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ABSTRACT 
 
 

This experiment applies methodologies and theories of visual search and attention to the 

subject of conspicuity in automobile rear lighting.  Based on these theories, this 

experiment has four goals.  First, it is proposed that current research methods used to 

investigate rear lighting are inadequate and a proposed methodology based on the visual 

search paradigm is introduced.  Second, demonstrate that current rear lighting on 

automobiles does not effectively meet the stated purpose of regulators.  Third, propose a 

more effective system for increasing the conspicuity of brake lamps.  A fourth goal is to 

validate and extend previous simulator research on this same topic.  This experiment 

demonstrates that detection of red automobile brake lamps will be improved if tail lamps 

are another color (amber) rather than red, as currently mandated.  The experiment is an 

extension and validation of previous simulation studies.  Results indicate that RT and 

error are reduced in detecting the presence and absence of red brake lamps with multiple 

lead vehicles when tail lamps are not red compared to current rear lighting which 

mandates red tail lamps.  This performance improvement is attributed to parallel visual 

processing that automatically segregates tail (amber) and brake (red) lamp colors into 

distractors and targets respectively.   
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CHAPTER ONE 
 

INTRODUCTION 
 

Within the context of visual search, this dissertation study will compare 

performance in detecting the presence and absence of brake lamps in three rear lighting 

systems using FMVSS compliant tail and brake lamp lenses and light bulbs.  This study 

has four goals.  First, evaluate current research methods used to investigate automotive 

rear lighting and evaluate the effectiveness of a methodology based on the visual search 

paradigm.  Second, test whether current rear lighting on automobiles that uses red brake 

lamps and red tail lamps relies on serial search processes and effectively meets the stated 

purpose of regulators in making brake lamps conspicuous, perceived and understood in 

all environmental conditions.  Third, propose and evaluate a system that is designed to 

engage efficient parallel search processes by changing tail lamp color to amber in order to 

increase the conspicuity of red brake lamps.  Fourth, validate and extend previous 

simulator research on this same topic (McIntyre 2008, 2009 & 2012).  Although many 

studies have examined the issue of brake conspicuity, only a few have proposed a color 

coded system.  However, few, if any rear lighting studies have examined brake 

conspicuity within the context of the visual search paradigm. 
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CHAPTER TWO 

BASIC RESEARCH: VISUAL ATTENTION 

 
 Psychological theories pertaining to how human visual attention is allocated in the 

environment are essential to understanding performance in tasks like driving.  Visual 

attention research has discovered how humans direct their attention endogenously, what 

stimuli or events guide or capture attention exogenously and when visual attention fails.  

In this chapter, theories advanced using paradigms from visual search will be discussed to 

examine the boundaries of visual attention.  These theories can inform not only what 

exogenous and endogenous factors will and will not enable efficient visual attention 

guidance but how to design research to assess performance in tasks like driving.   

 

Visual Search:  Exogenous Factors 

Visual search theories contend that properties of stimuli and their context interact 

with human visual attention processing to make searching the environment more or less 

efficient.  Triesman and Gelade (1980) found that when humans search for targets that do 

not share features like color, shape, size and orientation with their surrounding 

distractors, visual search is very fast and accurate such that targets appear to “pop-out” of 

the surrounding stimuli.  These types of targets were called feature singletons.  Searching 

for a red dot amongst yellow dots of the same size is an example of how a unique color 

feature can have this effect.  The number (set size) of distractor yellow dots does not 

affect the speed with which people detect the target red dot despite the fact that target and 

distractor share the dimensions of size and shape.  Another relevant finding of this 
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research is that operators know a red dot is not present amongst yellow dots just as 

quickly regardless of set size. The efficiency of searches for feature singletons despite 

numerous distractors has been taken as evidence for parallel and pre-attentive processes, 

since it appears that the visual system processes many distractors simultaneously without 

conscious attention.   

In contrast, if targets and distractors share salient features (e.g., searching for a 

red dot among red squares and yellow dots and squares) or differ on less salient features 

(e.g. searching for a bright red dot amongst less bright red dots) a different pattern of 

results is found.  As the number of distractors increases so does search time to locate 

targets.  These searches are called conjunctive because targets and distractors share 

features that are incorporated in operator goals. The increase in search time with number 

of distractors is often taken as evidence for serial processing, under the assumption that 

focused (foveal) visual attention must move sequentially and fixate on one object before 

moving to the next.  Both feature and conjunctive searches have similar RT and error 

performance when number of distractors is very small.  However, unlike feature searches, 

as the number of distractors increases so does search time to locate targets in conjunctive 

searches.  Another important finding with conjunctive searches is that when targets are 

absent, it takes operators nearly twice as long to respond as when targets are present in 

conjunctive searches.  The rationale is that operators must on average search serially 

through half of the distractors for a target in target present trials but must search through 

all distractors on target absent trials.  
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More recent research has challenged whether searches can be unequivocally 

designated as serial or parallel based on behavioral evidence.  Guided Search theory 

argues that features of targets and their surround can direct visual attention to shift 

between the very fast parallel or pre-attentive nature of feature searches and the slower 

serial or focused attention processes of conjunctive searches (Wolfe, Cave & Franzel, 

1989).  According to this theory, there is a continuum from completely parallel search 

which in effect preempts serial search to completely serial types of visual search that 

require moving focused attention from one object to the next.   

Studies (Wolfe, et al. 1989) have found some searches where targets are 

conjunctions of color and form, color and orientation or color and size and do not match 

the Treisman model.  Rather than divide searches into parallel or serial, Wolfe contends 

there are greater and lesser degrees of guidance provided by an interaction of operator 

strategies and environmental stimuli.  Wolfe found that with larger set sizes ( > 10 items), 

some search slopes were too shallow to be explained as strictly serial searches.  For 

example, when searching for red X’s amongst green X’s and red O’s the Treisman model 

would predict search would be conducted serially and the slope ratio of trials with a 

target absent compared to a target present would be 2:1.  Wolfe found shallower slopes 

for target present searches with larger set sizes.  Wolfe argued that these results suggest 

salient features (like color) are processed in parallel to reduce the serially searchable set.  

So, in the previous example the visual system could automatically segregate green and 

red items and eliminate green items as searchable area resulting in a serial search for the 

goal shape (X) amongst a reduced set of only red items.  As set sizes get larger, larger 
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areas of color defined distractors can be eliminated automatically.  It is thought that in 

conjunction searches there is an initial parallel stage to eliminate areas for search 

followed by serial search amongst distractors that are more similar to the target rather 

than an all or nothing parallel or serial process.   

Data from millions of trials of visual search tasks has led to several predictable 

phenomena.  Wolfe (2007) has identified a number of these that he claims a 

comprehensive theory of visual search should be able to explain.  Of these, there are a 

number of phenomena that affect RTs and accuracy and are directly related to the 

concern of this research project.  Four of these have already been discussed.  Larger set 

sizes, trials where the target is absent, target-distractor similarity (conjunctions) and lack 

of guidance tend to increase RT and error.  Three other findings relevant to this paper 

also affect visual search performance.  The first is the finding that the more heterogeneity 

there is amongst distractors, the worse performance becomes (Duncan & Humphreys, 

1989).  It is easier to find X’s amongst T’s alone than amongst both T’s and Y’s.  

Another principle, perhaps also related to target-distractor similarity is the finding that 

categorical differences between target and distractor make searches easier than deviations 

within kind (e.g. It is easier to find a red dot amongst yellow dots than amongst crimson 

dots).   Another finding shows that the proximity of distractors to the target affects search 

(Eriksen & Eriksen, 1974).  Distractors closer to the target have more effect on search 

than those farther away.  While studies have examined many stimulus properties that 

might engage parallel search, data indicates that there are relatively few properties that 
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reliably do so.  When targets and distractors differ on color, shape, size or orientation, 

searches are most efficient (Wolfe & Horowitz, 2004). 

In summary, theories of visual search indicate that important signals that need to 

be found efficiently should be feature singletons that are as dissimilar as possible from 

their surround.  Importantly, target salience is largely determined by the nature 

(homogeneity, proximity, number, dissimilarity to the target) of the surrounding 

distractors rather than the features of the target itself.  Thus, as Duncan and Humphreys’ 

(1989) Similarity Theory asserts, efficiency in search is dependent on both distractor-

distractor similarity and distractor-target dissimilarity.  Stated from a signal-detection 

perspective, it is not just the signal but the nature of the noise that determines search 

efficiency.    

Important also is the information gained from RT and error when a target is not 

present.  The RT measures used in visual search are viewed as a proxy for amount of 

cognitive processing.  If this is accurate, rapidly and accurately identifying when targets 

are absent could be of roughly equal significance as knowing when they are present when 

viewed from a cognitive load standpoint.  The typically longer RTs in target absent trials 

for conjunctive search are directly related to more cognitive processing time and demand 

of attentional resources.   

Figure 2.1 Graphically shows simulation results from an activation model of 

visual search taken from Chun and Wolfe (1996) and has been modified to highlight 

predictions of three exogenous factors (parallel vs. serial search, set size, and presence vs. 

absence of the target in the search display as they relate to this study.  The model predicts 
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serial and parallel searches will be similar in RT and error with very small set sizes and 

are differentiated in both target present and absent responses as set size increases with 

serial searches taking longer.  For serial search, target present RT increases with set size 

but target absent RT increases more.  For parallel searches, target present RT has a flat 

slope but target absent RT tends to increase with set size due to subjective “costs” 

perceived by operators (Chun & Wolfe, 1996).  Errors are low for both parallel and serial 

search.  However, the model predicts more misses for serial searches with large set sizes.  

The predictions of this study only match the trends of this model but do not claim to 

match the values on the axis.   

 

 
Figure 2.1.  Predictions of a visual search model overlaid with predictions for this study. 

 



 

 
8 

Visual Search:  Endogenous Factors 

Much of the previous visual search research focuses on the exogenous 

characteristics of the environment as the determining factor for efficient search.  

However endogenous factors such as operator search goals, attentional load, 

physiological and psychological states also have to be considered.  Research in attention 

capture, dual task paradigms, sleep deprivation and human error provide valuable 

information about the interaction of bottom-up exogenous and top-down endogenous 

factors of visual attention.  

Attention capture research studies whether exogenous qualities of stimuli in the 

environment can orient attention despite possibly incompatible endogenous search 

strategies.  Studies have shown that when operators search for color targets, luminance 

onsets do not capture attention but unique colors do and when searching for luminance 

onsets, unique colors do not capture attention but luminance onsets do (Folk, Remington 

& Johnston, 1992).  Folk et al. termed this finding contingent orienting of attention 

because attention to stimuli was dependent on the match between operator goals and 

stimulus properties.  For example, when operators are instructed to search for a green X 

amongst yellow X’s, but are then shown a display with many yellow X’s and a single red 

X, the red X will initially capture their attention despite seeming contradictory search 

goals.  However, the red X may capture attention not because of its exogenous properties 

but because the operator’s goal is not strictly to search for a green X but instead to search 

for any non-yellow object.  The finding that attention capture seems to be modulated by 

operator goals has led researchers to question the ability of stimuli to exogenously, 
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reflexively and automatically orient or capture attention (Pashler, Johnston & Ruthruff, 

2001).  

The findings supporting contingent orienting or capture of attention may also help 

explain other visual attention phenomena.  Research shows that when operators have 

highly focused goals, they can be inattentive to what otherwise would be thought of as 

highly salient stimuli.  Numerous studies have replicated early studies by Neisser and 

Becklen (1975) where many of the observers given the specific goal of counting passes of 

a basketball between players failed to report seeing a woman with an umbrella passing 

across the screen; despite the fact that the out of context image passes across the fovea.  

This type of failure of attention was termed Inattention Blindness.  The performance 

decrements when attending to multiple events impinging on the same sensory modality 

(e.g. dichotic listening) have long been known.  However, performance decrements have 

been observed even when operators engage in dual tasks that engage different sensory 

modalities (auditory and visual).  When drivers are focused on a non-visual but attention 

demanding task, visual attention suffers.  Drivers engaged in a cell phone conversation in 

a driving simulator have delayed responses to braking vehicles and decrements in 

recognition memory of text on billboards that eye tracking equipment verified was 

fixated upon (Strayer, Drews & Johnston, 2003).  

Data also indicate that as endogenous psychological and physiological states are 

taxed, attention is withdrawn from the environment and exogenous attentional cues, 

causing operators to rely on more automatic endogenous processes (Trick, Enns, Mills, & 

Vavrik, 2004).  There are several ways in which this could happen.  Circadian rhythms 
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and sleep deprivation can adversely affect RT and accuracy in visual search tasks but 

distractor characteristics that provide guidance are still effective (Horowitz, Cade, Wolfe 

& Czeisler, 2003).  So feature searches where operators have endogenous goals that 

allow parallel processing such as color differences between target and distractor are still 

efficient while those with more complex goals suffer from more error and longer 

response times as time awake increases.  The nature of the task can also affect attention.  

