas of future work in Section 4.6.

4.2 F3AV Malware Detection System

Although F3DS can be used for applications in a variety of categories, we choose

to demonstrate F3DS by applying it to malware detection, one of the key areas in

the critical and challenging field of distributed system security. We build upon and

contribute to the body of research on malware detection by enabling collaboration

among social peers to detect malware.

4.2.1 The Challenge of Socially Aware Malware

Current malware is commonly designed to exploit existing altruism among social

peers for malicious purposes. For example, malware running on compromised nodes

uses altruism on social networks for self propagation in order to exploit CPU, memory,

and bandwidth resources of social network participants. The creators of malware, rec-

ognizing the rise in popularity of social applications, have continuously tuned Botnet

malware propagation and identity hijacking mechanisms to exploit trust among social

network users. For instance, Facebook users are more willing to open a message with

malicious links if that message was sent from a compromised account of a social peer.

Users commonly are less vigilant with security while interacting with social peers.

Security experts have claimed [55] [56] that cyber-espionage and social networking

attacks are the top cyber security issues of 2012. The growth of malicious software

that propagates overs social links has prompted security researchers to study methods

for protecting social hubs. Zhu et al. found [17] that when new malicious code

enters a social network, it commonly infects hub nodes—nodes with higher degrees

of connectivity and malware exposure—more quickly than those users with relatively

few social peers. Securing systems against malware—especially social hubs—have

become critical areas of security research.

4.2.2 Motivation for F3AV

With their work on Cloud-AV [57], Oberheide et. al have shown the benefits

of utilizing a cluster of servers running a heterogeneous set of antivirus software

55

(with their respective signature sets). This is referred to as N-version virus scanning.

The authors show that although the antivirus signature sets used by diverse vendors

intersect, there is no single signature set that can effectively act as a superset of all

other vendor signatures. Individual AV (antivirus) products have the potential to be

compromised [58]. This provides motivation for using divergent signature sets and AV

products to scan for malware. Individual home and small office users rarely have the

budget or technical expertise to construct and maintain a cluster of N-version virus

scanners, but users commonly have social peers that are willing to share resources

(CPU, memory, bandwidth, etc). In many cases, a user’s social peers run diverse

antivirus scan engines and signature sets.

F3DS provides a means by which users can effectively share their resources and

service requests from peers. We choose to evaluate the benefits of F3DS by implement-

ing F3AV, an N-version distributed virus scanning application. An overview of F3AV

is shown in Fig. 4.1. F3AV provides two important services: first, passive sharing

Mobile
Device

F3DS Enabled Client Device

Local
Browser

FSB
(Friend
Service
Bus)

F3AV

F2f Unicasts &
SocialCasts

Prioritized
Requests

Scan
Experience
Sharing

Scan
Request
Handling

Scan
Result
Analysis

Peer Info

Filtering
HTTP
Proxy

Local
Scanner

Kate

Bob

Alice

Jim

Figure 4.1. F3AV Overview

56

of the result of object scans among social peers; and second, providing a medium

by which social peers can request immediate scans of particular objects; F3AV has

the goal of improving malware detection accuracy while minimizing additional object

scanning latency as described below.

4.2.3 Malware Detection Accuracy

By using the FSB services of F3DS, F3AV is designed to improve a node’s accuracy

in detecting malware from objects requested by the user. Utilizing the same N-version

philosophy of the Cloud-AV [57] project, we design F3AV to increase the malware de-

tection accuracy of individual nodes by encouraging the sharing of scan results among

social peers running diverse virus scanners. With the level of resource sharing—i.e.,

servicing scan requests and sharing results—governed by levels of altruism among

social peers, the FSB allows F3AV to maximize the antivirus resources of social-hubs.

As the recipients of larger amounts of scanning resources, social-hubs will be armed

with the highest levels of protection against malware.

4.2.4 Object Scanning Latency

By using the FSB services of F3DS, we design F3AV to minimize any latency

penalty created by relying on social peers to assist with malware detection. In

contrast with Cloud-AV, which relies on a dedicated local cluster of scanning hardware

and software, F3AV relies on the sharing of surplus memory, bandwidth, and CPU

resources across geographically dispersed nodes. Given the unpredictable availability

of social peer resources as well as the lack of guarantees on the level of willingness of

a peer to service scan requests, we design F3AV with a no-assurances approach as to

scan request response times from peers.

4.2.5 Active Scan Requests

F3AV places all of its scanning logic into a central module called DecisionHandler.

This module can be replaced or tuned given the preferences of the system user.

The DecisionHandler module is able to use the FSB to promulgate scan requests

by SocialCast to all social peers within a given Social Distance or to send unicast

scan requests to specific peers. When a prioritized request is received from the FSB

57

of F3DS, F3AV will service that request and send a response message to the requester

containing the scan results, information on the scan vendor, and the date/time stamp

of the scanner signature set used.

4.2.6 Passive Scan Experience Sharing

Over time, a node will accumulate scan results from both local user requests as

well as active scan requests from peers. Scan results are stored in a local database

table of scans. A node will also store the results in a quickly searchable hash table

known as a Scan Log. The hash table key for one entry in the Scan Log is the SHA256

hash of: (URL + log creator ID + a nonce for the Scan Log). The hash table key for

a second entry in the Scan Log is the SHA256 hash of: (file contents + log creator

ID + a nonce for the Scan Log). The value for both entries in the hash table is the

scan result with a 0 indicating the object was found to be benign and a 1 indicating

the object was found to be malicious. The nonce associated with a Scan Log is part

of the Scan Log metadata that is sent to peers along with the Scan Log. Peers thus

can look up arbitrary URLs and objects in the Scan Log using the same nonce.

Both of these keys are also added to a Bloom Filter known as a Scan Digest. The

Scan Digest contains an entry if the object has been scanned and the result stored

in the Scan Log. The motivation for using a Bloom Filter to preshare information

on URLs comes from Cache Digests [59] [60] which are widely used among caching

HTTP proxy servers to identify peer proxy server contents. As with Cache Digests,

Scan Digests are small in size compared with a full list of URLs such as the Scan

Log. Scan Digests are small enough to reside in ram, whereas larger Scan Logs would

typically reside on disk. Given the possibility of Bloom Filter collisions, Scan Digests

may contain false positives, Scan Digests are always used in conjunction with Scan

Logs. Scan Digests may be viewed as a manifest of the Scan Log keys with lossy

compression.

We now describe the method used by F3AV for Scan Digest and Scan Log rotation,

sharing, and eviction. Scan Digests by their nature do not allow existing entries to

be deleted. Individual entries within a Bloom Filter do not contain semantic data

about when the scans were conducted, what scan engine was used, and the date of

58

the signature set used. We design F3AV Scan Digests to include scanner vendor

and signature set information as accompanying metadata. Thus, Scan Digests and

Scan Logs must be rotated at least each time these metadata change (e.g., when the

scanner signature set is updated). To maintain a steady flow of new information on

objects to social peers, Scan Digests and Scan Logs may be rotated several times each

day. When Scan Digests and Scan Logs are rotated, the current “active write” pair

of a Scan Digest and a Scan Log are closed and a new Scan Digest and a new Scan

Log are opened for writing.

At the time of rotation, F3AV places the Scan Log in a hidden (retrievable but

not searchable) location on a locally running web service provided by the FSB. F3AV

then uses the FSB to send a Socialcast to trusted peers with the following pieces of

information:

• The URL of the new Scan Log

• The Scan Digest associated with the Scan Log

• Metadata such as the scan engine that was used, the signature set that was

used, and the date/time of the rotation creation.

Peers that receive this notice—over their FSB—retrieve the associated Scan Log

when and if their F3AV instance so chooses. F3AV appraises the potential value of a

peer’s announced Scan Log by evaluating the perceived Social Distance to the creator

of the Scan Log with Scan Logs generated by closer peers being considered as more

reliable and valuable. Peers may also compare their own recent access history with

the contents of the Scan Digest. Should the peer have a close-enough perceived Social

Distance and should the Scan Digest indicate a sufficient level of correlated access

history, F3AV will retrieve the full Scan Log associated with that Scan Digest.

When F3AV is queried to evaluate whether an object is malicious or not, it will

first identify any scanning experiences for the object that it has already received

from its social peers in the way of Scan Logs. Scan Digests are sufficiently small

to be cached in ram, whereas larger Scan Logs are more suitably stored on slower

and lower cost media. For this reason, F3AV will first perform a lightweight search

59

of each memory-resident Scan Digest looking for the particular URL. If the URL is

found in a particular Scan Digest, then F3AV will proceed to search for an entry in

the disk-based Scan Log. Given the basic nature of hashtables, the Scan Log search

is a O(log n) operation. If a value is found during the look up, then this value is the

scan result claimed by the peer who performed the scanning. Scan result values that

are found are passed to the DecisionHandler (described in Section 4.2.7). If no value

is found during the hash table look up, then a Bloom Filter collision has occurred in

the Scan Digest and no result is considered. The process of creating, sharing, and

using Scan Digests and Scan Logs can be seen in Fig. 4.2.

Over time, a node will accumulate a variety of different Scan Digests and Scan

Logs from both close and distant social peers. Each Scan Digest and Scan Log will

eventually need to be evicted. To assist in Scan Digest and Scan Log eviction, F3AV

maintains a maximum age limit for both Scan Digests and Scan Logs. Once a Scan

Digest and Scan Log pair exceeds this age, the pair is automatically evicted. F3AV

also keeps an EWMA utility rating for each Scan Digest and Scan Log based on the

number of objects of interest that were found in a particular Scan Digest and Scan Log

over a given time period. Scan Digests and Scan Logs with the lowest utility rating

(those with the fewest objects of interest to the evaluator) are chosen as candidates for

eviction, should disk- or ram-cache capacity limits mandate evictions. Eviction based

on a utility rating will automatically bias the F3AV cache towards retaining objects

from neighbors who are accessing similar content—those with correlated object-access

behaviors. The greater the correlation of the objects accessed among peers the higher

the probability will be that Scan Digests and Scan Logs received by a node from its

peers will already contain scan results of value to that node.

4.2.7 Modular Scanning Logic

Fig. 4.3 shows the states used when an object request is passed through F3AV. At

the core of F3AV is a DecisionHandler module that contains the majority of the logic

around how much data are collected to make a decision as well as the result of the

decision. F3AV provides the DecisionHandler module all of the available data on the

particular object that is being requested, including all result records of previous local

60

Figure 4.2. F3AV Experience Sharing

61

Figure 4.3. F3AV State

62

scans, peer scans found in Scan Logs, as well as peer scans obtained from directed

scan requests. Along with each of the scan records, the DecisionHandler is provided

with the scan engine name and date of signature set that created the scan results.

The DecisionHandler returns the six data structures shown in Table 4.1.

DecisionHandler is thus provided with all possible information on an object and

has full control over the behavior of F3AV. DecisionHandler can decide to make an

immediate decision (isConfident == True) and either accept or reject the object.

