2,777 research outputs found

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Modelling and Real Deployment of C-ITS by Integrating Ground Vehicles and Unmanned Aerial Vehicles

    Full text link
    [ES] Para proporcionar un entorno de tráfico vial más seguro y eficiente, los sistemas ITS o Sistemas Inteligentes de Transporte representan como una solución dotada de avances tecnológicos de vanguardia. La integración de elementos de transporte como automóviles junto con elementos de infraestructura como RoadSide Units (RSUs) ubicados a lo largo de la vía de comunicación permiten ofrecer un entorno de red conectado con múltiples servicios, incluida conectividad a Internet. Esta integración se conoce con el término C-ITS o Sistemas Inteligentes de Transporte Cooperativos. La conexión de automóviles con dispositivos de infraestructura permite crear redes vehiculares conectadas (V2X) vehículo a dispositivos, que ofrecen la posibilidad de nuevos despliegues en aplicaciones C-ITS como las relacionadas con la seguridad. Hoy en día, con el uso masivo de teléfonos inteligentes y debido a su flexibilidad y movilidad, existen varios esfuerzos para integrarlos con los automóviles. De hecho, con el soporte adecuado de unidad a bordo (OBU), los teléfonos inteligentes se pueden integrar perfectamente con las redes vehiculares, permitiendo a los conductores usar sus teléfonos inteligentes como dispositivos de bordo a que participan en los servicios C-ITS, con el objeto de mejorar la seguridad al volante entre otros. Tópico este, que hoy día representa un tema relevante de investigación. Un problema a solucionar surge cuando las comunicaciones vehiculares sufren inferencias y bloqueos de la señal debidos al escenario. De hecho, el impacto de la vegetación y los edificios, ya sea en áreas urbanas y rurales, puede afectar a la calidad de la señal. Algunas estrategias para mejorar la comunicación vehicular en este tipo de entorno consiste en desplegar UAVs o vehículo aéreo no tripulado (drones), los cuales actúan como enlaces de comunicación entre vehículos. De hecho, UAV ofrece importantes ventajas de implementación, ya que tienen una gran flexibilidad en términos de movilidad, además de un rango de comunicaciones mejorado. Para evaluar la calidad de las comunicaciones, debe realizarse un conjunto de mediciones. Sin embargo, debido al costo de las implementaciones reales de UAV y automóviles, los experimentos reales podrían no ser factibles para actividades de investigación con recursos limitados. Por lo tanto, los experimentos de simulación se convierten en la opción preferida para evaluar las comunicaciones entre UAV y vehículos terrestres. Lograr modelos de propagación de señal correctos y representativos que puedan importarse a los entornos de simulación se vuelve crucial para obtener un mayor grado de realismo, especialmente para simulaciones que involucran el movimiento de UAVs en cualquier lugar del espacio 3D. En particular, la información de elevación del terreno debe tenerse en cuenta al intentar caracterizar los efectos de propagación de la señal. En esta tesis doctoral, proponemos nuevos enfoques tanto teóricos como empíricos para estudiar la integración de redes vehiculares que combinan automóviles y UAVs, así mismo el impacto del entorno en la calidad de las comunicaciones. Esta tesis presenta una aplicación, una metodología de medición en escenarios reales y un nuevo modelo de simulación, los cuales contribuyen a modelar, desarrollar e implementar servicios C-ITS. Más específicamente, proponemos un modelo de simulación que tiene en cuenta las características del terreno en 3D, para lograr resultados confiables de comunicación entre UAV y vehículos terrestres.[CA] Per a proporcionar un entorn de trànsit viari més segur i eficient, els sistemes ITS o Sistemes Intel·ligents de Transport representen una solució dotada d'avanços tecnològics d'avantguarda. La integració d'elements de transport com auto móvils juntament amb elements d'infraestructura com Road Side Units (RSUs) situats al llarg de lav via de comunicació permeten oferir un entorn de xarxa connectat amb multiples serveis, inclusa connectivitat a Internet. Aquesta integració es connex amb el terme C-ITS o Sistemes Intel·ligents de Transport Cooperatius , com ara els automòbils, amb elements d'infraestructura, com ara les road side units (RSU) o pals situats al llarg de la carretera, per a aconseguir un entorn de xarxa que oferisca nous serveis a més de connectivitat a Internet. Aquesta integració s'expressa amb el terme C-ITS, o sistemes intel·ligents de transport cooperatius. La connexió d'automòbils amb dispositius d'infraestructura permet crear xarxes vehiculars connectades (V2X) vehicle a dispositiu, que ofreixen la possibilitat de nous desplegaments en aplicacions C-ITS, com ara les relacionades amb la seguretat. Avui dia, amb l'ús massiu dels telèfons intel·ligents, i a causa de la flexibilitat i mobilitat que presenten, es fan esforços per integrar-los amb els automòbils. De fet, amb el suport adequat d'unitat a bord (OBU), els telèfons intel·ligents es poden integrar perfectament amb les xarxes vehiculars, permetent als conductors usar els seus telèfons intel·ligents com a dispositius per a participar en els serveis de C-ITS, a fi de millorar la seguretat al volant entre altres. Tòpic est, que hui dia representa un tema rellevant d'investigació. Un problema a solucionar sorgeix quan les comunicacions vehiculars ateixen inferències i bloquejos del senyal deguts a l'escenari. De fet, l'impacte de la vegetació