Monotonous vigilance tasks that require sustained attention often induce failures of 

attention (Warm, Mathews & Finomore, 2008).  Just thinking off-task can cause 

operators to be inattentive to visual cues in the environment.  People often engage in 

mind wandering or task-unrelated thought (Smallwood & Schooler, 2006).  This could 

manifest itself in a reader realizing they have no recollection of what they have read even 

while their eyes have scanned the pages in the same automatic fashion as if they were 

attending to the content of the text or when someone drives home being guided by 

automatic cues when they intend to go to the store (Reason & Mycielska, 1982).   

Much has been learned about visual attention but debates are ongoing about the 

interactions of exogenous and endogenous factors producing efficient search.  Traditional 

models posit specific attentional filters and capacity issues (Treisman, 1980; Wolfe, 

2007).  A more recent approach with signal detection theory (SDT) bypasses the need to 

explain performances decrements with the limited-capacity attention stage that is 

traditionally used to explain serial search (Verghese, 2001).  However, a few key ideas 

stand out in relation to exogenous and endogenous factors affecting search efficiency that 
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apply to the concern of this study and which will be repeated throughout this paper in 

relation to experimental design.   

1. Efficient visual search as indicated by faster RT and less error is reliably 

differentiated from inefficient only by using larger set sizes with multiple 

distractors.    

2. Visual search efficiency increases as bottom-up environmental factors such as 

target-distractor similarity decreases and distractor-distractor homogeneity 

increases. 

3. Search efficiency allowing parallel search is dependably engaged by relatively 

few categorical perceptual properties that create target-distractor contrast 

(color being one).   

4. Because target absent responses are slower and more vulnerable to set size 

manipulation, they provide useful information about attention allocation and 

signal detection independent of target present data.   

5. Endogenous factors such as top-down operator search strategies, attentional 

demands, physiological and psychological states and the workload of the task 

also determine the effectiveness of environmental stimuli to orient attention 

thereby affecting RT and error. 
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CHAPTER THREE 

APPLIED RESEARCH:  AUTOMOTIVE REAR LIGHTING 

The purpose of current automotive rear lighting mandated in much of the world 

by the United States Department of Transportation’s (USDOT) Federal Motor Vehicle 

Safety Standards (FMVSS) and the United Nations Economic Commission for Europe 

(UNECE) as summarized by FMVSS 108 is to enhance the “conspicuity of motor 

vehicles on the public roads so that their presence is perceived and their signals 

understood, both in daylight and in darkness or other conditions of reduced visibility” 

(USDOT, 2011, §571.108, S2. Purpose).  Requirements vary in regard to the function, 

number, location, size, shape, luminance and color of automobile rear signal lamps.  The 

main concern of this dissertation is the mandate of the USDOT and UNECE regarding 

brake and tail lamps (UNECE, 2006; USDOT 2011).  Brake (stop) lamps are activated 

when a driver depresses the brake pedal.  The tail (presence) lamps are activated 

whenever the vehicle’s parking or driving head light system is activated but not in 

conjunction with Daytime Running Lights (DRL).  Both brake lamps and tail lamps are 

required to emit a red hue with the only distinguishing feature being that the brake lamp 

has a higher intensity that can range from 80 to 420 cd (Flannagan, Sivak, Traube, 1998).  

Additionally, since 1995 in the U.S. a unique spatial location of the Center High Mounted 

Stop Light (CHMSL) was required as an additional brake signal on most vehicles. The 

CHMSL is in use in other countries as well.  The turn signal is allowed to be either red or 

amber in color in the U.S. but research indicating that having amber turn signals 

improves their identification has led other countries to use amber rather than red for turn 
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signals.  In the U.S. all three signals (brake, tail, turn) are allowed to be in the same 

spatial location and represented by a single light source (that must be red) but 

manufacturers legally produce many different combinations of the signals that vary in 

size, shape, color (only turn signals can be either amber or red), luminance, location and 

number of compartments and bulb type (incandescent, neon or LED). 

Presently, a red luminous area on the rear corner of a vehicle may indicate any 

one of four conditions: 1-presence of a vehicle with its lights on, 2-braking, 3-turning or 

4-hazard.  In order to differentiate which meaning the red luminous area is signaling, the 

driver must determine if the brightness of the red area indicates that it is a tail lamp, turn 

lamp or a brake lamp.  Under conditions that maximize attentional and perceptual 

abilities for luminance contrast of lighted objects (e.g., no distractions, very low ambient 

light leading to high contrast, small search set), this task is not difficult.  However, this 

signaling system is supposed to meet the goal of being perceived and understood in the 

largest range of conditions, which would include conditions where human perception and 

attention are compromised. The reason that the braking signal needs to be conspicuous 

across a wide range of environmental conditions and driver states is that a vehicle braking 

ahead of a driver is safety-critical information that could lead to crashes if not noticed 

and understood quickly.  

In the U.S., the agency under the USDOT tasked with improving rear lighting on 

automobiles is the National Highway Transportation and Safety Administration 

(NHTSA).  In an effort to meet the stated goals of FMVSS 108, NHTSA supported the 

introduction of the CHMSL and continues to research ways to increase safety and the 
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conspicuity of rear lighting.  Many thousands of research hours have been devoted to 

improving detection of brake lamps with the majority focusing on increasing the 

discriminability of red brake and red tail lamps (and red turn signals in the U.S.) either by 

altering luminous output, temporal activation (flashing) or spatial separation.  This focus 

is likely due to the requirements that both tail and brake lamps must be the same color.  

However, the origins of this requirement are not based on scientific research, but on a 

sequence of historical events in which tail lamps were in use and required to be red prior 

to the invention of the brake lamp (Moore & Rumar, 1999).   

Recognizing the need to make brake lamps more conspicuous has led some 

researchers to conduct experiments using color to code the function of automotive 

lighting signals rather than only luminance.  Data indicate that changing the color of the 

tail lamp without changing the brake lamp differentiates brake and tail lamps sufficiently 

to reduce RT and error in detecting brake lamps and other signals in comparison to the 

current system (Allen, 1964; Case 1969; Mortimer, 1968, 1969; Cameron, 1992, 1995; 

Lee et. al., 2002; McIntyre, 2008; 2009).  Governmental agencies responsible for 

investigating automobile rear lighting remain unconvinced by these studies and continue 

to pursue other concepts involving luminance contrast to make brake lamps more 

effective signals (Wierwille et. al., 2003, 2006; Llaneras et. al. 2010).   

 

Perception of Rear Lighting 

Detecting and understanding vehicular rear lighting are affected by a number of 

visual-perception factors.  The only difference between a corner brake lamp and tail lamp 
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is luminance contrast.  It is imperative to know what factors affect perception of 

luminance contrast in the driving environment to know if this feature adequately 

distinguishes target brake lamps and distractor tail lamps sufficiently to produce the 

behavior characteristics observed in efficient visual search.  Luminance contrast is 

moderated by subjective judgments of brightness and these are moderated by a host of 

factors that affect the contrast between the brake lamp and its surround, including 

ambient lighting, distance from the luminous object, method of illumination, shape, area 

and comparison with other luminous sources.   

Currently, brake and tail lamps must be red but are allowed to vary in candela 

output, location, size and shape.  Data has shown that perception of brightness is affected 

by these variables.  In making recommendations regarding intensity, shape, luminance 

and lamp area standards for vehicle rear lighting, Flannagan et al. (1998) surveyed a 

number of studies that examined response times and subjective judgments of intensity to 

various vehicle lamp combinations of intensity and area.  The various studies revealed a 

seeming conflict between subjective judgments of lamp conspicuity and RT to detecting 

lamp onsets.  Lamp intensity, shape and area affect subjective judgments of brightness 

more than RT.  Currently the FMVSS specifies using higher intensity lamps as the 

lighted area (number of lamp compartments) increases.  However RT data from prior 

studies cited by Flannagan indicated that intensity (measured in cd) strongly reduced RT 

while changes in area had little effect on RT.  In order to further test whether area has an 

effect on RT, Flannagan conducted an experiment where RT was measured in response to 

the onset of lamps with two areas (50 cm2 and 500 cm2) at three intensities (65, 92 & 130 
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cd) 15 m directly in front of participants.  His results showed lamp area significantly 

reduced RT to the smaller area lamp given equal intensity.  In addition to these effects of 

intensity and area on RT, the shape (aspect ratio) and area (1 to 3 compartments and from 

50 cm2 to 450 cm2) of illuminated red lens sections affected observer judgments of 

brightness such that lamps with larger area appeared less bright than smaller area lamps 

when lamp intensity was held constant.  Based on previous studies and his experiment, 

Flanagan argued that new standards need to be constructed for automobile rear lighting 

due to the large variability in intensity, area, shape and type of light source (LED, neon, 

incandescent) that currently exist in the fleet.   

More recently, a report to NHTSA found that lamps with intensities of 840 and 

1420 cd produced the same RTs as 420 cd (the current maximum intensity permitted by 

the FMVSS) when area was held constant (Llaneras et. al., 2010).  Based on findings like 

this, the report stated, “increases in brake signal luminance (brightness levels) do not 

necessarily translate into increased signal detection or faster response times . . . This 

suggests that increasing the luminance of conventional steady-burn brake lamps does not 

appear to be an effective means of drawing attention to the brake signal” (Llaneras et. al., 

2010, p. 30). 

Flannagan and Llaneras focused on how the characteristics of vehicle lighting 

systems affect their conspicuity. However, the characteristics of lighting systems are only 

part of the problem of perceiving lamp brightness and thus distinguishing between tail 

and brake lamps.  These findings do not address how brightness judgments are made in 

the context of varying ambient light or with multiple moving vehicles at various distances 
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that can also partly occlude each other’s rear lamps.  Adding all of these factors 

compounds the problem of making perceptual judgments of automotive rear lighting.   

Regarding ambient lighting, of particular interest is how brightness judgments are 

affected in a particular, yet commonplace context when brighter ambient light (< 7,000; > 

1,000 lux) reduces luminance contrast between rear signals.  During morning and evening 

commuting hours, ambient light is changing rapidly (35 lux to 30,000 lux) due to sunrise 

or sunset; and drivers may have their head lamps and tail lamps activated in response to 

or in anticipation of these changes.  In these conditions there is sufficient ambient light at 

low angles to diminish the luminance contrast of red tail and red brake lamps compared 

to darker night time hours, making discriminating between the relative brightness of tail 

lamps and brake lamps of different shapes and sizes even more difficult.  Similar 

conditions also exist during overcast days either with or without rain when some drivers 

activate their full lighting system including rear lighting and others do not, either because 

they have DRLs which do not activate rear lighting or they do not recognize the need to 

activate their lighting.   

Another factor that increases the difficulty of detecting brake lamps are the effects 

of moving traffic and distance. The presence of multiple lead vehicles that move laterally 

in relation to a following driver produce luminance transients because rear lamps are 

appearing and disappearing due to occlusion by intervening vehicles.  Brightness of an 

object also decreases with increased distance according to the inverse square law.  

Multiple vehicles at different distances from a following driver produce images of 
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varying areas on the retina due to changes in visual angle.  So brake lamps farther away 

may appear only as bright as tail lamps that are closer. 

The combination of all the previously discussed factors—ambient light levels, 

varying distances to lamps, motion of traffic vehicles, occlusion of lamps, varying lamp 

shapes, sizes and luminance outputs and context dependent inconsistent activations of 

rear lighting—compounds the perceptual difficulties of using luminance contrast as a cue 

to differentiating brake and tail lamp signals.  This problem seems to violate a few 

principles of efficient visual search as applied to the task of detecting brake lamp 

activation.  First, distractor-distractor homogeneity and distractor-target heterogeneity are 

both compromised when the only feature upon which they differ, luminance, is affected 

by vagaries in lamp size, shape, luminance and ambient light levels.  Second, luminance 

contrast does not have unequivocal support in visual search research as an exogenous 

feature that produces efficient visual search (Wolfe & Horowitz, 2004).  Others have 

recognized these limitations and have tested alternative approaches to increasing the 

conspicuity of brake lamps.   