Alternatively DecisionHandler can decide to seek more information and specify a

list of peers or a socialcast distance to send out active scan requests. There is a

maximum decision delay time, however, and if the DecisionHandler call loop exceeds

this maximum time, then the latest return value of isMalcious is used to either accept

or reject the object.

4.2.8 Privacy Considerations

The target user set for F3AV are those who have an existing willingness to relax

their privacy requirements when collaborating with trusted and monitored social

peers. The two primary areas of concern for privacy for F3AV users are those of

Table 4.1. F3AV Parameters

PARAMETER PURPOSE

isConfident Boolean indicating whether or not
DecisionHandler is confident in its decision.

If it is not confident yet in its
decision, then it will loop and wait
for additional data to be collected.

isMalicious Boolean indicating the current decision
by DecisionHandler

(True=Malicious, False=Benign)
WaitTime Number of uSeconds to sleep before calling

DecisionHandler again if Confident ==False
doLocalScan Boolean indicating whether a local

scan should be performed on the object
ScanRequestRadius Maximum Social Distance to which F3AV

should send directed scan requests
(via a FSB-based SocialCast)

ScanRequestPeers List of specific Social Peers to which
should send directed scan requests

(via FSB-based unicast)

63

clickstream (object access sequences) and antivirus (vendor/version) privacy. There

are a variety of potential methods—such as anonymous group multicast [61] among

social peers—which F3DS could offer to applications to help address these concerns.

We plan on evaluating such methods as part of our future work.

4.3 F3AV Implementation

In this section, we describe our F3AV implementation on top of F3DS. We publish

our implementation of F3AV on the F3DS web site [18].

4.3.1 Messaging

F3AV uses the f2f messaging provided by the FSB of F3DS for active scan requests

and responses, scan result confirmation requests and responses, as well as Scan Digest

messages. To distribute Scan Digests, F3AV uses the FSB to send a socialcast

containing the Scan Digest, the URL of the associated Scan Log, and the metadata

for the Scan Digest. F3AV obtains information on the scan engines and signature

sets used by peers from the Scan Digest metadata received from each peer.

4.3.2 DecisionHandler Modules

For the purpose of our evaluation, we create three interchangeable scanning logic

(DecisionHandler) modules: local-only scanning, paranoid, and dynamic. We now

describe each of these modules:

First, the local-only F3AV DecisionHandler behaves like a traditional single scan-

ner client. This module is designed only for comparison with other DecisionHandler

modules.

Second, the Paranoid F3AV DecisionHandler requires virus scan results from a

tunable minimum number of diverse scanners—within a tunable social radius. Each

of those scanners must have been updated within specific recent windows of time to

be considered valid. Lack of sufficient result diversity as well as any single positive

(malicious) result induces the Paranoid F3AV DecisionHandler module to block the

object being requested. Intuitively, this module will likely yield the highest malware

detection rates but will also require the greatest latency to certify benign objects.

64

Third, the Dynamic F3AV DecisionHandler module adjusts the required diversity

of scanners based on the age of the object. The results of our experimentation as well

as those of other researchers [57] show that as malicious objects age, their probability

of being detected by one or more virus scanners increases. Protecting systems against

recent malware can also be challenging given that new malware commonly attempts to

exploit newly exposed and not-yet-patched software vulnerabilities. Software vendors

attempt to patch such vulnerabilities quickly [62], but windows of exposure frequently

exist. Although it is impossible to certify the age of objects from arbitrary sites on the

Internet, there are certain software-as-a-service (SaaS) sites which may be considered

trustworthy keepers of user submitted object upload and modification times. With

the assumption that an object’s age can be assessed with a high level of accuracy

from a list of trusted sites via the last − modified header of HTTP, the Dynamic

F3AV DecisionHandler module dynamically adjusts the required diversity of scanners

based on an object’s age. Using the last − modified HTTP header to determine

the minimum age of an abject implies that the security of a SaaS application can

be trusted to prevent date/time stamp modifications by application users of user

submitted content.

4.3.3 AV Local Scan Handlers

An F3AV module known as the local scan handler is responsible for interacting

with the antivirus scanner installed on the machine. The local scan handler retrieves

a URL, scans it with a specific antivirus engine, and returns the result to F3AV.

The local scan handler also returns information on the virus signature set used in

the scanning. For our F3AV implementation, we implement scan handler modules for

antivirus packages from the following six vendors: AVG, Avast, Microsoft, Clamwin,

Avira, and Kaspersky. Based on existing research [63] on worldwide market share of

scanning engines, we believe this set of engines represents around 65% of the global

install base of antivirus software.

4.3.4 Browser Request Filtering

To maximize compatibility with a variety of desktop and mobile user agents

(browsers), we implement an F3AV module for the squid caching http proxy server.

65

Applications that make outgoing http requests via squid automatically receive the

scanning benefits of F3AV. As part of the implementation, we confirm compatibility

with three locally installed browsers (IE, Firefox, and Chrome) as well as three mobile

browsers (Opera, Firefox, and Android Browser) by configuring the mobile device to

proxy http connections through an F3AV enabled squid instance.

4.4 Evaluation

In this section, we evaluate F3AV via both experimentation and simulation. We

also evaluate the effectiveness of F3AV at providing the most protection to Social

Hubs to reduce the probability they will become infected and serve as valuable

launch locations for malware propagation. Due to limited space, any experimentation

details—including specific parameters used for each of the various various experiment

and simulation runs—are deferred to a longer version of this paper.

4.4.1 Malware Detection Accuracy

Using experimentation, we evaluate F3AV against its design goal of increasing

malware detection accuracy by exploiting the functionality of F3DS to allow peers

access to diverse scanning of objects. Given that the ratio of false negatives to false

positives in signature-based commercial virus scanners is several orders of magnitude,

our current experiments focus on rates of false negatives; we evaluate the detection

rate of objects that have been verified to be malware (false negatives).

4.4.1.1 Malware repository. Malware is continuously changing and adapt-

ing in attempts to avoid security software signature sets. The authors of Cloud-AV

have shown through experimentation that the older the piece of malware, the higher

the probability is that it will be caught by a given antivirus signature set. For the

purpose of evaluating F3AV, we choose to collect a large body of real malware from

the Internet [64] and update this collection daily with newly discovered malicious

code. We index each malware object using the SHA256 hash of the object’s contents.

Using a hash of each malware object’s contents allows us to ensure that we are only

storing a single copy of each given malware sample, even if that object is found in

multiple locations on the Internet. Over the course of 150 days spanning from late

66

2011 into spring of 2012, we collected over 215,000 unique pieces of live malware from

the Internet (more than 60GB of contents).

4.4.1.2 Local vs F3AV. Using the local DecisionHandler, we run each of

six individual scanners through a random selection of approximately 3000 pieces of

malware. We find similar results as found by Oberheide et al. [57] in that older

objects had a higher probability of being detected by malware scanners. Fig. 4.4

shows the individual scanner results in relation to the age of the malware object

being scanned as well as a weighted mean for those scans, with the weight based

on the proportional global market share [63] of each scanner. The weighted mean

provides a strong indication of the total effectiveness of populations at detecting

malware based on the age of the object scanned. Fig. 4.4 also shows the results of the

Paranoid and the Dynamic DecisionHandlers in F3AV. The Paranoid DecisionHandler

uses collaboration with social peers and in this experiment requires responses from

each of the six diverse scanners before a decision to allow the object is made. The

Dynamic DecisionHandler also uses collaboration with social peers but varies the

number of required responses based on the age of the object being scanned. For 0-

to 1-day-old malware, this figure highlights a 44% to 74% change (a 65% increase)

in the malware detection accuracy when using the Paranoid and Dynamic Decision

handlers in comparison with the market-share average of individual scan results.

4.4.2 Object Scanning Latency

Even though diverse scans across peers occur in parallel, the aggregation of results

in F3AV requires additional latency for communication overhead. We compare the

mean, max, and average latency required across the local scanners with those required

by the Paranoid DecisionHandlers. We also test at three different levels of a priori

object access and Scan Digest/Log sharing (locality) by peers: 0, 50, and 100%. At

the 100% level, each of the peers has already accessed an object, scanned it, and

shared the result with the inquiring peer via passive Scan Digest/Log sharing. At the

50% level, half of the URLs have previously been scanned with their results shared

and the other half are new/distinct to all of the peers in the system.

Fig. 4.5 shows that the Paranoid DecisionHandler at 0% object access/scan locality

67

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

D
et

ec
io

n
R

at
e

Age of Object in Days
0 to 1 1 to 2 2 to 4 4 to 8 8 to 16

Avast
AVG
Avira

Clamwin
Kaspersky

Microsoft
F3AV Paranoid

Market Share Average
Dynamic 0% Locality

Figure 4.4. Local vs F3AV

68

 0

 1

 2

 3

 4

 5

S
ca

n
La

te
nc

y
(S

ec
on

ds
)

Latency

Min Mean Max

F3AV 0% Locality
F3AV 50% Locality

F3AV 100% Locality
Market Share Weighted Avg

Figure 4.5. Latency vs Object Access Locality

69

requires the most time due to the real-time communication and collaboration that

must happen between the different nodes. With 100% object access/scan locality,

the Paranoid DecisionHandler clearly outperforms even the local scans due to the

fact that with 100% object access/scan locality, F3AV is able to avoid local scans by

relying exclusively on previously collected information from peers. For the purpose of

this evaluation, we only provide the extremes and do not attempt to approximate or

predict levels of object access locality among peers within real-world social networks.

Fig. 4.6 shows that the Dynamic DecisionHandler requires the greatest scan times

for the newest objects. As objects age, the Dynamic DecisionHandler decreases

the scanner diversity that it requires and thus, the time required to scan objects

 0

 1

 2

 3

 4

 5

O
bj

ec
t S

ca
n

T
im

e
(s

ec
on

d)

Age of Object in Days
0 to 1 1 to 2 2 to 4 4 to 8 8 to 16

Paranoid 0% Locality
Dynamic 0% Locality

Paranoid 50% Locality
Local (Market share)

Paranoid 100% Locality

Figure 4.6. Latency vs Object Age

70

decreases. Though our current Dynamic DecisionHandler experiments only use a 0%

object access locality, we expect that testing of greater than 0% object access locality

would reduce the scan times proportionally with those results from the Paranoid

DecisionHandler because of the passive scan experience caching and sharing within

F3AV.

4.4.3 Scanner Availability and Diversity

We evaluate the effectiveness of F3AV at providing significant scanner diversity to

all F3AV participants. We also measure the effective of F3AV at delivering the highest

level of protection to Social Hubs to reduce the probability they will become infected

and subsequently serve as valuable launch locations for social malware propagation.

Our implementation of F3AV supports social relationship analysis modules for

Twitter, Facebook, and email. To evaluate the potential benefit real social network

users would have when using F3AV, we conduct simulations by using real-world

social connectivity metadata extracted from Facebook. We take an anonymized

data set of real-world interactions—wall postings—from a network of 5,000 Facebook

users [49] and feed that data through the Facebook peer relationship analysis module

in F3DS to identify the nominal SocialDistance between each pair of social peers. We

repeat several of our simulations while varying the Social Net Radius—the maximum

SocialDistance whereby a peer will consider another node part of its social network

and be willing to share resources with that node.

