
Protocol Design and Implementation for

Bee-Inspired Routing in Mobile Ad Hoc

Networks

Alexandros Giagkos

Department of Computer Science
Aberystwyth University

Aberystwyth

April
2012

This thesis is submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy of Aberystwyth University.





Supervised by:

Dr Myra S. Wilson
Research Supervisor
Lecturer, Department of Computer Science
Aberystwyth University
Wales, UK

Doctoral commitee (June 27, 2012):

Dr Bernie Tiddeman
Chair
Senior Lecturer, Department of Computer Science
Aberystwyth University
Wales, UK

Examined and approved by:

Dr Neal Snooke
Internal Examiner
Lecturer, Department of Computer Science
Aberystwyth University
Wales, UK

Prof. Alan FT Winfield
External Examiner
Hewlett-Packard Professor of Electronic Engineering
University of the West of England, Bristol
England, UK





To my father Γιάννης





Abstract

The characteristic of mobility and the ease of deployment make wireless ad hoc

networks suitable for a variety of real life applications that cover a wide range

from civilian to military purposes. The lack of a fixed infrastructure demands

all participating nodes to function as end points of a communication session and

also to have routing capabilities. The latter allows data packets to be forwarded

to nodes in a multi-hop manner and tackles the routing problem when nodes are

joining, leaving or moving around within the network topology unexpectedly. At

any time nodes need to be able to provide adaptive, optimal and efficient routing

solutions.

In order to solve the challenging problem of routing in wireless ad hoc net-

works, this thesis applies methods from nature and, in particular, from the world

of honeybee colonies. A new routing protocol design and its implementation,

BeeIP, are proposed and tested. Using honeybee foraging and dancing metaphors,

the protocol utilizes special packets to discover paths between sources and desti-

nations. Real honeybees constantly monitor the goodness of their findings based

on a number of quality factors such as the distance from the hive, the sweetness of

the sugar solution, etc. Then, they efficiently distribute the future flights following

the most optimal path. Focusing on these key concepts, this work investigates the

extent to which a range of low-level network parameters can be used to represent

and constantly monitor the goodness of the paths. The design uses a new model

to map the honeybee dances and to efficiently use multiple paths for future data

transmissions.

This thesis makes a number of novel contributions. Firstly, an extended map-

ping of the quality factors from nature to networks and a model to utilize them

in order to represent and measure the quality of the paths. Next, the use of sta-

tistical prediction by considering prior gathered knowledge to detect any possible

improvement or deterioration of path quality over time. Finally, a comprehensive

comparison with state-of-the-art protocols in the ns-2 network simulator, the re-

sults of which show that BeeIP is able to outperform the others under different

conditions and, in particular, in networks of high density, rate of mobility and in-

creased data traffic. Therefore, the proposed design is a viable solution for routing

in wireless ad hoc networks.
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Chapter 1

Introduction

The constant improvement of the technologies related to telecommunication and

computer networks is one of the fastest growing aspects of people’s needs. The

Internet has revolutionized many aspects of daily life. In fact, it has created the

user need and demand to be connected any time and anywhere. Wireless commu-

nication networks have played a critical role in fulfilling those telecommunication

needs. Consequently, they have captured the attention of both academia and in-

dustry towards an endless extent of possible application domains. Making video

calls from a smart phone, downloading from websites and sending e-mails while

waiting in front of a flight gate, sharing important documents or purchasing goods

on the Internet while travelling, are just a small set of possible everyday activities

that depend on wireless communication.

Apart from everyday needs, wireless networks play a significant role in the

development of highly sophisticated applications in research and industry, for both

civilian and military purposes. Computer devices communicating with each other

within large and heterogeneous networks (in terms of communication technologies,

protocols and services) is seen everywhere in automated industrial monitoring,

environmental sensing, wildlife monitoring, search and rescue operations, etc.

Wireless routing research has always been part of the evolution in wireless

systems in order to effectively and efficiently absorb new features introduced by

novel communication technologies. Routing can be defined as the construction and

maintenance of a working path or paths between two nodes in a network, which

wish to communicate with each other by exchanging data packets. In this work,

attention is given to the routing problem of wireless networking and in particular

1
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those networks which have no fixed, predefined infrastructure (ad hoc). The rest

of this chapter is as follows. First, the background and motivations behind this

research are discussed, along with the problem definition and a brief overview of

the proposed solution. The research hypothesis and question are then presented,

followed by a discussion of the aims and objectives. A summary of the results

as well as the scientific contributions are given next, to finally conclude with an

outline of the thesis structure.

1.1 Background and motivations

Wireless ad hoc networks are those networks which have no fixed infrastructure.

As opposed to the infrastructure counterparts, where wireless access points and

routers are present, in an ad hoc environment there is neither an organized hi-

erarchy nor central administration to orchestrate the data traffic between the

participating devices (nodes). Rather, the routing problem is meant to be solved

by the nodes themselves, in a decentralized and distributed manner.

The principle behind routing in wireless ad hoc networking is multi-hop relay-

ing. This feature is provided by the routing protocol and offers the ability to allow

data packets to be forwarded by intermediate nodes (relays), until they reach their

final destination. The need for such a feature is clear: if a direct point-to-point

connection between two nodes is achieved only when they are within transmission

range, then intermediate nodes have to form a path (chain of point-to-point links)

in order to provide a connection between remote nodes. These paths have to be

formed on the fly and in an optimal manner.

Additionally, wireless ad hoc networks often experience the aspect of node

mobility. Depending on the application, nodes are allowed to change their position

at varying speeds and dramatically affect the network topology. This defines an

important obstacle to routing, as it can suddenly cancel any prior topological

configuration and planning.

There are two main wireless ad hoc networks defined in this thesis. The mobile

ad hoc networks (MANETs) (Ram Murthy & Manoj, 2004) and the wireless sen-

sor networks (WSNs) (Dargie & Poellabauer, 2010). MANETs consist of mobile

nodes which communicate with each other in a decentralized and multi-hop way,

exclusively using wireless links. Nodes in MANETs are equal (i.e., there is no hier-

archy) and are able to provide routing solutions when asked by the application, in
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order to forward data packets in the correct direction within the topology. WSNs

differ from MANETs in the nature of the nodes. A WSN consists of a set of sensor

nodes, which are typically small and have limited resources and processing power.

They may be mobile and are deployed to collect information using their sensory

capabilities. When scheduled, the sensor nodes send the collected information to

the source nodes in a multi-hop fashion, similar to that of MANETs. Source nodes

are usually less mobile and constitute the processing units of the application.

Both MANETs and WSNs are heavily used today. Due to their flexibility,

scalability and ease of deployment (in fact, they require minimal prior planning

and set-up), they have great potential and offer endless possibilities to different

application domains. Unsurprisingly, the current literature in routing research is

very extensive. Several routing strategies, mostly inspired by the wired Internet,

have been proposed and compared (Taneja & Kush, 2010; Lie & Kaiser, 2005;

Layuan et al., 2007; Singh et al., 2011). Although the mainstream approaches

met in these protocols are widely adapted as the state-of-the-art solutions, they

require the routing protocol to forward data packets to the next hop in the path

based on topological information collected by non-intelligent mechanisms. While

the user needs change and increase, the cost of such approaches in terms of resource

and processing power is also increased. Due to this fact, the research community

has turned its attention to a different approach, proposing agent-based network-

ing systems (Hayzelden & Bigham, 1999; Marwaha et al., 2002). The principle

difference between the traditional and agent-based routing is that in the latter,

computation moves from one hop to the other instead of just the attendant routing

information (Minar et al., 1999). A traditional approach wants routing data to

be exchanged between all nodes in the topology, which is then used to solve the

problem individually. Agent-based routing defines a set of principle rules that all

nodes are bound to follow, which allows routing computation to become a product

of collaboration between the nodes. In that way, the complex problem of routing

can be solved more easily, reducing the computational and resource costs.

Ways of providing solutions to complex problems using agent-based systems

are commonly found in nature (Decastro et al., 2004). In fact, examples of solving

metaphors of the routing problem are met in insect societies. Ants and honeybees

are not only able to discover the shortest path between a productive source of food

and their nests or hives, but also they can exchange certain information about the

maintained working path with each other.
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Studying nature and mapping insect behaviour to networks is currently a sub-

ject of active research, offering a number of interesting results (Karaboga & Akay,

2009; Schoonderwoerd et al., 1996). Noticeable examples include AntHoc (Di

Caro, 2004), where the author proposes a way of solving the routing problem

in wired networks by applying principles of the ants, based on Dorigo’s work

in ant colony optimization (Dorigo & Stutzle, 2004). The primary objective of

this protocol is to maximize the performance of the complete network by dis-

tributing the load over multiple paths, using ant-like collaborative agents. In

Dorigo et al. (2005), the authors extend Di Caro’s and Dorigo’s work by applying

the ant-inspired routing in MANETs, named AntHocNet. Ducatelle’s work keeps

most of the features of the original protocol and shows promising results when

compared with traditional protocols (Ducatelle et al., 2005).

A similar time line of events has also been followed for bee-inspired routing.

In Wedde et al. (2004a), Wedde, Farooq and Zhang propose BeeHive, the first

bee-inspired protocol to provide routing in wired networks. Their approach is

inspired by the foraging behaviour of honeybees to explore the surroundings for

interesting sources of food and to advertise their discoveries by the means of their

special communication. In Wedde et al. (2005a), the authors propose the first bee-

inspired routing protocol for MANETs, which keeps the principle ideas of BeeHive,

but also takes into consideration the limited energy resources of the wireless ad

hoc network. The result is an energy-efficient routing protocol which, compared

to traditional approaches, is shown to be a strong candidate in the field, in terms

of saving energy (Wedde et al., 2005a).

1.1.1 Research problem

The work presented in this thesis can be considered nature-inspired, and in par-

ticular bee-inspired as it proposes a new way of designing routing protocols for

MANETs based on the foraging and communicational behaviours of honeybees.

Before expanding the methodology of the new proposal, it is important to briefly

discuss the issues found in mobile wireless ad hoc networks.

Wireless is an unreliable medium of communication, and is of broadcast nature.

Unlike wired communications where signals are physically conducted through dif-

ferent wires, wireless transmissions share the same medium, the air. It is due to

this fact, that wireless communications have lower bandwidth, increased number



1.1. Background and motivations 5

of collisions (especially when there are multiple transmissions involved), and are

prone to signal propagation problems such as interference. Routing in wireless

networks has to be fast and efficient, and occupy the medium as little as possible.

Wireless ad hoc networks are extremely dynamic, especially when mobile nodes

are present. The connections between them cannot be initially planned. The

topology is subject to frequent and unexpected changes, because nodes change

position, existing ones go off-line or new ones connect to the network. Therefore,

the routing protocol needs to be adaptive to rapid topological changes, and provide

decentralized and distributed solutions, while organizing the topology dynamically.

Finally, mobile nodes in a wireless ad hoc network tend to be small and there-

fore have limited resources, not only in terms of energy (carrying batteries), but

also in terms of processing power and memory. As previously mentioned, this

problem becomes more important in the case of WSNs, where the sensor nodes

tend to be small and cheap. The computation taking place in each node needs

to be minimal, and preferably agent-based. Hence, the routing protocol needs be

able to provide routing solutions in an efficient way, by using the available and

remaining resources in a conservative way.

To summarize, the investigated problem of this research is that: the new design

must be able to provide adaptive, optimal and efficient routing solutions, in a

decentralized, distributed and self-organized manner.

1.1.2 Nature-inspired approach

In order to solve the above problem, this work proposes a new way of designing

routing protocols inspired by the collaborative foraging behaviours of honeybees.

Honeybees have been studied and their remarkable behaviours have been deci-

phered by Nobel laureate1 Prof. Karl von Frisch (1886–1982). Von Frisch’s studies

have revealed a number of interesting aspects of the insect’s lives, including the

foraging procedure followed by the honeybee foragers in order to discover, evalu-

ate, and carry food back to their hives. What has been discovered is that when

something interesting is found during the discovery phase, a honeybee will collect

an amount of food and fly back to the hive where she will communicate with fellow

honeybees to share her information. The communication takes place in a special

place within the combs, and it is achieved by a procedure termed “the bee dance”.

1Nobel Prize in Physiology or Medicine in 1973.
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Depending on the quality of the food, a forager may dance vigorously and attract

more recruits. In fact, the more zealous the performance, the more attraction

the site receives. Interestingly, if the quality of the finding is not satisfactory, the

performing forager may decide to stop sharing information about it.

In general, a honeybee society (colony) can be seen as a natural network of

agents, which shares a number of common characteristics with wireless mobile

ad hoc networks and in particular, adaptive routing. To start with, a colony

constitutes a large number of individual agents that move freely and communicate

with each other when required. Although these agents are of the same structure

(female honeybees workers), they can switch roles depending on the current needs

of their hive. For instance, a honeybee worker can switch to a forager and fly

off the hive in order to find food, can be a guard and protect the hive in case of

an emergency, or can be a larvae caregiver. For each role, honeybees are bound

to follow a set of simple yet efficient rules, and success is the product of their

collaboration. Therefore, there is no central administration, and there is no need

for a global knowledge of their system.

An important characteristic shared by the honeybees is their ability to find

the optimal path between their hive and a productive source of food. The impact

of this feature is twofold. Initially, foragers are able to discover, evaluate and

constantly monitor the quality of the path to the food they have discovered, as

well as the quality of the food itself. Secondly, they are efficient communicators,

as they share with precision the distance, direction and quality of the discovery.

Optimality is another characteristic of their foraging. Honeybees are trying

to optimize the overall energy costs of the hive, by prioritizing those findings

that have a good potential by adjusting their dances. Von Frisch has shown

that honeybees constantly judge the quality of that whey find, based on a vari-

ety of factors, such as the distance, the sweetness of the food, the quantity, the

environmental conditions, etc.

Finally, another characteristic of the honeybee colony that matches a favourable

requirement in routing protocols is the finding and using of multiple paths. In real

honeybees, not all foragers of the same hive work with the same path. Rather,

they are distributed to different paths which lead to different sources of food si-

multaneously. Distribution is achieved by trying to fulfil the need for a specific

missing commodity. When several findings can satisfy the need, honeybees are

distributed according to each finding quality. The better the quality, the more
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recruits will work on it. Multi-path discovery and usage in routing protocols is an

approach which allows fewer packets to be lost or dropped due to load congestion.

Understanding and interpreting the common characteristics found in honeybee

colonies and MANETs is what defines the driving force of this research work. The

thesis investigates how concepts of foraging and communication between honey-

bees can be efficiently mapped and modelled in wireless mobile ad hoc networks

to solve the routing problem. Emphasis is placed on the ability to constantly

evaluate the quality of the findings, i.e., working paths between sources and desti-

nations, and the adjustments made to the artificial bee dance. Inspired by nature,

the proposed approach uses important low-level information such as the wireless

signal strength, moving speed of nodes, and remaining energy level as the quality

factors to judge paths and control their usage in future transmissions. It is a

novel approach which brings together features from artificial intelligence (Russell

& Norvig, 2003) and traditional routing, in order to provide a new way of devel-

oping bee-inspired protocols that are able to make decisions utilizing intelligent

and adaptive techniques.