 
Research with Rear Lighting 

Mortimer (1969) was one of the first to test the idea of coding rear lighting on 

vehicles by color and location rather than luminance alone.  His study was conducted 

between 9 PM and midnight with 66 participants with 34 driving “city” and 32 driving 

“country” roadways while following a single test vehicle.  Each participant experienced 

eight configurations of rear lighting.  On some configurations Mortimer separated the tail 

and brake lamp spatially and used color to code lamp function.  The current rear lighting 
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with tail and brake lamp only differing in luminance, performed worse than all other 

configurations.  He measured RT to brake onset, error and subjective overall ratings of 

each system.  Responses were measured to four separate signal states, the turn signal 

only, brake signal only, turn signal when brake signal was already on and brake signal 

when turn signal was flashing.  The experiment also included a concurrent task of 

responding to small white lights mounted on either side of the front of the participant’s 

vehicle hood.   

While the statistical analysis showed significant differences in error and 

subjective ratings to three of the signal states, there was no significant difference in RT 

for detecting the brake signal only state between the eight conditions.  In the city driving, 

current lighting had significantly more error than any of the other configurations and 

accounted for 40% of the errors and was rated as having the least effectiveness by 

participants.  No differences in configurations were found in country driving errors.  

While color-coding reduced RT to other signal states (and error and was rated higher by 

participants, separation of lamps spatially by function also produced significant effects in 

reducing error.   

However, Mortimer’s investigation has a number of limitations when visual 

search principles are considered.  First, there was only one lead vehicle and thus no 

requirement that participants search for targets. This is not only a set size issue. When 

only a single lead vehicle is present, it disallows other perceptual confounds that can 

make detecting brake lamps difficult.  Other vehicles cause occlusion and allow relative 

lamp brightness comparison.  These brightness differences may be the result of having 
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vehicles at different distances and with different size and shape lamps which can cause 

distractor-distractor heterogeneity problems.  Second, target absent data were not able to 

be recorded due to the nature of the task.  Other limitations are also relevant to dual task 

performance.  He did not report how his concurrent task was affected by performance on 

the rear lighting task.  This is problematic because there could have been improvement in 

the primary task while the secondary task suffered in performance.  Also, he only tested 

the systems under conditions that only mildly inhibited operator endogenous states.  In 

other words, the concurrent task did not create distracting conditions where drivers might 

miss brake onsets due to removing their visual attention from the roadway because 

participants were not required to move their visual gaze by more than a few degrees.     

Cameron (1995) tested the current automobile lighting against a system he called 

Red Light Means Stop (RLMS) where the tail lamps were amber and red lamps were 

illuminated only during braking.  Forty-three participants sat in a vehicle 15 meters 

behind a stationary test vehicle and used four triggers to indicate identification of turn, 

tail and brake signals on the test vehicle while also responding to a bank of lights at a 

second location 80 degrees left of the line of sight to the test vehicle.  He tested 2/3 of his 

participants on clear sunny days and identified the remaining trials as night but did not 

disclose the specific lighting conditions.  He did not report a significant difference in RTs 

between the two conditions and although he reported less error in identifying lamps in the 

RLMS condition he did not have any statistical analysis.  Without statistical analysis it is 

understandable why NHTSA would discount this study.  While the study did well in 

employing a dual task to increase operator attentional demand and calculating error, 
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target absent responses and set size manipulations were not used.  These factors 

additionally limit its ability to assess visual search efficiency. 

One common finding between Mortimer (1969) and Cameron (1995) was that 

color coding lamps by function tended to improve detection to other signals as well.  

Participants were faster responding to turn signals when lamp function was coded by 

color.  Multiple studies for over 40 years have supported this finding (among others, 

Allen, 1964).  More recently, crash data have indicated that using color to differentiate 

signals (e.g. turn signal) reduces crash risk (Sullivan & Flannagan, 2012). 

Other studies sponsored by NHTSA examining rear lighting have not 

experimentally examined changing tail lamp color for at least two reasons (Lee et. al., 

2002; Wierwille et. al., 2003; Llaneras et. al., 2010).  First, the federal code mandates that 

tail and brake lamps emit the same hue and overturning this legal requirement is 

rightfully not taken lightly.  Second, previous research like that of Mortimer and 

Cameron are not convincing because they lack statistical analysis, large effects and were 

not tested with set size manipulations or present absent trials that can discriminate visual 

search processes and efficiency.  These studies have attempted to differentiate the brake 

lamp from the tail lamps by adding additional locations or luminance to the brake signal 

rather than attempting to change the distractor tail lamps.  However, many of these 

studies in rear lighting have similar limitations as those conducted by Mortimer and 

Cameron when viewed from visual search principles.  Most importantly, no set size 

manipulations were performed.  Only a single lead vehicle (usually with a secondary 

task) was employed in all of these studies.  The testing that led to the adoption of the 
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CHMSL and more recent studies looking into adding a flashing halogen lamp to indicate 

hard braking have the same methodological limitation (Wierwille et. al., 2006).  While 

using a single target vehicle with a secondary task may seem to access attention capture 

ability of a stimulus it in no way predicts search efficiency amongst distractors.  Intuition 

may suppose that an intense luminance onset captures attention but what if there are 

many bright objects surrounding the target?  The lack of set size manipulation, target 

absent data, and possibly weak endogenous attentional demand make the methods 

employed by these studies unable to adequately assess efficiency of search and 

conspicuity of targets. 

 

Simulation Studies Testing Alternative Lighting 

In order to address some of the methodological limitations of previous research, 

McIntyre (2008) conducted an experiment where participants were given the task of 

detecting brake lamps in pictures of traffic.  The task was designed to implement visual 

search design principles by using larger set sizes, analyzing both target present and target 

absent data and simulating endogenous attention demand.  This was a within-subjects 

task where participants responded present or absent on a keypad to static traffic scenes 

projected onto a screen. The traffic scenes had multiple cars in multiple lanes of traffic. 

Either all vehicles in a scene had no brake lamps activated or at least one vehicle had a 

brake lamp activated.  The study compared current red tail and red brake lamps to 

proposed lighting where tail lamps had a subjectively yellow hue and brake lamps 

remained red.  Order of exposure to the current lighting block of trials and the proposed 
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lighting was counter balanced between participants.  Participants fixated on a blank 

screen for 2 seconds then the traffic scene appeared.  Participants responded on a keypad 

to indicate whether a brake lamp was present in the scene or not.  After the response the 

traffic scene disappeared and the blank screen returned to begin the next trail.  Yellow tail 

lamps led to significantly faster and better brake signal detection (lower RT, fewer errors 

and false alarms) than with red tail lamps.  These differences between yellow and red tail 

lamps showed large effect sizes and demonstrated more efficient visual search as 

measured by visual search metrics.   

In another study by McIntyre (2009), another method was used to test the theory 

that advantages in brake detection with yellow tail lamps occur because yellow tail lamps 

allow parallel/pre-attentive search for brake lamps.  The stimuli and task was identical to 

McIntyre (2008) with the exception that subjects were not given time to move their initial 

gaze and search the driving scene before the trial terminated (200 ms).  Thus, parallel 

search processes needed to be used to detect the presence or absence of brake lamps 

throughout the scenes.  As would be predicted for a parallel versus serial search, subjects 

had much less error when tail lamps were yellow and were at chance accuracy when tail 

lamps were red. 

There were advantages and limitations of the methodology for these two studies.  

Limitations included using static photographs of traffic rather than real cars in a moving 

visual field.  In addition, the projected display of photos simulated luminance differences 

between red tail lamps and red brake lamps that were considerably less than the 

corresponding luminance differences on the road.  Because the only available cue of 
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vehicle braking in the red tail lamp condition were differences in luminance and area 

produced by photographically simulated tail and brake lamps and the new spatial object 

onset of the CHMSL.  This luminance replication is a serious limitation given the 

primary cue for the current lighting system is luminance onset and contrast.  However, it 

was argued that this is an acceptable first test case because there are ambient lighting 

conditions as mentioned previously (e.g., dawn, dusk and overcast days) where the 

luminance contrast between brake and tail lamps is greatly reduced and may leave drivers 

with only location (CHMSL) and minimal luminance contrast cues.  Supporting this 

assumption is the fact that DRL systems do not activate rear lighting for this very reason.  

Another disadvantage of this study was that static pictures could not capture the 

phenomena that occur with moving traffic of appearing and disappearing red lamps as 

cars move laterally in relation to each other and occlude the view of rear lighting. 

Advantages of this methodology are in its ability to test specific assumptions 

concerning driver perception and attention while driving related to visual search 

principles.  For example, in-vehicle media and displays often distract visual attention 

away from the road ahead.  In order to test detection of rear lighting with this assumption 

that drivers may miss brake lamp onsets due to distraction, when the scenes with brake 

lamps present were displayed, the brake lamps were already activated. This disallowed 

the cue of a brake lamp onset and simulated endogenous attention load which inhibits 

visual search performance.  While the luminance simulation problems were described 

above as a limitation, it was also viewed as an advantage in testing the assumption of 

drivers facing real limitations in detecting luminance contrast under ambient lighting 
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conditions that are similar to that experienced on overcast days and during commuting 

hours.  Another advantage to this methodology was having traffic scenes that required 

drivers to search through multiple potential target locations compared to other studies that 

have used a single lead car.  Additionally, obtaining RT and error when brake lamps are 

not present allows access to how visual attention is allocated when target brake lamps are 

not available which allows assessment of signal detection and attention load.  Although 

an actual implementation of this idea would necessarily involve different spatial locations 

for brake and tail lamps due to having different colored lenses, using edited pictures in 

this study permitted testing the color hypothesis without confounding spatial location.  

Red brake lamps and tail lamps shared the same spatial location in the present and absent 

trials of the yellow condition respectively.   

Recently, a series of experiments examined performance of alternative versus 

current rear lighting in detecting brake lamps (McIntyre, Gugerty & Duchowski, 2012).  

Two of the experiments were the first to test the effects of changing tail lamp color on 

brake lamp detection with multiple lead vehicles moving in normal traffic flow using a 

moderate-fidelity driving simulator.  The third used eye tracking measures during a 

vigilance task with static stimuli similar to those used in an earlier study by McIntyre 

(2008).   

For the first study, 40 participants followed nine vehicles on a three lane highway 

during simulated nighttime.  Participants responded to brake lamp onsets by the lead 

vehicles and lane changes of two following cars observed in the rear or side view mirrors. 

This dual task scenario was designed to represent the multitasking involved in attending 
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to nearby traffic, since participants had to attend to multiple vehicles both ahead and 

behind.  Also, a driving simulator was used that simulated the visual demands of driving, 

since participants had to use eye and head movements similar to on-road driving to 

perform the task. This driving scenario makes the visual search for target brake lamps 

more complex than previous studies because it allows for multiple potential target and 

distracter locations in a moving array that results in occlusion and un-occlusion of 

distracters as well as targets. Also, this more complex scenario simulates some of the 

high attentional loads that drivers deal with on an everyday basis, and which have been 

ignored in previous studies.  

Participants were randomly assigned to either the current lighting or alternative 

lighting where tail lamps were changed to emit a yellow hue but brake lamps remained 

red.  The scenario was a mostly straight rural three lane interstate roadway with some 

curves in a clear sky night time drive of approximately 18 kilometers that lasted 

approximately 15 minutes.   The participant vehicle followed 9 other vehicles traveling in 

a 3 (lane) x 3 (row) array and no other ambient traffic ahead of the driver.  During the 

drive, 45 brake signals occurred so that each vehicle displayed 5 brake onsets across the 

drive at pseudo-random times.  In order to simulate brake lamp onset, the simulator 

changed luminance on a rectangular brake-lamp area above each tail lamp rectangle and 

at the CHMSL location  Two vehicles followed the participant vehicle; each starting in an 

outer lane.  At unpredictable times, one of the two rear cars would changes lanes.  

Participants responded to brake lamp onsets by pressing a button on the steering wheel 
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with their right hand and to rear lane changes by activating the turn signal with their left 

hand. 

In order to test hypotheses about how red vs. yellow tail lamps may engage serial 

vs. parallel processes, a set size manipulation was conducted in a second experiment.  

Twenty-two participants drove identical scenarios to the first experiment but with only 

two lead cars and eliminating the lane change task.  Thus, the second experiment used a 

low set size (2 vehicles in front) and the first experiment a high set size (11 vehicles in 

front and rear).  In the second experiment the lead cars were in the center lane of the near 

row and the left lane of the far row. The 15 brake events from the respective near and far 

rows of the first experimental scenario were collapsed onto the single car displayed in 

that row for a total of 30 brake events.   