i els edificis, tant en àrees urbanes com rurals, pot afectar la qualitat del senyal. Algunes estratègies de millorar la comunicació vehicular en aquest tipus d'entorn consisteix a desplegar UAVs o vehicles aeris no tripulats (drones), els quals actuen com a enllaços de comunicació entre vehicles. De fet, l'ús d'UAVs ofereix importants avantatges d'implementació, ja que tenen una gran flexibilitat en termes de mobilitat, a més d'un rang de comunicacions millorat. Per a avaluar la qualitat de les comunicacions, s'han de realitzar mesures en escenaris reals. No obstant això, a causa del cost de les implementacions i desplegaments reals d'UAV i el seu ús combinat amb vehicles, aquests experiments reals podrien no ser factibles per a activitats d'investigació amb recursos limitats. Per tant, la metodologia basada en simulació es converteixen en l'opció preferida entre els investigadors per a avaluar les comunicacions entre UAV i vehicles terrestres. Aconseguir models de propagació de senyal correctes i representatius que puguen importar-se als entorns de simulació resulta crucial per a obtenir un major grau de realisme, especialment per a simulacions que involucren el moviment d'UAV en qualsevol lloc de l'espai 3D. En particular, cal tenir en compte la informació d'elevació del terreny per a intentar caracteritzar els efectes de propagació del senyal. En aquesta tesi doctoral proposem enfocaments tant teòrics com empírics per a estudiar la integració de xarxes vehiculars que combinen automòbils i UAV, així com l'impacte de l'entorn en la qualitat de les comunicacions. Aquesta tesi presenta una aplicació, una metodología de mesurament en escenaris reals i un nou model de simulació, els quals contribueixen a modelar, desenvolupar i implementar serveis C-ITS. Més específicament, proposem un model de simulació que té en compte les característiques del terreny en 3D, per a aconseguir resultats fiables de comunicació entre UAV i vehicles terrestres.[EN] To provide a safer road traffic environment and make it more convenient, Intelligent Transport Systems (ITSs) are proposed as a solution endowed with cutting-edge technological advances. The integration of transportation elements like cars together with infrastructure elements like Road Side Units to achieve a networking environment offers new services in addition to Internet connectivity. This integration comes under the term Cooperative Intelligent Transport System (C-ITS). Connecting cars with surrounding devices forming vehicular networks in Vehicle-to-Everything (V2X) open new deployments in C-ITS applications like safety-related ones. With the massive use of smartphones nowadays, and due to their flexibility and mobility, several efforts exist to integrate them with cars. In fact, with the right support from the vehicle's On-Board Unit (OBU), smartphones can be seamlessly integrated with vehicular networks. Hence, drivers can use their smartphones as a device to participate in C-ITS services for safety purposes, among others, which is a quite interesting research topic. A significant problem arises when vehicular communications face signal obstructions caused by the environment. In fact, the impact of vegetation and buildings, whether in urban and rural areas, can result in a lower signal quality. One way to enhance vehicular communication networks is to deploy Unmanned Aerial Vehicles (UAVs) to act as relays for communication between cars, or ground vehicles. In fact, UAVs offer important deployment advantages, as they offer great flexibility in terms of mobility, in addition to an enhanced communications range. To assess the quality of the communications, a set of measurements must take place. However, due to the cost of real deployments of UAVs and cars, real experiments might not be feasible for research activities with limited resources. Hence, simulation experiments become the preferred option to assess UAV-to- car communications. Achieving correct and representative signal propagation models that can be imported to the simulation environments becomes crucial to obtain a higher degree of realism, especially for simulations involving UAVs moving anywhere throughout the 3D space. In particular, terrain elevation information must be taken into account when attempting to characterize signal propagation effects. In this research work, we propose both theoretical and empirical approaches to study the integration of vehicular networks combining cars and UAVs, and we study the impact of the surrounding environment on the communications quality. An application, a measurement framework, and a simulation model are presented in this thesis in an effort to model, develop, and deploy C-ITS services. More specifically, we propose a simulation model that takes into account 3D terrain features to achieve reliable UAV-to-car communication results.I want to thank the Spanish government through the Ministry of Economy and Competitiveness (MINECO) and the European Union Commission through the European Social Fund (ESF) for co-financing and granting me the fellowship to fund my studies in Spain and my research stay in Russia. In addition, I would to thank the National Institute of Informatics for granting me the internship fund and the Japanese government through the Japan Society for the Promotion of Science (JSPS) for supporting my research work in Japan.Hadiwardoyo, SA. (2019). Modelling and Real Deployment of C-ITS by Integrating Ground Vehicles and Unmanned Aerial Vehicles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118796TESI