1.2 Towards research

In this section both the research hypothesis and question to be answered are given.

1.2.1 Hypothesis and research question

The key hypothesis that stems from this research work is expressed as,

Hypothesis: “If the method used by a honeybee colony in order to evaluate the

quality of a food source is a corporate consideration of a number of factors, which

indicate different attributes of the food source as well as the foraging process in

general (environmental conditions), then an artificial colony based on similar prin-

ciples should be able to obtain analogous information, and use it to evaluate the

quality of the paths between sources and destinations and control the number of

transmissions that will use the paths in the future.”

This allows the formulation of the following research question:
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Research Question: “To what extent will a bee-inspired model that allows

agents to discover and constantly measure and monitor the quality of paths in

a MANET, based on low-level information obtained by the network, be able to

adjust the future transmissions over those paths, in order to provide adaptive,

decentralized and robust routing in comparison to other existing state-of-the-art

approaches?”

Satisfying the above hypothesis and answering the research question, will offer

a valuable insight into the effectiveness of modelling a rich number of low-level

network information, in order to measure and evaluate the quality of routing

solutions in a MANET. It will also illustrate an effective way of distributing the

traffic load over the optimal routing solution, based on a recruitment system which

mimics real honeybee communication (bee dance). The result will ultimately

provide a novel way of mapping nature to networking and, in turn, a new design

of routing protocols in highly dynamic wireless networks.

1.2.2 Aims and objectives

In order to conduct a successful course of research towards the above problem and

proposed solution, the following aims and objectives are derived.

• Concepts from the honeybee colony in terms of foraging need to be carefully

mapped to the wireless network environment. The importance of the natu-

ral quality factors need to be understood and then substituted by network

counterparts, to support quality measuring and monitoring.

• The honeybee dance as a medium of communication also needs to be care-

fully modelled, in such a way that the incoming input from the artificial

foragers will allow adjustments to the artificial recruitment, thus, the num-

ber of transmissions over each path.

• A system of bee-inspired agents needs to be designed. The agents will be

able to discover new routing paths and maintain the results as long as the

network is in use. As they will move in a hop by hop fashion, they must be

able to access the appropriate information and utilize this upon their arrival

at the artificial hives (source nodes). There, the system needs to model a

decision making mechanism to drive the artificial recruitment.



1.3. BeeIP: The proposed routing design 9

• The above design of the system needs to be implemented in a network sim-

ulator to allow evaluation of and improvements to the system.

• Finally, an extensive comparison needs to be made between the new pro-

posed design and protocol with existing state-of-the-art approaches, and to

quantify the success of it through a rich number of experiments studying

difference quality metrics.

1.3 BeeIP: The proposed routing design

In this thesis, a new bee-inspired routing design is proposed, in order to solve

the routing problem and answer the research question of section 1.2.1. The work

emphasizes the ability of honeybees to perform foraging and to communicate with

each other within the hive in order to archive efficient and productive recruitment.

It is an extended mapping of concepts and principle behaviours between nature

and networks which allows routing to be achieved between mobile wireless nodes

in ad hoc telecommunication scenarios.

Following this design the resulting routing protocol, BeeIP, is able to reac-

tively discover multiple paths between sources and destinations, and distribute

traffic across them in a scalable, robust and efficient way. The novelty of the sys-

tem is seen by the way agent-like control packets, which emulate the real scouts

and foragers, constantly monitor and evaluate the performance of the previously

discovered paths. By the means of an artificial honeybee dance, and the use of

statistical tools, the artificial honeybees are able to perform recruitment based on

the path quality feedback as well as their past knowledge.

In addition, deciding which is the most appropriate path to follow not only

depends on what options are available from the dancing honeybees, but also on

the particular need for a specific commodity (nectar, pollen or water). Following

the proposed design, BeeIP has a flexible way of utilizing a selection metric for

the next hop at the source nodes, which is related to the particular behaviour

the protocol is required to achieve. The latter is designed to be defined by the

implementation of the protocol and depends on the application needs.

Adaptation is achieved as the protocol is able to make different routing deci-

sions every time routing is required within highly dynamic networks. The nodes

follow a decentralized and distributed approach in order to discover paths and for-
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ward packets, and routing becomes self-organized as no prior planning is required.

1.4 Results overview

The proposed design and its implementation have been extensively compared with

four representative, state-of-the-art routing protocols in the area. The compari-

son has been made against seven performance metrics. Namely, control overhead,

packet delivery ratio, average end-to-end delay, throughput, path duration, net-

work life, and number of route requests. In addition, the comparison has been

separated into five different sets of experiments, each one investigating a different

wireless network environment by varying one of the network configuration aspects,

such as terrain area size, number of nodes in the topology, network traffic, node

speed, and the time nodes will remain paused before they start moving again

(pause time). These changes allow different network environments and conditions

to be simulated and provide a complete way of testing the proposed design.

The results obtained show that the bee-inspired routing protocol generally

outperforms the other protocols in most of the performance metrics. The biggest

strength of the protocol is seen when observing the average end to end delay

and packet delivery ratio. The protocol is able to deliver packets faster, due to

its packet switching mechanism and ability to discover and use multiple paths.

These two characteristics allow the protocol to outperform the others, especially

within highly dynamic networks, e.g., increased node moving speeds and varying

pause times. Additionally, the protocol is less sensitive to the terrain size changes,

and maintains a balanced control overhead during mobility changes. In terms

of network life, no clear assumption can be made, since the protocol shows no

significant improvement compared to the other techniques.

1.5 Contributions

This thesis makes the following distinct contributions, not only in the field of

wireless telecommunications, but also in artificial intelligence and in turn, swarm

intelligence (Fleischer, 2005), as it combines principles of these areas in order to

solve the routing problem. In particular, this thesis offers:

• A new way of providing routing in wireless mobile ad hoc networks, based on
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bee-inspired behaviours. The novelty in the system is seen in how measuring

and monitoring of the quality of paths is achieved, as well as the decision

mechanism which affects the artificial recruitment.

• An extended mapping of behaviours and key concepts from the world of

honeybees to networking.

• An approach of using a rich set of quality factors to evaluate paths, and a way

of combining them by the means of artificial intelligence and in particular

artificial neural networks (Gurney, 1997). The result of this study offers

an insight into the general importance of each selected parameter and their

potential in affecting the overall performance of the path. The resulting

model is designed to mimic nature where real honeybees judge the quality

of their findings by considering a rich number of factors.

• A study which shows that adaptive routing can be achieved with the aid of

making statistical predictions, based on the quality of the paths over time.

This behaviour mimics the one met in nature, where evidence shows that

honeybees can sense improvement or deterioration of the quality over time.

By being able to consider prior knowledge, the artificial honeybees are able

to detect changes on paths and affect their decisions in terms or recruitment

in an adaptable manner.

1.6 Structure of the thesis

The rest of the work presented in this thesis is organized in the following chapters:

Chapter 2: Wireless ad hoc networks. This chapter reviews the existing

related work in the field of wireless telecommunication, and in particular wireless

ad hoc networks. Important approaches and techniques of providing routing are

highlighted and discussed, with particular emphasis given to well-known state-of-

the-art protocols. Additionally, the cross-layer technique is presented, a useful

tool which is heavily used by this research work in order to access and obtain

low-level information from other protocols of the network stack.
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Chapter 3: The world of honeybees. This chapter gives an overview of the

most important concepts in the world of honeybees, and constructs a solid back-

ground for understanding the reasons behind the internal structure and modelling

of the proposed design.

Chapter 4: BeeIP: The bee inspired protocol. In this chapter, a full de-

scription of the proposed design is given. BeeIP is a bee-inspired routing protocol

which takes into consideration a variety of low-level information of the network, to

measure and monitor the quality of paths between sources and destinations. Rout-

ing is provided by selecting the most appropriate path (in terms of user needs),

from a list of available paths for which artificial foragers have been recruited.

Modelling of honeybee behaviours in terms of foraging and communication within

the hive are described in this chapter.

Chapter 5: Methodology of experiments. This chapter is dedicated to

the description of the methodology of the comparison experiments. Important

decisions, such as the selection of the appropriate simulator, protocols that the

proposed design is compared with, as well as the configuration and simulation

scenarios of the experiments are thoroughly discussed.

Chapter 6: Evaluation study. Here, the results of an extensive set of simu-

lations are presented and discussed, highlighting the strengths and weaknesses of

the proposed design of routing.

Chapter 7: Conclusion and future work. This final chapter concludes the

thesis, by discussing the initial hypothesis, question and contributions of this re-

search work, its potential in being used in real applications, and makes suggestions

for future improvements.



Chapter 2

Wireless ad hoc networks

2.1 Introduction to wireless ad hoc networks

The research work presented in this thesis, focuses on routing in wireless ad hoc

networks. This chapter provides information regarding this particular type of

networking, as well as an overview of the existing work which is done by the

research community. The two important types of wireless ad hoc networks (Mobile

Ad Hoc Networks and Wireless Sensor Networks), that dominate the research

interest are defined. Coming from the wired Internet, wireless ad hoc networks

expand the way people see computer networking and develop network applications.

However, the nature of the wireless communication is such that it introduces

several issues, which affect both routing and packet forwarding. These issues and

ways to tackle them are summarized in this chapter. Routing protocols are mainly

categorized as proactive, reactive and hybrid. Section 2.5 gives a definition of each

category and overviews several representative routing protocols that are found in

the field. Since the work presented in this thesis is nature-inspired, section 2.6

is used to provide an overview of other nature-inspired routing protocols, that

have been recently proposed. Finally, alternative ways of routing as well as an

introduction to cross-layering (an important approach in network protocol design

that is heavily used in this work), are given in section 2.7.

13
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2.2 Types of wireless ad hoc networks

In the last few years, there has been an increased interest in wireless ad hoc net-

works as they have a tremendous potential for use in commercial, research and

military applications. Nowadays, an increased number of devices are equipped

with wireless network capabilities, which allow them to connect to existing net-

works or the Internet, as well as to each other, in order to form an ad hoc network.

Wi-Fi, Bluetooth, Cellular data service, etc., are some of the technologies in wire-

less communication which are used in everyday life.

A wireless ad hoc network is comprised of mobile computing devices which

use wireless transmissions for sending and receiving data. In addition, wireless ad

hoc networks have no fixed infrastructure, which allows them to deploy quickly,

eliminating the complexity of the infrastructure’s set-up. As all devices are allowed

to move around, no single device is expected to act as central administration (such

as a cell site for cellular data services, or an access point device for Wi-Fi). Thus,

due to the limited wireless transmission ranges, all devices need to provide routing

and must also be able to forward data packets to the correct destinations.

Studying wireless ad hoc networks is a very active research field. This is be-

cause such networks find applications in a variety of areas. Related to militia or

natural catastrophes such as fires and tornadoes, tactical networks (Aschenbruck

et al., 2008) are deployed by forming wireless ad hoc communication between

mobile devices, which operate within automated battlefields or places where the

communication infrastructure is destroyed. Emergency services (Chlamtac et al.,

2003) are also applications where wireless communication cannot depend on fixed

infrastructure. Search and rescue operations, disaster recovery, policing and fire

fighting are all applications which belong to this area (Kostoulas et al., 2008).

Other applications are found in education such as ad hoc communication in uni-

versity campuses (Stuedi & Alonso, 2007), virtual classrooms or communication

during learning and teaching (Vasiliou & Economides, 2007), in entertainment

such as multi-user games, outdoor Internet access, etc., in research such as multi-

robot systems for terrain exploration (Yoshida et al., 1995; Alena & Lee, 2005),

and many others.

Current literature focuses on two major types of wireless ad hoc networks, the

Mobile Ad hoc Networks (MANETs) and the Wireless Sensor Networks (WSNs).

This is due to the fact that those two types are heavily used in the above applica-
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tion areas. In the next sections, 2.2.1 and 2.2.2, MANETs and WSNs are described

and compared, providing the background to understanding the potential problems

in data communication and routing within such networks.

2.2.1 Mobile ad hoc networks

Mobile ad hoc networks (MANETs) (Ram Murthy & Manoj, 2004; Marwaha et al.,

2002), have all the wireless ad hoc network characteristics. In a MANET, all the

participants (nodes) are mobile and use only wireless communication links to send

and receive data packets. There is not a fixed infrastructure or hierarchy between

the participants. Being equal, they need to act as end hosts of a transmitting

session, as well as routers. Thus, MANETs are highly dynamic and decentralized

networks. Since each node is able to provide routing and forward data packets,

MANETs are also multi-hop networks. That means that during a communication

session, packets can be forwarded multiple times, hop by hop, in order to reach

their final destination. Although MANETs’ deployment is easy and cost-effective,

they require complex distributed routing algorithms to operate. In conjunction to

this, self-organization, configuration and maintenance are built into the network,

in the form of network protocols. In terms of implementation, this increases the

complexity and requires a careful design of a node’s architecture, which involves

all network layers of the network stack from the physical to the application layer.

The first MANETs have primarily been used for tactical networks for mili-

Figure 2.1: An example of a mobile ad hoc network (MANET), consisting of
10 nodes which communicate by wireless links. The dashed lines illustrate the
wireless links, forming several possible routing solutions between potential sources
and destinations.
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tia (Taneja & Patel, 1972), in order to improve battlefield communication and

survivability. Their highly dynamic nature offers an excellent communication be-

tween military devices, which cannot rely on access to a fixed placed infrastruc-

ture, in a battlefield or any other type of harsh terrain. Since then, MANETs

have concentrated the interest of the research community and they have evolved

and improved to satisfy a variety of needs. One of the earliest mobile ad hoc

networking application is the DARPA Packet Radio Network (PRNet) project in

1972 (Jubin & Tornow, 1987). PRNet applied the packet switching technology

in a mobile wireless environment, by utilizing a distributed architecture of multi-

hop routing which offered an ad hoc communication between users within large

geographic areas.

Another example of implementing a MANET, this time by using a large-

scale implementation, is the Tactical Internet (TI) maintained by the US army in

1997 (Sass, 1999). The key feature of TI is the ability to exchange messages using

the commercially-based Internet Protocol (IP), which is common across all nodes

of the various TI segments.

MANETs do not rely on a specific type of device. Instead, a group of different

computing devices, such as laptops, mobile phones, tables, etc., can form a mobile

ad hoc network as long as they follow the same communication technology, for

instance, they are all Wi-Fi enabled. An example of such a network is shown in

figure 2.1. Nonetheless, MANETs are not perfect. The challenges of scalability,

mobility, bandwidth limitations and power constraints of these networks, have

not been completely alleviated to date. Network protocols for MANETs need to

be highly dynamic and operate in a fully distributed way. They also need to be

adaptive to any topological changes and robust in order to face unreliable links

between transmitting nodes. Finally, due to the network limited resources, proto-

cols need to provide as cheap as possible solutions in terms of energy consumption,

bandwidth and computing power.