In using this visual search paradigm, the expected consequences of using serial 

search is that as the number of distracter objects increases, participants are more likely to 

miss brief targets altogether and to detect targets slowly. Thus, it was predicted that in the 

Red tail lamp condition, misses and RT to detected brake signals would increase 

markedly with increasing set size or attentional demands. The other assumption from the 

visual search paradigm is that searching for red brake lamps amidst yellow tail lamps 

allows the brake lamps to act as color singletons, which engages parallel pre-attentive 

processes that are not affected much by the increasing attentional demands. Thus, it was 

predicted that in the Yellow tail lamp condition, misses and RT to brake signals would be 

less strongly affected by increasing set. Since the difference between the second and first 

experiment involved changing between 2 vehicles and one task in the second study vs. 
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11vehicles and two tasks in the first study, this change can be viewed as more than a set 

size manipulation. Therefore, in the following, changes in set size are referred to as 

attentional demand.  Also, better performance on the lane change task was predicted for 

the Yellow condition.  These hypotheses were statistically evaluated by testing for an 

interaction between attentional demand (low vs. high) and tail lamp condition; and by 

simple effects tests of whether attentional demand affected each of the tail lamp 

conditions in the manner described above.  

In most visual search studies, the stimuli remain on until the participant responds; 

so accuracy is very high and RT is the only variable affected by experimental 

manipulations. However, brake signals often do not remain on until following drivers 

respond to them. In this study, the brake target was displayed for only 2 seconds, so 

misses occurred. Also, both missed brake signals and signals that are responded to slowly 

can have important safety consequences. Therefore, in a driving study, both misses 

(which would be very long RT’s in the visual search paradigm) and RT must be analyzed 

to test for effects of parallel vs. serial search.  

All hypotheses were supported.  Increasing attentional demand (set size and 

concurrent task) had little effect on RT and accuracy with yellow tail lamps (flat slope) 

and a large effect with red tail lamps.  Both the yellow and the red systems were similar 

in RT and accuracy with the reduced set size.  However, in the larger set size with a 

concurrent task, the number of missed brake lamps and false alarms was significantly 

lower in the Yellow tail lamp condition than the Red tail lamp condition.  Drivers were 

significantly faster in detecting brake lamps when tail lamps differed from brake lamps in 
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color than when brake and tail lamps were both red.  Interestingly, RT increased as 

targets increased in distance from the driver for the Red condition but not for the Yellow.  

Because the vehicle motion and brake onsets were identical between conditions, the 

differences in RT between conditions can only be accounted for by the tail lamp color 

change.  Not only did changing tail lamp color improve performance in detecting brake 

lamps, it also facilitated RT performance on the concurrent lane change task.  All of these 

findings had very large effect sizes.  The larger number of misses with red tail lamps 

relative to yellow tail lamps seems particularly important, since brake signals that are 

missed altogether could have greater safety consequences than brake signals that are 

responded to slowly.   More false alarms in the Red condition indicate problems with 

distractor-target similarity between red tail lamps and red brake lamps.  The effect of 

manipulating attentional demand on RT and accuracy for these systems provides 

preliminary evidence that yellow tail lamps facilitate efficient visual search that allows 

guidance or parallel processes, while red tail lamps are more likely to require focused 

attention that moves serially in search of red brake lamps.   

Performance was equal for both conditions with only two lead vehicles so the 

poor performance in the larger set size with red tail lamps could not have occurred 

because red brake lamps and red tail lamps were not distinguishable in the simulator.  In 

the simulator the yellow tail lamps had greater luminance than the red brake lamps.  

Thus, it could be argued that luminance differences between the yellow tail lamps and the 

red brake lamps in the Yellow condition were facilitating the use of pre-attentive 

processes rather than color alone.  However, in the field research by Mortimer (1968), 
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Cameron (1995) and others cited by Lee et. al., (2002), the current luminance-based 

system resulted in poorer performance than differentiating lamps by color (green or 

amber tail lamps with red brake lamps).  According to Cameron (1995), this was true 

even though the red tail lamps in his study differed more in luminance from the red brake 

lamp than did his amber colored tail lamp.    

The findings of these two experiments extend findings from earlier studies 

(Cameron, 1995; McIntyre, 2008, 2009) that yellow tail lamps strongly improve detection 

of brake lamps.   Furthermore, compared to previous research, they have done so in a 

more dynamic and complex traffic environment and with a concurrent task.   A novel 

contribution of these experiments is using a set size manipulation to assess search 

efficiency and possible underlying cognitive processing driving the behavior.  

Performance benefits for yellow tail lamps occur not just when drivers fixate on a single 

vehicle directly ahead of them, but also when drivers distribute attention across multiple 

vehicles at varying distances and locations, both ahead and behind them, and in the 

context of temporary occlusion of brake and tail lamps.  Another novel finding of the first 

experiment is that yellow tail lamps facilitate improved detection of important driving 

events (lane changes) that were not signaled by lighting.    

The third experiment was designed to further investigate the claim that yellow vs. 

red tail lamps engage different attentional processes by using eye tracking and workload 

measures. The participants’ task was to view static scenes with multiple traffic cars and 

report whether any brake lamps were illuminated or not. Experiment 3 was primarily 

concerned with how the salience of the brake signal affects visuomotor behavior and 
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attention during the ongoing process of monitoring and searching the driving 

environment for relevant signals such as brake lamp activation, including the relatively 

long periods when brake lamps are not activated.   

Importantly, visual search research indicates that when targets are feature 

singletons, the absence of a target terminates search as quickly and effortlessly as when a 

target is present (Treisman & Gelade, 1980).  However, search for conjunctive targets is 

not terminated until a target is located or all potential targets have been searched.  Thus 

when targets are not present in conjunctive searches, effortful search using focused 

attention must be sustained for longer periods than when targets are present.  This 

demands more cognitive resources than when a target is present.  Research indicates that 

subjectively rated workload increases as target salience decreases in vigilance tasks such 

as hazard detection during driving (Warm, Matthews & Finomore, 2008).  This 

difference in workload may be caused by the different types of visual scanning behavior 

needed for pre-attentive versus focused attention searches. When targets are feature 

singletons the parafoveal pre-attentive system is sufficient to orient attention when targets 

appear, so less visual scanning is needed when targets are not present (Kramer & 

McCarley, 2003).  In conjunctive searches, frequent shifting of focused attention is 

needed iteratively across all distracters to confirm they are not targets.  

Based on this research, it was hypothesized for Experiment 3 that with red tail 

lamps, ongoing visuomotor search behavior would indicate more use of focused-attention 

scanning and workload would be higher; while with yellow tail lamps, there would be 

less focused-attention scanning and lower workload. The serial scanning used in shifting 
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focused attention was expected to lead to a large number of brief fixations that are 

dispersed widely as participants scan for the unpredictable target location. In contrast, 

since pre-attentive processes use less shifting of focused attention, fewer and longer 

fixations that are less dispersed was expected. In addition, as in previous studies, it was 

hypothesized that red brake lamp detection would be much better when tail lamps are 

yellow. These predictions were tested by examining how tail lamp condition affected eye 

movement variables (number and duration of fixations; fixation dispersal) and workload.  

Twenty participants were exposed to both conditions (red tail lamps and yellow 

tail lamps) in a counterbalanced order.   A single driving scene was displayed for 10 

minutes. The same 11 cars remained visible for the entire time, without moving.  No 

brake lamps were present in the scene at the beginning of the 10 minute condition.  After 

an unpredictable time, the brake lamp(s) (only the CHMSL for the Red condition) would 

activate on one or more cars in the scene. When participants detected the presence of the 

brake lamp, they pressed the space bar to extinguish the lamp(s).  If a participant did not 

press the space bar within 10 seconds after the onset of a brake lamp, the experimenter 

pointed out the brake lamp and instructed the participant to extinguish the lamp by 

pressing the spacebar.  This process was repeated by varying the time of onset of the 

brake lamp from 5 to 120 seconds after the previous onset, and varying which car(s) 

activated the brake lamp. There were a total of 9 instances of braking over each 10 

minute condition.  After completing the first condition, the NASA TLX was 

administered.  The same procedure was repeated for the second condition. 
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The main interests in this study were workload perceptions and oculomotor 

behavior.  Participants reported significantly higher subjective workload in Mental 

Demand and Effort as measured by the NASA TLX in the Red condition than the 

Yellow.  When in the Yellow condition, participants spent over 70% of their time fixated 

in a centrally located 5 degrees of visual angle compared to 46% in the Red.    Thus, 

participants in the Yellow condition tended to look straight ahead in the central AOI 

using fewer and longer fixations. In contrast, participants in the Red condition shifted 

focused attention more frequently, used shorter fixations, and distributed their fixations 

over a wider spatial extent.  This visuomotor pattern is consistent with greater use of pre-

attentive processes (such as attention capture) in the Yellow condition, and greater use of 

serial focused scanning in the Red condition.   

These data suggest that less focused visual attention and effort is required to 

detect brake lamps when they differ from tail lamps in color.  The stimuli used in this 

experiment suffer from the same limitations as McIntyre (2008).  This limits the 

generalizability of the results to a specific range of ambient lighting conditions, such as 

during overcast, rainy or near dusk and dawn (commuting) hours.  Acknowledging these 

limitations, these data are still consistent with the hypothesis that, when brake lamps are 

color singletons because they are not the same color as tail lamps, drivers use less serial, 

focused scanning and instead tend to rely on pre-attentive processes such as attention 

capture from brake lamp onsets using parafoveal or peripheral vision.  

One argument against the results found in these simulator experiments is that the 

luminance contrast between the red tail lamp and red brake lamp was not representative 
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of what drivers experience on the road.  In other words, the only reason the color 

manipulation had significant performance benefits was because the one cue used to 

differentiate red brake lamps and red tail lamps was faulty.  The following field 

experiment using actual automotive lighting that meets the FMVSS guidelines for brake 

and tail lamps has been designed to validate these simulation studies and test the 

proposed alternative rear lighting (amber tail lamps) in the context of the visual search 

paradigm. 
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CHAPTER FOUR 

DISSERTATION STUDY INTRODUCTION 

This study will use visual search principles to examine the conspicuity of brake 

signals with current mandated automobile rear lighting compare current rear lighting to 

two alternative rear lighting systems where the red tail lamp lens has been replaced with 

an amber lens.  One of these conditions will simply use an amber lens in place of the red 

tail lamp lens.  This condition was included for external validity reasons to examine the 

effects of simply replacing the red tail lamp lens with a DOT approved amber lens 

without any other changes.  However, this single mechanical change not only alters the 

color of the light but increases its brightness relative to the red tail lamp.  This means the 

distractor set in this condition is not only a different color but brighter relative to the red 

tail lamp condition.  So, a second amber condition was included for internal validity to 

control for this color and brightness change confound.  In this condition neutral density 

filters were placed over the amber lenses so the amber lamp perceptually matches the red 

tail lamp in brightness.  The result is a tail lamp condition where the distractor set only 

differs in color from the current lighting.  Despite the luminance difference in the two 

amber tail lamp conditions, it was predicted that there would be no significant 

performance differences between them if the color change was driving behavior rather 

than luminance. 

Considering the safety implications of detecting brake signals, test circumstances 

should examine as many exogenous and endogenous factors affecting driver 

identification of brake lamps as possible.  In order to assess the effect of these variables, 
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the five principles learned from visual search research mentioned in chapter 2 should be 

applied to research design.  For the current study these principles will be applied in the 

following manner:  

1. Set size manipulation—Employing single vs. multiple lead vehicles to be 

searched 

2. Distractor-distractor and target-distractor similarity—Allow occlusion of 

vehicle lamps and perceptual differences in brightness due to the effects of 

distance on brightness, visual angle and ambient light. 

3. Manipulation of target-distractor contrast—Use color to differentiate 

distractor tail lamps from target brake lamps and compare this to the 

current system which uses only luminance contrast to differentiate tail and 

brake lamps. 

4. Analyzing target absent responses—Use discrete trials that allow 

participants to indicate both presence and absence of target. 

5. Simulating challenging endogenous states—Employ a distraction task that 

disallows viewing brake onset. 

 

The primary hypotheses for this study should mirror those of visual search for 

serial and parallel searches.  Because distractors (tail lamps) and targets (brake lamps) in 

the currently mandated lighting share the same color and are only differentiated by 

brightness which is attenuated by the various factors discussed earlier, the hypotheses for 

the current lighting (red tail lamps with red brake lamps) are the same as for a serial 

conjunctive search.  If changing the tail lamp color sufficiently homogenizes the 

distractor set and categorically differentiates it from the target brake lamp, both 

alternative rear lighting systems (two kinds of amber tail lamps with red brake lamps) can 
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be categorized as parallel searches.  If these assumptions are accurate, set size 

manipulation will have differential effects on performance both between and within 

conditions as illustrated in Figure 2.1 and the following hypotheses should hold.   