4.4.3.1 Diverse scanner availability. The social relationships derived from

Facebook are fed into an F3AV simulator. We assign each of the 5,000 social peers

a social identity. For each Social Net Radius tested, we perform 100 simulation

runs. On each simulation run, we randomly assign each of the 5,000 social peers an

antimalware scanner from a pool of 21 candidate scanners based on the proportional

world-wide market share of each scanner. These 21 scanners represent 80% of the

global market share for antimalware software. In our simulations, we do not consider

the geographic distribution of social network users or variances in regional market

share of antimalware software; we leave such considerations to future work.

After assigning each social peer an antimalware scanner, we then evaluate the

71

level of scanner diversity that exists within each peers social network and extract the

mean diversity level for each peer across the 100 simulation runs. Fig. 4.7 provides a

CDF for each of the tested Social Net Radius values and shows that even for smaller

Social Net Radius values, most peers have access to significant diversity of scanners

across their social peers. These findings also imply that even if a significant portion of

a user’s social peers were offline, unwilling, or unable to share resources, there would

still be sufficient peers online and available to supply a high diversity of scanners.

4.4.3.2 SocialHub protection – scanner diversity. Fig. 4.8 compares the

level of scanner diversity available to three different sub groups of nodes: The top

250 nodes (95th percentile), the median 250 nodes, and the bottom 250 nodes (5th

percentile) with respect to social connectivity. Fig. 4.8 clearly shows that F3AV

participants offer the highest scanner diversity to the most socially connected nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Average Scanner Diversity

Social Net Radius 600
Social Net Radius 400
Social Net Radius 200
Social Net Radius 100
Social Net Radius 50
Social Net Radius 25

Figure 4.7. Scanner Diversity Availability by Social Radius

72

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450 500 550 600

D
iv

er
si

ty
 o

f S
ca

nn
er

s

Social Net Radius

Top 5%
Median 5%
Bottom 5%

Figure 4.8. Scanner Diversity Availability by Social Connectivity

73

4.4.3.3 SocialHub protection – Scan Digests/Logs. We also run a sim-

ulation whereby every hour, each peer in the system offers a single Scan Digest/Log

pair to one of its peers. The Scan Digest/Log offers are probabilistically granted

based on the proportion of altruism a peer has towards each of its peers. We run the

simulation for 500 virtual hours and sum up the total Scan Digest/Logs received by

each node. Fig. 4.9 shows three CDF lines—one for each of the same 95th percentile,

median, and 5th percentile 250 node peer sets used in the previous simulation. This

figure clearly shows that the most socially connected peers are the recipients of the

Scan Digest/Log offers and thus, they have access to more cached scan results in

comparison with peers that have a lower social connectivity.

These results show that, as designed, F3AV properly prioritizes allocation of

resources—including scan results sharing and availability of diverse scanners—among

social network participants with social hubs receiving the greatest benefit (and thus

protection) from F3AV.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Received Scan Digest (log10)

Bottom 5%
Median 5%

Top 5%

Figure 4.9. Scan Digest/Log offers by Social Connectivity

74

4.5 Related Work

For malware detection and isolation on distributed devices, researchers have pro-

posed a variety [65] [66] [67] [68] [69] of methods based around the basic principle

of workload offloading to a cloud-based service. F3AV is complementary to these

approaches in that it provides a decentralized service based on existing resources

among social peers for servicing scanning requests.

4.6 Conclusions and Future Work

To demonstrate the value of F3DS, we designed and implemented a novel malware

detection application—F3AV (F3DS antivirus)—on top of F3DS and found that with

f2f sharing of resources F3AV significantly enhances the ability of social peers to detect

malware. We also showed that F3AV provides greatly enhanced malware protection

to social hubs by ensuring that they receive the most Scan Digest/Log offers and have

access to the greatest diversity of scanner engines.

Other areas of potential future research include enhancing F3AV with additional

and more complex DecisionHandlers, evaluating the resilience of F3DS-enabled appli-

cations to both innocuous and malicious peer misbehavior, and investigating execution-

based malware detection.

F3DS lacks sharing of detected peer behavior—be that proper peer behavior or

misbehavior–among peers. We envision that F3DS could be enhanced to share peer

behavior information among social network participants.

In the next chapter, we present novel method for establishing trust among dis-

tributed system participents based exclusively on monitoring of peer behavior and

sharing of peer behavior information among peers. Such a system could be used in

the future to enhance F3DS.

CHAPTER 5

STATISTICAL TRUST ESTABLISHMENT

IN WIRELESS SENSOR NETWORKS

We present a new distributed approach that establishes reputation-based trust

among sensor nodes in order to identify malfunctioning and malicious sensor nodes

and minimize their impact on applications. Our method adapts well to the special

characteristics of wireless sensor networks, the most important being their resource

limitations. Our methodology computes statistical trust and a confidence interval

around the trust based on direct and indirect experiences of sensor node behavior. By

considering the trust confidence interval, we are able to study the tradeoff between

the tightness of the trust confidence interval with the resources used in collecting

experiences. Furthermore, our approach allows dynamic scaling of redundancy levels

based on the trust relationship between the nodes of a wireless sensor network. Using

extensive simulations, we demonstrate the benefits of our approach over an approach

that uses static redundancy levels in terms of reduced energy consumption and longer

life of the network. We also find that high confidence trust can be computed on each

node with a relatively small memory overhead and used to determine the level of

redundancy operations among nodes in the system.

5.1 Introduction

Due to the criticality of many WSN applications, including monitoring and early

warning systems, it is crucial that the information obtained from these networks be

trustworthy. Decisions based on the sensor network data can have serious economic

and social impact. Therefore, nodes in a sensor network must perform their functions

reliably. However, due to their limited capabilities for economic viability, deployment

76

in “unfriendly” physical environments, and risk of physical attacks, not all sensor

nodes can be expected to behave reliably at all times [70]. It then becomes necessary

to identify malfunctioning and malicious or compromised nodes, and isolate them.

Detecting such misbehaving nodes from a location external to the network is difficult.

This is because sensor nodes perform in-network data processing and aggregation.

Wireless sensor networks can be secured most effectively against misbehaving nodes if

the nodes closest to the source of the problem themselves can detect such misbehavior

and react accordingly.

Currently, to deal with node misbehavior, critical sensor network deployments re-

quire sufficient redundancy to meet the needs of the particular application. However,

complete redundancy typically requires a minimum of triple the amount of hardware

(and energy expenditures) to ensure that a 2/3 Byzantine consensus can be achieved

when a sensing or aggregation discrepancy is encountered. Such full redundancy has

traditionally required a constant level of energy expenditure irrespective of network

threat and misbehavior levels.

Wireless sensor networks must protect themselves from a variety of threats. In

WSNs, typically, a large number of sensors are deployed in some area of interest.

These sensor nodes are expected to work unattended even in naturally harsh physical

conditions. They are also often deployed in accessible areas where they could be

physically attacked. The harsh physical conditions, or physical attacks, could result

in malfunctioning of the sensor devices. Sensor nodes could also be compromised by

tampering, and replicated. Additionally, malicious sensor nodes could be dropped

into the area of deployment. These malicious sensors could eavesdrop on sensor

communications, pose as legitimate nodes, disrupt the functioning of the sensor

networks by imposing themselves as “nodes-in-the-middle”, and disrupting service

in a variety of ways. We have loosely classified the different types of misbehaviors in

a WSN below. This classification is not intended to be comprehensive. Our goal here

is to identify the type of misbehavior our research has targeted.

• Misbehavior 1: Sensor nodes malfunction but are not malicious.

• Misbehavior 2: Malicious attacker nodes (possibly dropped in the sensor field)

77

eavesdrop on communications between genuine nodes, impersonate genuine

nodes, and generate denial-of-service traffic or signals. However, in this threat

model, there are no compromised nodes.

• Misbehavior 3: Compromised nodes, although appearing to be genuine, mal-

function maliciously. They are also likely to cause the second type of misbe-

havior.

Our research focuses on misbehavior 1. We have established a trust system in sen-

sor networks where nodes could malfunction but are not malicious. However, our trust

system can also be a useful component for any solution that addresses misbehavior

3. This is because a compromised node might be able to authenticate itself correctly

and still malfunction maliciously. Our trust system detects malfunctioning, whether

malicious or not. Our research, however, does not address misbehavior 2, which

requires suitable authentication and privacy mechanisms. In addressing misbehavior

1, we have focused on the following three basic functions of WSNs - accurate data

collection, data routing, and data processing and aggregation. In this chapter, we

present a new distributed approach that establishes reputation-based trust among

sensor nodes that allows the system to dynamically adapt its redundancy based on

the confidence that nodes have between each other to behave correctly (trust). We

show that a significant amount of energy can be conserved and the sensor network life

extended when redundancy is varied according to the changing levels of trust between

nodes.

The remainder of this chapter is structured as follows. Section 5.2 summarizes

existing work on building trust. Section 5.3 describes our trust system, its various

components, and our trust computation methodology. In Section 5.4, we evaluate our

trust model and in Section 5.5, we present conclusions and potential future areas of

research.

5.2 Related Work

Trust has been studied in a variety of networks and applications. A large number

of trust models have been proposed in social networking. In this section, we review

78

only those existing works that are somewhat related to our research. Golbeck and

Hendler [71] extend the concept of the semantic web to include reputation ratings.

The algorithm they present is based on voting to derive either a complete trust or

complete lack of trust in an entity. No partial trust is derived with their algorithm.

They do not account for history of interactions and they assume perfect connectivity.

There is no discussion of how to cache reputation ratings. Cahill et al. have outlined

the importance of considering both risk as well as trust when making decisions [72]. If

risk is low, then the action threshold for trust can be low. The trust model component

of our research is based on the hypothesis of Carbone et al., which introduces a model

that takes uncertainty into account. Caching trust is discussed in [73] but only to the

extent of caching ciphers. Cache eviction based on content is not discussed. Gray

et al. introduce the importance of calculating trust based on the “Small Worlds”

approach [74]. They recommend a cache eviction algorithm also based on a “Small

Worlds” approach. Reputation-based trust has also been proposed for peer-to-peer

systems. Ganeriwal et al. present a Bayesian-based approach for building WSN

trust [75]. Bayesian methods, though memory efficient, are not suitable for delay-

tolerant networks where significantly stale information may arrive at the same time

as fresh information. Chen and Yeager have constructed a decentralized trust system

for the Sun JXTA platform [76]. They also take a Bayesian approach and use discrete

trust ratings which cannot provide the same level of accuracy as continuous trust

ratings. The confidence levels that they propose are not based on statistical confidence

intervals. Although the above existing research addresses the problem of trust, none

looks at building trust specific to resource-limited and delay-tolerant wireless sensor

networks. Theodorakopoulos and Baras in [77] present an algorithm for forming trust

in Ad Hoc networks based on seminirings. This approach, however, lacks the ability

to easily decay the usefulness of previous experiences based on the risk sensitivity

(aversion level) of each node independent of other nodes. Our method for trust

calculation allows each node in a system to independently evaluate and weigh the

experiences of other nodes without reliance on summarized recommendations of other

nodes. Avinash et al. in [78] present a reputation-based system that precludes the

ability for nodes to perform their own assessment of original experience evidence.