2.2.2 Wireless sensor networks

Wireless Sensor Networks (WSN) (Akyildiz et al., 2002; Xu, 2002) are ad hoc

networks which consist of a large number of nodes equipped with some sort of

a sensor and are generally deployed in order to measure physical parameters of

a certain phenomenon. They are the key to gathering the information required



2.2. Types of wireless ad hoc networks 17

within a variety of environments, from buildings in an urban scenario, to deep

forest, banks of river, surface of a lake or bottom of the ocean.

Figure 2.2: An example of a wireless sensor network (WSN). Here, the small cylin-
ders illustrate the sensor nodes and the large coloured cylinders the sink nodes.
Both sensor and sink nodes communicate with each other using wireless links, il-
lustrated as dashed lines. Sensor nodes are responsible for collecting sensory data
and send it to sinks, where the processing is being done.

Sensor nodes are small and cheap devices with very low data processing ca-

pability. Their purpose is to measure certain environmental values, gather and

transmit the data to the monitoring station nodes, where it can be processed.

The activity of sensing can be periodic or sporadic and the transmission of the

data to the monitoring stations can also follow a pattern (e.g., collect information

at frequent intervals). The fact that they are ad hoc networks expands their abil-

ity to deploy easily within difficult environments. For instance, in a geographical

project, one can measure several characteristics of a lake by throwing sensor nodes

into it and by placing sink nodes at positions where physical access can be gained,

like the bank of the lake, or a platform on its surface. Figure 2.2 shows a simple

WSN deployment, of 12 sensor nodes and 3 sinks.

Similarly to MANETs, WSNs need to be fast and adaptive to dynamic envi-

ronments. As it is very difficult to reach sensor nodes in some cases (e.g., sensor

nodes are thrown into a lake), network protocols designed for WSNs need to be
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robust and self-configured. Due to the lightweight and cheap nature of the sensor

nodes, protocols need to be able to operate using as little resources as possible for

data processing, storage and transmission power. These resource constraints also

suggest that WSN protocols should be designed to be aware of data fusion (Chen

et al., 2009), a collection of techniques which refers to aggregating several small

packets into one before relaying it. This not only reduces the number of head-

ers bits being used, but also speeds up the transmission of multiple packets by

eliminating the media access delay involved.

In most cases, mobility in WSNs is not a mandatory requirement. However,

this depends on the application. The sensor nodes which periodically transmit

environmental values such as the level of humidity or heat in a forest during a fire

detection activity are not required to be mobile. On the contrary, the sensor nodes

which are fitted on animal bodies in order to measure their everyday activities may

be designed to support limited or partial mobility. Although mobility is not always

an issue for WSNs, they still need to be adaptive to topological changes. This

is due to the highly dynamic terrains caused by physical changes, e.g., weather

conditions affect the position of sensor nodes, or the existence of non-replaceable

broken sensor nodes that break the communication.

In terms of network size, deploying WSNs often requires hundreds or thousands

of sensor nodes to cover the required terrain. This implies that protocols designed

for WSNs need to scale up easily without losing efficiency.

2.3 Issues in wireless ad hoc networks

Wireless systems operate by transmission through free space rather than through

wired connections. Hence, many factors influence the data transmission, like the

form of the terrain, atmospheric conditions, buildings and other obstacles. Al-

though unknown to the wired world, in a wireless environment these problems

affect both data transmission and routing. In this section, a discussion related

to the impact these problems have on routing is given, by looking at the wire-

less channel in general as well as the three involved layers of the network stack;

the physical, data link and the transport layer. Furthermore, separate problems

connected to node mobility and limited resources are also discussed.
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2.3.1 Wireless channel and signal propagation

Not only an issue for routing, but rather packet transmission in general, a wireless

channel is prone to a variety of transmission impediments such as path loss, fading

and interference. Depending on the environmental conditions, these factors restrict

the range, data rate and reliability of the wireless links between the nodes.

Path loss and shadowing. Being a function of the propagation distance, the

path loss is expressed as the ratio of the power of the transmitted signal to the

power of the same signal received by the receiver on a given path. It is the

reduction of power density the electromagnetic wave experiences as it propagates

through the free space. Its estimation (called prediction) is very important for

designing and deploying wireless networks. Path loss directly depends on the

nature of the terrain. Therefore, a single model is not enough to cover all wireless

transmission environments. Several path loss models have been proposed, such as

the Free Space and Two-Ray path loss model (Ram Murthy & Manoj, 2004; Takai

et al., 2001). Moreover, signals also suffer loss in power due to obstacles along the

way, an effect called shadowing.

Fading. This refers to the fluctuations in the signal strength of a transmission

due to environmental surrounding reflectors when it is received at the receiver,

and is classified as slow or fast fading. Fast fading occurs due to the interference

between multiple copies of the same transmitted signal arriving at the receiver at

slightly different times. Reflection, diffraction and scattering (Sarkar et al., 2003)

are the main sources of fast fading. Slow fading occurs when there is an object

which partially absorbs the wireless transmission positioned between the trans-

mitter and the receiver. For instance, the latter may occur when the transmitter

is within a building where the receiver is outside and the propagation has to go

through a thick wall.

Interference. Since the wireless channel is a shared medium, multiple sources

transmitting signals at the same time can result in the signals being corrupted

and undecodable at the corresponding receivers. This phenomenon is encountered

from a variety of sources. One main type of interference occurs when signals in

nearby frequencies have components outside their allocated ranges. For instance,

multiple Wi-Fi networks which operate in different but adjacent channels are likely
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to suffer from this form of interference. Similarly, when nearby systems use the

same transmission frequency, they are subject to co-channel interference. Another

frequent form of interference is the inter-symbol interference (Ram Murthy &

Manoj, 2004). During inter-symbol interference, distortion in the received signal

is caused by symbols (pulse or tones of an electromagnetic wave) overlapping with

subsequent symbols, causing noise and making the communication less reliable.

Bandwidth. Fiber optics and the exploitation of wavelength division multiplex-

ing offer high bandwidth in wired networks. Unfortunately, this is not the case

in wireless communication. The radio band is limited and the data rates that

it is able to offer are much less than what a wired network can offer. Limited

bandwidth in wireless communication encumbers the routing protocols which of-

ten need to keep partial or full routing information for all the topology. This is

because a lot of messages are required to be exchanged between nodes, which in

turn results in more bandwidth being wasted.

Figure 2.3: Open Systems Interconnection (OSI) network stack, illustrating dif-
ferent layers.

2.3.2 Physical layer

The principle task of the physical layer (PHY) (figure 2.3), is to transmit streams

of bits from the transmitter to the receiver with minimal bit errors. Here, the two

major issues which affect routing protocols are discussed.



2.3. Issues in wireless ad hoc networks 21

Unidirectional and bidirectional links. Bidirectional wireless links are those

where if node A can receive packets from node B, then node B can also receive

packets from node A. Although the majority of protocols found in the literature

assume that all links between the nodes are bidirectional, in reality an ad hoc

wireless network may contain unidirectional links. They can occur for various

reasons. One reason can be the difference in the transmission ranges of the nodes.

If node A has higher range than B, then it is possible for B to receive packets

from A, while A is not able to pick up packets from B. When this happens, a

possible explanation is the difference in the remaining battery level of each node.

Another related reason for the occurrence of unidirectional links, is the irregular

patterns which are formed instead of a perfect circular transmission range, due to

the difference in radio wave propagation to different directions (Zhou et al., 2004).

Moreover, unidirectional links may also occur as a result of the interference levels

at each transmitter and receiver. It is possible that the level of interference at

node A is different to that of node B, so that one of the two can temporarily be

unable to pick up packets sent by the other.

Symmetric and asymmetric links. In a wired world, communication links

are mostly designed to be symmetric. Symmetry means that bidirectional com-

munication over the same link is of the same quality. The control of possible

noise in the wired medium allows symmetric communication to become possible.

However, wireless communication bidirectional link asymmetry can be observed

due to a number of reasons, such as interference, multi-path effects, weather con-

ditions, etc. (Aguayo et al., 2004; Kotz et al., 2004; Haykin, 2005). Especially, in

MANETs and WSNs, due to their usual deployment in large and heterogeneous

areas, wireless link quality fluctuates significantly. Hence, most of the network

routing protocols which are designed to provide shortest-path and geographical

routing are built under the assumption that if node A can hear from node B, no

matter what the quality is, the connection is good enough to provide a routing

solution (Kim & Shin, 2006).

2.3.3 Data link layer

The data link layer (DLL) is responsible for preparing and transmitting data

between nodes. It often provides the functionality of correcting possible errors
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that may have occurred in the PHY layer. As defined by the IEEE 802 standards,

the data like layer consists of two parts, namely the media access control (MAC)

and logical link control (LLC) sub-layers. Wireless IEEE 802.11 (adopted in 1997)

specifically emphasises the MAC sub-layer, for it is responsible for three important

aspects of networking; reliable data delivery, access control and security. Thus,

in this part of the chapter the discussion is focused on the MAC layer and, in

particular, the most common MAC protocol for wireless networks that lack a

fixed infrastructure, the IEEE 802.11 Distributed Coordination Function (DCF).

Figure 2.4: An example of the hidden terminal problem. Here, if node A is sending
data to node B, node C is totally unaware of the ongoing transmission, resulting
in severe packet loss at node B.

The hidden and exposed terminal problems. Routing in wireless networks

is affected by hidden and exposed terminal problems, for which solutions are meant

to be provided by the MAC protocols. The hidden terminal problem is a common

phenomenon that is met due to the multi-hop nature of wireless ad hoc networks.

For instance, in figure 2.4, when node A is sending data to node B, node C is

completely unaware of the ongoing transmission. If C attempts to send data to

B, then the hidden terminal problem will occur, causing collision at node B, and

packet loss.

The exposed terminal problem, occurs when a node attempts to transmit data

while a neighbouring node is already transmitting. This is due to two transmitters

within the same transmission range, trying to send data simultaneously. In figure

2.5, a collision happens when node C requires transmitting data to node D, while
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Figure 2.5: An example of the exposed terminal problem. Here, if node A is
already transmitting data packets to node B, then node C will be unable commu-
nicate with node D, because of the neighbouring transmitter A.

node A is sending data to node B. This leads to a blocked communication where

no node will be able to transmit or receive packets.

Sharing of the wireless channel is a difficult problem, and it is the MAC pro-

tocols’ responsibility to tackle. In an ad hoc environment where no access point

is present, the de facto mechanism of solving problems such as the ones described

above, is the carrier sense multiple access with collision avoidance (CSMA/CA) (Bren-

ner, 1997). In CSMA (Kleinrock & Tobagi, 1975), a transmitter may transmit if

and only if the medium is sensed to be idle. A protocol which is based on this

mechanism and is implemented to all Wi-Fi transmitters is the IEEE 802.11 DCF

protocol (Mueller, 2007), discussed below.

IEEE 802.11 Distributed Coordination Function. This media access con-

trol mechanism is historically influenced by the multiple access with collision

avoidance for wireless (MACAW) (Bharghavan et al., 1994) and the multiple ac-

cess collision avoidance (MACA) (Karn, 1990) protocols, which introduced the

request-to-send/clear-to-send handshaking scheme in order to effectively use the

wireless medium over different nodes, reducing the possibility of collision.

The CSMA of the IEEE 802.11 DCF works as follows. When a node is required

to send data to a destination, it must first sense the channel to determine whether

it is already being used for another transmission. If the channel is busy, the node



24 2. Wireless ad hoc networks

goes to a back-off phase, when it has to wait for a fixed interval before it attempts

to retransmit. The interval is switched to a random back-off value if the channel is

assessed busy for a second time. The basic CSMA mechanism requires each frame

that is sent by the MAC layer to be acknowledged. Therefore, after a successful

transmission of a frame, the receiving node prepares an ACK frame and sends

it back to the sender. If no ACK frame is received for a particular frame, the

transmitter schedules a retransmission.

Apart from the CSMA, IEEE 802.11 DCF also employs a collision avoidance

mechanism, which involves request-to-send (RTS) and clear-to-send (CTS) control

frames to be sent between the transmitter and the receiver prior to any unicast

data frame transmission. These control frames are heard by all nodes within the

transmission range, which block their own transmission for the duration of the

transmission1 to prevent any collision.

The RTS/CTS handshake scheme addresses the problems of hidden and ex-

posed terminals rather satisfactorily, but problems may still persist in some cases.

This is due to the fact that they are “transmission-range” related and therefore

are subject to physical conditions and energy consumption. For instance, Fu et

al. (2003) and Xu et al. (2003) have shown that the power which is required for

interrupting a packet reception is much lower than that of delivering a packet suc-

cessfully, meaning that the transmission range of a node is smaller than its sensing

range. Studies have also discovered that the problem of hidden terminal occurs

less frequently when the transmission range is increased (Hanbali et al., 2005). In

a similar manner, IEEE 802.11 RTS/CTS mechanism helps to solve the exposed

terminal problem only under certain conditions (clock synchronization between

nodes, shared packet sizes and data rates). Additionally, another auxiliary func-

tionality provided by the MAC layer is the clocks synchronization of all the wireless

nodes, a feature which is exploited by a number of power-aware protocols.

The efficiency as well as the limitations of the legacy IEEE 802.11 DCF is

still under investigation by the research community. In Chetoui et al. (2007), the

problem of fairness in terms of the medium occupancy is illustrated. The authors

mention that although the CSMA/CA mechanism ensures equal access to the

shared medium, taking into consideration the destination between the transmitter

and the receiver, fair medium occupancy cannot be always achieved. The time

a node captures the channel to transmit a data frame increases as its nominal

1The duration is found in the control frame’s header as the Duration/ID field.
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bit rate decreases, due to the greater distance between the two antennas. In this

regard, the overall maximum throughput of the network is negatively affected.

Another drawback of the DCF protocol which affects the maximum throughput is

the transmission of the extra control frames, i.e., RTS, CTS, and ACKs. The con-

trol overhead caused by the handshake scheme reduces the theoretically expected

throughput (Jun et al., 2003). Similarly to the throughput limitations, packet de-

lay bottlenecks do exist in IEEE 802.11 DCF, mainly because of the randomness

in the back-off interval window, especially within busy networks. Jun et al. (2003)

present a detailed analysis for theoretical delay limits in different IEEE 802.11

specifications, pointing out that the threshold when packets arrive faster than the

packet service rate, and vice versa, depends on the packet arrival pattern (e.g.,

general data or VoIP data traffic).

