621 research outputs found

    Evaluation of a sudden brake warning system: Effect on the response time of the following driver

    Get PDF
    This study used a video-based braking simulation dual task to carry out a preliminary evaluation of the effect of a sudden brake warning system (SBWS) in a leading passenger vehicle on the response time of the following driver. The primary task required the participants (N = 25, 16 females, full NZ license holders) to respond to sudden braking manoeuvres of a lead vehicle during day and night driving, wet and dry conditions and in rural and urban traffic, while concurrently performing a secondary tracking task using a computer mouse. The SBWS in the lead vehicle consisted of g-force controlled activation of the rear hazard lights (the rear indicators flashed), in addition to the standard brake lights. Overall, the results revealed that responses to the braking manoeuvres of the leading vehicles when the hazard lights were activated by the warning system were 0.34 s (19%) faster compared to the standard brake lights. The SBWS was particularly effective when the simulated braking scenario of the leading vehicle did not require an immediate and abrupt braking response. Given this, the SBWS may also be beneficial for allowing smoother deceleration, thus reducing fuel consumption. These preliminary findings justify a larger, more ecologically valid laboratory evaluation which may lead to a naturalistic study in order to test this new technology in ‘real world’ braking situations

    Appl Ergon

    Get PDF
    This paper describes an experiment to examine whether a visual warning system can improve detection of moving machine hazards that could result in struck-by or pinning accidents. Thirty-six participants, twelve each in one of three age groups, participated in the study. A visual warning system capable of providing four different modes of warning was installed on a continuous mining machine that is used to mine coal. The speed of detecting various machine movements was recorded with and without the visual warning system. The average speed of detection for forward and reverse machine movements was reduced by 75% when using the flashing mode of the visual warning system. This translated to 0.485 m of machine travel for the fast speed condition of 19.8 m/min, which is significant in the context of the confined spaces of a mine. There were no statistically significant differences among age groups in the ability to detect machine movements for the visual warning modes in this study. The visual warning system shows promise as a safety intervention for reducing struck-by or pinning accidents involving continuous mining machines. The methods and results of this study could be applied to other moving machinery used in mining or other industries where moving machinery poses struck-by or pinning hazards.CC999999/Intramural CDC HHS/United States2015-07-29T00:00:00Z22503737PMC451872

    APPLYING VISUAL ATTENTION THEORY TO TRANSPORTATION SAFETY RESEARCH AND DESIGN: EVALUATION OF ALTERNATIVE AUTOMOBILE REAR LIGHTING SYSTEMS

    Get PDF
    This experiment applies methodologies and theories of visual search and attention to the subject of conspicuity in automobile rear lighting. Based on these theories, this experiment has four goals. First, it is proposed that current research methods used to investigate rear lighting are inadequate and a proposed methodology based on the visual search paradigm is introduced. Second, demonstrate that current rear lighting on automobiles does not effectively meet the stated purpose of regulators. Third, propose a more effective system for increasing the conspicuity of brake lamps. A fourth goal is to validate and extend previous simulator research on this same topic. This experiment demonstrates that detection of red automobile brake lamps will be improved if tail lamps are another color (amber) rather than red, as currently mandated. The experiment is an extension and validation of previous simulation studies. Results indicate that RT and error are reduced in detecting the presence and absence of red brake lamps with multiple lead vehicles when tail lamps are not red compared to current rear lighting which mandates red tail lamps. This performance improvement is attributed to parallel visual processing that automatically segregates tail (amber) and brake (red) lamp colors into distractors and targets respectively

    Development of a Work Zone Training Program

    Get PDF
    Safety in highway work zones has been a major concern for many decades. Over the years, government agencies and highway industry have developed work zone safety training programs to educate general public, professionals, and government employers. Existing training programs are conducted in the old fashion classroom setting which has some disadvantages such as high travel costs and locations far away from jobs. The objective of this research project was to develop a web-based training program for highway work zone safety. The developed program was built on advanced computer science technologies and delivered via Internet so that a trainee can access the training materials at any time and at any location as long as there is an Internet service. Training topics cover sign, marking, highway traffic signal, and temporary traffic control. At the end of training, a trainee will have an opportunity to take an on-line quiz with 50 questions. A certificate will be sent to the trainee via e-mail if that person’s test score is higher than the passing grade. The developed web-based training program has several advantages. First, using the developed program will eliminate the travel costs for the instructors and trainees. Second, both the instructors and trainees will spend less time away from their jobs. Third, the developed program can be easily modified and updated with any new information. Finally, trainees can learn the training materials at their own pace. The self pace format can be easily fitted in a busy working schedule