79

Their system is also delay in-tolerant. Yu et al. in [79] present an information

theoretic framework for trust evaluation. Their framework along with the work of

Kraniewski et al. in TIBFIT [80] do not leverage statistical confidence intervals

nor do they address energy consumption optimizations. There is also a growing

amount of research on security in WSNs (e.g., [81, 70, 82, 83, 84, 85]. This research

mainly addresses misbehavior 2, and to some extent misbehavior 3, as described

in Section 5.1. Unlike this existing research, our focus is on building trust in the

presence of malfunctioning nodes while reducing energy consumption. Trust is not a

replacement for security nor is security a replacement for trust. Trust and security

rather complement each other. Within a system, building trust may require the use

of secure protocols and maintaining security may be aided by trust establishment and

maintenance.

5.3 Trust System

Social networks serve as an example by which we created a trust model for

wireless sensor networks. Social trust is built in two phases. Before we directly

interact with an individual, we might postulate a preconceived level of trust in that

individual. Preconceived trust is formed from evidence we are given from other

individuals in our social network. We automatically discount the accuracy of the

obtained information based on our trust in the individuals who are generating and

passing the information. We tend to trust information received via our direct social

peers more than information received from the second layer of our social peers. The

second phase of building trust is to interact directly with the individual or observe

the direct interaction of others with the individual and start to establish a history of

trust with that individual. In the case of WSNs, these observations to the sensing,

routing and aggregation behavior of other nodes may be made by overhearing the

radio communications of these nodes.

5.3.1 Context-specific Trust

Social trust in relationships may be built over days, months, years, or even decades.

Each individual might have a different valuation of trust built over time. Earning trust

80

may take a different length of time depending on the circumstances. Again, the trust

we form with other individuals is limited to specific contexts based on the interaction

we have had with them. Typically, we do not trust our preferred automobile mechanic

with legal questions nor do we trust our preferred lawyer with questions regarding

fuel injection systems.

Following the social network model, we have postulated that, given a network

of context-specific and directional-trust relationships connecting two entities, any

entity can place a confidence rating on any piece of data/fact/statement generated

by another entity that falls within the given context. In the case of WSNs, the data

produced by other nodes can be sensor readings, routed data, or aggregated data.

We have further presumed that a confidence interval about the trust rating may be

established to allow the entities to make accurate decisions. In the case of WSNs,

this confidence interval will assist nodes in making decisions for routing, sensing,

and data aggregation. Data should not be routed through nodes that can not be

trusted. Likewise, data collected from a misbehaving node or routed or aggregated

through should not be propagated through the network. Nodes may need to expend

more power sensing to take over for a neighbor node whose sensors can no longer

be trusted. Nodes should not include sensor readings in aggregation processing from

nodes that cannot be trusted to provide generally accurate readings.

5.3.2 Collection of Experiences

We describe four types of experiences below. For each type of experience, we list

the methodology we used to enable a node to turn the experience into a useful piece

of information.

5.3.2.1 Sensor readings. Nodes follow the process of overhearing sensor read-

ings of nearby nodes and then comparing them to their local sensor readings. If the

remote sensor readings are correlated closely enough with the local sensor readings

(they are within a threshold set by decaying the correlation of values based on the

distance between the sensor ranges), then the remote sensor reading is considered to be

valid. Overhearing the source node of sensor readings is not the only way to evaluate

a sensor reading. Intermediary nodes that have been requested to route raw sensor

81

information (and their respective neighbors that can overhear them) can also evaluate

each sensor reading for accuracy, albeit with more limited ability given the increased

distance from the source nodes sensors. The greater the perceived degradation in

sensor accuracy, the less the source sensor node is trusted to accurately sense in the

near future.

5.3.2.2 Experience generation accuracy. This is the evaluation of a neigh-

bor’s accuracy in recording direct experiences. To evaluate a neighbor’s ability to

generate experiences, a node listens to experiences generated and communicated by

that neighbor and compares these experiences to its own. The larger the discrepancies

in perceptions of experiences, the less trust a node will have in its neighbor’s abil-

ity to accurately generate experiences. Examples of collection misbehavior include

improperly weighing or evaluating an experience.

5.3.2.3 Observed data propagation accuracy (routing). Neighboring nodes

within a certain proximity to a node performing some routing action are able to

overhear both the incoming packet and the outgoing packet. These neighboring

nodes can compare the outgoing routing destination of each overheard packet to its

information in its own routing tables. If the packet apparently advances toward its

intended destination, then the routing behavior of the overheard node is considered

correct. If the packet does not get routed, gets corrupted or modified, or gets routed

along an incorrect path, then the experience is recorded as a misbehavior by the

overhearing node.

5.3.2.4 Observed accuracy of data aggregation. We examined two types

of aggregation behavior observance. The first is one where a node is close enough

to a neighbor to overhear all aggregation communication (inputs and outputs). In

this case, a node will simply verify that the aggregation function behaved correctly.

The second and more complex case is where the aggregation behavior of a node is

to be evaluated for a node that is far enough away not to be able to overhear all its

inputs. In this case, we relied on nodes that can compare the result of multipath

propagation schemes for data aggregation. Examples of aggregation misbehavior

include inaccurately aggregating data due either to processor error or to intentional

bias.

82

5.3.3 Trust Computation Methodology

In this section, we present our trust computation methodology using experience

records as input and providing as an output a trust value and a confidence interval

based on those experiences. We present this methodology in the context of one entity,

E1, that wishes to form trust in another entity, E2. Although a typical motivation

for trust formation between nodes is decision-making, we do not explore different

motivations here because the methodology is indifferent to motivation. Before trust

is formed, entity E1 observes the behavior of E2 and judges whether the behavior

is correct. Each opportunity E1 has of observing and judging the behavior of E2 is

recorded in an experience record. An experience record contains at a minimum the

following pieces of information:

• Identification of the entity (node) being observed. In our example, this is the

identity of E2. This may be a unique node-id, unique location, or some other

type of entity identifier.

• Identification of the entity (node) making the observation. In our example, this

is the identity of E1. This may be a digital signature. The identity of the

observer is necessary in the cases where experience records are shared between

nodes.

• The context type of the experience/observation. If, for example, E1 judges

E2’s ability to sense temperature accurately, the context of the experience

would be data sensing. In WSNs, data sensing is one important responsibility

that nodes fulfill and thus is well served by neighbor observation. Two other

important responsibilities are a) data routing, propagation and aggregation, and

b) generation of an experience record. Experience record includes E2’s ability

to observe other nodes accurately, and generate experiences itself.

• A timestamp indicating how long ago the experience took place. This infor-

mation is important given that experiences become stale over time (nodes may

change behavior in the interim).

83

• The trust value. This is the actual rating of trustworthiness that the observer

(E1) assigns the node being observed (E2) for this particular experience. We

use xi to represent the trust value of experience (sample) i

• A weight that the observer (E1) assigned to the experience record indicating

the amount of observation that went into generating the experience record. A

limited or brief experience would be weighted lower than a longer lasting or

more intense experience. We use wc
i to represent the context specific weight

that an observer assigns to the experience i.

E1 thus observes the behavior of E2 and records these experiences in a local

experience cache. Over time, these experiences will become stale and E1 may find

it necessary to evict an existing record in the trust cache to make room for a newer

record. E1 uses this trust cache to store both experiences that it recorded itself as

well as experience records it receives from other nodes in the network.

5.3.3.1 Initial evaluation of experience records. When E1 wishes to form

a trust confidence interval for E2, it first identifies the context of the desired trust

confidence interval (ability to sense data, etc). It queries its experience cache for

records that have E2 being evaluated in this context. The goal of E1 is to find the

mean of these trust values and to identify a confidence interval about this mean. The

typical method for finding a mean (x) of the sample values is simply to add up all of

the values and divide by the number of samples:

x =
Σxi

n

The typical method for finding a confidence interval about this mean is to first

estimate the variance of the population σ2:

σ2 =
Σ(xi − x)2

n− 1

This estimated variance is used to create a confidence interval about the mean [86]:

x± tn−1,1−α/2

√

σ2/n (eq.1)

where α is 0.10 for a 90% confidence interval, 0.05 for a 95% confidence interval,

etc. The t in the above equation represents the student − t distribution. If the

84

confidence interval is sufficiently narrow (as determined by the context), E1 proceeds

with its decision-making process. However, if the confidence interval is too wide, then

additional experiences are collected at the expense of additional resources.

The above method constitutes the basis of our trust computation methodology.

Experience records may be received after a significant delay. The significance of an

event may be different between observing nodes. A node that creates an experience

may be unreliable or malicious. For these reasons, our trust system establishes a

confidence interval around a weighted mean [87, 88] to overcome this problems rather

than taking a Bayesian approach.

To create the confidence interval around a weighted mean, E1 first calculates a

weight Wi for each sample point i. It does this by combining the context specific,

level of observation weight wc
i with a new weight wt

i that is based on the age of the

experience record. The formula behind wt
i may be chosen at the discretion of E1,

but the idea is that the older the sample point (experience record) is, the lower the

weight should be. This may be, for instance, some constant chosen from the interval

[0,1] raised to the power of the age. These two weights are combined as follows:

Wi = wt
iw

c
i

Using this total weight for each sample point E1 then determines the weighted mean

(xw) of all of the experiences with E2:

x = Σ

(

Wi

ΣWi

xi

)

From this weighted mean, the unweighted variance (σ2) is then calculated as usual:

σ2 =
Σ(xi − xw)

2

n− 1

and then turned into a weighted variance (σ2
w) by E1 via the following manner:

σ2
w =

σ2ΣW 2
i

(ΣWi)
2

Armed with the weighted mean xw and the weighted variance σ2
w, E1 then forms

a confidence (eq.1) interval about the weighted mean. To reduce the effect of stale

samples and to reduce bias created by correlated samples, the tn−1,1−α/2 value is

85

established not by using the usual total number of samples points (n) but instead by

using a deflated number of degrees of freedom. This deflated number of degrees of

freedom is obtained by simply adding up the sum of all of the total experience weights:

ΣWi. When all total experience weights are in the interval [0,1], the net effect of using

this deflated number for degrees of freedom is a widening of the confidence interval.

This widening is important due to the reduced confidence we have in correlated and

stale values.