 
Hypotheses 

 

Tests of set size effects (i.e., changing from one to multiple vehicles) for Red vs. Amber 

tail lamps 

1. The increase in RT and error with set size for Red tail lamps will be greater than 

the set size increase for Amber tail lamps. 

2. For Red tail lamps, RT and error will increase with set size.  

3. For Amber tail lamps, the change in RT and error with set size will be negligible. 

4.  With a single vehicle, RT and error for Red tail lamps will not differ much from 

RT for Amber tail lamps for both brake present and absent trials.   

5. With multiple vehicles, RT and error for red tail lamps will be greater than RT for 

amber tail lamps for both brake present and absent trials. 

Tests of effects of brake present vs. absent: 

1. For Red tail lamps, the increase in RT and error with set size will be greater for 

absent trials than for present trials. 

2. For a single vehicle with Red tail lamps, RT and error for absent trials will not 

differ much from RT and error for present trials.  

3. For multiple vehicles with Red tail lamps, RT for absent trials will be greater than 

present trials. 
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4. The activation hypotheses presented by Chun and Wolfe (1996) argues that 

observers calculate the “cost” of target absent response errors and may therefore 

adjust their RT.  As the “cost” of an error increases so does RT due to more 

exhaustive search.  Thus brake absent responses may be slower than present 

responses with amber tail lamps in this applied visual search due to the cost of 

missing a safety related signal. 
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CHAPTER FIVE 

RESEARCH DESIGN AND METHODS 

Participants 

Forty-eight Clemson University undergraduates (18 male; mean age = 20) who 

were licensed drivers were recruited from a Psychology participant pool.  Participants 

were screened using a version of the Ishihara Test for Color Blindness and were excluded 

from the study if they misidentified more than two plates.  All participants met the 

criterion for the Ishihara test.  One participant was dropped from the Red condition (see 

below) as an outlier being more than 3 standardized residual deviations slower than the 

mean, leaving 47 participants for the data analysis. 

Design 

The task was to indicate by keypad response whether brake lamps were present or 

absent on mock vehicles in two lanes of traffic.  Groups of participants were randomly 

assigned to one of three tail lamp conditions:   

1. Red (n = 16, 6 male, mean age = 19) - current lighting; all vehicles had red tail 

lamps and red brake lamps with a standard luminance difference as the sole 

distinction between the lamps.   

2. Amber DOT (n = 15, 6 male, mean age = 21) - all vehicles have DOT/SAE 

amber lenses in place of the red tail lamp lens and retain red brake lamps.  

This new lens produces a color difference between brake and tail lamps but 

also increases the luminance of the tail lamp (relative to red tail lamps), 
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thereby reducing the luminance difference between the brake and tail lamp 

within this condition.  

3. Amber Matched (n = 16, 6 male, mean age = 21) - the same amber lamps as 

condition Amber DOT except with brightness reduced by a neutral density 

filter to match the current tail lamps.  The only difference between this 

condition and the Red tail lamp condition is the color of the tail lamp.  Red 

brake lamps are used as with the other conditions.   

 
All three conditions retain red brake lamps and only tail lamp color or brightness 

is manipulated.  All participants in each condition performed the brake identification task 

in two set sizes; single vehicle and eight vehicles.  There were 20 randomly ordered trials 

in the single vehicle block and 40 in the eight vehicle block balanced for brake present 

and absent trials within every 10 trials.  The lamp activations were not controlled by 

computer so a computerized randomization could not be practically carried out between 

each trial.  Thus, both blocks had two predetermined randomly ordered sequences that 

were counterbalanced between participants. The order of blocks, i.e., single or eight 

vehicle task as the first block, was counterbalanced across participants.   

Materials and Tasks 

The rear lighting of eight stationary mock vehicles arranged to represent two lanes 

of same direction traffic with four cars in each lane were visible to the participant (see 

Figures 5.1 and 5.2).  Figures 5.1 and 5.2 were taken in brighter ambient light than testing 

conditions in order to provide the reader a clear image of the display.  For the single 

vehicle task, the participant vehicle was 35 m directly behind the first vehicle in the left 
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lane.   For the eight vehicle task, the participant was 20 m behind the vehicle in the first 

row of the right lane.  For the eight vehicle task, the four rows of rear lamps were 20, 30, 

40 and 50 m from the participant vehicle respectively (see Figure 5.3).  The lateral 

distance between the two outside lamps of the vehicles in the first row was 5 m.  The 

entire display subtended a horizontal angle of 20 degrees.  The mock vehicles were fabric 

covered 1.5 m wide x 1.5 m high frames with FMVSS approved combination tail and 

brake lamps.  The first row vehicles had two lamps on each side whereas the remaining 

six had lamps had one on the only side visible due to occlusion.  Thus, there were two 

brake lamps and two tail lamps (one set on each side) visible on the first row vehicles and 

only one brake lamp and one tail lamp on each of the six remaining vehicles.  Lamps 

were mounted horizontally or vertically adjacent to one another.  None of the mock 

vehicles had a center high mounted stop lamp (CHMSL).  This was done to avoid a 

confound between visible lamps in the first row which could have a visible CHMSL 

(with the exception of vehicles not required to have a CHMSL or an equipment 

malfunction) compared to the vehicles in the other rows on which a CHMSL likely would 

not be visible because of occlusion.  
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Figure 5.1.  Eight vehicle display in Amber DOT condition with brake lamp activated in 

left lane third row. 

 

Figure 5.2.  Eight vehicle display in Red condition with brake lamp activated in left lane 

third row. 
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Although the dual filament bulbs permit a single lamp activating as both a tail 

lamp and brake lamp, the brake lamp could not be displayed in the same location as the 

tail lamp in the two amber conditions due to color differences.  Because of this, in order 

to allow the possibility for brake lamps to be displayed on each of the eight vehicles, each 

vehicle could only have one tail lamp and one brake lamp.  This design would have 

created a situation in which anytime a single lamp was activated, it would indicate a tail 

lamp; and if two lamps were activated one of them had to be a brake lamp.  Thus, this 

design would have provided an additional cue that a brake lamp was activated (i.e., 

activation of two lamps) separate from the cue of increased brightness.  It is important to 

note that this additional spatial cue to braking is not present in on-road driving, because 

many vehicles do not have separate brake and tail lamps.  

In order to avoid this spatial confound, only one vehicle in each row was 

permitted to exhibit a brake lamp and the other four vehicles displayed two tail lamps 

instead of one (see Figure 5.3).   This meant that when participants saw two lamps 

activated on a vehicle, it could be two tail lamps or one brake and one tail lamp, which is 

more similar to real on-road conditions.  While this reduced the number of locations at 

which a brake could appear, participants could not easily notice this was the case (unless 

they remembered the sequence of brake lamp locations) and thus they would still have to 

search all vehicles for brake lamps.  This is important to note as the set size is a critical 

manipulation in the design.   
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Figure 5.3.  Schematic overhead view of mock vehicle display. 

 

The lamps were a pedestal mounted, round, 80 cm2, double faced (amber lens on 

one side and red on the other), with a single original equipment equivalent 1157 dual 

filament incandescent bulb that permitted a single lamp to activate as either a brake lamp 

or tail lamp.  The distance from the ground to the midline of each lamp assembly was 

0.84 m.  All lamps were powered by a single fully charged 12 volt battery.  The minimum 

amperage draw on the system was 8 amps.  A maximum of 12 amps occurred only when 

all 8 mock vehicles had all tail lamps and both brake lamps on the first row vehicle 

activated.  The longest session on one charge was 2 hours with the lamps activated for 

about half of the total time.  From the participant’s location, an individual lamp in the 
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first row subtended a horizontal and vertical angle of 0.3 degrees and 0.11 degrees in the 

last row.  Under a variety of ambient lighting conditions, the red brake lamp was 

consistently10x the luminance of the red tail lamp and 5x the luminance of the amber tail 

lamp of the Amber DOT condition when measured at 6 meters by a Minolta LS-100 spot 

luminance meter with a 1 degree acceptance area encompassing the entire lens.   

The method of adjustment was used to match the brightness of the amber lamp for 

the Amber Matched condition.  Four additional participants were used in this procedure.  

The researcher adjusted voltage to the amber lamp to reduce its brightness until the 

participant standing three meters distance in 3.0 lux ambient lighting reported that it 

matched the subjective brightness of the red tail lamp.  Resistance in Ohms was then 

measured.  This procedure was repeated three times for each of the four participants to 

obtain an average resistance.  Once the matched brightness level was determined through 

the method of adjustment, the luminance of the dimmed amber lamp was measured with 

a Minolta LS-100 spot luminance meter with a 1 degree acceptance area.  The amber 

lamp that was matched in brightness to the red tail lamp in brightness was now 0.5x the 

luminance of the red tail lamp.  However, in order to implement this amber lamp in the 

mock vehicle display for condition 3, a 0.6 neutral density filter that reduced the 

luminance of the amber lamp identically to the voltage reduced lamp was placed over the 

amber tail lamps.   

The experiment was conducted after sunset when ambient light levels were less 

than 100 Lux as measured from the third row of the display by a Minolta T-1 illuminance 

meter oriented to capture light from the direction of the participant.  The participant 
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vehicle did not have the head lamps activated.  A street lamp located 35 meters behind 

the participant vehicle kept the testing area at a constant illumination.  The average Lux 

at the first, third and fourth rows was 7.4, 3.6 and 2.4 respectively.  These illumination 

levels are consistent with the range of illuminance produced by automotive head lamps at 

night and ambient light levels at civil twilight (Owens, Francis & Leibowitz, 1989). 

Procedure 

 Participants were given a consent form and a version of the Ishihara Test for 

Color Blindness.  Participants sat in the passenger seat of a vehicle (eye height 1.2 m) 

with a laptop computer in their lap for recording responses and presenting the secondary 

task.  Exposure to the single or multiple vehicle configuration as the first block of trials 

was counterbalanced between participants.  The participant was instructed that they 

would be indicating by keypad response whether brake lamps were present or not on the 

mock vehicles.  Because both brake present and absent responses were being compared, 

the brake present and absent response keys were reversed for half the participants to 

avoid possible bias of handedness.   

Before beginning the trial, the participant was shown the tail lamps activated and 

then the brake lamps.  For the multiple vehicle display, tail lamps were activated on all 

eight vehicles.  Leaving the tail lamps on, a brake lamp was then activated on the last row 

right lane vehicle to familiarize the participant with identifying a brake lamp.  No 

plausible search strategy was given verbally to the participant such as “any red light is a 

brake light” for the amber conditions or “look for the brighter light” for the Red 

condition.  They were simply shown the target brake lamp and distractor tail lamps. 
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All lamps were extinguished between trials.  The researcher then demonstrated 

the sequence of screens on the laptop that would be seen by the participant and directed 

the participant to respond as quickly and accurately as possible on each trial.  In order to 

simulate distraction, the participant was instructed to look at the laptop at all times except 

when cued to make their response.  The participant’s focal gaze on the laptop was 

equivalent to looking just below the centerline of the steering wheel.  Each trial began by 

the researcher prompting the participant to press a key.  Then a screen displayed a string 

of twenty individual numbers (Bold, 16 pt font and different on each trial) which the 

participant read aloud to confirm their focal vision was not on the vehicle display.  The 

experimenter in the vehicle with the participant monitored whether the participant’s gaze 

was on the screen and that they were correctly reading the numbers on the screen.  Trials 

where participants did not keep their gaze fixed on the screen or read most of the 

numbers correctly were dropped, as discussed below. While the participants were reading 

the numbers aloud, the research assistant out of sight and located near the vehicle display 

activated the lamps for the trial.  After three seconds the numbers disappeared and the 

words “brake” and “no brake” appeared on the screen above their corresponding keys.  

The participant then looked up at the already activated lamps and pressed either the 

corresponding “brake” or “no brake” key.  When the participant responded or if the 

participant did not respond within 4 seconds, the laptop screen recycled to the initial 

screen directing the participant to press a key when prompted to begin the next trial.  The 

lamps were again extinguished until the next trial.  
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Five practice trials with two brake present trials were performed.  Participants 

were given feedback for incorrect responses during the practice to ensure they understood 

the task.   After the practice, the 20 trials for the single vehicle or 40 trials with multiple 

vehicles were performed and the opposite block followed.  The five practice trials were 

always repeated prior to the multiple vehicle block.  A single session with a participant 

took approximately 20 minutes. 