2.3.4 Transport layer

Moving to the fourth layer of the OSI model (one layer above the network layer),

the transport layer is responsible for providing end-to-end communication ser-

vices for applications. Amongst these services are connection-oriented or connec-

tionless communications, data sending reliability, congestion avoidance and flow

control (Forouzan, 2005). When a source is required to send data to a desti-

nation, a transport layer protocol organizes the data into segments and starts

a communication session by using the routing solution provided by the network

layer’s protocol. The Internet today uses two de facto transport protocols for

both connection-oriented and connectionless data streams. Both these protocols

are briefly discussed in the following paragraphs, with respect to the impact they

have on wireless communication and, in particular, routing.

Transmission Control Protocol (TCP). This state-of-the-art transport layer

protocol is able to provide secure data transport between two nodes. At the be-

ginning of a communication session between two nodes, the sender starts a TCP

connection with the receiver, exchanging control packets by following a triple hand-

shake scheme. TCP offers a reliable data transport service by acknowledging all

data segments, while it also makes sure that they arrive in the correct order. TCP

was designed to work in wired networks and because of that, its performance is

quite poor when applied to highly dynamic networks such as MANETs or WSNs.
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Firstly, TCP does by itself produce excess control overhead while applying its

acknowledgement and data integrity mechanism (Gerla et al., 1999). This con-

tradicts one of the fundamental needs when designing wireless protocols: provide

as little control overhead as possible to allow real data to occupy the medium.

Another reason is the frequent link failures in wireless ad hoc networks, which

may lead to increased packet loss. In TCP, this triggers the protocol’s congestion

control, which in turn, reduces the sending rate (by shortening the congestion

window). Thus, TCP’s reaction to false congestion in the network decreases the

protocol’s effectiveness (Xiao et al., 2010). Next, unidirectional and asymmetric

paths between sources and destinations also cause difficulties to TCP performance.

Asymmetry may manifest in several forms like loss rate asymmetry, route asym-

metry, etc. Especially when multi-path routing protocols provide more than one

available routing solution for a given communication session, ACK streams may

be disrupted and lead to false estimations of the available bandwidth, degrading

the performance (El-Sayed et al., 2005). However, despite these problems, TCP

remains the state-of-the-art transport protocol when reliable data transportation

is required in wireless environments.

User Datagram Protocol (UDP). This is second the state-of-the-art trans-

port protocol, which is heavily used in the literature for both real-life and simulated

experiments. The service provided by UDP is connectionless, meaning that there

is no implicit handshake dialogue required in order to establish a connection and

start transferring data. This also implies that the protocol offers no guarantee

that the data will arrive at their destination correctly. UDP just sends datagrams

from the source to the destination. The simplicity of UDP (adds no extra con-

trol overhead) as well as the need to factor out any transport layer difficulties

are what make UDP the favourite choice when experiments need to be conducted

towards the improvement of other low-level protocols such as for the network, or

MAC layers. However, a valid counterargument is that real time applications do

not exclusively make use of UDP and protocols should be able to deal with both

connection-oriented and connectionless transport protocol.
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2.3.5 Node mobility

From all the previous sections, it is understood that the mobility of nodes plays

a significant role in the performance of the wireless network. MANETs as well as

WSNs, depending on the deployment, consist of a number of nodes placed in a

terrain where the network topology is neither considered nor planned previously.

The impact node mobility has on a routing protocol’s performance is an active

research area (Radha & Shanmugavel, 2001; Dousse et al., 2002), and can mainly

be seen as the product of frequent link breaks, energy consumption, and node

changes to the density within the topology.

Firstly, link breaks are caused when the two participating nodes of a data

transmission move further away from each other, so that the receiver goes outside

the transmitter’s range. This is a typical situation in MANETs that routing pro-

tocols need to cope with. In some cases (see section 2.5), link breaks are detected

by an expired timer which represents a packet that although it was sent, was never

acknowledged. This causes extra delays and affects the overall throughput of the

network. In addition, the recovery process after a link is found broken, requires

extra control overhead to occupy the medium.

Secondly, route discovery, routing maintenance, and topology self-organization

require control packets to be exchanged between neighbouring nodes. The more

frequently they occur, the more extra control packets need to be sent, the more

energy needs to be spent. This counteracts the limited resources in wireless ad

hoc networks, which is discussed in section 2.3.6.

Finally, the node density is a major factor that has much influence on the

performance. Work has been done to highlight this fact (Dousse et al., 2003; Deepa

& Nawaz, 2010). Although a sparse density increases the possibility of link failures

due to nodes exiting the transmission ranges, studies have shown that high density

wireless networks also suffer in connectivity. In Blake and Pullin (2007) as well as

in Ververidis and Polyzos (2005), the authors have studied the impact of density

on the performance of routing protocols in MANETs and show that the affect is of

various forms. They show that the higher the density of the network, the greater

the load within it. Throughput is affected as more control overhead is broadcast

to the network. Coupled with this, they show that the greater the node density

of the network, the greater the packet loss rate. To conclude, clustering is also

a frequent problem when nodes move around the network topology. Depending
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on the various moving patterns the nodes follow, they can form small internally

connected groups which are connected to each other by a few nodes sitting at the

edge of the group’s transmission range. Furthermore, when several communication

sessions are required between nodes of different groups, traffic is eventually going

through the nodes at the edges, causing bottlenecks and load congestion.

2.3.6 Limited energy resources

Nodes which participate in a wireless ad hoc network are usually limited by energy

resources. This problem gets bigger in WSNs, where sensor nodes tend to be very

small in size, so their batteries tend to be smaller. Energy management is itself a

separated research objective (Tantubay et al., 2011).

The impact energy consumption has on mobile wireless networks is large, due

to the following facts. Nodes consume energy while sending, receiving and even

discarding packets. In addition, studies have shown that memory allocation at the

mobile node is one of the most important reasons behind high energy consump-

tion (Amiri, 2010). Hence, consumption does not only take place at the PHY

or MAC layers, where the packets take their final steps in order to be transmit-

ted, but also at other layers of the network stack where changes to the packet or

decisions (such as routing) are made (Chauhan & Chopra, 2010). Furthermore,

power consumption in wireless ad hoc networks is directly proportional to route

length, that is, if the route length (number of hops) is increased, then the power

consumption is also increased.

2.4 Routing problem in wireless ad hoc networks

There are several reasons why wired routing protocols are not appropriate for

wireless communication and, in particular, mobile wireless ad hoc networks. These

reasons are listed in this section followed by a discussion of the most important

features one must consider, when designing a new routing protocol.

• Wired protocols are designed for fixed topologies with immobile nodes. The

rate of link breaks is much less than in wireless ad hoc networks.

• Due to abundant bandwidth, wired routing protocols are not taking a min-

imalistic approach in exchanging routing information.
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• Collision detection cannot be achieved in wireless (where collision avoidance

is used instead). This enhances the routing problem as it adds extra delays

to the packet transmission.

• Since the topology in a wired network changes infrequently, routing loops

rarely occur. On the contrary, moving nodes alter the topology fast and

unexpectedly, making adaptation and self-organization far more difficult.

To overcome the issues of wireless ad hoc networks, routing protocols need

to be designed with certain characteristics. Firstly, a wireless routing protocol

needs to be fully distributed. Distributed routing is more tolerant to faults than

centralized, and produces less control overhead. In addition, distributed routing

algorithms scale up easier as the network becomes larger. Next, the protocol needs

to be adaptive to frequent topological changes caused by the mobility of the nodes

and the changes of the terrain. In terms of topology knowledge being used by

each node, the protocol has to be localized. In other words, fewer nodes should

be involved while computing and maintaining a routing solution between a source

and a destination. Next, optimal routing solutions need to be generated fast,

with minimum set-up time. Stale routes need to be deleted as quickly as possible.

Finally, a routing protocol should be able to optimally use the limited resources

of the mobile node, such as computing power, memory and battery energy, as well

as the available bandwidth.

Routing protocols for wireless ad hoc networks are classified into several types,

based on their routing approach and mechanisms (Lie & Kaiser, 2005; Boukerche,

2009). The most common classification that is met in the literature is based on the

routing information update mechanism. Other classifications consider the utiliza-

tion of specific resources such as power-aware and location aided, and others (see

section 2.7). Recent research on designing adaptive routing protocols has brought

into light another way of classifying protocols to those inspired by the traditional

wired Internet protocols (Internet-inspired), and those inspired by nature (nature-

inspired). A literature review on several important routing protocols is found in

the following sections 2.5, 2.6, and 2.7.



30 2. Wireless ad hoc networks

2.5 Internet-inspired protocols

Here, routing protocols that are inspired by the wired Internet but are designed

and implemented for wireless environments are presented. Based on how routing

information updates are achieved, including the routing discovery process, these

protocols are either proactive, reactive or hybrid.

2.5.1 Proactive

In proactive or table-driven routing protocols, the network topology information is

maintained within each node in the form of routing tables, which are periodically

exchanged in order for the information to be kept up-to-date. Generally, routing

information is flooded through the whole network allowing hearing nodes to up-

date their topological knowledge. Whenever a route is required at the sender, a

searching algorithm is applied on the routing tables to find the optimal solution.

The advantage of proactive routing is that routes to all destinations are readily

available at every node at all times. Although this method reduces the delay of

the route discovery dramatically, it adds a large amount of control overhead to the

network traffic. Examples of proactive protocols are the Destination Sequenced

Distance-Vector (DSDV) (Perins & Bhagwat, 1994) and Optimized Link State

Routing (OLSR) (Clausen & Jacquet, 2003), discussed below.

Destination Sequenced Distance-Vector. Historically, this is one of the

first routing protocols proposed for wireless ad hoc networks (1994). It is a

pure table-driven protocol and an enhanced version of the distributed Bellman-

Ford algorithm (Bellman, 1958). In fact, DSDV (He, 2002) is inspired by the

two legend routing protocols for the wired Internet, Routing Information Proto-

col (RIP) (Hedrick, 1988), and Border Gateway Protocol (BGP) (Lougheed &

Rekhter, 1990). Routing in DSDV is achieved by exchanging information tables,

whose contents include the shortest distance and the first node on the shortest

path to every other node of the network. Distance in DSDV is measured by the

number of hops. The tables are exchanged and updated at regular intervals, and

also when a node observes a significant change in the local topology. An example

of DSDV routing table is shown in figure 2.6.
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(a) An ad hoc topology of 6 wireless nodes oper-
ating with DSDV.

Dest NextHop Dist Seq No

1 2 2 33
2 2 1 28
4 4 1 42
5 4 2 57
6 2 3 81

(b) DSDV routing table for node 3.

Figure 2.6: Left (a) is an example of DSDV topology of 6 nodes, and right (b) is
the routing table of node 3.

Once a routing information table is passed to a neighbouring node, an incre-

mental update or full dump may occur. The former is used when a node does

not observe significant changes in the local topology, whereas the latter is done ei-

ther when the local topology changes dramatically or when an incremental update

requires more than a single network protocol data unit (NPDU). When a node

receives new routing information, that information is compared to the information

already available from previous routing information packets. The comparison is

made using sequence numbers which are assigned to each shortest path. Applying

sequence numbers allows DSDV to tackle routing loops, one of the most common

issues in distance-vector protocols. Any incoming route with a more recent se-

quence number is immediately adopted, while routes with older sequence numbers

are discarded from the table. In the case where two routes have equal sequence

numbers, the one with the best metric score is selected. As mentioned previously,

the best metric may be the lowest number of hops.

The advantage of DSDV is its ability to provide routing solutions to all destina-

tions at all times, ensuring less delay compared to other methods. However, such

behaviour increases the control overhead, especially under conditions with high

mobility. This also puts a negative effect on the scalability of the protocol. The

larger the network size becomes, the more control overhead will be produced. The
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problem appears to both small networks with high mobility, and large networks

with low mobility.

Optimized Link State Routing (OLSR). The protocol is an optimization

of the classical link state routing approach (Forouzan, 2005; Adjih et al., 2003a;

Xu et al., 2011) tailored to the requirements of a wireless ad hoc networks. It

is similar to DSDV in a sense that they are both proactive and require routing

information messages to be exchanged between nodes. However, in OLSR nodes

are not required to possess knowledge for the whole network topology. What they

know is partial information (neighbourhood only), which is collected by periodical

beaconing from neighbouring nodes.

Furthermore, each node in the network selects a set of nodes in its one-hop

neighbourhood which may retransmit its messages. These selected nodes are called

multipoint relays (MPRs), and constitute the key concept of OLSR’s multipoint

relay mechanism. That is, when a routing information update is required, only

MPRs are allowed to forward broadcast messages, reducing the control overhead of

flooding. All nodes must select a MPR within their neighbourhood. The selection

criterion of a MPR is that a message sent by any node should be repeated by the

MPR and received by all nodes in the neighbourhood two hops away.

OLSR consists of two main components: the HELLO messages and the topol-

ogy control (TC) messages. A HELLO message is periodically sent by all nodes,

and contains information about their neighbours, the nodes they have chosen as

MPRs, and a list of neighbours whom bidirectional links have not yet been con-

firmed. Exchanging HELLO messages not only allows the finding of possible pairs

of connection, but also provides the required information in order to select MPRs

in the first place. TC messages are used to share routing information about the

current topology. They are periodically sent by nodes using the multipoint re-

laying mechanism. The payload of a TC message is a set of bidirectional links

between a node and its neighbours. In terms of route calculation, the shortest

path algorithm is used.

The advantage of OLSR over other proactive protocols such as DSDV is that

it not only reduces the routing overhead associated with table-driven routing, but

it also reduces the number of broadcasts done. On the other hand, OLSR re-

mains prone to the common proactive routing vulnerabilities, such as incorrect

control traffic generation and relaying (Adjih et al., 2003b). Also, even though
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routing information updates are smaller than DSDV, they still need to be prop-

agated over the whole network by the MPRs, which affect OLSR’s scalability

(Ge et al., 2004; Nguyen & Minet, 2007).

Cluster head gateway switch routing (CGSR). This protocol (Chiang,

1997) uses a proactive routing scheme based on DSDV and is specifically designed

for clustering in wireless ad hoc networks. Clustering allows the wireless channels

to be effectively allocated among different groups of nodes (clusters). Each cluster

is defined by the transmission range of the cluster head, that is, an elected node

which can communicate directly with all the other nodes2. Although the com-

plexity and the overhead of clustering rests in the selection of the cluster head, a

controlled token scheme can be used within each cluster to give priority to cluster

heads, in order to maximize channel utilization and minimize delay.

CGSR protocol also uses the idea of gateway nodes. A gateway is a node

that belongs to more than one cluster. Using a table-driven algorithm CGSR

improves efficiency by routing packets alternatively between cluster heads and

gateways, before they reach their destination cluster head (and eventually the

destination node). This method improves routing efficiency since cluster heads

have more changes to transmit and gateways are the only nodes that cluster heads

can forward packets to. Clustering provides a mechanism to allocate bandwidth,

which is a limited resource in wireless ad hoc networks. Thereby, it improves

bandwidth utilization. Additionally, CGSR improves its performance by applying

token scheduling and code scheduling3. This allows the protocol to improve routing

performance by routing packets through the cluster heads and gateways.