    Incandescent Bulb and LED Brake Lights:Novel Analysis of Reaction Times

    Get PDF
    Rear-end collision accounts for around 8% of all vehicle crashes in the UK, with the failure to notice or react to a brake light signal being a major contributory cause. Meanwhile traditional incandescent brake light bulbs on vehicles are increasingly being replaced by a profusion of designs featuring LEDs. In this paper, we investigate the efficacy of brake light design using a novel approach to recording subject reaction times in a simulation setting using physical brake light assemblies. The reaction times of 22 subjects were measured for ten pairs of LED and incandescent bulb brake lights. Three events were investigated for each subject, namely the latency of brake light activation to accelerator release (BrakeAcc), the latency of accelerator release to brake pedal depression (AccPdl), and the cumulative time from light activation to brake pedal depression (BrakePdl). To our knowledge, this is the first study in which reaction times have been split into BrakeAcc and AccPdl. Results indicate that the two brake lights containing incandescent bulbs led to significantly slower reaction times compared to eight tested LED lights. BrakeAcc results also show that experienced subjects were quicker to respond to the activation of brake lights by releasing the accelerator pedal. Interestingly, analysis also revealed that the type of brake light influenced the AccPdl time, although experienced subjects did not always act quicker than inexperienced subjects. Overall, the study found that different designs of brake light can significantly influence driver response times