    A survey on network simulators in three-dimensional wireless ad hoc and sensor networks

    Get PDF
    © 2016 The Author(s). As steady research in wireless ad hoc and sensor networks is going on, performance evaluation through relevant network simulator becomes indispensable procedure to demonstrate superiority to comparative schemes and suitability in most literatures. Thus, it is very important to establish credibility of simulation results by investigating merits and limitations of each simulator prior to selection. Based on this motivation, in this article, we present a comprehensive survey on current network simulators for new emerging research area, three-dimensional wireless ad hoc and sensor networks which is represented by airborne ad hoc networks and underwater sensor networks by reviewing major existing simulators as well as presenting their main features in several aspects. In addition, we address the outstanding mobility models which are main components in simulation study for self-organizing ad hoc networks. Finally, open research issues and research challenges are discussed and presented

    A GPR-GPS-GIS-integrated, information-rich and error-aware system for detecting, locating and characterizing underground utilities

    Get PDF
    Underground utilities have proliferated throughout the years. The location and dimension of many underground utilities have not always been properly collected and documented, leading to utility conflicts and utility strikes, and thus resulting in property damages, project delays, cost overruns, environment pollutions, injuries and deaths. The underlying reasons are twofold. First, the reliable data regarding the location and dimension of underground utility are missing or incomplete. Existing methods to collect data are not efficient and effective. Second, positional uncertainties are inherent in the measured utility locations. An effective means is not yet available to visualize and communicate the inherent positional uncertainties associated with utility location data to end-users (e.g., excavator operator). To address the aforementioned problems, this research integrate ground penetrating radar (GPR), global positioning system (GPS) and geographic information system (GIS) to form a total 3G system to collect, inventory and visualize underground utility data. Furthermore, a 3D probabilistic error band is created to model and visualize the inherent positional uncertainties in utility data. ^ Three main challenges are addressed in this research. The first challenge is the interpretation of GPR and GPS raw data. A novel method is created in this research to simultaneously estimate the radius and buried depth of underground utilities using GPR scans and auxiliary GPS data. The proposed method was validated using GPR field scans obtained under various settings. It was found that this newly created method increases the accuracy of estimating the buried depth and radius of the buried utility under a general scanning condition. The second challenge is the geo-registration of detected utility locations. This challenge is addressed by integration of GPR, GPS and GIS. The newly created system takes advantages of GPR and GPS to detect and locate underground utilities in 3D and uses GIS for storing, updating, modeling, and visualizing collected utility data in a real world coordinate system. The third challenge is positional error/uncertainty assessment and modeling. The locational errors of GPR system are evaluated in different depth and soil conditions. Quantitative linkages between error magnitudes and its influencing factors (i.e., buried depths and soil conditions) are established. In order to handle the positional error of underground utilities, a prototype of 3D probabilistic error band is created and implemented in GIS environment. This makes the system error-aware and also paves the way to a more intelligent error-aware GIS. ^ To sum up, the newly created system is able to detect, locate and characterize underground utilities in an information-rich and error-aware manner

    3D Simulation Modeling of UAV-to-Car Communications

    Full text link
    (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] In this paper, we propose a realistic model for simulating communications between unmanned aerial vehicles (UAVs), or drones, and ground vehicles, which can support mobile infrastructure to broadcast alerts in emergency situations. Three-dimensional positioning features should be considered in these simulations that involve UAVs and ground vehicles since communications links are not based on a flat surface. In fact, irregular terrains in the form of hills and mountains can greatly affect the communications by acting as obstacles that block radio signals partially or totally. Hence, in this paper, we propose a simulation model that conforms to this kind of communication and that was developed in the scope of the OMNeT++ simulator. The simulation results achieved showed a great degree of similarities with those results obtained in a real testbed for different scenarios. In addition, various path loss models and elevation models were considered to improve the level of realism of the simulation model.This work was supported in part by the Japan Society for the Promotion of Science KAKENHI under Grant JP16H02817 and Grant JP18KK0279, in part by the International Internship Program of the National Institute of Informatics, Japan, and in part by the Ministerio de Economía y Competividad, Programa Estatal de Investigación, Desarollo e Innovación Orientada a los Retos de la Sociedad, Proyectos ICDCI 2014, Government of Spain, under Grant TEC2014-52690-R and Grant BES-2015-075988.Hadiwardoyo, SA.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Ji, Y.; Hernández-Orallo, E.; Manzoni, P. (2019). 3D Simulation Modeling of UAV-to-Car Communications. IEEE Access. 7:8808-8823. https://doi.org/10.1109/ACCESS.2018.2889604S88088823