Since CGSR is a hierarchical routing scheme which enables partial coordi-

nation between nodes by electing cluster heads, it utilizes the bandwidth more

efficiently. Although implementing a priority scheduling scheme with token and

code scheduling is fairly easy, CGSR requires more resources in order to avoid

gateway conflicts. Moreover, the power consumption at the cluster heads is also

increased due to higher traffic rates of these nodes.

Global state routing (GSR). GSR (Chen & Gerla, 1998) protocol for wireless

ad hoc networks wants the nodes to exchange vectors of link states among their

2Notice that this does not mean that nodes cannot communicate directly with each other in
the same cluster.

3Assigning appropriate spreading codes to two different clusters.
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neighbours during routing information exchange. In a pure link state fashion, once

a node realises that a link has changed between itself and a neighbouring node,

it floods the link state information into the whole network (global flooding). The

link state information includes the delay to each neighbouring node. Unlike the

traditional link state method, GSR does not flood the link state packets. Instead,

every node maintains the link state table based on up-to-date link state informa-

tion received from neighbouring nodes, and periodically exchanges its link state

information with its neighbouring nodes only (no global flooding). Information is

disseminated as the link state with larger sequence numbers replaces the one with

smaller sequence numbers.

An advantage of GSR is that the time required to detect a link change is

shorter than in other link state protocols. Furthermore, since the global topol-

ogy is maintained in every node, preventing routing loops is simple and easy. A

disadvantage is that GSR uses large size packets as update messages, which con-

sume a considerable amount of bandwidth and lead to high latency rates of link

state information propagation. In addition, large sized packets also consume more

energy.

Fisheye state routing (FSR). Having its origins in GSR, the FSR (Pei et al.,

2000) routing protocol expands the idea of exchanging vectors of link states among

adjacent nodes only to a more sophisticated exchanging scheme. Analytically,

FSR uses the fisheye technique proposed by Kleinrock and Stevens (1971). This

technique was developed to reduce the size of information required to represent

graphical data. The eye of a fish captures with high detail the pixels near the

focal point. The detail decreases as the distance from the focal point increases.

In network routing and FSR, fisheye allows accurate distance and path quality

information about the immediate neighbourhood of a node to be maintained,

with progressively less detail as the distance increases. In comparison to GSR,

FSR scales well to a large network size, while keeping the overhead low.

2.5.2 Reactive

Unlike proactive protocols, reactive (also called on-demand) protocols do not main-

tain routes between all the nodes in the wireless ad hoc network. Rather, routes

are established when needed through a route discovery process in which a route
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request message is broadcast. A route reply is returned either by the destination

or by an intermediate node with an available route.

Ad hoc On-Demand Distance-Vector (AODV). One of the most widely

used and well-known examples of reactive routing is the AODV protocol (Perkins

et al., 1999). Although it is based on distance vector routing (Forouzan, 2005),

AODV is designed to request for a route only when the route is needed. Addi-

tionally, AODV does not require nodes to maintain routes to destinations that are

not actively used, reducing in that way both control messages overhead and power

consumption.

The way this protocol provides routing solutions relies on the following concept.

A node broadcasts a route request (RREQ) message when it determines that it

needs a route to a destination and does not have one available. Such a situation

can occur when the destination node is unknown or a previously valid route has

expired. Hence, expiry time of each route in the routing table of a node plays a

significant role to the routing mechanism. When a node receives a RREQ message

it may send a route reply (RREP) back, if it is either the destination or it has

a route to the destination with corresponding sequence number greater than or

equal to that contained in the RREQ. Otherwise, it rebroadcasts the RREQ to

others. Every time a route is used to forward a packet the expiry time of that

route gets updated. In case of a broken link, nodes are notified with a route error

(RERR) message, which gets propagated to all nodes in order to invalidate the

broken route.

The main advantage of this protocol is that routes are established on demand,

which offers less delay during the connections’ set-up. However, the protocol’s

dependence on sequence numbers can drive the system to instability. Such a

situation may happen when an out-of-date intermediate node has a higher but

not latest destination sequence number for a path.

AODV is a single-path routing protocol. In single-path (or unipath) routing,

only a single routing solution is selected in order to traffic packets between a

source and a destination. This strategy allows the protocols to be susceptible to

high network load, frequent route failures due to mobility and thus higher packet

loss, and traffic congestions (Parissidis et al., 2006). In order to have a more robust

behaviour, in particular under networks with high mobility, multi-path routing is

used. Unlike single-path, multi-path routing protocols are able to discover more
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than one routes during the route discovery process, and then utilize them in order

to distribute the traffic. One multi-path routing protocol, based on AODV is

discussed below.

Ad hoc On-Demand Multi-path Distance-Vector(AOMDV). This is an

extension to AODV, in order to support multi-path routing proposed in Marina

and Das (2001). Unlike AODV, where a route discovery process is able to find

only one routing solution between a source and a destination, AOMDV is able

to discover multiple alternatives. In order to achieve that, the following changes

have been proposed for AODV.

One major change is that in AOMDV, nodes accept duplicate copies of RREQ

messages and examine them in order to find alternative reverse paths. In order to

guarantee loop freedom, AOMDV nodes only accept those RREQs which result

in node or link disjoint paths. Node disjoint paths are those where no intermedi-

ate nodes participate to different paths, whereas link disjoint paths contain only

unique links (Upadhayaya & Gandhi, 2011). Like AODV, AOMDV uses sequence

numbers. The idea is that for each destination, each intermediate node can hold

a cache of alternative paths which will be used as next hop in order to reach the

appropriate destination. In terms of packet forwarding, AOMDV uses a simple ap-

proach. A link is used until it breaks, at which point an alternative is found from

the cache. Additionally, AOMDV uses an optimization called packet salvation

which is a mechanism borrowed by DSR (see below). By packet salvation, when a

link fails the intermediate node may decide to forward the packet to an alternative

path, instead of dropping it. Being a multi-path routing protocol, AOMDV is able

to reduce both end-to-end delay and packet loss, and utilize the network topology

more efficiently as the load is distributed across multiple routes.

Dynamic Source Routing (DSR). Closer to AODV, DSR (Johnson & Maltz,

1996) is another example of on-demand routing. This protocol is designed to elim-

inate the periodic update messages between nodes, thus the bandwidth consumed

for this control overhead. It follows the idea of source routing (Forouzan, 2005;

Postel, 1981). A routing entry in DSR contains all intermediate nodes to be vis-

ited by a packet, rather than just the next hop information maintained by DSDV

or AODV. If the source knows the exact path to the destination, it puts it in the

data packet’s header and sends it off. In the opposite case, the source performs a
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route discovery. Route discovery is achieved by flooding the network with a RREQ

message. The RREQ message gets updated as it collects new routing information

from the nodes it visits on its way to the destination. Any intermediate receiving

node which has an answer to the RREQ may reply with a RREP message. If

not, it propagates the request further. Receiving nodes also use incoming RREQ

messages to update their own routing tables. Also, the destination’s reply is sent

using the route recorded in the received RREQ.

To reduce the cost of route discovery in terms of control overhead, each node

in the network maintains a cache of source routes it has learnt or overheard by

the previously incoming RREQ messages (promiscuous mode). The cache is then

used aggressively in order to limit the message propagation. DSR also uses RERR

messages in order to inform the source node that an intermediate link is found to

be broken. DSR also uses packet salvation, a mechanism of forwarding packets to

alternative paths if they exist, instead of discarding them. However, the major

disadvantage of this protocol is that its aggressive use of caches, as well as its

inability to locally repair broken links, leads to stale routing information and cache

pollution. As a consequence, data packets can be sent onto erroneous routes due

to inconsistencies during the route discovery, adding extra delays and bandwidth

wastage.

Associativity-based routing (ABR). This is a reactive approach which is

combined with a beacon-based algorithm (Toh, 2002). In ABR, a source node

floods RREQ messages throughout the network when a route is not available in its

local routing cache. The RREQ messages are propagated by all the intermediate

nodes, carrying the path they have traversed and the sequence number of the initial

beacon. When the first RREQ reaches the destination, the destination does not

immediately reply. Rather, it waits for a time period in order to receive multiple

RREQs through different paths. The reason why ABR is an associativity-based

algorithm is that after some time duration, the destination selects the path that

has the maximum proportion of stable links. Special rules are applied in the case

where two paths have the same proportion of stable links: the shorter of them is

selected. In case of having more than one shortest path, a random path is selected

as the path between the source and the destination.

One major advantage of ABR protocol is that stable routes have a higher

preference compared to shorter routes. This results in fewer path breaks which, in
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turn, reduces the extent of flooding due to reconfiguration of paths in the network.

On the other hand, the chosen path may be longer than the shortest path.

Dynamic MANET On-Demand (DYMO). This recently proposed (Chak-

eres & Perkins, 2012) reactive protocol is the successor of AODV, currently defined

in an IETF Internet Draft. The route discovery in DYMO is similar to the pre-

vious routing protocols. The source node sends a RREQ message throughout

the network to find a way to the destination. During the discovery process, each

intermediate node records a route to the originator from the RREQ. When the

destination receives the RREQ, it responds with a RREP sent hop by hop toward

the RREQ originator. Once the RREP reaches the originating node, a route has

been established between the two in both directions. The maintenance of the

network routing in DYMO uses characteristics of AODV, when the lifetime of a

route entry depends on an expiry time value.

In DYMO, the route lifetime is extended upon a successful forwarding of a

packet. Moreover, RERR messages are used to notify the source when a route

is unknown or broken. When a node receives an RERR message, it deletes the

invalid route from its routing table and the route discovery is triggered.

2.5.3 Hybrid

A hybrid protocol in wireless ad hoc networks is an adaptive routing protocol that

combines the best features from both reactive and proactive techniques. Generally,

hybrid protocols separate the network topology in zones. Routing is determined

proactively within each zone, and reactively outside it. The advantage of such a

combination is the increased overall scalability and optimization within the zones.

Zone routing protocol (ZRP). This was the first hybrid protocol to be pro-

posed (Beijar, 2002). As in most of the hybrid protocols, the key concept employed

in ZRP is to use a proactive routing method within a limited zone of a predefined

sized neighbourhood (intra-zone routing protocol or IARP), and a reactive method

for nodes beyond this zone (inter-zone routing protocol or IERP). Each node main-

tains information about routes to all nodes within the same zone by exchanging

periodic route update messages. Hence, the larger the zone, the higher the update

control message overhead. On the other hand, the reactive method (IERP) is
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responsible for finding paths to the nodes which are not within the same routing

zone. If the destination node of a transmission is outside the source node’s zone,

the reactive part of the protocol is triggered, broadcasting a RREQ message to

its peripheral nodes. RREP messages are also used to answer the RREQs. RREP

messages contain information about the nodes that forwarded the RREQ message,

thus, they carry limited knowledge of each intermediate zone’s topology. This al-

lows the paths that are smaller to be stored and can, in principle, be more robust

since they are not affected by the internal routing within each zone.

By combining the best features of proactive and reactive routing methods,

ZRP reduces the control overhead compared to the RREQ flooding mechanism of

the pure on-demand, and the periodic flooding of the pure table-driven protocols.

Also, the decision on the zone radius has a significant impact on the performance

of the protocol.

Adaptive distance vector (ADV). Another protocol which combines both

proactive and reactive techniques is the ADV (Boppana & Konduru, 2001). It is

a distance vector routing algorithm that exhibits some on-demand characteristics

by varying the frequency and the size of the routing updates, in response to the

network load and mobility conditions. Rather than advertising and maintaining

routes for all receivers of any node of the network, ADV advertises and maintains

routes for nodes that participate in any currently active connection. This not only

reduces the size of the routing updates, but also the size of the routing tables

maintained.

Furthermore, ADV uses the concepts of trigger meter and trigger threshold. A

trigger meter is a special variable that is incremented whenever one of the following

events occurs; a) a node has some data in its buffer due to lack of routes, b) one

or more nodes in a neighbourhood make a request for fresh routes, or c) a node

needs to advertise a valid or invalid route to the destination, in order to keep a

current route up-to-date. Once one of the above triggers occurs, the trigger meter

changes and is compared to a trigger threshold. The latter is used to decide when

an update needs to be triggered. It is a dynamically changed variable, based on

the recent history of trigger meter values at the time of previous updates.

Experiments have shown that ADV outperforms on-demand protocols like

AODV and DSR in many instances (Boppana & Konduru, 2001). The authors

show that the improvement is significant when the node mobility is high.
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2.5.4 Choosing an appropriate approach

Obviously, there is no fixed and straight-forward decision of which of the three

approaches can be considered the best. The fitness of each one depends on many

factors, such as the size of the network, the mobility of the nodes, the data traffic,

the applications running on the top of the network stack, and so on.

The proactive approach tries to maintain routes to all possible destinations at

all times. Routing information is constantly propagated and maintained by all

nodes in the topology, meaning that in principle the topological knowledge that

nodes have includes all recent changes. Also, utilizing the whole topology in order

to find available paths between a source and a destination implies that multiple

solutions may be found. This is a positive aspect, since alternative paths can

be found easily in case of failure. Nevertheless, in very dynamic networks with

high density and mobility, proactive protocols can become inefficient or even break

down completely. For this reason, proactive routing protocols tend to work better

for wireless sensor networks where sensor nodes have fixed positions.

In contrast, reactive protocols initiate route discovery on the demand of a data

transferring session. This routing approach can dramatically reduce the control

overhead. However, the source node has to wait until a route to the destination

is discovered, increasing the response delays. Reactive protocols adapt better to

topological and network size changes, which allows them to be more scalable than

proactive ones. In MANETs, where all nodes are mobile and the links between

them break frequently, reactive protocols are generally preferred (Broch et al.,

1998a).

Combining proactive and reactive routing together, hybrid routing protocols

can be quite scalable and provide fast routing solutions within zones, while at

the same time they balance the amount of control overhead required to maintain

routing, especially for low mobility networks (e.g., some WSN deployments).

2.6 Nature-inspired protocols

The main contribution of this section is a survey of the existing routing protocols

whose source of inspiration is driven by nature (Kumar & Kumar, 2011). To-

day’s communication networks have become enormously complex systems. New

technologies and applications require a large number of communicating and in-
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teracting entities. MANETs and WSNs provide the network infrastructure for

such applications, where entities must work together in a decentralized and col-

lective system. Also, due to resource constraints discussed in section 2.3.6, the

complexity required within each entity needs to be minimal. Similar examples of

such complex and decentralized systems are found in nature and, in particular, in

insect societies.

2.6.1 Swarm Intelligence - ACO & BCO

The term Swarm Intelligence (SI) (Fleischer, 2005) has come to represent the idea

that it is possible to control and manage complex systems of agent-like entities,

which based on their multiple interactions with the environment and each other,

are able to provide solutions to difficult problems. The underlying features of SI

are based on observations of social insects. For instance, ant colonies and bee hives

are populated by small creatures which, despite their size and simple capabilities

as single units, are known for their surprisingly interesting achievements. Finding

and storing food, producing goods such as honey, wax or propolis, mating and

protecting their young, and guarding the nest are some of their daily activities.