    An enactive approach to perceptual augmentation in mobility

    Get PDF
    Event predictions are an important constituent of situation awareness, which is a key objective for many applications in human-machine interaction, in particular in driver assistance. This work focuses on facilitating event predictions in dynamic environments. Its primary contributions are 1) the theoretical development of an approach for enabling people to expand their sampling and understanding of spatiotemporal information, 2) the introduction of exemplary systems that are guided by this approach, 3) the empirical investigation of effects functional prototypes of these systems have on human behavior and safety in a range of simulated road traffic scenarios, and 4) a connection of the investigated approach to work on cooperative human-machine systems. More specific contents of this work are summarized as follows: The first part introduces several challenges for the formation of situation awareness as a requirement for safe traffic participation. It reviews existing work on these challenges in the domain of driver assistance, resulting in an identification of the need to better inform drivers about dynamically changing aspects of a scene, including event probabilities, spatial and temporal distances, as well as a suggestion to expand the scope of assistance systems to start informing drivers about relevant scene elements at an early stage. Novel forms of assistance can be guided by different fundamental approaches that target either replacement, distribution, or augmentation of driver competencies. A subsequent differentiation of these approaches concludes that an augmentation-guided paradigm, characterized by an integration of machine capabilities into human feedback loops, can be advantageous for tasks that rely on active user engagement, the preservation of awareness and competence, and the minimization of complexity in human- machine interaction. Consequently, findings and theories about human sensorimotor processes are connected to develop an enactive approach that is consistent with an augmentation perspective on human-machine interaction. The approach is characterized by enabling drivers to exercise new sensorimotor processes through which safety-relevant spatiotemporal information may be sampled. In the second part of this work, a concept and functional prototype for augmenting the perception of traffic dynamics is introduced as a first example for applying principles of this enactive approach. As a loose expression of functional biomimicry, the prototype utilizes a tactile inter- face that communicates temporal distances to potential hazards continuously through stimulus intensity. In a driving simulator study, participants quickly gained an intuitive understanding of the assistance without instructions and demonstrated higher driving safety in safety-critical highway scenarios. But this study also raised new questions such as whether benefits are due to a continuous time-intensity encoding and whether utility generalizes to intersection scenarios or highway driving with low criticality events. Effects of an expanded assistance prototype with lane-independent risk assessment and an option for binary signaling were thus investigated in a separate driving simulator study. Subjective responses confirmed quick signal understanding and a perception of spatial and temporal stimulus characteristics. Surprisingly, even for a binary assistance variant with a constant intensity level, participants reported perceiving a danger-dependent variation in stimulus intensity. They further felt supported by the system in the driving task, especially in difficult situations. But in contrast to the first study, this support was not expressed by changes in driving safety, suggesting that perceptual demands of the low criticality scenarios could be satisfied by existing driver capabilities. But what happens if such basic capabilities are impaired, e.g., due to poor visibility conditions or other situations that introduce perceptual uncertainty? In a third driving simulator study, the driver assistance was employed specifically in such ambiguous situations and produced substantial safety advantages over unassisted driving. Additionally, an assistance variant that adds an encoding of spatial uncertainty was investigated in these scenarios. Participants had no difficulties to understand and utilize this added signal dimension to improve safety. Despite being inherently less informative than spatially precise signals, users rated uncertainty-encoding signals as equally useful and satisfying. This appreciation for transparency of variable assistance reliability is a promising indicator for the feasibility of an adaptive trust calibration in human-machine interaction and marks one step towards a closer integration of driver and vehicle capabilities. A complementary step on the driver side would be to increase transparency about the driver’s mental states and thus allow for mutual adaptation. The final part of this work discusses how such prerequisites of cooperation may be achieved by monitoring mental state correlates observable in human behavior, especially in eye movements. Furthermore, the outlook for an addition of cooperative features also raises new questions about the bounds of identity as well as practical consequences of human-machine systems in which co-adapting agents may exercise sensorimotor processes through one another.Die Vorhersage von Ereignissen ist ein Bestandteil des Situationsbewusstseins, dessen UnterstĂŒtzung ein wesentliches Ziel diverser Anwendungen im Bereich Mensch-Maschine Interaktion ist, insbesondere in der Fahrerassistenz. Diese Arbeit zeigt Möglichkeiten auf, Menschen bei Vorhersagen in dynamischen Situationen im Straßenverkehr zu unterstĂŒtzen. Zentrale BeitrĂ€ge der Arbeit sind 1) eine theoretische