    Diffraction modelling of mobile radio wave propagation in built-up areas

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.This thesis examines theoretical methods of modelling radio wave propagation in built-up areas, with particular application to mobile radio systems Theoretical approaches allow precise quantitative description of the environment in terms of parameters such as mean building heights and densities, in contrast to the ambiguous nature of more conventional empirical models. The models are constructed using both scalar and vector field analysis techniques. The vector analysis is accomplished using the Geometrical Theory of Diffraction to describe the detailed effects of building shape and positioning, particularly for short-range situations. Over longer ranges propagation can often be described in terms of multiple edge diffraction over building rooftops using a scalar field representation. This mechanism accounts well for measured field strength variations, but is time consuming to calculate accurately using standard methods. A rapid algorithm for calculating scalar diffraction over multiple building edges with arbitrary positioning is constructed. This model can be used for deterministic prediction of sector median field strengths including slow fading variations when appropriate building data exists. It is also applicable to terrain diffraction problems. For the case when only average building parameters are available a closed form solution to the problem of multiple diffraction over buildings of equal heights and spacings is derived. The solution is applicable to any antenna heights and so provides a rapid and efficient way to predict gross propagation characteristics. Both models are tested against measurements made in the UHF band and are found to yield good prediction accuracy.This work is funded by the Science and Engineering Research Council under award number 889088999 and by Philips Radio Communication Systems Ltd. of Cambridge under an industrial studentship

    Packet Loss in Terrestrial Wireless and Hybrid Networks

    Get PDF
    The presence of both a geostationary satellite link and a terrestrial local wireless link on the same path of a given network connection is becoming increasingly common, thanks to the popularity of the IEEE 802.11 protocol. The most common situation where a hybrid network comes into play is having a Wi-Fi link at the network edge and the satellite link somewhere in the network core. Example of scenarios where this can happen are ships or airplanes where Internet connection on board is provided through a Wi-Fi access point and a satellite link with a geostationary satellite; a small office located in remote or isolated area without cabled Internet access; a rescue team using a mobile ad hoc Wi-Fi network connected to the Internet or to a command centre through a mobile gateway using a satellite link. The serialisation of terrestrial and satellite wireless links is problematic from the point of view of a number of applications, be they based on video streaming, interactive audio or TCP. The reason is the combination of high latency, caused by the geostationary satellite link, and frequent, correlated packet losses caused by the local wireless terrestrial link. In fact, GEO satellites are placed in equatorial orbit at 36,000 km altitude, which takes the radio signal about 250 ms to travel up and down. Satellite systems exhibit low packet loss most of the time, with typical project constraints of 10−8 bit error rate 99% of the time, which translates into a packet error rate of 10−4, except for a few days a year. Wi-Fi links, on the other hand, have quite different characteristics. While the delay introduced by the MAC level is in the order of the milliseconds, and is consequently too small to affect most applications, its packet loss characteristics are generally far from negligible. In fact, multipath fading, interference and collisions affect most environments, causing correlated packet losses: this means that often more than one packet at a time is lost for a single fading even

    Evaluation of an OPNET Model for Unmanned Aerial Vehicle Networks

    Get PDF
    The concept of Unmanned Aerial Vehicles (UAVs) was first used as early as the American Civil War, when the North and the South unsuccessfully attempted to launch balloons with explosive devices. Since the American Civil War, the UAV concept has been used in all subsequent military operations. Over the last few years, there has been an explosion in the use of UAVs in military operations, as well as civilian and commercial applications. UAV Mobile Ad Hoc Networks (MANETs) are fast becoming essential to conducting Network-Centric Warfare (NCW). As of October 2006, coalition UAVs, exclusive of hand-launched systems, had flown almost 400,000 flight hours in support of Operations Enduring Freedom and Iraqi Freedom [1]. This study develops a verified network model that emulates UAV network behavior during flight, using a leading simulation tool. A flexible modeling and simulation environment is developed to test proposed technologies against realistic mission scenarios. The simulation model evaluation is performed and findings documented. These simulations are designed to understand the characteristics and essential performance parameters of the delivered model. A statistical analysis is performed to explain results obtained, and identify potential performance irregularities. A systemic approach is taken during the preparation and execution simulation phases to avoid producing misleading results
    corecore