The way insects conduct their affairs is organized collectively. The fundamental

question asked in the area of SI is how such swarms of creatures with relatively low

brain power and communication capabilities can build such emergent behaviour

and collective intelligence that seem to exhibit a more global purpose?

Under the umbrella term of SI there are two main meta-heuristics of research

interest in connection to designing network routing protocols.

Ant Colony Optimization

The Ant Colony Optimization (ACO) (Dorigo & Stutzle, 2004) meta-heuristic has

been inspired by the operating principles of ants, which allow them to perform

complex tasks such as foraging and nest building. In particular, ACO focuses on

the ability of ants to find the shortest path between their nest and an interest-

ing source of food, and constitutes of two components: stigmergy (Theraulaz &

Bonabeau, 1999) and pheromone control (Schoonderwoerd et al., 1996).

Finding food is a complex problem and cannot be solved by a single insect.

Foraging ants need to communicate with each other and share information about

possible sites of interest. Communication is achieved by stigmergy, where ants
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exchange information indirectly through the environment. Trails of a volatile

chemical substance called pheromone are laid down by foraging insects on their

way between the nest and the source of food. As time passes, fellow ants sense the

pheromone and take the path increasing the pheromone concentration on it. As a

result, the foraging power for the particular path is increased, and it becomes in

favour of the foragers. An example is illustrated in figure 2.7.

Figure 2.7: Stigmergy plays an important role in ant foraging. Here path A is
selected as the optimal path between the nest (N) and the source of food (S). As
more ants use the specific path, its pheromone concentration increases affecting
the recruitment process.

In Bonabeau et al. (2000), the authors pointed out that using stigmergy does

not imply that the shortest path will be found. If ants initially choose a non-

optimal path, laying pheromone trails will enforce them to use it, as long as the

food is available. Therefore, ACO-related routing algorithms propose a number of

pheromone control strategies that tackle this problem. The two most common ones

are pheromone evaporation and ageing. Evaporating means that the pheromone

value of a path is decreased over time by a constant factor. In case of a broken

path, ants will no longer be able to use it and therefore the concentration of

pheromone will eventually drop to zero. On the other hand, ageing decreases the

pheromone value taking into consideration the age of the ant. An older ant will

lay down less pheromone than a younger one.
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Bee Colony Optimization

Similar to ACO, the Bee Colony Optimization (BCO) (Teodorović et al., 2011;

Lucic & Teodorović, 2001; Lucic & Teodorović, 2002) is a nature-inspired meta-

heuristic, which can be applied in order to find solutions for difficult combinatorial

optimization problems. It is based on the idea that solutions to a given problem

are built from scratch, within a number of certain execution steps, therefore,

is iteration-based. Each iteration involves three steps. The forward pass, the

backward pass and the final decision.

Once the problem is defined, the forward pass starts by artificial bees seeking a

partial solution to the problem. They start exploring the search space, collecting

solution components. After finding enough information, they return back to the

hive. Here, the hive is not a well defined object and has no precise location.

Rather, one needs to think of it as the synchronization point where bees meet

and exchange their knowledge of the current state of the search. When bees are

back in the hive, the partial solutions that they have obtained are shared between

the searchers. This is the backward pass during which the collected solutions are

evaluated based on their quality. Each artificial bee has to make a decision based

on a certain probability, whether it will continue searching following its own path,

or switch to a fellow searcher’s solution. BCO steps are alternating in order to

reach a point where all possible solutions are complete. The final step is to decide

which solution is the best, based on certain criteria. The result is the iteration’s

contribution to the global best solution. After a number of iterations (determined

again by stopping criteria), the global best solution is met.

BCO meta-heuristic is used to solve several problems in different domains (Wedde

et al., 2010; Lucic & Teodorovic, 2003; Teodorović & Orco, 2005). In this thesis,

the discussion is limited to the application on telecommunication networks and,

in particular, wireless ad hoc networks routing.

2.6.2 Ant-inspired routing protocols

As in traditional approaches in designing routing protocols, the first attempts of

applying the ACO meta-heuristic were aiming for wired, packet-switched telecom-

munication networks. Therefore, it is historically fair to briefly mention some of

these protocols before presenting those aimed for MANETs and WSNs.

One of the earliest routing protocols was the ABC protocol for packet-switched
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networks, proposed by Subramanian et al. (1997). There are two types of ants

involved in this protocol; regular and uniform ants. A regular ant updates the

pheromone values of the routing tables based on the accumulated cost of travelling

to a particular node, whereas a uniform ant is randomly selecting its next hop and

it updates the pheromone values of the routing table based on the costs in the

direction opposite to its travel.

Another very famous routing protocol for wired environments is AntNet (Caro

& Dorigo, 1998). As in ABC, AntNet involves two types of ant agents. Each

ant is able to store the node addresses and trip time estimates of its visits. At

regular intervals, a forward ant is launched from a source to its specific destination,

depending upon the amount of traffic generated for the destination at the source.

Once a forward ant reaches its destination, it becomes a backward ant and transfers

all the information back to the source. Backward ants visit all intermediate nodes

the forward ants had visited, but in reverse order. Also, a backward ant is allowed

to update entries in the routing tables of the intermediate nodes. The goodness

of each path is defined based on the trip time. Di Caro and M. Dorigo conducted

a number of experiments on different topologies (Caro & Dorigo, 1998). Their

experiments have shown that AntNet outperforms, with respect to throughput

and delay, all other competitors which consist of proactive, reactive and hybrid

approaches (Dhillon et al., 2007).

AntHocNet. This is a hybrid algorithm proposed by Ducatelle (Ducatelle,

2007), Di Caro and Gambardella (Di Caro et al., 2005). It explores the capabilities

of the ACO mechanisms, combining them with both reactive and proactive ways

of gathering and building routing data. When a data session is started between a

source and a destination node, the source checks whether it has up-to-date routing

information for the destination. If it has not, it reactively sends out an ant-like

agent, called reactive forward ant, in order to look for paths to the destination.

Therefore, a forward ant is used to gather information about the quality of the

path it follows. Once it reaches the destination, it traces back the path to the

source node, updating the routing tables in its path. On its way back, the forward

ant becomes backward ant.

In AntHocNet a routing table consists of a destination, the next possible hop

to it and a pheromone value. The latter indicates the estimate goodness of a path

between a source and a destination. In this way, pheromone tables in different
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nodes indicate multiple paths between two nodes in the network and are stochas-

tically spread over it (in each node they select the next hop with a probability

proportional to its pheromone value). Once paths are set up and the data starts to

flow, the source node starts to send proactive forward ants to the destination. This

is a maintenance phase where each proactive forward ant follows the pheromone

values in the same ways as the data, but has a small probability at each node of

being broadcast. This technique serves as follows. If the forward ant reaches the

destination without a single broadcast, it means that the current path is working,

and it provides an efficient way of data transferring. On the other hand, if the

ant is broadcast at any point, it leaves the currently known pheromone trails and

it explores new paths. A threshold is used to avoid proactive forward ants being

broadcast to the whole network, allowing the search for improvements or varia-

tions to be concentrated around the current paths. In the case of a link failure,

a node may use an alternative path based on the pheromone values. However, if

the failed link was the only one in each pheromone table, the node sends out a

route repair ant that travels to the involved destination like a reactive forward ant

would do. Simulation experiments have shown that AntHocNet can outperform

AODV in terms of delivery ratio and average delay (Ducatelle, 2007).

Ant-colony based routing algorithm (ARA). Based on the same idea as

AntNet, Gunes et al. proposed ARA (Gunes et al., 2002), a purely reactive proto-

col. ARA consists of three phases. Starting with the first one, the route discovery

phase is when new routes are created by the use of forward and backward ants.

A forward ant is responsible for establishing the pheromone track to the source

node. In contrast, the backward ant establishes the pheromone track to the desti-

nation. Furthermore, a forward ant is broadcast by the sender and relayed by its

neighbouring nodes. Each node receiving such an ant message for the first time, it

creates a record in its routing table. When a forward ant reaches its destination,

it is destroyed and a backward ant takes over, travelling back to the source. Sub-

sequently, once the sender node receives a backward ant, it is said that a routing

path between them is established and data packets can be sent.

The second phase of ARA is the route maintenance. This phase is responsible

for maintaining and improving the routes during the communication. ARA uses

the concept of pheromone strengthening and evaporation. When a node relays

a data packet, it increases the pheromone value of the corresponding path. In
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addition, pheromone evaporation is achieved by decreasing the value over time.

The third and last phase of ARA is called route failure handling. It is the

phase which handles routing failures, usually caused by mobility. A broken link is

detected by a missing acknowledgement packet. Once a link is detected as broken,

the corresponding nodes get an RERR message and deactivate it by setting its

pheromone value to zero. Nodes try to find an alternative routing by either looking

at the routing table, or starting phase one again.

In terms of performance, simulation experiments have shown that ARA is very

close to the performance of DSR, but generates less overhead (Gunes et al., 2002).

Termite. The Termite protocol (Roth & Wicker, 2003) takes into consideration

the ability of social insects to self organize and is based on the concept of the

termite hill building (Roth & Wicker, 2005) behaviour of these little creatures. Hill

building illustrates the four principles of self-organization of the ant-like societies,

i.e., positive feedback, negative feedback, randomness and multiple interactions.

Termite associates a specific pheromone scent with each node in the network.

Packets moving through the network are biased to move in the direction of the

pheromone gradient of the destination node, exactly as biological termites are

biased to move towards their hill. Positive feedback is gained from links that have

stronger pheromone scent, whereas negative feedback is represented by pheromone

evaporation. The randomness factor is used for termites that explore the network

for the first time, and of course, multiple interactions are achieved by having

multiple termite agents exchanging information as they pass through intermediate

nodes.

The argument of Termite is that the SI framework can be used to competitively

solve the routing problem in mobile wireless ad hoc networks, with a minimal use

of control overhead. A small amount of control information is piggybacked in every

data packet, which is usually sufficient for the network to maintain a current and

accurate view of its state. Using that information the routing algorithm is able to

generate routing decisions.

HOPNET. Hybrid in nature, the HOPNET (Wang et al., 2009) protocol uses

ant colony principles to provide routing solutions in MANETs. Similarly to ZRP

(explained in section 2.5), the network is divided into zones, each one defining

the neighbourhood of a node. Moreover, each node keeps routing information
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for paths to nodes within its neighbourhood (intrazone routing) and for paths to

nodes outside its zone (interzone routing).

Intra-zone routing is done proactively. That is, nodes periodically send for-

ward ants in order to discover available paths to all its neighbours. Each routing

information to a neighbour node is assigned to a pheromone value, representing

the pheromone concentration on the link. HOPNET uses pheromone evaporation

as the method to control the pheromone levels. In addition, each node keeps hop

count information for all other nodes in its neighbourhood. By this, it is able to

know which nodes are at the borders of its zone.

Inter-zone routing is available when the intra-zone routing fails to provide a

routing solution. An intra-zone route discovery starts by the source sending an

forward ant. Since the node already knows which are its zone’s border nodes, the

forward ant is sent directly to them. At the boundary, the receiving node checks

to see if the destination is within its zone. If not, it forwards the ant to its own

border nodes. Upon reaching the required destination, a backward ant is created

and sent using the forward ant’s path in traverse.

Comparison experiments indicate that HOPNET is quite stable for high and

low mobility networks, and is highly scalable as the network size has no impact

on the protocol’s performance.

T-ANT. Proposed by Selvakennedy et al. (2006), this protocol provides cluster-

ing and routing in WSNs. It uses the ACO meta-heuristic in order to aid cluster

head election in such a way that optimal data aggregation with minimized overall

energy dissipation can be achieved.

During a T-ANT cluster set-up, a sink in the WSN releases a number of ants.

Each ant takes a random direction and walks in the network topology as deeply

as its time-to-live (TTL) value allows. At each intermediate sensor node, the ant

takes a random direction again. This continues until the TTL value becomes zero,

when the ant stays and waits at the node. The sink may send off new ants at

some time interval, and the whole process of initialization is controlled by a timer.

Once the timer expires, the sensor node that has an ant becomes the cluster head.

A new cluster head starts advertising to its neighbouring nodes by broadcasting

a message with its own node identification number (ID), and a new TTL value

to restrict the message’s propagation. Nodes that receive such messages extract

valuable routing information, such as the cluster head ID, the sender’s ID and the
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hop distance to the cluster head, and broadcasts it further. All this information is

then used to decide which cluster to join, once a join-timer expires. The pheromone

level of each path to the cluster head is based on the total hop distance, the number

of cluster heads in the neighbourhood and its residual energy level. Pheromone

control in T-ANT is achieved by using the idea of anti-pheromones. Before the

ant leaves its current node, an amount of anti-pheromone is laid to mimic a rapid

decay of pheromone level on the path.

The authors of T-ANT have conducted comparison experiments to other re-

lated work, such as LEACH (Heinzelman et al., 2002) and TCCA (Selvakennedy

& Sinnappan, 2005), the results of which show that T-ANT is able to store less

state overhead in memory, providing decentralized and robust clustering with no

position knowledge of the sensor nodes.

2.6.3 Bee-inspired routing protocols

Improving existing ant-inspired protocols, such as AntHocNet is a research objec-

tive frequently found in the literature. Unlike the ACO meta-heuristic, attempts

to apply bee-inspired principles in the area of telecommunication networks have

recently started. To the author’s knowledge, BeeHive (Wedde et al., 2004b; Fa-

rooq, 2006) introduced by Wedde, Farooq, and Zhang is the first routing protocol

for wired packet-switched networks. For historical reasons, a brief overview of

BeeHive is given below, followed by a list of the bee-inspired routing protocols

that exist in the current literature.

The BeeHive protocol is built around two types of agents, the short distance

and the long distance honeybee agents which are retroactively generated at the

nodes, and are designed to mimic the way honeybee foragers respond to bee dances

(the concept of the bee dance is explained in chapter 3). The responsibility of both

types of agents is to explore the network and evaluate the quality of the paths that

they traverse, in order to build nodes’ routing tables. Short distance agents are

allowed to move only up to a restricted number of hops in the network, whereas

long distance agents have to collect and disseminate routing information in the

complete topology. Moreover, BeeHive adopts a hierarchical organization for the

network. The design enables intelligent agents to explore network regions, or

foraging zones, and collect information which is then deposited to local routing

tables. Each foraging zone has a representative node, which is the node with the



2.6. Nature-inspired protocols 49

lowest IP address within its region. Its role is to launch long distance honeybee

agents that, as already described, their purpose is to collect information for the

complete topology.

Apart from the network routing, BeeHive’s contribution is also the first attempt

to map nature to networks, using the following simple mapping rules:

• Each node in the network is considered as a hive that consists of honeybee

agents that can behave exactly as real honeybee scouts do.