Auseinandersetzung mit der Aufgabe, die menschliche Wahrnehmung und das VerstĂ€ndnis von raum-zeitlichen Informationen im Straßenverkehr zu erweitern, 2) die EinfĂŒhrung beispielhafter Systeme, die aus dieser Betrachtung hervorgehen, 3) die empirische Untersuchung der Auswirkungen dieser Systeme auf das Nutzerverhalten und die Fahrsicherheit in simulierten Verkehrssituationen und 4) die VerknĂŒpfung der untersuchten AnsĂ€tze mit Arbeiten an kooperativen Mensch-Maschine Systemen. Die Arbeit ist in drei Teile gegliedert: Der erste Teil stellt einige Herausforderungen bei der Bildung von Situationsbewusstsein vor, welches fĂŒr die sichere Teilnahme am Straßenverkehr notwendig ist. Aus einem Vergleich dieses Überblicks mit frĂŒheren Arbeiten zeigt sich, dass eine Notwendigkeit besteht, Fahrer besser ĂŒber dynamische Aspekte von Fahrsituationen zu informieren. Dies umfasst unter anderem Ereigniswahrscheinlichkeiten, rĂ€umliche und zeitliche Distanzen, sowie eine frĂŒhere Signalisierung relevanter Elemente in der Umgebung. Neue Formen der Assistenz können sich an verschiedenen grundlegenden AnsĂ€tzen der Mensch-Maschine Interaktion orientieren, die entweder auf einen Ersatz, eine Verteilung oder eine Erweiterung von Fahrerkompetenzen abzielen. Die Differenzierung dieser AnsĂ€tze legt den Schluss nahe, dass ein von Kompetenzerweiterung geleiteter Ansatz fĂŒr die BewĂ€ltigung jener Aufgaben von Vorteil ist, bei denen aktiver Nutzereinsatz, die Erhaltung bestehender Kompetenzen und Situationsbewusstsein gefordert sind. Im Anschluss werden Erkenntnisse und Theorien ĂŒber menschliche sensomotorische Prozesse verknĂŒpft, um einen enaktiven Ansatz der Mensch-Maschine Interaktion zu entwickeln, der einer erweiterungsgeleiteten Perspektive Rechnung trĂ€gt. Dieser Ansatz soll es Fahrern ermöglichen, sicherheitsrelevante raum-zeitliche Informationen ĂŒber neue sensomotorische Prozesse zu erfassen. Im zweiten Teil der Arbeit wird ein Konzept und funktioneller Prototyp zur Erweiterung der Wahrnehmung von Verkehrsdynamik als ein erstes Beispiel zur Anwendung der Prinzipien dieses enaktiven Ansatzes vorgestellt. Dieser Prototyp nutzt vibrotaktile Aktuatoren zur Kommunikation von Richtungen und zeitlichen Distanzen zu möglichen Gefahrenquellen ĂŒber die Aktuatorposition und -intensitĂ€t. Teilnehmer einer Fahrsimulationsstudie waren in der Lage, in kurzer Zeit ein intuitives VerstĂ€ndnis dieser Assistenz zu entwickeln, ohne vorher ĂŒber die FunktionalitĂ€t unterrichtet worden zu sein. Sie zeigten zudem ein erhöhtes Maß an Fahrsicherheit in kritischen Verkehrssituationen. Doch diese Studie wirft auch neue Fragen auf, beispielsweise, ob der Sicherheitsgewinn auf kontinuierliche Distanzkodierung zurĂŒckzufĂŒhren ist und ob ein Nutzen auch in weiteren Szenarien vorliegen wĂŒrde, etwa bei Kreuzungen und weniger kritischem longitudinalen Verkehr. Um diesen Fragen nachzugehen, wurden Effekte eines erweiterten Prototypen mit spurunabhĂ€ngiger KollisionsprĂ€diktion, sowie einer Option zur binĂ€ren Kommunikation möglicher Kollisionsrichtungen in einer weiteren Fahrsimulatorstudie untersucht. Auch in dieser Studie bestĂ€tigen die subjektiven Bewertungen ein schnelles VerstĂ€ndnis der Signale und eine Wahrnehmung rĂ€umlicher und zeitlicher Signalkomponenten. Überraschenderweise berichteten Teilnehmer grĂ¶ĂŸtenteils auch nach der Nutzung einer binĂ€ren Assistenzvariante, dass sie eine gefahrabhĂ€ngige Variation in der IntensitĂ€t von taktilen Stimuli wahrgenommen hĂ€tten. Die Teilnehmer fĂŒhlten sich mit beiden Varianten in der Fahraufgabe unterstĂŒtzt, besonders in Situationen, die von ihnen als kritisch eingeschĂ€tzt wurden. Im Gegensatz zur ersten Studie hat sich diese gefĂŒhlte UnterstĂŒtzung nur geringfĂŒgig in einer messbaren SicherheitsverĂ€nderung widergespiegelt. Dieses Ergebnis deutet darauf hin, dass die Wahrnehmungsanforderungen der Szenarien mit geringer KritikalitĂ€t mit den vorhandenen FahrerkapazitĂ€ten erfĂŒllt werden konnten. Doch was passiert, wenn diese FĂ€higkeiten eingeschrĂ€nkt werden, beispielsweise durch schlechte Sichtbedingungen oder Situationen mit erhöhter AmbiguitĂ€t? In einer dritten Fahrsimulatorstudie wurde das Assistenzsystem in speziell solchen Situationen eingesetzt, was zu substantiellen Sicherheitsvorteilen gegenĂŒber unassistiertem Fahren gefĂŒhrt hat. ZusĂ€tzlich zu der vorher eingefĂŒhrten Form wurde eine neue Variante des Prototyps untersucht, welche rĂ€umliche Unsicherheiten der Fahrzeugwahrnehmung in taktilen Signalen kodiert. Studienteilnehmer hatten keine Schwierigkeiten, diese zusĂ€tzliche Signaldimension zu verstehen und die Information zur Verbesserung der Fahrsicherheit zu nutzen. Obwohl sie inherent weniger informativ sind als rĂ€umlich prĂ€zise Signale, bewerteten die Teilnehmer die Signale, die die Unsicherheit ĂŒbermitteln, als ebenso nĂŒtzlich und zufriedenstellend. Solch eine WertschĂ€tzung fĂŒr die Transparenz variabler InformationsreliabilitĂ€t ist ein vielversprechendes Indiz fĂŒr die Möglichkeit einer adaptiven Vertrauenskalibrierung in der Mensch-Maschine Interaktion. Dies ist ein Schritt hin zur einer engeren Integration der FĂ€higkeiten von Fahrer und Fahrzeug. Ein komplementĂ€rer Schritt wĂ€re eine Erweiterung der Transparenz mentaler ZustĂ€nde des Fahrers, wodurch eine wechselseitige Anpassung von Mensch und Maschine möglich wĂ€re. Der letzte Teil dieser Arbeit diskutiert, wie diese Transparenz und weitere Voraussetzungen von Mensch-Maschine Kooperation erfĂŒllt werden könnten, indem etwa Korrelate mentaler ZustĂ€nde, insbesondere ĂŒber das Blickverhalten, ĂŒberwacht werden. Des Weiteren ergeben sich mit Blick auf zusĂ€tzliche kooperative FĂ€higkeiten neue Fragen ĂŒber die Definition von IdentitĂ€t, sowie ĂŒber die praktischen Konsequenzen von Mensch-Maschine Systemen, in denen ko-adaptive Agenten sensomotorische Prozesse vermittels einander ausĂŒben können