Correct (hits and correct rejections) and incorrect (misses and false-alarms) 

responses and RT were recorded for each trial.  The response time started with the 

disappearance of the number string display and ended with the keypad response.  Only 

trials with correct responses were included in the RT data.  RT’s in this experiment 

examine lamp conspicuity and denote search, detection, and decision time and are not 

meant to be indicative of RTs for a braking response.  Trials with error in the light 

display or where a participant looked at the display rather than reading the numbers on 

the laptop screen were not included in the data analysis (total dropped = 1% of trials). 
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CHAPTER SIX 

RESULTS AND DISCUSSION 

In order to assess the findings in the context of visual search, two techniques were 

employed to simplify the data.  First, because visual search is measured by two 

variables—speed and accuracy—that that both provide important information about 

behavior on the same task, a composite variable (corrected RT) was created.  Corrected 

RT adjusts RT for accuracy.  This is often necessary because participants could favor 

speed over accuracy or vice-versa so analyzing RT or accuracy independently could be 

misleading.  For example, a participant could decide to rapidly respond without any 

regard for accuracy such that they miss every target.  Assuming their RT is representative 

of how the search is performed would be erroneous. One way this is dealt with is to 

mathematically divide the mean (or median) RT by the proportion of correct responses  

(Horowitz et al. 2003).  For this experiment, the corrected RT on present trials was the 

mean RT on present trials where the participant responded correctly divided by the 

proportion correct on present trials.  The corrected RT on absent trials was the mean RT 

on absent trials where the participant responded correctly divided by the proportion 

correct on absent trials.  This corrected RT variable can be interpreted as the RT to 

produce each correct response.   The corrected RT data were screened for violations of 

skew and homogeneity of variance.  A log-normal transformation was used on the 

corrected RT data in all statistical analysis to correct violations of skew and homogeneity 

of variance.   
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Secondly, the two amber conditions were included in this experiment to address the 

different internal and external validity concerns mentioned in the introduction and design 

sections of this paper but no difference between the two conditions was predicted.  

Therefore, before addressing the main hypotheses, the two amber conditions were 

compared alone (ignoring the red condition) for any statistically significant differences.  

Figure 6.1 shows how corrected RT in the amber-DOT and amber-matched conditions 

was affected by set size and target presence vs. absence. A 2 x 2 x 2 (type of amber tail-

lamp x set size x presence) mixed model ANOVA for corrected RT did not have a main 

effect of type of amber tail-lamp, F(1, 29) = 1.97, p = .17, partial η2 = 0.06, and type of 

amber tail-lamp did not interact with set size, F(1, 29) = 0.2, p = .66, partial η2 = .007, or 

presence F(1, 29) = 1.37, p = .25, partial η2 = 0.05.  There were only main effects of set 

size, F(1, 29) = 22.03, p < .001, partial η2 = 0.43, and target presence, F(1, 29) = 20.67, p 

< .001, partial η2 = 0.42.  Based on the lack of significant effects of the type of amber 

lamp and the low effect sizes for the type of amber lamp, in the following analyses the 

amber-DOT and amber-matched conditions were combined to form a single condition 

called Amber (n = 31).  The means for the combined Amber condition are also shown in 

Figure 6.1.  
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Figure 6.1.  Mean corrected RT for Amber DOT, Amber Matched and Amber 

(combined). 

 

The corrected RT variable will be used for the statistical tests of the hypotheses. 

Before presenting the corrected RT data, uncorrected RT and error (misses and false 

alarms) for the Red and Amber (DOT and Matched combined, n = 31) are presented in 

Tables 6.1, 6.2 and Figures 6.2 and 6.3.  These tables and figures are presented to 

demonstrate that prior to combining the two variables, the uncorrected RT and error data 

generally supports the hypotheses.  Thus, any support for the hypotheses based on the 

corrected RT variable does not depend on the RT correction. The uncorrected RT and 

error data will be discussed in more detail after the corrected RT analyses are presented.  
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Table 6.1.  Mean uncorrected RT (SD) in ms for Red and Amber tail lamp conditions in 

both set sizes  

 Single Vehicle RT (ms) Multiple Vehicle RT (ms) 

Tail lamp condition Present Absent Present Absent 

Red 938 (207) 964 (196) 1114 (244) 1381 (300) 

Amber  976 (176) 1014 (168) 1047(159) 1112 (186) 

 

 

Table 6.2.  Mean proportion of misses and false alarms for Red and Amber tail lamp 

conditions in both set sizes  

 Single Vehicle  Multiple Vehicle 

Tail lamp condition Miss  False Alarm  Miss  False Alarm  

Red 0.05 0.03 0.15 0.07 

Amber  0.01 0.03 0.03 0.04 
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Figure 6.2.  Uncorrected RT (ms) with SE bars for Red and Amber  

 

Figure 6.3.  Miss and false alarm (FA) data for Red and Amber  
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Tests of set size effects for Red vs. Amber tail lamps 

The first set of hypotheses tested whether set size affected corrected RT for Red 

and Amber tail lamps as would be expected if Red tail lamps engaged the serial 

attentional system and Amber tail lamps engaged the parallel attentional system. This 

predicted pattern involves: an increase in RT with set size for Red tail lamps but not for 

Amber tail lamps; negligible RT differences between Red and Amber tail lamps with a 

single vehicle; and RT for Red tail lamps greater than for Amber tail lamps with multiple 

vehicles. Figure 6.2 shows how tail-lamp condition, set size, and presence-absence 

affected corrected RT which will be called RT in the rest of this section.  This figure 

seems to support most of the hypothesized pattern of results. Statistical tests of these 

hypotheses are now presented.  

A key prediction from visual search theory is that the set size effect for serial 

searches is greater than that for parallel searches. In support of this and hypothesis one, a 

significant interaction of set size and tail lamp color, F(1, 45) = 44.22, p < .001, partial η2 

= 0.50, was found.  In support of hypothesis two, in the Red, RT for multiple vehicle 

present trials was significantly greater than single vehicle present trials, F(1, 15) = 59.18, 

p < .001, partial η2 = 0.80.  The same strong set size effect was found for absent trials in 

the Red condition, F(1, 15) = 146.3, p < .001, partial η2 = 0.91.  The interaction, which 

showed a large effect size, along with the very large set size effects for target present and 

absent displays in the Red condition support the hypothesis of an increase in RT with set 

size for stimuli that engage the serial attentional system. 
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Hypothesis three, a negligible RT increase with set size for the Amber 

condition—w as not supported.  Multiple vehicle RT present trials were significantly 

greater than single vehicle present trials, F(1, 30) = 22.4, p < .001, partial η2 = 0.43.  The 

same was true for absent trials, F(1, 30) = 11.0, p < .01, partial η2 = 0.27.  This set size 

effect, even though smaller than for the Red condition, does not fit a strict parallel search. 

While Chun and Wolfe’s (1996) model predicts absent trial set size effects, no model 

predicts target present set size effects for parallel search.  

According to visual search theory, small set sizes (< 5) are expected to have 

negligible RT differences for either parallel or serial searches as predicted by hypothesis 

four (Wolfe, 2007).  This hypothesis was supported because, for the single vehicle 

condition, there were no significant differences between Amber present (M = 985 ms, SD 

= 172 ) and Red present (M = 994 ms, SD = 241) trials, F(1, 45) = 0.02, p = .88, partial η2 

= 0.0, or between Amber absent (M = 1042 ms, SD = 175) and Red absent (M = 992 ms, 

SD = 207) trials, F(1, 45) = .79, p = .38, partial η2 = 0.02.  

In contrast, visual search theory predicts that with larger set sizes (as in the 

multiple vehicle condition) RT for serial searches will be greater than RT for parallel 

searches as predicted by hypothesis five. This hypothesis was supported as Red brake 

present trials (M = 1318 ms, SD = 294) were significantly greater than Amber brake 

present trials (M = 1095 ms, SD = 168) with multiple vehicles, F(1, 45) = 9.9, p < .01, 

partial η2 = 0.20. Similarly, Red brake absent trials (M = 1505 ms, SD = 407) were 

significantly greater than Amber brake absent trials (M = 1154 ms, SD = 215) with 

multiple vehicles, F(1, 45) = 15.5, p < .001, partial η2 = 0.26.  These set size effects 
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between tail lamp conditions demonstrate the superiority of separating brake and tail 

lamps by color rather than luminance as well as the importance of using multiple vehicles 

to test for manipulations that may affect visual search.   

 

 

Figure 6.4.  Mean corrected RT (ms) with SE bars for Red and Amber  

 

 

Tests of effects of brake present vs. absent effects 

The second set of hypotheses tested effects of presence vs. absence of the brake 

target. For serial searches, visual search theory predicts a negligible effect of presence vs. 
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and an interaction such that the increase in RT with set size will be greater for absent than 

present trials.  For parallel searches, the activation hypothesis of Chun and Wolfe (1996) 

predicts brake absent RT will increase with set size but brake present should not.  Figure 

6.2 seems to support these hypotheses.  

The first hypothesis was supported in that, for the Red condition, there was a 

significant interaction of set size with target presence and absence, F(1, 15) = 7.2, p < 

.05, partial η2 = 0.32 as would be predicted by serial search in this condition.  The second 

hypothesis was supported as there was no apparent difference between target present and 

absent RT for single vehicle F(1, 15) = 0.01, p = .92, partial η2 = 0.001.  In support of the 

third hypothesis, in the Red tail lamp, multiple vehicle condition, absent trial RT was 

significantly greater than for present, F(1, 15) = 9.7, p < .01, partial η2 = 0.39.  The 

interaction of set size with target presence and absence with significantly longer RTs on 

brake absent trials compared to brake present trials with multiple vehicles fits the serial 

search model, which assumes that serial searches for absent targets take longer because 

more distractors must be searched.  Additionally, the fact that target absent responses 

take longer with larger search sets indicates that target absent data is important in 

assessing conspicuity of signals and provides information that experimental designs that 

only use target present data cannot provide. 

In support of hypothesis four, that in a parallel search absent RT will be greater 

than present RT, the main effect of target presence in Amber was also significant, F(1, 

30) = 20.63, p < .001, partial η2 = 0.41.  Target present RT in Amber was significantly 

faster than absent in both single vehicle, F(1, 30) = 6.7, p = .02, partial η2 = 0.2, and 
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multiple vehicle F(1, 30) = 8.3, p < .01, partial η2 = 0.22.  There was no interaction of set 

size and target presence, F(1, 30) = 0.1, p = .75, partial η2 = 0.003.  The lack of an 

interaction fits with classifying the Amber condition as a feature search task using 

parallel processes.  Finding both set size and target presence effects fits with the 

activation model of visual search (Chun & Wolfe, 1996) and again reinforces the need to 

use multiple vehicles and target absent trials in research design.  

 

Uncorrected RT and error Data 

Uncorrected RT data and error data are graphically displayed in figures 6.3 and 

6.4, respectively, for comparison to the corrected RT data.  The set size effects on 

uncorrected RT data are essentially the same as the corrected RT data for all but one 

effect.  The multiple vehicle RT for brake present in the Red condition (1114 ms) is not 

different from the Amber (1047 ms) and so does not conform to the predictions of set size 

effects hypothesis five that RT for Amber brake present multiple vehicle would be faster 

than Red.  However, the need for a corrected RT can be seen in this case as the 

proportion of missed brake signals (15%) and false alarms (7%) were very high for this 

condition.  

 For the error data, there were no significant differences between tail lamp 

conditions or set sizes for false alarms.  These are typically very low in visual search 

tasks.  The miss rate for the Amber condition is typical for a single feature or efficient 

conjunctive search (2-4%) particularly given the small number of trials (40) relative to 

typical visual search tasks (100+) where practice effects can dilute “key confusion” errors 



 

 
59 

by participants.  However for miss data with multiple vehicles, the Red condition had 

significantly more misses than the Amber condition, supporting the claim that the Red 

condition engages serial processes.   

Comparing the uncorrected RT and error data in Figures 6.2 and 6.3 suggests that 

no speed-accuracy trade-off were present, as the independent variables affected both 

variables in similar ways, so that when error increased, speed increased also. In addition, 

a bivariate correlation analysis between each condition’s respective uncorrected RT and 

error showed no significant relationships.   