• These artificial scouts provide the nodes they visit with information about

the propagation delay and queuing delay of the paths they explored. These

two pieces of knowledge are then used internally to estimate the goodness

of a neighbouring node.

• A honeybee agent decides whether to provide its path information to a node

based on the quality of the path, examined against a threshold. This thresh-

old depends on the number of hops a honeybee agent is allowed to take.

• A routing table is considered as the dance floor where honeybee agents pro-

vide information about the quality of the paths.

• The quality of paths is mapped onto the quality of nodes. Consequently,

the quality of a node is formulated as a function of proportional quality

of only those neighbouring nodes that possibly lie in the path towards the

destination.

• Data packets in the network are considered as foragers. They also access the

information in the routing tables of any node they visit, which enables them

to become aware of the quality of different neighbouring nodes for reaching

their destinations. Thus, they select the next neighbouring node toward the

destination in a stochastic manner, depending upon its goodness.

BeeAdHoc. Extending BeeHive to fix MANETs needs, Wedde, Farooq et al.

designed BeeAdHoc (Wedde et al., 2005b) with the aim of creating a routing proto-

col which is at the same time energy-efficient and provides performance comparable

to those of existing state-of-the-art in the area.

There are three types of agents (packets) involved in BeeAdHoc. Initially, a

packer agent represents a food-storer bee that resides inside the network node.
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The main task of a packer agent is to act as an interface between the transport

layer and the network layer, receiving data packets from and store them in the

upper layer. It is also responsible for finding a forager (will be explained later

below) for the data packet at hand.

Next, BeeAdHoc uses scout agents to discover routes between sources and

destinations. In a reactive way, when a route is required at the destination node,

a scout agent is broadcast to the network just like a forward ant in ant-inspired

protocols (see section 2.6.2). It also carries a unique path key based on its ID and

source node, which is used to allow loop-free routes. Like backward ants, a scout

is sent back to the source, following the new discovered path in traverse. Once a

scout returns to its source node, it recruits foragers by using a metaphor of bee

dance, as bees do in nature (see chapter 3 for details on bee dancing).

Finally, A forager is the bee agent that receives data packets from a packer

and delivers them to their destination, in a source-routed modality (for source

routing, see DSR description in section 2.5.2). Since BeeAdHoc is a power-aware

routing protocol, there are two types of foragers. The delay and the lifetime. A

delay forager gathers end-to-end delay information, while lifetime foragers gather

information about the remaining battery power of the nodes.

In order to support UDP transmission, BeeAdHoc uses another special agent

type, the beeswarm agent. A beeswarm is used to explicitly transport foragers

back to their source nodes, where no acknowledgements are sent for the received

data packets. The way by which this objective is achieved, is by comparing the

number of the incoming foragers from a source to the number of existing waiting

foragers at the destination received by that source. If it is above a threshold, then

a beeswarm agent is launched in order to move foragers back to their hive. A

forager is put at the header of a beeswarm packet, and the rest to its payload.

The architecture of the BeeAdHoc is designed in the way that all agents work

efficiently. After extensive simulations, authors show that BeeAdHoc consumes

significantly less wireless network card energy as compared with DSR, AODV,

and DSDV.

BeeSensor. M. Saleem along with the authors of BeeAdHoc proposed BeeSen-

sor (Saleem & Farooq, 2007b) for WSNs. Being inspired by the two previously

described protocols, BeeSensor is mainly focusing on minimizing the energy costs.

There are three bee agents involved. Namely, the packers, scouts and foragers.
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As in BeeAdHoc, packers are located within the nodes. At the sensor nodes

their purpose is to receive data from the transport layer and load them to an

appropriate forager. At the sinks, packers recover data from the incoming foragers

and deliver them to the transport layer.

Route discovery is achieved by using forward scouts and backward scouts. In

more detail, when a sensor node (source) requires a route to a destination node

(sink), and no previous routing information is available, a forward scout is sent.

The forward scout carries information about the sensed event, which is expected to

trigger the interested sink nodes. In addition to that, a forward scout also collects

information regarding the remaining energy of the nodes it visits. Upon reception

at the sink node, a backward scout is created and sent to the initial source.

Finally, forager scouts are doing the real data delivering. They receive data

from the packers and are sent to the source on a hop by hop basis. One key

characteristic of BeeSensor is that it does not use source routing like BeeAdHoc

does. Rather, each forager is assigned with a path at the beginning of its journey,

and at the intermediate nodes, it is forwarded based on it to the correct adjacent

node. Therefore, BeeSensor forager header size is kept constant, enhancing its

scalability. BeeSensor’s performance is compared to an energy optimized version

of AODV which is distributed with RMASE framework (Saleem & Farooq, 2007a;

Zhang, 2012), part of the Prowler wireless sensor network simulator (Prowler,

2012). Results show that the bee-inspired protocol is able to transmit more packets

than the improved version of AODV, achieving less control overhead and lower

energy consumption.

BeeAdHoc and BeeSensor are the only two existing routing protocols, pro-

posed for MANETs and WSNs respectively. They share common characteristics

borrowed from BCO, such as the principle design of using bee-inspired agents in

order to discover routes and maintain available paths. Another common charac-

teristic is that they are both energy-aware routing protocols, designed to maintain

routing by mainly considering the remaining energy of the participating nodes.

On the contrary, the proposed bee-inspired design of this research work focuses

on an extended number of evaluation metrics, in order to measure the goodness of

each link, and thus of each path between a source and a destination. In addition,

the proposed design focuses on mapping the ability of real honeybees to constantly

monitor and judge their finding based on previous knowledge, as will be discussed

in chapter 3. This unique ability of honeybees is mapped to networks by using sta-
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tistical tools, which allow the artificial honeybee dance to highlight the strongest

candidates between alternative paths, and let artificial foragers (packets) to be

transmitted across them in an efficient way. Moreover, in this work, the path

selection mechanism is designed to be flexible and accept implementation changes

easily, based on the application needs and requirements. This is a mechanism in-

spired by a behaviour of honeybees during the dance and, in particular, the ability

of foragers to decide which is the most suitable dancer to follow depending on the

commodity that is running low.

2.7 Alternative mechanisms for routing

This section discusses several alternative ways of providing routing solutions in

mobile ad hoc and wireless sensor networks. Apart from the most common classi-

fication (reactive, proactive or hybrid), Internet-inspired routing is also classified

based on each distinct strategical approach being applied. Solving the routing

problem is a complex task which often requires several approaches to be adapted.

Therefore, routing protocols do not exclusively fall into one class.

2.7.1 Location-aware routing

With the availability of location information technologies such as the global po-

sitioning system (GPS) (Hofmann-Wellenhof et al., 2001) or compasses, routing

solutions can be calculated according to geographical position of nodes. Several

authors have proposed relevant work, examples of which are given below.

Location-aided routing (LAR). Proposed by Y. Ko (2000), the LAR protocol

assumes that each node in the network topology is equipped with a GPS system.

The key idea of the protocol is that at the beginning of a communication session

the source node makes use of the location information as well as node mobility

information of the destination node, in order to define the correct portion of the

network topology where route discovery packets will be sent.

A source defines two topological regions. The first, termed ExpectedZone,

is where the destination node is expected to be based on previous location and

mobility information. If no past information is available, the entire topology is

considered. This implies that as more knowledge is accumulated, the Expected-
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Zone gets narrowed down with more accuracy. The RequestZone on the other

hand, is the region which the control packets for finding the destination are al-

lowed to flood. The sender determines this area by setting its boundaries at the

header of the RREQ message. Timers control the discovery process and repeat

the sending of RREQ messages with increased RequestZone, until the destination

is eventually found.

LAR protocol is designed to reduce the amount of control overhead. Instead

of flooding the entire network, the protocol allows route discovery messages to be

propagated only within predefined geographical regions. However, the use of GPS

infrastructure is required, which makes the protocol inappropriate where access to

location information is absent.

Trigger-based distributed QoS routing (TDR). This reactive routing pro-

tocol (De et al., 2002) was designed to support real-time applications in MANETs.

Similarly to LAR, a selective forwarding mechanism for route discovery is applied.

Taking advantage of its cached knowledge regarding geographical positions, the

source node forwards its route requests only to specific neighbouring nodes to-

wards the destination. For this, a GPS-based underlined system is used on each

node.

In order to satisfy Quality of Service (QoS), TDR takes into consideration the

receiving signal strength of each packet to assess the link quality between neigh-

bouring nodes. Control packets are propagated only through those neighbours

from whom the signal strength of previously received packets exceeded a thresh-

old. An acknowledgement message is sent back to the source, once a successful

route is discovered. Moreover, re-routing may take place when the signal strength

of a transmission at an intermediate node is detected to be below a satisfactory

value.

Like the previously described LAR, TDR uses GPS information to selectively

flood portions of the network topology, reducing in that way the control overhead.

However, re-routing is directly related to the receiving signal strength of packets,

which can be affected by a number of wireless telecommunication phenomena (as

described in section 2.3.1), and vary rapidly causing an increase to the number of

route discoveries.
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2.7.2 Energy-aware routing

Due to the growth of applications that require wireless ad hoc infrastructure and,

in particular, WSNs, energy consumption has become a serious factor to be taken

into consideration when designing new routing protocols. The size of the nodes as

well as the nature of the wireless telecommunication brings the resource constraint

problem to the front. Typically, energy-aware routing protocols calculate routes by

considering the minimum total transmission power wastage over the path between

the source and the destination (Banerjee & Misra, 2002).

Power-aware source routing (PSR). This protocol’s (Maleki et al., 2002)

objective is to extend the life of MANETs. The authors address the problem

of services being stopped within a MANET because a number of the nodes die

out, dooming the rest of the topology. PSR is inspired by DSR, in terms of

exchanging routing messages (RREQs and RREPs). However, the key difference is

that despite DSR where the shortest path is selected, PSR considers the remaining

energy to decide if a node will continue serving as part of the routing solution.

Route maintenance in PSR focuses primarily on monitoring energy depletion.

While data packets are being transmitted, each intermediate node constantly mon-

itors its remaining energy and the cost of it being used as part of the particular

route. Then, nodes whose energy cost is beyond a threshold generate an RERR

message and send it to the source as if the route has become invalid. Consequently,

a source which receives such a message starts a new route discovery process. Such

a strategy allows the protocol to utilize the topology better in terms of energy

consumption, and is found to increase the life time of the whole network.

Energy aware routing. The authors of Vidhyapriya and Vanathi (2007) have

proposed this routing protocol that provides routing solutions, taking into con-

sideration the energy availability and the received signal strength of nodes in the

WSN. The protocol assumes that sensor and sink nodes have static positions and

are known to each other. It also assumes that links are bidirectional and symmet-

ric4 (refer to section 2.3.2 for more details).

During the route discovery process between the sink and source nodes, an

energy-sufficient mechanism is applied. A node which receives a RREQ message

4Symmetric links have similar characteristics no matter the direction of the data stream.
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has to initially consider its remaining energy. If it is found to be insufficient, the

node decides not to take place in the potential communication session and discards

the RREQ message. In the opposite scenario, the node calculates the receiving

signal strength of the RREQ message. Then, a common assumption is made. Due

to the wireless signal propagation, the weaker the signal, the farther the node

will be from the sender. The protocol eliminates the number of control packet

retransmission by allowing only the farther nodes (from the sender) to retransmit

the RREQ message. In the end, the discovered path consists of only those nodes

that have sufficient energy to participate to the data transmission.

The authors have run simulation-based experiments to compare the protocol’s

performance, and have shown that it consumes less power than the state-of-the-art

AODV under realistic cases.

2.7.3 The cross-layer approach

Alternative mechanisms for routing are often achieved by approaching the problem

in a cross-layer manner. Cross-layering versus the legendary layered approach in

network designing has been a hot topic for debate, especially between researchers of

strong background in wired-related networking (Conti et al., 2004). Strict layering

ensures that interactions between layers remain controlled, and protocols designed

in that way can be easily added or removed in the network protocol stack of each

deployment. Another strong argument opposed to cross-layering, is that it may

produce spaghetti-like code that is very hard to maintain from a purely software

development point of view. On the other hand, the ad hoc research community

recognizes that a strict layering approach does not provide the level of adaptation

required today (Srivastava & Motani, 2005).

The layered, waterfall-like architecture simplifies development of different com-

ponents by keeping each layer isolated from the others. Originated from the wired

networks’ world, the concept of transparency is what makes OSI, TCP/IP and

IEEE 802 models allow rapid and universal development and improvements (Forouzan,

2005). Figures 2.8 and 2.9 illustrate the differences between layered and cross-

layered design.

Nevertheless, it has become evident that the traditional layered approach that

separates routing, flow control, scheduling, and power control is suboptimal in

the realm of wireless ad hoc networks. This can be attributed to the complex
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Figure 2.8: Traditional OSI waterfall fashion in network layer stack. Each layer is
allowed to communicated only with one specific layer above or below (solid lines),
and messages travel upwards or downwards by respecting the strict boundaries
between layers.

Figure 2.9: Cross-layered design allows different layers to communicate with each
other and dynamically exchange values in order to offer optimized results. Here,
apart from the waterfall connections (illustrated by the dashed lines) between ad-
jacent layers, messages are dynamically exchanged between network and physical
layers (solid thick lines). In addition, the data link layer is allowed to dynamically
use values from the physical layer in order to optimize its behaviour, before or
after forwarding the message up or down the stack.
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and unpredictable nature of the wireless medium. Thus, the need for adaptation

in network protocols remains high. In order to tackle the problems faced in ad

hoc networks, a cross-layer design (Ibnkahla, 2009; Perez-Neira & Campalans,

2009) is desired to optimize across multiple layers of the stack. The basic idea of

cross-layering is to make information produced or collected by a protocol available

to the whole protocol stack, so as to enable optimization and improve network

performance.

Until now several approaches have been proposed by researchers that use cross-

layering in order to improve and optimize different network mechanisms. In most

of the cases, the cross-layer design takes place between the MAC and the PHY

layers. However, there are a number of recent examples that illustrate the benefits

of having other layers jointly designed, such as network-data link layer, or even

application-network.

Cross-layering offers a great degree of optimization in order to obtain the high-

est possible adaptivity. The following example protocols illustrate how adaptation

is achieved by combining knowledge from different layers. These protocols are just

a sample of the relevant literature. However, they prove that the cross-layer ap-

proach has a great potential in designing network protocols.

2.7.4 Cross-layer designed adaptive protocols

In order to bypass the resource constraints, Shah and Rabaey (2002) proposed an

energy-aware routing protocol that uses a set of suboptimal paths occasionally in

order to increase the lifetime of the network. The idea is that paths are chosen

by means of a probability, which depends on how low the energy consumption of

each path is. The energy consumption is a result of signal strengths, a piece of

knowledge that can be found at the PHY layer of the stack. Hence, a cross-layer

design allows access to the information and uses it in the routing layer (network

layer) to make analogous decisions.