    Integrated vehicle-based safety systems first annual report

    Full text link
    The IVBSS program is a four-year, two phase cooperative research program being conducted by an industry team led by the University of Michigan Transportation Research Institute (UMTRI). The program began in November 2005 and will continue through December 2009 if results from vehicle verification tests conducted in the second year of the program indicate that the prototype system meets its performance guidelines and is safe for use by lay drivers in a field operational test planned for July 2008. The decision to execute Phase II of the program will take place in December 2007. The goal of the IVBSS program is to assess the safety benefits and driver acceptance associated with a prototype integrated crash warning system designed to address rear-end, road departure and lane change/merge crashes on light vehicles and heavy commercial trucks. This report describes accomplishments and progress made during the first year of the program (November 2005-December 2006). Activities during the first year focused on system specification, design and development and construction of the prototype vehicles.National Highway Traffic Safety Administrationhttp://deepblue.lib.umich.edu/bitstream/2027.42/57183/1/99863.pd

    Road departure crash warning system field operational test: methodology and results. Volume 1: technical report

    Full text link
    This report summarizes results from the Intelligent Vehicle Initiative (IVI) Road Departure Crash Warning System Field Operational Test (RDCW FOT) project. This project was conducted under a cooperative agreement between the U.S. Dept. of Transportation and the University of Michigan Transportation Research Institute, along with its partners, Visteon Corporation and AssistWare Technologies. Road departure crashes account for 15,000 fatalities annually in the U.S. This project developed, validated, and field-tested a set of technologies intended to warn drivers in real time when the driver was drifting from their lane, and a curve-speed warning system designed to provide alerts to help driver slow down when approaching a curve too fast to safely negotiate the curve This report describes the field operational test of the system and subsequent analysis of the data to address the suitability of similar systems for widespread deployment within the U.S. passenger-vehicle fleet. Two areas were addressed: safety-related changes in driver performance including behavior that may be attributed to the system, and levels of driver acceptance in key areas. Testing used 11 passenger sedans equipped with RDCW and a data acquisition system that compiled a massive set of numerical, video, and audio data. Seventy-eight drivers each drove a test vehicle, unsupervised, for four weeks. The resulting data set captured 83,000 miles of driving, with over 400 signals captured at 10 Hz or faster. Analysis of the data shows that with the RDCW system active, relative to the baseline condition, drivers improved lanekeeping by remaining closer to the lane center and reducing the number of excursions near or beyond the lane edges. In addition, turn signal use increased dramatically. The data, however, were unable to confirm a change in driver’s curvetaking behaviors that could have been attributed to the curve speed warning system. Driver acceptance was generally positive in relation to the lateral drift component of the system, with reactions to the curve speed warning system being rather mixed. Many additional results and insights are documented in the report.National Highway Traffic Safety Administrationhttp://deepblue.lib.umich.edu/bitstream/2027.42/49242/1/99788.pd

    Determining the Effectiveness of Graphic-aided Dynamic Message Signs in Work Zone

    Get PDF
    Portable changeable message signs (PCMSs) have been employed in highway work zones as an innovative temporary traffic control (TTC) device in the United Stated for many years. The traditional message format on a PCMS is text-based, which has been found to have several limitations in recent studies, such as confusing drivers and delaying their responses during driving, being difficult to read for older drivers and non-English-speaking drivers, and having a short range of legibility. The use of graphic-aided messages on PCMSs has many advantages over text-based PCMSs based on a number of previous laboratory simulation experiments. This research project used field experiments and driver surveys to determine the effectiveness of a graphic-aided PCMS on reducing vehicle speed and drivers' acceptance of utilizing a graphic-aided PCMS in the upstream of a one-lane two-way rural highway work zone. Field experiment were conducted to compare the effectiveness of text PCMS, graphic-aided PCMS, and graphic PCMS on reducing vehicle speed in a highway work zone in Kansas , and to develop regression models of the relationship between mean vehicle speed and distance under three PCMS conditions. Driver surveys were conducted to evaluate drivers’ opinions on the implementation of a graphicaided PCMS in the highway work zone. The findings showed that 1) using a text, a graphic-aided, and a graphic PCMS resulted in a mean vehicle speed reduction of 13%, 10%, and 17%, respectively; 2) using a graphic-aided PCMS reduced mean vehicle speed more effectively than using a text PCMS from 1,475 ft to 1,000 ft in the upstream of a work zone; using a graphic PCMS reduced mean vehicle speed more effectively than using a text PCMS from 1,475 ft in the upstream of the work zone to the location of the second TTC sign (W20-4 sign); 3) the majority of drivers understood the work zone and flagger graphics and believed the graphics drew their attention more to the work zone traffic conditions; and 4) more drivers preferred the information to be presented in the graphic-aided and graphic formats if the graphic-aided and graphic PCMSs were available
    • 

    corecore