5.3.3.2 Incorporating experiences collected by third parties. Although

first-hand experiences are the most valuable, it is also valuable for E1 to collect and

weigh experiences generated by neighbors of E2. To use experience data produced

by other neighbors of E2, E1 must first establish its own trust in the ability of those

neighbors to generate experiences. We will use Fig. 5.1 as an example. E3 has

generated experiences relating to E2, but until E1 has established its own trust in E3,

these experience records cannot be used by E1. E1 starts the process of establishing

E1 E2

E3

1) E3 overhears and observes E2’s behavior

3) E3 passes these experience records on to E1
4) E1 evaluates E3’s accuracy in generating

 based on its trust in E3.

 experience records and discounts the
 experience records it receives from E3

2) E3 generates experience records

Figure 5.1. Building Trust via a Third Party

86

trust in E3 by comparing experience records it (E1) has created while observing

certain sensor network/node behavior to those created by E3 for the same behavior.

In this process, E1 is able to collect experiences of E3’s ability to generate experiences.

It then calculates the confidence interval about the weighted mean of these experience

using the equations for weighted mean, weighted variance, and a deflated number of

degrees of freedom, described above. The resulting confidence interval in the context

of E3’s Experience Generation accuracy is formed by using eq.1. This confidence

interval is then transformed by E1 into a fixed point τEG
3 which represents the level

of trust E1 places in E3’s ability to accurately generate experiences. τ stands for

“Trust”. The number 3 is the id of the neighbor being evaluated, and EG stands

for “Experience Generation”. Specifically, the trust level, τEG
3 , is calculated based on

the following equation.

τEG
3 = xw − ρ ∗ tn−1,1−α/2 ∗

√

σ2
w/n (eq.2)

Here, ρ, (ǫ[−1, 1]) is the level of aversion held by E1 (the node doing the evaluation).

It identifies the risk E1 is willing to take in E3’s experience generation ability. In the

worst case, ρ = 1, implying that E3 chooses the lowest possible trust value in E3’s

experience generation ability. In the best case, ρ = −1, implying that E1 is willing

to accept the highest possible trust value in E3’s experience generation capability.

5.3.3.3 Incorporating distant observations. So far, we have covered how

a node (E1 in our example) can use experience records generated by both itself and

immediate neighbors. We will now explain how experience records generated by

nodes farther than one hop away (nondirectly connected), which can be used in this

trust system. This is experience data produced by entities that have potentially never

interacted or communicated directly with the node doing the evaluation. For example:

E1 wishes to establish a trust confidence interval about E5’s sensing accuracy. E1 is

not near enough to watch and evaluate E5. An additional entity E4, however, is near

enough to evaluate and generate experience data on E5 and it happens to be near

enough to E3 for radio communication as illustrated in Fig. 5.2. For E1 to utilize the

experience data generated by E4, experience data must be accurately generated and

propagated by E4. E1 thus must first evaluate E4’s ability to accurately generate

87

E1

E3 E4

1) E4 overhears and observes E5’s behavior
2) E4 generates experience records
3) E4 passes these experience records on to E3
4) E3 passes these experience records on to E1
5) E1 calculates its trust in E4’s ability to
 accuratly generated experience records and
 E3’s ability to accurately route data. E1
 then discounts the experience records
 generated by E4 based on this trust in
 E4 and E3.

E5

Figure 5.2. Building Trust in a Remote Node

88

experiences in the same manner as described above. However instead of directly

being able to evaluate E4, one must instead rely in experience records generated by

E3. After receiving experience records relating to E4’s ability to accurately generate

experiences, E1 combines these into a confidence interval and then in turn into a

single trust value, τEG
4 , using eq.2. Likewise, E1 evaluates E3’s ability to accurately

propagate data. There may exist cases where nodes can accurately generate expe-

riences and sense data, but due to faulty (or malicious) software, fail to route and

propagate data accurately. E1 uses all of its available experience records related to

E3’s ability to propagate data and creates a confidence interval and then a single trust

value, τDP
3 , also using eq.2. where τDP

3 in this case represents E1’s trust in E3 in the

context of “Data Propagation”. E1 then uses the trust values it has established in E4

(ability to accurately generate experiences) and E3 (ability to accurately propagate

data) to discount the weight of the experiences recorded by E4:

Wi = wt
iw

c
i τ

EG
4 τDP

3

If a certain piece of experience data must be propagated through multiple nodes,

then that piece of experience data is discounted by the evaluator’s trust in each

intermediate node to propagate the data accurately. Hence, the generic equation for

assessing the weight of any arbitrary experience record is:

Wi = wt
iw

c
i τ

EG
generator−id[τ

DP
router1 ∗ τ

DP
router2 ∗ ...]

where τEG
generator−id is the evaluators trust in the node that recorded the experience

(in the context of Experience generation) and τDP
routerX is repeated for each node

through which the experience record was propagated. With this method, an evaluator

establishes trust through a chain of nodes and can use experience data generated by

distant nodes.

5.3.3.4 Initial bootstrap of the trust system. Initialization of the system

starts by nodes recording their own direct experiences with their physical neighbors.

These experiences should include the evaluation of neighbors in at least the two

special contexts of Experience-generation and Data-propagation. Each of these direct

experiences is used for calculating the trust the evaluator node has in its neighbors.

89

The evaluator calculates the weight (Wi) for each of these experiences as: wt
iw

c
i Here

wt
i is an age-based weight (described in the previous section) and wc

i is a weight

assigned by the evaluator based on the level of contact the experience represents. For

each neighbor, the experiences in each of the above contexts are grouped together

to form a trust confidence interval in that particular context. For example, a node

wishing to form a trust confidence interval in the context of Experience-generation

for a particular neighbor will follow this protocol:

1. Observe experience data generated by the neighbor. This experience data would

be in some context other than experience generation.

2. Compare that experience data to locally generated experience data and rate

the accuracy of the experience data generation. From this comparison, a new

experience point is generated.

3. Each of these experience points are weighed based on their age and context-

weight to form a confidence interval: xw ± tn−1,1−α/2

√

σ2
w/n.

5.3.3.5 Limited memory for experience data. Sensor nodes usually have

limited memory for storing experience data. If a new and apparently useful piece of

experience data is acquired and must be added to a completely full experience data

store, then an existing piece of experience data must be evicted. The eviction only

takes place if the new piece of experience data has a higher “usefulness” than a piece

of information already in the cache. We find that the resulting cache replacement

pattern is similar to the “small worlds” replacement method, as recommended in [74].

In order to gain unfair advantage, certain entities could attempt to flood all receptive

nearby entities with messages and requests for interaction in attempt to boost their

own trust rating. For this reason, entities would find it beneficial to throttle the rate

of new experiences from other entities.

5.3.3.6 Experience correlation. Our statistical methodology for computing

confidence intervals expects independent samples. If the experience data are corre-

lated, several samples must be aggregated to generate a single sample [86].

90

5.3.3.7 Location awareness. Sensor nodes must have a good sense of their

environment in order to evaluate experiences such as sensor values received from

other sensor nodes. Location awareness is necessary for extrapolation of sensor

data. Typically node location is not known beforehand; thus, an in-network location

awareness system [89] must be used. The location information required for evaluating

experiences will be no more than that already required for efficiently routing and

aggregating data in a deployed WSN application. Thus, location awareness for the

purpose of trust computation should not require any additional resources.

5.3.3.8 Energy considerations. Our trust system requires sensor nodes to

“overhear” messages from neighboring sensor nodes, and also collect trust data from

the neighboring sensor nodes. We piggyback trust data on transmission and reception

of application messages wherever possible. The system may be combined with other

optimizations designed to reduce the overhead of trust formulation. An example of

one such optimization is the MIT Leach protocol [90].

5.4 Evaluation of the Trust System

Using a custom discrete event simulator, “Trust-Sensim”, we have simulated a

cluster of nodes with the ability to formulate trust between each other. Here we

describe the different aspects of this simulator.

5.4.1 Energy

Each node in the simulation has the energy consumption characteristics for trans-

mitting, receiving, and processing data as well as sleeping of a Telos Rev B WSN

node (model TPR2420CA). Each node is powered by a simulated energy capacity of

two AA batteries. At the beginning of each simulation, these batteries are given an

initial charge normally distributed around 2400 mAh (with a standard deviation of

200mAh).

5.4.2 Positioning

The nodes are positioned in relatively close proximity so as to allow for overlap

between their sensing and communication ranges. This allows for all nodes to overhear

each other’s communications and build trust based on their observations. For this

91

simulation the nodes are statically positioned 5 meters apart in a square grid of NxN

nodes that act as a cluster of nodes. We simulate cluster sizes of 2x2, 3x3, 4x4, and

5x5 nodes. The 5x5 cluster having 25 nodes and an edge length of 25 meters. Nodes

are aware of each other’s identities and positions.

5.4.3 Simulation Events

As in the MIT Leach protocol [90], each node is assigned TDMA time slots for

communication with the cluster lead during each round of sensing. For each round

of sensing, each node: A) Wakes up on its assigned slot. B) Senses the current

temperature and estimated remaining battery charge. C) Transmits the readings to

the current cluster lead. D) Receives an ACK message back from the cluster lead

which may include system management information such as the identity of the next

cluster lead. E) Sleeps until the next round.

At the end of each round, the cluster-lead has the responsibility of doing a single

high power transmission of the aggregated results to the base station. Any node that

disagrees with the aggregated results can do its own high power transmission to the

base station. For this simulation, the round period was 2 hours. Each cluster lead

serves for a total of 25 rounds (50 hours) before a new cluster lead is chosen. During

the final round of a cluster lead’s tenure, the cluster lead advertises to all of the

system nodes the node identify which will serve as the next cluster lead, which is the

node with the most available remaining energy. The simulation ends when any node

in the system is fully depleted of its energy capacity.

5.4.4 Trust Formulation

Each node can enter a mode called “neighborhood watch mode” which causes

a node to first wake up at the very beginning of each round of sensing and listen

on the radio for transmission of all other nodes. After overhearing the sensing

data transmission of other nodes, the node will aggregate the data and transmit

the aggregation result to the cluster lead (and any other listening nodes). A node

will enter the low-power sleep mode at the very end of the “round” after all other

nodes have concluded their aggregated data transmissions.

Neighborhood watch mode allows the system to act in a fully redundant manner.

92

All nodes not only sense and transmit the current cluster lead, but they also monitor

each other’s sensing and aggregation behavior and transmit their own aggregation

result to the current cluster lead. Each node also has the ability to enter the “trust

formulation mode” which adds the following actions onto the “neighborhood watch

mode”.

1. Evaluate the sensor readings, data aggregation results, and trust experiences

overheard from other nodes; based on this evaluation, add new experiences to

the local cache of trust experiences.

2. Communicate highly weighted experiences from the local experience cache to

neighbors that may be listening via piggy-backing trust experiences on top of

sensor reading transmissions to that node acting as the current cluster lead.

3. Probabilistically sleep and skip one or more sensing rounds based on each node’s

trust in the current cluster lead and its own neighbors.

On initial system startup, no trust exists between nodes. As nodes interact with

each other, trust is formed. Figs. 5.3 and 5.4 show the effect of varying levels of link

loss on the trust formation process. High levels of link loss prevent narrow confidence

intervals from forming and delay, though they do not prevent, the formation of a high

trust value. Nodes that are able to dedicate more memory resources to the formation

of trust are able to achieve narrower confidence intervals, as shown in Fig. 5.5. There

exists a tradeoff to the amount of memory dedicated to the formation of trust and

the level of trust achievable (and therefore the life expectancy of a network that uses

dynamic redundancy).