In order to assess if participants learned that brake lights would only appear on 

four of the eight vehicles, the multiple vehicle trials were divided into four sequential 

blocks of ten trials and uncorrected RT (called RT in this section) was analyzed by 

ANOVA.  If RT decreased with time on task, this might indicate either learning the 

reduced set of target locations or normal practice effects (e.g., learning the locations of 

the response keys).  Although there were significant reductions in RT over time for both 

Amber, F(3, 93) = 10.43, p < .001, partial η2 = 0.25, and Red, F(3, 42) = 5.76, p < .01, 

partial η2 = 0.29 (see Figure 6.5), this is not conclusive evidence that participants were 

only searching four of the eight locations.  First, visual search tasks often see decrease in 

RT after hundreds of trials even when target locations are randomly located in the display 

so that participants cannot predict target location (Wolfe et al., 1989, Duncan & 

Humphreys, 1989).  Second, the large effect sizes due to set size effects between single 

and multiple vehicle displays are not likely to occur if participants reduced the searchable 

set to only the four brake light locations instead of the full display.  
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Figure 6.5.  Time on task effects on RT with multiple vehicles 

 

Row/Distance Effects 

A row by row analysis of miss and uncorrected RT for brake present trials (to 

examine effects of miss data separately) was done to see if there were performance 

differences due to effects of brake lamp target distance (2 0, 30, 40, 50 m) from the 

participant (see Figure 6.5).  For both target present RT and miss data, a 2 x 4 (tail lamp 

color  x row) mixed model  ANOVA was run with an alpha of .05.  In addition to 

possible effects of distance on brightness perception, there was an unavoidable confound 

between distance and lamps for the first row vehicle compared to the other rows.  The 

lamps of the first row vehicles were not occluded at all by another vehicle, while some 

lamps were occluded on all vehicles in the remaining three rows.  Thus the first row 

vehicles had two tail lamps and two brake lamps whereas the remaining six only had a 

single tail or brake lamp.   
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Figure 6.6.  Uncorrected RT for brake present trials (ms) and misses (%) across rows. 

 

Row significantly affected RT for the Amber condition, F(3, 90) = 5.6, p = .001, 

partial η2 = 0.16.  Within subjects contrasts revealed that RT for row 1 (M = 960 ms) was 

significantly faster than row 3 (M = 1026 ms), F(1, 30) = 14.42, p < .01, partial η2 = 0.33 

and)  and row 4 (M = 1048 ms) F(1, 30) = 9.27, p < .01, partial η2 = 0.24, but not row 2 

(M = 1001 ms).  The Row did not significantly affect miss rate for the Amber condition, 

F(3, 90) = 1.71, p = .20, partial η2 = 0.05, (Grand Mean = 3.75%).   

Data from three Red condition participants were excluded by the RT ANOVA 

analysis because they missed all the row 4 brake present trials and so had no RT.  Row 

did not significantly affect RT for the Red condition, F(3, 45) = 0.65, p = .59, partial η2 = 

0.04.  Row significantly affected miss rate for the Red condition, F(3, 45) = 7.58, p < 
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.001, partial η2 = 0.34.  Within subjects contrasts revealed significant differences (p < 

.05) between row 4 misses (M = 39%) and rows 2 (M = 5%) and 3(M = 4%) but not row 

1 (M = 15%).   

The large number of misses for the fourth row brake lamp in the Red condition 

was a cause for concern.  Electrical equipment examination, luminance readings and 

subjective evaluation of brightness indicated that the equipment was not faulty.  This 

brake lamp was also the exemplar demonstrated to every participant prior to beginning 

the task.  The only explanation that accounts for the large number of misses is that the 

brightness difference for the red brake lamp at that distance was not sufficient to reliably 

distinguish it from the comparator red tail lamps activated at nearer distance.  Because 

relative brightness is not a primary cue of braking in the Amber conditions, distance had 

no effect on error.   

Because visual search tasks typically take place in two dimensions, the row by 

row analysis has no parallel in that paradigm.  However, in practical application it is 

important to know how distance affects performance.  As distance increases, brightness 

of a constant size and luminance stimulus decreases according to the inverse square law.  

Also, because head lamp illumination of forward objects decreases rapidly with distance 

the ambient light differentially affects luminance contrast of objects at different distances 

(Owens, Francis & Leibowitz, 1989).  It should be noted that the distances between rows 

for this experiment were very short (10 m).  At a speed of 60 mph the participant vehicle 

would only be 2 seconds from the vehicles in the last row in the display (50 m). 
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CHAPTER SEVEN 

CONCLUSIONS 

The data from this study basically follows the theoretical predictions of visual 

search for RT and error with parallel and serial search; particularly given the small set 

size manipulation. The set size manipulation in this study is very small compared to 

typical visual search manipulations (which are normally greater than 10 and can be 

greater than 50) so effects were expected to be comparable to a small set size 

manipulation in basic research.  However, in this real world application the set size 

manipulation was deemed appropriately realistic and theoretically sufficient to produce 

the predicted outcomes.   

This study has achieved its four goals.  To reiterate they were: 

1. Evaluate current research methods and propose a new methodology based 

on the visual search paradigm.   

2. Demonstrate that current rear lighting on automobiles relies on serial 

search and does not effectively meet the stated purpose of regulators  

3. Propose a more effective system relying on parallel processes for 

increasing the conspicuity of brake lamps.   

4. Validate and extend previous simulator research on this same topic. 

First, the value of a set size manipulation, which is rare in rear lighting research, 

was clearly demonstrated.  With a search set of eight vehicles, amber tail lamps led to 

large reductions in RT and error relative to red tail lamps; while with a search set of one 

vehicle, the tail lamp manipulation led to little to no performance differences.  These 
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findings provide strong evidence that the current practice of employing a single vehicle to 

assess rear lighting conspicuity is insufficient, and they demonstrate the need to test any 

proposed lighting systems with multiple potential distractor locations present.   

In addition to the set size manipulation, this experiment has demonstrated the 

need to follow visual search paradigms by examining not only detection of the target 

brake lamp but target absent data.  This unique piece of information allows analysis of 

signal detection performance and the response time can serve as an indicator of cognitive 

load.  Attention devoted to searching a field of red lamps without a brake lamp, is 

attention that cannot be directed to other potentially hazardous road conditions and 

signals such as traffic signals, signage, pedestrians and cyclists.   

Simulating compromised endogenous states by not allowing participants to see 

the brake onset is another important design factor in this study that is often not employed 

in rear lighting research.  Other research has employed concurrent distracting tasks but 

this experiment goes a step further in simulating inattention rather than divided attention.  

While drivers often are able to make use of the lamp onset cue foveally, at least two 

factors make missing a brake onset a real possibility and argue for biasing against this 

occurrence in research design:  first, the proliferation of in-vehicle devices that demand 

visual attention and second, research demonstrating that serious visual attention deficits 

can occur even with non-visual attention demands such as mind-wandering or other off-

task cognitions.    Additionally, incandescent bulbs can fully activate in less than 300 ms 

which amounts to a slow eye blink or a saccade to a touchscreen, instrument panel, 

roadway sign, passenger, or other potential hazard.  Lighting technology appears to be 
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moving toward the use of light emitting diodes for vehicle lighting and these can fully 

activate faster than the blink of an eye (less than1ms). 

 Regarding the second goal, the large performance decrements with increased set 

size in the Red condition supports the claim that current rear lighting on automobiles 

relies on inefficient serial search processes and does not effectively meet the stated 

purpose of regulators in making brake lamps conspicuous, perceived and understood in 

all environmental conditions.  Current lighting relies on luminance differences between 

brake and tail lamps; and luminance does not have much empirical support as a feature 

that produces efficient search.  When multiple vehicles are present, the current lighting 

had significantly higher error and slower RT compared to a system designed to engage 

parallel search and differentiating brake lamps from tail lamps based on color.   

One objection to the design of this experiment might be that the CHMSL, which 

is available on American cars since 1995 was not used in the display.  As mentioned 

previously this was partly done to avoid another confound between first row and 

subsequent row vehicles.  Additionally, it is a very real occurrence in everyday driving 

when following vehicles that either do not have a CHMSL by design (commercial trucks, 

buses, motorcycles, and older model cars) or equipment malfunction.  Also, as was 

simulated in this experiment, the CHMSL is regularly obstructed by other lead vehicles.   

However, in a variety of ways this experiment was a best case scenario for the 

current lighting.  Shape, size and luminance of lamps was controlled which made the 

distractor set as homogenous as possible. Yet, as mentioned previously, brake and tail 

lamps on the road are allowed to have a range of shapes, sizes and even luminance which 
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have all been shown to affect judgments of brightness, which is the only perceptual 

difference between brake and tail lamps in the current system.  Additionally, the ambient 

lighting conditions in this study favored a luminance contrast based system.  Yet, a color 

coded system that had less luminance contrast between brake and tail lamp (Amber DOT) 

than the current lighting system performed significantly better than the current system.  In 

brighter ambient lighting (1, 000-7,000 lux; UNECE, 2011) such as overcast days or 

commuting hours prior to sunrise and sunset where drivers regularly activate their driving 

lamps, the current system would be predicted to perform even worse because of its 

reliance on perceived brightness. 

The third goal of this study was to propose and evaluate a more effective system 

for increasing the conspicuity of brake lamps that engages parallel search processes.  This 

was accomplished by making distractor tail lamps categorically different from target 

brake lamps by using a feature (color) that is well established to engage parallel 

processes.  The reduction in RT to identify a brake lamp relative to current lighting could 

be as much as 200ms with amber tail lamps.  At 60 mph this could amount to reducing 

stopping distance by 5 m. With the proposed color coded system, the endogenous search 

goal is simplified to be a single feature search of “any red light” amongst amber lights.  

Many visual search studies have demonstrated that single feature searches can be 

performed efficiently in the face of conditions that degrade performance in conjunction 

searches.  Thus, vagaries in brightness and all of the variable factors that affect its 

perception such as manufacturer lamp shapes, sizes, number, locations and luminance 

have no bearing on this single feature search goal.  Additionally, because a system that 
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differentiates lamp function by color does not rely on luminance contrast, future tests 

under the environmental factors mentioned above (brighter ambient lighting, distractor 

heterogeneity) will likely have little adverse effect on that system relative to current 

lighting.  This not only makes detection more efficient but reduces cognitive load when 

brake lamps are not present, allowing attention to be distributed to other potential and 

equally important events in the environment.  For example, when approaching an 

intersection drivers need to monitor the traffic signal state, cross traffic and nearby 

pedestrians and cyclists in addition to the activation of brake lamps.  With amber tail 

lamps, drivers will probably detect brake activations faster and more accurately while 

still being able to devote more cognitive resources to those other potential hazards.  

McIntyre’s (2012) simulator study supports this as participants were faster to detect rear 

lane change events when monitoring forward brake events when vehicles had amber tail 

lights rather than red. 

Search in current rear lighting with red brake lamps and red tail lamps induces a 

suboptimal endogenous goal directed toward a “relatively brighter red light” or “red light 

in center of vehicle . . . if on vehicle or not obstructed” (CHMSL); this conjunctive search 

for “red” and “brighter” amongst distractors that are “red” and “bright” has been 

demonstrated to induce suboptimal performance.  The ambiguity in detecting red lights 

amongst red lights may cause drivers to discount red lights as a reliable signal and default 

to other strategies to confirm whether a vehicle is braking or not.  Some studies have 

shown that under some circumstances people do rely on other cues of braking, like 

looming instead of brake signals (Delucia & Tharanathan, 2009).  This lack of cue 
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reliability for brake lamps has moved regulators to prevent vehicles with DRLs from 

illuminating tail lamps under brighter ambient conditions so it is easier to differentiate 

between red tail and brake lamps that rely on perception of relative brightness.  However, 

daytime activation of full lighting systems, including rear tail lamps, is either mandated 

or encouraged for tractor-trailers, buses and motorcycles, which makes identifying their 

brake lamps more difficult with a luminance based system. 

The final goal of the current study was to validate previous simulator research on 

this same topic.  This study is methodologically similar to the first studies published by 

McIntyre (2008, 2009).  All three used multiple distractors, present and absent responses, 

and disallowed visibility of brake onset.  They differ in a few respects.  First, the 

computer simulations intended to simulate brighter ambient lighting conditions than were 

tested in the current study.  Second, the simulator studies only used multiple vehicle 

displays and allowed the shape and size of vehicle lamps to vary, creating a less 

homogenous distractor set than the current study which controlled for shape and size of 

lamps.  The overall RT and error results are similar in supporting the conclusion that the 

current lighting system produces serial search and a color coded system engages parallel 

search and demonstrating the usefulness of computer simulation tests of rear lighting.   

The driving simulator experiments and the eye-tracking and subjective workload 

computer experiment conducted by McIntyre et al. (2012) also produced results similar to 

the current study for the effects of tail lamp condition, set size and target present vs. 

absent on RT and error; indicating that simulated driving behaviors related to automobile 

lighting conspicuity can produce ecologically valid results.  However, these studies 
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differed in methodology.  The main similarity was that the driving simulator study used a 

similar set size manipulation (11 vs 2 vehicles).  However it differed in that the simulator 

study employed a concurrent task in the larger set size to simulate distraction, the 

simulator study vehicles had a CHMSL, participants could see brake lamp onsets and the 

simulator had moving vehicles that produced lateral movement that would obstruct 

vehicle lighting at various times, though not when a brake was activated.  The row effects 

for error and RT was also similar between this experiment and the simulator study.   