5.4.5 Findings

Though building trust requires more memory and computational resources than

the neighborhood watch mode alone (due to the trust cache and trust formulation

processing), the potential is created for dynamically sleeping through sensing rounds

based on current trust in other system nodes. Thus, with building trust, the potential

is created to save energy and extend the life span of the sensor network. We first

establish a baseline by comparing three different systems: A) One with no redundancy

93

Initial System Startup - Average Trust Level

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Hours after System Startup

A
ve

ra
ge

 T
ru

st
 L

ev
el

0% Link Loss
30% Link Loss
70% Link Loss
90% Link Loss

Figure 5.3. Effect of Link Loss on Startup Trust Level

94

Initial System Startup - Confidence Interval Width

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Hours after System Startup

C
on

fid
en

ce
 In

te
rv

al
 W

id
th

90% Link Loss
70% Link Loss
30% Link Loss
0% Link Loss

Figure 5.4. Effect of Link Loss on Startup Trust Confidence Interval Width

95

Cache Entries vs Sensing Confidence Interval Width

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hours from beginning of simulation

C
on

fid
en

ce
 In

te
rv

al
 W

id
th

100 Cache Entries
140 Cache Entries
200 Cache Entries
240 Cache Entries
260 Cache Entries

Figure 5.5. Cache Size Effect on Startup Confidence Interval Width

96

and neighbor monitoring. In this case, nodes perform only their own duties and never

attempt to overhear or monitor the communications of other nodes, including the

aggregation function performed by the base station. B) A system with full redundancy

where all nodes monitor the communications and actions of all other nodes. C) A

system with dynamic redundancy based on current levels of trust between nodes.

In this simulation, we allow each node to have a relatively large trust cache (1000

entries). Fig. 5.6 shows that the achievable life expectancy of a system with trust

enabled is well higher than a statically redundant system without trust. We ran the

simulator varying the number of nodes in the system as well as the amount of memory

dedicated to the trust cache in each system. Fig. 5.7 shows the change in expected

minimum life of the system (in hours) as the amount of memory available to the trust

cache on each node is increased. We find that full redundancy within larger networks

requires a considerably higher amount of memory on each node in order to establish

trust among nodes. Dedicating a relatively small amount of memory to each node can

System Life vs Node Count

0

500

1000

1500

2000

2500

4 9 16 25

Nodes in cluster

M
in

 S
ys

te
m

 L
ife

 -
 H

ou
rs

 b
ef

or
e

fir
st

 fu
ll

de
pl

et
io

n
of

 a
 n

od
es

en

er
gy

Dynamic Redundancy
based on Trust
Static Redundancy

Figure 5.6. System Life with Different Node Counts

97

System Life vs Node Trust Cache Size

250

450

650

850

1050

1250

1450

1650

1850

2050

2250

5 50 95 14
0

18
5

23
0

27
5

32
0

36
5

41
0

45
5

50
0

Trust cache entries on each node

M
in

 S
ys

te
m

 L
ife

 -
 H

ou
rs

 b
ef

or
e

fir
st

 fu
ll

de
pl

et
io

n
of

 a
 n

od
e'

s
en

er
gy

4 node cluster
9 node cluster
16 node cluster
25 node cluster

Figure 5.7. Cache Size Comparison

98

produce a significant improvement in the life expectancy of the system. As with any

typical cache, however, there are diminishing returns associated with adding memory

to the trust cache on each node. The simulator was also used to test the reaction

time for injecting node failures into the system. At approximately 120 hours into the

simulation, after trust had been established between system nodes, a sensor failure

on one of the nodes was simulated. Fig. 5.8 shows the time required for the system to

react (the confidence interval to widen) when a node fails. This graph represents the

average trust confidence interval width in the failed node among all other nodes in

the system. It is interesting to note that larger trust caches on each node are able to

maintain narrower confidence intervals in the event of node failure. This is because

with larger caches, a higher number of new experiences are accepted into the cache

and usable in calculating trust. Though not shown here, the cluster lead is able to

react more quickly than other nodes in the system given that it is awake and thus

has one of the first available opportunities to detect node failure. Other nodes in

Changes in Trust Confidence Interval after Node Fai lure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Hours After Node Failure

W
id

th
 o

f C
on

fid
en

ce
 In

te
rv

al

20 Cache Entries
60 Cache Entries
100 Cache Entries
160 Cache Entries

Figure 5.8. Simulated Sensor Failure Reaction Time

99

the system that are sleeping at the time of a node failure are unable to detect the

node misbehavior until they wake up and are informed by the cluster lead (or their

neighbors). It takes more time for the entire system to react with a higher number of

sleeping nodes. The node with the failed sensor itself may have been sleeping during

some of these hours, delaying detection by neighbors until it wakes up. A future

enhancement to the system might be to assign higher weights to experiences where

nodes behavior changes rather than give the same weight to all new experiences. Such

a change would assist in drawing the attention to sudden changes in behavior.

5.5 Conclusions and Future Work

In this chapter, we presented a new distributed approach that establishes reputation-

based trust among sensor nodes in order to identify sensor node misbehavior, minimize

their impact on applications, and maximize energy conservation. We demonstrated

the benefits of our approach using extensive simulations. However, we have only tested

simple node failures and levels of link loss. We plan to investigate the responsiveness

of the trust model to malicious misbehavior, including both external attackers and

existing nodes that have been compromised. We also plan to experiment with node

mobility.

We envision that our proposed novel approach to establish trust among nodes

based on distributed monitoring, assessment, and sharing of peer behavior information

among peers can be used to enhance the capabilities of F3DS. In the next chapter, we

present the overall conclusions of this dissertation as well as ideas for future research.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In Chapters 2 through 4 of this dissertation, we have presented novel methods

that use social metrics to enhance p2p collaboration, including describing, imple-

menting, and evaluating social collaborative systems that enhance file distribution

(SocialSwarm) and malware detection (F3AV) via the novel F3DS framework.

F3AV can be incrementally improved via such varied methods as adding a ”multi-

factor” DecisionHandler that takes into account multiple factors including each peer’s

SocialDistance, the age of each signature set used, the age of each scan, the common-

ality and diversity among scan engines and signatures sets to form a combined, and

weighted confidence interval to decide whether to trust an object, to reject an object,

or to seek more scans on an object.

F3AV could also be enhanced to leverage cloud-based scanning when absolutely

necessary—when f2f scanning services are unavailable or the accuracy thereof is

questionable.

The F3DS framework that we presented and implemented can serve as a basis

for enabling social awareness in many other p2p applications. We now present three

examples of such applications—Distributed f2f backups, content distribution, and

IDS/IPS.

6.1 Other Applications of F3DS

In this section, we describe some of the other candidate applications that can be

built upon F3DS.

• Distributed f2f Backup: F3DS could be used to build a fully distributed erasure

code–based f2f backup service using capacity and bandwidth from trusted social

101

peers to store as well as retrieve (when necessary) encrypted backup sets. A

goal of this system would be to dynamically adjust the encoding of backup sets

based on the availability of social peers as well as our confidence in each of

those peers to be willing and able to retain the data over the desired retention

window.

• Distributed f2f Content Cache: Social peers commonly have correlated interests

in online content [91]. F3DS could be used as the basis for a f2f-distributed

web cache that prefetches, caches, and distributes content based on correlated

content access behavior among social peers.

• Distributed f2f IDS/IPS: A significant challenge in the area of distributed intru-

sion detection [92] [93] is that of finding and maintaining sufficient diversity of

trusted nodes and resources to participate in the collection and analysis of data

on network attacks. F3DS could be used to allow f2f collaboration on attack

monitoring and analysis with the goal of protecting distributed p2p application

services from malicious entities.

6.2 Application Level Misbehavior Monitoring

In Chapter 4, we presented a statistical method for establishing trust in the

behavior of peer devices. This method can be adapted and implemented in F3DS

to allow for trust to be formed and maintained within a network of F3DS-enabled

applications using peer behavior monitoring and analysis.

Behavioral analysis can leverage both the detection of peer misbehavior as well as

the observation of sudden changes in normal behavior. The hypothesis is that if the

correlation of a peer’s object access or malware scanning patterns to those of his/her

social peers rapidly changes, then the peer may have been compromised.

In the remainder of this chapter, we present a number of open challenges related

to social networks and potential areas for future research.

6.3 Mobility

The price, weight, and energy consumption of sensors and processors on mobile

devices will continue to drop, thus permitting a continuous increase in collected

102

data which will be fed to friends and followers on social networks. Under such

circumstances, the percentage of people using such mobile devices for collaboration

with their social peers will increase.

Mobile devices will continue to increase in their utility. Users will commonly use

their mobile devices to store financial data and make direct device-to-device financial

transactions. Such data will also pose as valuable targets for attack by malware

creators.

As the use of mobile devices increases, so will the use of location-aware and

environment-aware software applications also increase. The information collected

by these applications and then shared with other social network users will add to

the volume of data that must be secured and kept private. Currently, there are

races among mobile device vendors for increased sensing capabilities as well as among

mobile application developers seeking for increased simplicity in sharing data with

social peers. At the same time, little emphasis is being placed on security and privacy.

Thus, the new mobile hardware and software seem to be generating more security and

privacy problems than they are solving.

With the growth of mobile applications, the need to detect mobile malware will rise

commensurately. Given the limited resources (memory, cpu, bandwidth) of current

mobile devices, detection of sophisticated mobile and socially aware malware is a

significant challenge.

6.4 Trends in Malware

Malware is continuously increasing in sophistication. Recent techniques have

emerged to create malware by pragmatically stitching together [94] legitimate sys-

tem binaries into malicious code. Other techniques leverage GPUs to perform run

time unpacking and polymorphism [95]. Such self-camouflaging worms are almost

impossible to detect using traditional signature-based virus detection.

The processing resources required to detect this new generation of malware are

significantly higher than traditional signature-based virus detection. Some of the

proposed effective solutions include GPU-assisted antimalware [96] [97] [98], and

execution-based virus detection using lightweight virtual machines [99] [100].

103

The cpu and memory available to individual users—especially those with mobile

devices—are not sufficient to scan and filter all objects that a user might access in

real time. For this reason, a valuable enhancement to F3AV would be to incorporate

GPU antimalware techniques and/or execution-based scanning so as to distribute the

computation required to scan a group of objects that are of mutual interest to a social

peers across the resources available to those peers.

IDS is another area that could benefit from distributed social peer collaboration.

Distributed IDS has long been an area of interesting research [92] [93] but has

never achieved practical implementation given the challenge of distributed trust and

available resources. Also, new techniques for real-time IDS are computationally

intensive [101]. F3DS could serve as a platform on which to build distributed IDS

utilizing the trust and resources available among peers within a social network.