The eye tracking study was a vigilance task but the oculomotor data is consistent 

with the results of this study that participants take significantly longer with current 

lighting to determine a brake lamp is not present, indicating possibly more saccadic eye 

movements.  The combination of the subjective workload ratings, more saccades from the 

computer simulation and the poorer signal detection, longer RTs and more error in the 

current experiment all point to greater cognitive resources and attention load needed to 

monitor current vehicle lighting for brake lamps.  Again, both of those simulation studies 

were intended to assess performance with brighter ambient light than was used in the 

current experiment.  The overall correspondence of results between the simulator studies 

and this experiment provide validation for the simulations and further evidence for the 

beneficial effects of separating tail lamps and brake lamps by color rather than 

luminance. 

One major criticism of all the simulator studies was that simulators cannot 

accurately represent the luminance changes in the current lighting system and thus were 

biased in favor of the color differentiated system.  For example, McIntyre et al. (2012) 
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found poorer detection of red brake lamps with red than with yellow tail lamps in the 

context of multiple distractor vehicles, but the poor performance with red tail lamps could 

have occurred because red tail and brake lamps were the same luminance in the 

simulator. This field study was conducted in part to address criticisms such as this.  

However, if the poor performance with red tail lamps in McIntyre were due mainly to the 

lack of luminance differences between red brake and tail lamps in the simulator, then the 

effect sizes between the red and yellow tail lamp systems would be smaller in the field 

experiment, which employed the realistic, large luminance differences between red tail 

and brake lamps.  However, the reverse was found.  The red tail lamp system performed 

even more poorly relative to the yellow tail-lamp system (i.e., larger effect sizes) in this 

field study than in the simulator study by McIntyre et al. (2012), indicating that simulated 

research on this topic can produce valid findings. 

  In summary, this experiment suggests that conducting future studies with 

vehicular signaling within the visual search context is appropriate and even essential.  

This means employing a larger set size than one, measuring target absent behavior as 

well as target present and simulating suboptimal endogenous states for participants (such 

as inattention).  Also, testing participants under a broader range of common but 

compromised endogenous states such as with sleep deprivation or visual impairments 

may reveal further differences between a color coded and luminance coded system.  

Another principle that should be used involves manipulating distractor homogeneity.  

Because this study wanted to control lamp luminance, size and shape, it was lacking in 

assessing how these systems would perform with less homogenous distractors.  This is a 
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major consideration since real world environments have much more heterogeneous 

distractors and targets.  Future studies should deliberately create heterogeneous but 

realistic distractor and even target sets to assess performance.  This can be done by using 

lamps that are differing sizes, shapes and luminance.  Additionally, testing these systems 

under slightly brighter ambient lighting but when drivers would still activate their lights 

would be an important and realistic manipulation, as would using moving locations that 

replicate what was done in McIntyre’s (2012) simulator study and on the road.   

Application of these visual search principles in research design will help ensure the 

conspicuity goal stated in the federal code for automobile rear lighting. 

 

 



 

 
72 

REFERENCES 

Allen, M. J., (1964).  Misuse of red light on automobiles.  American Journal of 

Optometry and Archives of the American Academy of Optometry, 41, 695-699. 

Cameron, D. L. (1992).  An innovative solution to continuing misuse of red light on 

automobiles. Optometry and Vision Science, 69(9), 702-704. 

Cameron, D  L. (1995).  Color-specificity to enhance identification of rear-lights.  

Perceptual and Motor Skills, 80, 755-769.  

Case, H.W., Hulbert, S.F., Lyman, J.H., O’Brian, P., & Patterson, O.E. (1969). Selection 

of vehicle rear lighting systems (Report No. 70-9). Los Angeles, CA: Institute of 

Transportation and Traffic Engineering, University of California. 

Chun, M. M., & Wolfe, J. M., (1996).  Just say no:  How are visual searches terminated 

when there is no target present?  Cognitive Psychology, 30, 39-78. 

DeLucia, P. R., & Tharanathan, A. (2009). Responses to deceleration during car 

following: Roles of optic flow, warnings, expectations and interruptions. Journal 

of Experimental Psychology: Applied, 15, 334-350. 

Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. 

Psychological Review, 96, 433-458. 

Eriksen, B.A., & Eriksen, C.W. (1974). Effects of noise letters upon the identification of 

a target letter in a nonsearch task. Percept. Psychophys.16, 143–49. 



 

 
73 

Flannagan, M. J., Sivak, M., & Traube, E. C. (1998).  Photometric requirements for 

signal lamps using innovative  light sources:  Updating requirements based on 

lighted sections.  (Report No. UMTRI-98- 19).  Ann Arbor: The University of 

Michigan Transportation Research Institute. 

Folk, C. L., Remington, R. W., & Johnston, J. C. (1992).  Involuntary covert orienting is 

contingent on attentional control settings. J. Exp. Psychol.:Hum. Percept. 

Perform. 18, 1030–44 

Horowitz, T. S., Cade, B. E., Wolfe, J. M., & Czeisler, C. A. (2003).  Searching night and 

day:  A dissociation of efects of circadian phase and time awake on visual 

selective attention and vigilance.  Psychological Science, 14(6). 

Kramer, A. F., & McCarley, J. S. (2003).  Oculomotor behaviour as a reflection of 

attention and memory processes:  Neural mechanisms and applications to human 

factors.  Theoretical Issues in Ergonomic Science, 4, 1–2, 21–55. 

Lee, S.E., Wierwille, W.W., & Klauer, S.G. (2002).  Enhanced rear lighting and 

signaling systems:  Literature review and analyses of alternative system 

concepts.  Task 1 Report for National Highway Traffic Safety Administration 

contract DTNH 22-99-C-07235 (Report DOT HS 809 425).  Washington, DC:  

U.S. Department of Transportation. 

Lee, Y., Lee, J.D., & Boyle, L.N. (2007).  Visual attention in driving:  The effects of 

cognitive  

 load and visual disruption.  Human Factors, Vol. 49, No. 4, 2007, pp. 721-733. 



 

 
74 

Llaneras, R. E., Neurauter, M. L., & Perez, M. (2010). Evaluation of enhanced brake 

lights using surrogate safety metrics:  Task 2 and 3 Report:  Development of 

rear signaling model and work plan for large scale field evaluation. Report for 

National Highway Traffic Safety Administration contract DTNH 22-00-C-

07007 Task order 24 (Report DOT HS 811 329).  Washington, DC:  U.S. 

Department of Transportation. 

McIntyre, S. E. (2008).  Capturing attention to brake lamps.  Accident Analysis and 

Prevention, 40(2), 691-696. 

McIntyre, S. E. (2009).  Capturing attention to brake lamps in a single fixation.   

 Proceedings of the Human Factors and Ergonomics Society 53rd Annual Meeting,        

53( 23), 1811-1814(4). 

McIntyre, S. E., Gugerty, L., & Duchowski, A. (2012).  Brake lamp detection in complex 

and dynamic environments:  Recognizing limitations of visual attention and 

perception.  Accident Analysis and Prevention, 45, 588-599. 

doi:10.1016/j.aap.2011.09.050. 

Moore, D. W., & Rumar, K.  (1999).  Historical development and current effectiveness of 

rear lighting systems.  (UMTRI-99-31). 

Mortimer, R. G. (1968).  Psychological considerations in the design of an automobile rear 

lighting system.  Traffic Safety Research Review, 10, 83-88. 

Mortimer, R. G. (1969).  Dynamic Evaluation of Automobile Rear Lighting 

configurations. Highway Research Record, No. 275, 12-22. 



 

 
75 

Neisser, U., & Becklen, R. (1975).  Selective looking: Attending to visually specified 

events.  Cognitive Psychology, 7, 480-494. 

Owens, D. A., Francis, E. L., & Leibowitz, H. W. (1989). Visibility distance with 

headlights: A functional approach (SAE Tech. Paper Series No. 890684). 

Warrendale, PA: Society of Automotive Engineers. 

Pashler, H., Johnston, J. C., & Ruthruff, E. (2001).  Attention and performance.  Annual 

Review of Psychology, 52, 629-65.  DOI: 10.1146/annurev.psych.52.1.629. 

Reason, J., & Mycielska, K. (1982). Absent-Minded?  The Psychology of Mental Lapses 

and Everyday Errors.  Englewood Cliffs, N.J.:  Prentice-Hall. 

Rensink, R. A., O'Regan,  J. K., & Clark, J. J. (1997).  To see or not to see: The need for 

attention to perceive changes in scenes.  Psychological Science, 8, 368-373. 

Smallwood, J. & Schooler, J.W. (2006). The Restless Mind. Psychological Bulletin, 

132(6), 946-958. 

Sullivan, J.M., & Flannagan, M.J. (2012).   The influence of rear turn-signal 

characteristics on crash risk.  Journal of Safety Research, 43, 59-65. 

Sullivan, J.M., & Flannagan, M.J. (2003).  Risk of fatal rear-end collisions:  Is there more 

to it than attention?  Proceedings of the Second International Driving Symposium 

on Human Factors in Driver Assessment, Training and Vehicle Design. 

Strayer, D. L., Drews, F. A., & Johnston, W.A. (2003).  Cell-phone induced failures of 

visual attention during simulated driving.  Journal of Experimental Psychology:  

Applied, 9(1), 23-32. 



 

 
76 

Treisman, A., & Gelade, G. (1980).  A feature-integration theory of attention.  Cognitive 

Psychology, 12, 97-136.  

Treisman, A. (2006).  How the deployment of attention determines what we see. Visual 

Cognition, 14, 411-443. 

Trick, L. M., Enns, J. T., Mills, J., & Vavrik, J. (2004).  Paying attention behind the 

wheel:  A framework for studying the role of attention in driving.  Theoretical 

Issues in Ergonomic Science, 5(5), 385-424. 

UNECE. (2006). E/ECE/324, E/ECE/TRANS/505, Rev.1/Add.6/Rev.4.  Retrieved 

November 11, 2010, from http://www.unece.org/trans/welcome.html. . 

UNECE. (2011). E/ECE/324, E/ECE/TRANS/505, Rev.1/Add.47/Rev.6.  Retrieved 

March 7, 2012 from 

http://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/R048r6am5e.p

df 

USDOT (2011).  Part 571.108: Standard No. 108; Lamps, reflective devices, and 

associated equipment.  Retrieved March 17, 2011,  

http://www.fmcsa.dot.gov/rules-

regulations/administration/fmcsr/fmcsrruletext.aspx?reg=571.108 

Verghese, P. (2001). Visual search and attention: A signal detection approach. Neuron, 

31, 523-535. 

Warm, J. S., Matthews, G., & Finomore, V. S. (2008). Workload, stress, and vigilance. In 

P. A. Hancock & J. L. Szalma (Eds.), Performance under stress (pp. 115–141). 

Brookfield, VT: Ashgate. 



 

 
77 

Wickens, C., Lee, J. D., Liu, Y. & Becker, S. E. (2004).  An Introduction to Human 

Factors Engineering, 2nd ed. (pp.185–193).  Upper Saddle River, NJ: Pearson 

Prentice Hall.  

Wierwille, W. W., Lee, S. E., & DeHart, M. C. (2003). Enhanced rear lighting and 

signaling systems task 2 report: Testing and optimization of high-level 

stopped/slowly-moving vehicle rear signaling systems.  Report for National 

Highway Traffic Safety Administration contract DTNH 22-99-C-07235 (Report 

DOT HS 809 597).  Washington, DC:  U.S. Department of Transportation. 

Wierwille W. W., Lee, S. E., DeHart, M. C., & Perel, M.  (2006).  Test road experiment 

on imminent warning rear lighting and signaling.  Human Factors, 48(3), 615-

626. 

Wolfe, J. M. (2007). Guided Search 4.0: Current Progress with a model of visual search. 

In W. Gray (Ed.), Integrated Models of Cognitive Systems (pp. 99-119). New 

York: Oxford. 

Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual 

attention and how do they do it? Nature Reviews Neuroscience, 5(6), 495-501. 

Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided Search: An alternative to the 

feature integration model for visual search. Journal of Experimental Psychology: 

Human Perception and Performance., 15, 419-433.  

 


	Clemson University
	TigerPrints
	5-2012

	APPLYING VISUAL ATTENTION THEORY TO TRANSPORTATION SAFETY RESEARCH AND DESIGN: EVALUATION OF ALTERNATIVE AUTOMOBILE REAR LIGHTING SYSTEMS
	Scott Mcintyre
	Recommended Citation


	Microsoft Word - $ASQ138843_supp_undefined_B2197AC8-8286-11E1-95D8-993BEF8616FA.docx