6.5 Centralized vs Distributed Social Networks

Centralized as well as distributed social networks create mechanisms for users to

interact with each other. The information shared as part of those interactions must

have its privacy and security preserved.

Centralized social networks (Facebook, MySpace, etc.) typically use proprietary

and commonly undisclosed mechanisms to provide privacy and security between users.

The strength of those undisclosed mechanisms is questionable. Malicious entities

are continuously attempting to compromise social network accounts. Facebook has

disclosed that it detects over 600,000 attempts daily to compromise accounts on its

network [102]. Centralized social networks are commonly sponsored by corporations

which have incentives to mine the networks for information and statistics that hold

commercial value. A user of a Centralized social network must be concerned about not

only 3rd-party attacks against the user’s social network account, but also concerned

about the commercial incentives and trust-ability of the corporation running the social

network.

Distributed social networks (Safebook, LifeSocial, SMS, SMTP email, PeerSoN,

Diaspora, etc.), by their nature, must use published (and commonly standardized)

protocols for interaction between users. Therefore, the protocols and mechanisms

104

used by distributed networks are commonly reviewed and scrutinized by a larger

number on individuals that those of Centralized social networks. Distributed social

networks avoid central databases and thus no single entity has control of or access to

the relationship and interaction information which defines a social network.

6.6 Social Motivators for Strong Security

The human relationships within social networks may also be leveraged as strong

motivators for behavioral change in users. Automatically generated security warnings

to, or communication restrictions (ostracism) [103] from, social peers might help

stigmatize those who are lax in deploying protection mechanisms. Fear of such

ostracism likely would promote proactive and preventative security practices among

social network users.

REFERENCES

[1] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,
“Growth of the flickr social network,” in Proceedings of the first workshop on
Online social networks, ser. WOSN ’08. New York, NY, USA: ACM, 2008,
pp. 25–30. [Online]. Available: http://doi.acm.org/10.1145/1397735.1397742

[2] Kissmetrics, “Social media growth statistics,” 2012. [Online]. Available:
http://blog.kissmetrics.com/social-media-statistics/

[3] Flickr, “Flickr social network,” 2012. [Online]. Available: http://www.flickr.
com/

[4] zynga, “Zynga social games,” 2012. [Online]. Available: http://www.zynga.
com/

[5] linkedin, “Linkedin professional network,” 2012. [Online]. Available: http:
//www.linkedin.com/

[6] pinterest, “Pinterest online pinboard,” 2012. [Online]. Available: http:
//www.pinterest.com/

[7] S. Turkle, Alone Together: Why We Expect More from Technology and Less
from Each Other. Basic Books, 2012.

[8] S. Marche, “Is facebook making us lonely?” 2012. [On-
line]. Available: http://www.theatlantic.com/magazine/archive/2012/05/
is-facebook-making-us-lonely/308930/

[9] L. Indvik, “U.s. internet piracy is on the decline,” 2011. [Online]. Available:
http://mashable.com/2011/03/25/internet-music-piracy-study/

[10] A. Felt and D. Evans, “Privacy protection for social networking apis,” 2008.
[Online]. Available: http://www.eecs.berkeley.edu/∼afelt/privacybyproxy.pdf

[11] J. Shneidman and D. Parkes, “Rationality and self-interest in peer to peer
networks,” Peer-to-Peer Systems II, pp. 139–148, 2003.

[12] S. Kamvar, B. Yang, and H. Garcia-Molina, “Addressing the non-cooperation
problem in competitive p2p systems,” in Workshop on Economics of Peer-to-
Peer Systems, jun. Citeseer, 2003.

[13] B. Cohen, “Incentives build robustness in BitTorrent,” in 2003 Workshop on
Economics of Peer-to-Peer Systems (P2P Econ’03), 2003.

106

[14] D. Cabanillas, “Peer-to-Peer Bartering: Swapping Amongst Self-interested
Agents,” 2009. [Online]. Available: http://www.tdx.cat/bitstream/handle/
10803/6658/01DCcb01de01.pdf?sequence=1

[15] Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci, “A social network based
patching scheme for worm containment in cellular networks,” IEEE INFOCOM,
Rio de Janeiro, Brazil, 2009.

[16] M. J. Probst, J. C. Park, R. Abraham, and S. K. Kasera, “Socialswarm:
Exploiting distance in social networks for collaborative flash file distribution,”
in Proceedings of The 18th IEEE International Conference on Network Protocols,
ser. ICNP ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
263–274. [Online]. Available: http://dx.doi.org/10.1109/ICNP.2010.5762775

[17] Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci, “A social network based
patching scheme for worm containment in cellular networks,” in 2009 IEEE
Conference on Computer Communications (INFOCOM’09), 2009.

[18] M. Probst, “F3ds web site,” 2012. [Online]. Available: http://www.f3ds.org

[19] M. Probst and S. Kasera, “Statistical trust establishment in wireless sensor net-
works,” in 2007 International Conference on Parallel and Distributed Systems,
vol. 2, 2007.

[20] E. Bogardus, “Measuring social distances,” Journal of Applied Sociology, vol. 9,
pp. 299–308, 1925.

[21] M. S. Granovetter, “The strength of weak ties,” American Journal of Sociology,
vol. 78, pp. 1360–1380, 1973. [Online]. Available: http://sociology.stanford.
edu/people/mgranovetter/documents/granstrengthweakties.pdf

[22] S. Buchegger, D. Schiberg, L. hung Vu, and A. Datta, “Peerson: P2p social
networking – early experiences and insights,” in In Proc. ACM Workshop on
Social Network Systems, 2009.

[23] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-
preserving online social network leveraging on real-life trust,” Comm.
Mag., vol. 47, no. 12, pp. 94–101, Dec. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MCOM.2009.5350374

[24] S. Marti, P. Ganesan, and H. Garcia-Molina, “Sprout: P2p routing with social
networks,” in EDBT Workshops, 2004, pp. 425–435.

[25] S. Yang and I. Chen, “A social network-based system for supporting interactive
collaboration in knowledge sharing over peer-to-peer network,” International
Journal of Human-Computer Studies, vol. 66, no. 1, pp. 36–50, 2008. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S1071581907001139

[26] F. Walter, S. Battiston, and F. Schweitzer, “A model of a trust-based recom-
mendation system on a social network,” Autonomous Agents and Multi-Agent
Systems, vol. 16, no. 1, pp. 57–74, 2008.

107

[27] D. Brumley, P. Poosankam, D. Song, and J. Zeng, “Automatic patch-based ex-
ploit generation is possible: Techniques and implications,” in IEEE Symposium
on Security and Privacy, May 2008.

[28] I. Norros, B. Prabhu, and H. Reittu, “On uncoordinated file distribution
with non-altruistic downloaders,” Managing Traffic Performance in Converged
Networks, pp. 606–617, 2007.

[29] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent is an
auction: analyzing and improving bittorrent’s incentives,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 243–254, 2008.

[30] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani,
“Do incentives build robustness in bittorrent,” in 2007 Symposium on Net-
worked Systems Design and Implementation (NSDI’07), 2007.

[31] A. Norberg, “The opensource libtorrent library.” [Online]. Available:
http://www.rasterbar.com/products/libtorrent/

[32] C. Gkantsidis, T. Karagiannis, and M. Vojnovic, “Planet scale software up-
dates,” SIGCOMM Computer Communication Review, vol. 36, no. 4, pp.
423–434, 2006.

[33] L. J. Camp and A. Friedman, “Good neighbors can make good fences: A
peer-to-peer user security system,” in Telecommunications Policy and Research
Conference, Sep 2004.

[34] S. Shakkottai and R. Srikant, “Peer to peer networks for defense against
internet worms,” in Interperf ’06: Proceedings from the 2006 workshop on
Interdisciplinary systems approach in performance evaluation and design of
computer & communications sytems. New York, NY, USA: ACM, 2006, p. 5.

[35] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian, and
S. Mehrotra, “Crew: A gossip-based flash-dissemination system,” Distributed
Computing Systems, International Conference on, vol. 0, p. 45, 2006.

[36] P. G. Lind, L. R. da Silva, Jr, and H. J. Herrmann, “Spreading
gossip in social networks,” Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics), vol. 76, no. 3, 2007. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevE.76.036117

[37] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free riding in bittorrent
is cheap,” in 2006 ACM Workshop on Hot Topics in Networks (HotNets’06),
2006.

[38] P. Shah and J.-F. Paris, “Incorporating trust in the bittorrent protocol,” in
2007 International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS’07), 2007.

108

[39] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop reputations
for peer to peer file sharing workloads,” in NSDI’08: Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2008, pp. 1–14. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1387590

[40] A. Friedman, “Good Neighbors Can Make Good Fences,” IEEE Technology and
Society Magazine, vol. 278, no. 0079/07, 2007.

[41] P. Garbacki, A. Iosup, D. Epema, and M. van Steen, “2fast: Collaborative
downloads in p2p networks,” in P2P ’06: Proceedings of the Sixth IEEE
International Conference on Peer-to-Peer Computing. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 23–30.

[42] V. Vishnumurthy, S. Chandrakumar, and E. Sirer, “KARMA: A secure eco-
nomic framework for peer-to-peer resource sharing,” inWorkshop on Economics
of Peer-to-Peer Systems (P2P Econ’03), 2003.

[43] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. H. J. Epema, M. Reinders, M. R. van Steen, and H. J. Sips, “Tribler:
a social-based peer-to-peer system: Research articles,” Concurr. Comput. :
Pract. Exper., vol. 20, no. 2, pp. 127–138, February 2008. [Online]. Available:
http://dx.doi.org/10.1002/cpe.v20:2

[44] O. Ozkasap, M. Caglar, and A. Alagoz, “Principles and performance analysis
of second: A system for epidemic peer-to-peer content distribution,” Journal of
Netwwork and Computer Applications, vol. 32, no. 3, pp. 666–683, 2009.

[45] G. Karame, M. Cagalj, and S. Capkun, “Small coalitions: Lightweight col-
laboration for efficient p2p downloads,” Network Computing and Applications,
IEEE International Symposium on, vol. 0, pp. 278–283, 2009.

[46] R. Izhak-Ratzin, N. Liogkas, and R. Majumdar, “Team incentives in bittorrent
systems,” in ICCCN ’09: Proceedings of the 2009 Proceedings of 18th Interna-
tional Conference on Computer Communications and Networks. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 1–8.

[47] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “Self-organized fault-
tolerant routing in peer-to-peer overlays,” in 7th Annual IEEE Consumer
Communications and Networking Conference (CCNC’10), 2009.

[48] C. Dumez, “qbittorrent client.” [Online]. Available: http://qbittorrent.
sourceforge.net/

[49] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution
of user interaction in facebook,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Social Networks (WOSN’09), August 2009.

[50] blogspot, “Myspace trackers.” [Online]. Available: http://myspacetracker.
blogspot.com/

109

[51] J. Cheng, J. Hoffman, T. LaMarche, A. Tavil, A. Yavad, and S. Kim, “Forensics
tools for social network security solutions,” 2009.

[52] X. Jardin, “Yet another Facebook privacy risk: Emails Facebook sends leak
user ip address,” 2010. [Online]. Available: http://boingboing.net/2010/05/
07/yet-another-privacy.html

[53] S. Koolen, “Creating and maintaining relationships in social peer-to-peer net-
works,” Delft University of Technology, 2007.

[54] ”Industry Analysis and Technology Division - Wireline Competition Bureau
of the US FCC”, “High-speed services for internet access,” 2010. [Online].
Available: http://www.fcc.gov/Daily Releases/Daily Business/2010/db0722/
FCC-10-129A7.pdf

[55] P. Labs, “2012 security trends.” [Online]. Available: http://pandalabs.
pandasecurity.com/2012-security-trends/

[56] S. C. E. Salem, “Social media: The new battlefront for cyber
security.” [Online]. Available: http://video.foxbusiness.com/v/1367823707001/
social-media-the-new-battlefront-for-cyber-security/

[57] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version antivirus in the
network cloud,” in Proceedings of the 17th conference on Security symposium.
USENIX Association, 2008, pp. 91–106.

[58] S. Musil, “Symantec says source code stolen in 2006 hack.”
[Online]. Available: http://news.cnet.com/8301-1009 3-57360662-83/
symantec-says-source-code-stolen-in-2006-hack/

[59] M. H. Hamilton, A. Rousskov, and D. Wessels, “Cache digest specification
- version 5.” [Online]. Available: http://www.squid-cache.org/CacheDigest/
cache-digest-v5.txt

[60] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable
wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw., vol. 8, pp.
281–293, June 2000. [Online]. Available: http://dx.doi.org/10.1109/90.851975

[61] N. Weiler, “Secure anonymous group infrastructure for common and future in-
ternet applications,” in Proceedings of In Proceedings of 17th Annual Computer
Security Applications Conference (ACSAC’01), 2001.

[62] E. Zurich, “Security econometrics: The dynamics of (in)security,”
2009. [Online]. Available: http://e-collection.library.ethz.ch/eserv/eth:
154/eth-154-02.pdf

[63] OPSWAT, “Opswat security industry market share analysis,” June
2011. [Online]. Available: http://www.opswat.com/sites/default/files/
OPSWAT-Market-Share-Report-June-2011.pdf

[64] NetPilot, “Clean mx realtime virus database,” 2012. [Online]. Available:
http://support.clean-mx.de/clean-mx/viruses.php

110

[65] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian, “Virtu-
alized in-cloud security services for mobile devices,” in In Proc. of MobiVirt,
2008.

[66] A. Bose, “Propagation, detection and containment of mobile malware,”
Ann Arbor, MI, USA, 2008, aAI3328771. [Online]. Available: ”http:
//deepblue.lib.umich.edu/bitstream/2027.42/60849/1/abose 1.pdf”

[67] B.-G. Chun and P. Maniatis, “Augmented smartphone applications through
clone cloud execution,” in Proceedings of the 12th conference on Hot topics in
operating systems, ser. HotOS’09. Berkeley, CA, USA: USENIX Association,
2009, pp. 8–8. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855568.
1855576

[68] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: versatile protection for smartphones,” in Proceedings of the
26th Annual Computer Security Applications Conference, ser. ACSAC ’10.
New York, NY, USA: ACM, 2010, pp. 347–356. [Online]. Available:
http://doi.acm.org/10.1145/1920261.1920313

[69] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “Maui: making smartphones last longer with code offload,” in
Proceedings of the 8th international conference on Mobile systems, applications,
and services, ser. MobiSys ’10. New York, NY, USA: ACM, 2010, pp. 49–62.
[Online]. Available: http://doi.acm.org/10.1145/1814433.1814441

[70] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor networks,”
Communications of the ACM, vol. 47, no. 6, pp. 53–57, June 2004.

[71] J. Golbeck and J. Hendler, “Inferring reputation on the semantic web,” 2004,
http://www.mindswap.org/papers/GolbeckWWW04.pdf.

[72] V. Cahill, E. Gray, J.-M. Seigneur, C. D. Jensen, Y. Chen, B. Shand, N. Dim-
mock, A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon,
G. di Marzo Serugendo, C. Bryce, M. Carbone, K. Krukow, and M. Nielsen,
“Using trust for secure collaboration in uncertain environments,” Pervasive
Computing, vol. 2, pp. 52–61, 2003.

[73] M. Sathyanarayanan, “Caching trust rather than content,” Operating
Systems Review, vol. 34, no. 4, pp. 32–33, 2000. [Online]. Available:
citeseer.ist.psu.edu/satyanarayanan00caching.html

[74] E. Gray, J. Seigneur, Y. Chen, and C. Jensen, “Trust propagation in
small worlds,” in Proceedings of the First International Conference on Trust
Management (iTrust2003), 2003. [Online]. Available: citeseer.ist.psu.edu/
gray03trust.html

[75] S. Ganeriwal and M. Srivastava, “Reputation-based framework for high integrity
sensor networks,” in Proceedings of the 2nd ACM workshop on Security of ad
hoc and sensor networks, 2004.

111

[76] R. Chen and W. Yeager, “Poblano: A distributed trust model
for peer-to-peer networks,” Sun Microsystems Technical Paper, 2000,
http://www.jxta.org/docs/trust.pdf.

[77] G. Theodorakopoulos and J. S. Baras, “On trust models and trust evaluation
metrics for ad hoc networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 24, no. 2, pp. 318–328, February 2006.

[78] A. Srinivasan, J. Teitelbaum, and J. Wu, “Drbts: Distributed reputation-based
beacon trust system.” in DASC, 2006, pp. 277–283.

[79] Y. L. Sun, W. Yu, Z. Han, and K. Lui, “Information theoretic framework
of trust modeling and evaluation for ad hoc networks,” Selected Areas in
Communications, IEEE Journal on, vol. 24, pp. 305–317, 2006.

[80] M. Krasniewski, P. Varadharajan, B. Rabeler, S. Bagchi, and Y. C. Hu, “Tibfit:
Trust index based fault tolerance for arbitrary data faults in sensor networks,”
dsn, vol. 00, pp. 672–681, 2005.

[81] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: A link layer security architecture
for wireless sensor networks,” in Proceedings of Sensys 2004, November 2004.

[82] B. Parno, A. Perrig, and V. Gligor, “Distributed detection of node replication
attacks in sensor networks,” in IEEE Computer Society Symposium on Security
and Privacy, May 2005.

[83] J. McCune, E. Shi, A. Perrig, and M. Reiter, “Detection of denial-of-message
attacks on sensor network broadcasts,” in IEEE Computer Society Symposium
on Security and Privacy, May 2005.

[84] Z. Benenson, N. Gedicke, and O. Raivio, “Realizing robust user authentication
in sensor networks,” in In Real-World Wireless Sensor Networks (REALWSN),
2005, intranet.sics.se/realwsn05/papers/benenson05realizing.pdf.

[85] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C. Shantz,
“Sizzle: A standards-based end-to-end security architecture for the embedded
internet (best paper),” in PerCom, 2005, pp. 247–256.

[86] A. Law and W. Kelton, “Simulation modeling and analysis,” in McGraw Hill
Series in Industrial Engineering and Management Science, 2000.

[87] D. Krouse and C. Withers, “A visual basic program giving weighted confidence
intervals for mean and variance,” Industrial Research Limited Report 1581, June
2004.

[88] J. M. Bland and S. Kerry, “Weighted comparison of means,” 1998. [Online].
Available: www.bmj.com/content/316/7125/129.full

[89] L. Lazos and R. Poovendran, “Serloc: Robust localization for wireless sensor
networks,” ACM Trans. Sen. Netw., vol. 1, no. 1, pp. 73–100, 2005.

112

[90] M. Handy, M. Haase, and D. Timmermann, “Low energy adaptive clustering
hierarchy with deterministic cluster-head selection,” Proceedings of IEEE
International Conference on Mobile and Wireless Communications Networks,
Stockholm, 2002., 2002. [Online]. Available: citeseer.ist.psu.edu/handy02low.
html

[91] X. Cheng and J. Liu, “Exploring interest correlation for peer-to-peer
socialized video sharing,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 8, no. 1, pp. 5:1–5:20, Feb. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2071396.2071401

[92] M.-Y. Huang and T. M. Wicks, “A large-scale distributed intrusion detection
framework based on attack strategy analysis,” in in Recent Advances in Intru-
sion Detection (RAID98), 1998.

[93] O. Oriola, A. Adeyemo, and A. Robert, “Distributed intrusion
detection system using p2p agent mining scheme,” 2012. [Online].
Available: http://www.ajocict.net/uploads/Oriola Adeyemo and Robert -
Distributed Intrusion Detection System Using P2P Agent Mining Scheme.pdf

[94] V. Mohan and K. W. Hamlen, “Frankenstein: Stitching Malware from Benign
Binaries,” in Proc. of 6th Usenix Workshop on Offensive Technologies (WOOT
2012), 2012. [Online]. Available: https://www.usenix.org/conference/woot12/
frankenstein-stitching-malware-benign-binaries

[95] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Gpu-assisted malware,”
in Malicious and Unwanted Software (MALWARE), 2010 5th International
Conference on, oct. 2010, pp. 1 –6.

[96] E. Seamans and T. Alexander, “Fast virus signature matching on the gpu,”
2009. [Online]. Available: http://http.developer.nvidia.com/GPUGems3/
gpugems3 ch35.html

[97] H. Nguyen, “Kapersky labs releases gpu anti-virus that runs 360x faster than on
core 2 duo cpu,” 2009. [Online]. Available: http://www.ubergizmo.com/2009/
12/virus-detection-claims-to-be-360x-faster-on-gpus-than-on-core-2-duo/

[98] F. Y.-F. Wang, “Offloading critical security operations to the gpu,” 2011.
[Online]. Available: http://web.mit.edu/frankw/www/papers/thesis.pdf

[99] A. Moshchuk, T. Bragin, D. Deville, S. Gribble, and H. Levy, “Spyproxy:
Execution-based detection of malicious web content,” in Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium. USENIX
Association, 2007, pp. 1–16.

[100] L. Liu, S. Chen, G. Yan, and Z. Zhang, “Bottracer: Execution-based
bot-like malware detection,” in Proceedings of the 11th international
conference on Information Security, ser. ISC ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 97–113. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-85886-7 7

113

[101] R. Borgohain, “Fugeids: Fuzzy genetic paradigms in intrusion detection sys-
tems,” CoRR, vol. abs/1204.6416, 2012.

[102] B. Sullivan, “Facebook says 600,000 account logins compromised every day,”
2011. [Online]. Available: http://redtape.nbcnews.com/ news/2011/10/28/
8527819-facebook-says-600000-account-logins-compromised-every-day?lite

[103] K. Williams, T. Case, and C. Govan, “Impact of ostracism on social judgments
and decisions: Explicit and implicit responses,” Responding to the social world:
Implicit and explicit processes in social judgments and decisions, pp. 325–342,
2003.