Cross-layer has also been a great help in designing cost-aware routing ap-

proaches. Suhonen et al. (2006) have proposed a protocol that uses cost metrics

to create gradients from a source to a destination node. The cost metrics consist

of energy, load (at nodes), delay, and link reliability information that provide traf-

fic differentiation by allowing several routing choices based on delay, reliability or

energy.
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The MobileMAN (Borgia et al., 2004) framework is one example of full cross-

layer design which offers the ability of sharing knowledge between different layers,

while it does not immediately violate the OSI structure. Its design is based on the

concept of network status (NeST). NeST can be visualized as a vertical module

which can be bidirectionally associated with each of the layers, and controls all

cross-layer interactions through data sharing. Specifically the NeST module acts

as a repository for information collected by the network protocols. In order for a

protocol to deposit or use any information stored in that repository, it only has

to implement a specific interface defined by the module. MobileMAN uses the

cross-layer approach in a more secure and safe way, compared to other examples.

In Kozat et al. (2004) the authors present a framework for cross-layer designed

efficient communication. This approach is characterized by a synergy between the

PHY and the MAC layers, with a view towards inclusion of higher layers and,

in particular, the network layer. In the following, the reason for having these

layers working together in a joint design is explained. The key parameters of

the PHY layer such as the transmission power, modulation, coding rate and the

antenna beam coefficients have a direct impact on the media access control of

the nodes in the wireless channels. Local adaptation of these parameters leads to

better bit error rates in the PHY, which in turn affects the way routing and MAC

decisions are made. Furthermore, as stated earlier the MAC layer is responsible

for scheduling the transmissions and allocating the wireless channels.

While the concurrent transmissions create mutual interference, the time evolu-

tion of the scheduled transmissions ultimately determines the bandwidth allocated

to each transmitter and the packet delays. Obviously, the interference imposed

by the simultaneous transmissions naturally affects the performance of the PHY

layer, in terms of successfully separating the desired signals from the rest. Ad-

ditionally, as a result of transmission schedules, high packet delays and/or low

bandwidth can occur, forcing the routing layer to change its routing decisions. It

is clearly understood that PHY, MAC and network layers depend on each other

in many ways, and that a joint design offers a way of tuning and improving their

resulting performance.

Another cross-layer design approach is being proposed in Chen et al. (2006),

where the authors consider the problem of congestion control and resource allo-

cation through routing and scheduling over a multi-hop wireless ad hoc network.

They have developed an extended dual algorithm to handle networks with time-
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varying channels and adaptive multi-rate devices. In more detail, the algorithm

motivates a joint design where the source node adjusts its sending rate according

to the congestion price generated locally.

The Eyes Source Routing (ESR) (van Hoesel et al., 2004) is an example which

illustrates how the topology information already provided by the MAC protocol

can be used in order to efficiently manage the topology changes due to mobility,

node and communication failures, and power duty cycling. For instance, ESR

is able to detect link failures (e.g., nodes move out of each other’s radio range)

efficiently and fast, by accessing the knowledge already detected by the MAC layer.

The Label Routing Protocol (LRP) (Wang & Wu, 2006) is another ad hoc

network routing protocol based on the idea of label concept5, combined with the

MAC layer in a cross-layer design’s fashion. LRP is designed to be a more traffic-

efficient and power-efficient source routing protocol. It is a virtual connection-

oriented protocol that is able to setup, configure, and maintain a path between

two or more end-points. In more detail, the path from a source to a destination

node works as a tunnel identified by multiple labels and located between DLL

and network layer. Using cross-layering, the label identifiers are used to identify

a path or connection by considering the information gathered by the MAC layer.

Additionally, the MAC layer itself is optimized in LRP for shorter delays, power

saving and higher efficiency.

X-Layer (Beach et al., 2008) is an implementation of a cross-layer network

stack mainly designed for WSNs, under the assumption that different layers will

interact and share resources directly with each other. X-Layer optimizes its ca-

pabilities both in terms of radio power and MAC layer transmission rates, in

order to use less power and fewer bandwidth resources. The network layer on

the other hand, takes advantage of the MAC layer’s support of beacon signals

and auto-acknowledgements, achieving better performance. The experiments con-

ducted using X-Layer have shown that by using this network stack, better balance

of network throughput, energy usage and latency is being achieved.

Cross-layer design can also be applied between higher layers. In their paper,

Gharavi and Ban (2004) illustrate how this is done by proposing a feedback con-

trol mechanism that allows the application layer to adapt itself to a dynamically

changing topology. They suggest a mechanism that offers dynamic adjustment

5The original idea of the label concept is given in Rosen et al. (2001) where multi-protocol
label switching (MPLS) is described.
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packet control for video communications in MANETs. The feedback mechanism

can dynamically control the source bit rate in accordance with the characteristics

of the multi-hop channel. Moreover, they prove that having knowledge about a

link failure helps the application layer to control its packet transmission strategy

accordingly.

2.8 Conclusion

This chapter was the first part of a review of the related literature, as it was ded-

icated to wireless ad hoc routing. A discussion about MANETs and WSN was

presented in connection to the routing problem and those factors which affect it

negatively. Physical restrictions caused by low-level wireless channel and signal

propagation phenomena (path loss, shadowing, fading and signal interference), as

well as problems that are related to the lower layers of the network stack (trans-

port, data link and physical) were discussed, offering an in-depth understanding

of the wireless telecommunication and its limitations over the wired counterpart.

Particular emphasis was also given to the two major aspects of MANETs and

WSN, namely the node mobility and energy constraints. Allowing nodes to move

freely around the topology not only causes frequent link breaks between nodes,

but also changes the topology density. The latter affects the routing protocols

in terms of path discovery and maintenance; the higher the density the more

control overhead is required, and less throughput is achieved. Energy constraints

also play an important role in routing, as nodes consume energy while receiving,

transmitting and processing packets.

Section 2.5, 2.6, and 2.7 were used to discuss some of the most important

routing techniques which are found in the literature and are related to the work

presented in this thesis. Some of the most famous implementations were discussed,

in order to prepare the ground for the next chapters, where the new proposed

routing design will be presented. To summarise, the following classifications have

been made:

• Internet-inspired protocols: reactive, proactive and hybrid based on their

approach and internal route discovery and utilization mechanisms.

• Single-path and multi-path routing, based on the number of routes each

discovery process is allowed to return.
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• Hop by hop to source routing.

• Nature-inspired protocols: ant-inspired (ACO) and bee-inspired (BCO) rout-

ing protocols.

• Alternative approaches: location-aware routing protocols, energy-aware rout-

ing protocols, and more general examples of using cross-layering in network

protocol design.

The proposed work is nature-inspired and, in particular, it is inspired by the

collaborative behaviours found in honeybee colonies. The work is classified as

reactive and uses the cross-layer approach in order to achieve its goals. What

follows, is the second part of the literature review. The next chapter, chapter 3, is

dedicated to the necessary background knowledge regarding the world of the real

honeybees.



Chapter 3

The world of honeybees

“The bee’s life is like a magic well: the more you draw from it, the more it fills

with water”

– Prof. Karl von Frisch (1886-1982)

3.1 Introduction

In chapter 2, a review of the literature regarding wireless network communication

and routing was given. Nevertheless, due to the biologically-inspired nature of

the work presented in this thesis, attention has to be paid to the real honeybees

and their behaviour. Material from the two literature review chapters presented

in this thesis are also published in (Giagkos & Wilson, 2009), where the project

was first introduced to the scientific community.

One of the pioneers in studying the collective behaviour of honeybees (apis

mellifera) was the Austrian ethologist Professor Karl von Frisch1. In his book (von

Frisch, 1967), von Frisch gave a full and in-depth description of foraging cycles, in

terms of decoding the insect’s dance language as a medium of communication and

orientation. A complete study of honeybees has also been published more recently

by Seeley (1995), who, based on experiments, answered significantly important

questions regarding energy-efficient foraging. Studying the wisdom of the hive

and the insect’s simple yet collective behaviour is an active research today, such

1Nobel Prize in Physiology or Medicine in 1973, for his achievements in comparative behaviour
physiology and pioneering work in communication between insects.
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as Olague et al. (2006) in the domain of searching algorithms, and Randles et

al. (2009) in load balancing2.

In this chapter, the honeybee colony structure and collective behaviours in

terms of foraging, are explained. Both natural scouting and foraging behaviours

are covered, highlighting the concepts which have been the source of inspiration

to certain ideas and features, in respect to the research being undertaken through-

out the course of this work. Finally, a summary of the organizational principles

found in the world of honeybees is included, along with a discussion of how they

are mapped to computer networks and their contribution to solving the routing

problem.

3.2 The honeybee colony

In this section, the most important characteristics of a honeybee colony are ex-

plained. This includes the different types of honeybees and roles a worker honeybee

plays within a colony, as well as a description of the physical parts that constitute

a hive.

3.2.1 Insect population

At all times of the year a honeybee colony contains a fertile female (the queen),

and numerous infertile females (the workers). It also contains developing brood

for most of the year, and male or drone honeybees for most of the spring and

summer. A colony with an average strength has 30,000 workers and about 1,000

drones. Queen honeybees are specialized for egg-laying, whereas all other worker

honeybees are responsible for performing the remaining tasks in the colony, apart

from the drones whose purpose is to fertilize their receptive queen3.

Depending on their age, they work either within the nest only, or act as scouts

and foragers. As the honeybee size is related to its age, the tasks assigned at

each stage of their life are different and become gradually difficult. They start by

being responsible for cleaning the cells and feeding the larvae (nursing), to comb

2However, these examples are out of the scope of this thesis.
3Drones are defenceless due to their lack of stringer, which is primarily an egg-laying organ

found in worker honeybees. However, they are still able to raise the alarm in case of an emergency,
as well as being able to frighten the disturber by swinging their tail and wings. They are also
responsible for controlling the internal temperature of the combs, producing and changing the
air flow with their wings. The latter behaviour is also shared with the worker honeybees.
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building and receiving/packing incoming pollen from the fellow foragers, to finally

become part of the foraging strength of their hive.

3.2.2 The structure of the hive

A hive consists of several parts which are used for different reasons. Namely, the

combs, the dance floor and the entrance. The combs inside a hive hang vertically

and each is made of two layers of horizontal cells, with openings on opposite sides

of the comb. These perfectly hexagonal-shaped cells made of wax, serve both as

containers for stored food and as cradles for the developing immature honeybees.

Additionally, the hive consists of cells dedicated to rearing workers (worker cells)

and drones (drone cells). A typical hive in nature consists of approximately 100,000

cells.

Both natural and artificial hives have a small opening, usually facing down,

called the entrance. The inside as well as the outside of the entrance is guarded by

young workers, often named soldier or guard honeybees in the literature (Breed

et al., 1990). Honeybees that belong to the same colony share the same odour.

Thus intruders can be easily detected and expelled. This screening process en-

sures that the colony stays safe at all times, from all strange creatures including

honeybees of different colonies.

During both scouting and foraging operations, honeybees that return to the

hive are expected to perform what is called a waggle dance in order to attract the

attention of fellow workers and recruit them towards the new source of food. The

process of dancing is explained in section 3.3.3. The place where dancing takes

place is a particular region in the comb called the dance floor. The dance floor is

generally close to the entrance. However its exact location is not precisely defined,

as it depends on physical conditions such as the weather and the activity within

the hive. For instance, the dance floor may be found further inside when it is cold

or the hive is lightly populated, and closer to the entrance when the temperature

is higher or there is lots of activity within the combs. Additional experiments in

Free (1977) have shown that its position is influenced also by the distance of the

food source from the hive. Finally, the dance floor is also used by unemployed

honeybees to just wait, wandering around until potential recruitment takes place.
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3.3 The process of foraging

The foraging process is what allows the members of a hive to collect its com-

modities, nectar, pollen and water. As they are all equally important to the

colony’s future, honeybees work ceaselessly in order to increase the overall pro-

duction of energy within the hive (von Frisch, 1967; Seeley, 1995). In this section,

honeybee foraging is explained. Emphasis is given to the ability of honeybees

to effectively understand the quality of findings and based on that, to decide

whether such information should be shared amongst the colony members. Shar-

ing is achieved through the unique way of communication found in honeybees, the

honeybee dance.

3.3.1 Towards a promising source of food

When the internal energy of the hive drops below the hive’s threshold, thus the

future of the population is negatively affected, some workers leave the hive to scout

the environment in order to discover new sources of food. There are no specific

scouting honeybees. Any one of the workers may set out on her way. Once a

scout finds something interesting, she spends some time on the flower collecting

the useful material. Depending on the type of the source found, she can either

collect liquid (nectar or water) in her honey stomach, or construct a tiny ball of

pollen to carry back with her legs, or both. Upon their return to the hive, those

who bear pollen enter the hive directly and deposit it in the most satisfactory cell.

Fellow younger workers do the rest of the processing of this food. A liquid bearer

visits a worker where the latter uses her proboscis to quickly take the fluid from

the others honey stomach.

Next is the advertising of the finding. The honeybee goes straight to the dance

floor where she immediately hunts out recipients for her burden (i.e., pollen, nec-

tar or sugar). The recruitment of fellow honeybees is done by performing a special

dance, the honeybee dance, and is explained in section 3.3.3. During the recruit-

ment, some previously unemployed honeybees get triggered by the interesting

finding, and thus become foragers following the information taken from the ini-

tial scout. In turn, they stop wandering around and start working by leaving the

entrance and flying towards the source of food. The number of initial recruits

depends on the demand of energy in the hive, and the number of unemployed

foragers. However, the recruitment strategy changes when more than one hon-
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eybee dance take place on the dance floor, which is the case most of the time.

This is mainly due to the limited number of honeybees in the hive. The number

of new recruits per honeybee dance tends to be fixed, independent of how many

honeybees are waiting (Seeley & Towne, 1992; Gould, 1975; Gould et al., 1970).

Ethologists classify honeybee colonies as signaller-limited systems, where the re-

cruitment strength is determined by the number of signallers instead of the number

of potential recruits available (Dornhaus et al., 2006). This is one of the main dif-

ferences between honeybees and other insect colonies, in terms of communication.

In ants for instance, a mass-recruitment system, the pheromone trail of a single

ant can recruit a large number of workers as long as its odour persists (Vittori

et al., 2006).

The life of a forager is restless. When she returns to the hive with a full honey

stomach, she expresses a similar behaviour to the initial scout. More specifically,

the burden is deposited in the combs and then she goes straight to the dance floor.

There, she can either decide to rest near her fellow foragers or perform a new

honeybee dance to trigger others. That implies that helpers are not automatically

recruited. Rather, their interest in following a specific finding depends on the

future honeybee dances which, in turn, depends on the incoming experience. The

richer the incoming experience, the more lively the honeybee dances, the more

recruits triggered. Both von Frisch and Seeley agree that is the profitability of

the food source and the foraging process that determines the number of honeybee

dances (von Frisch, 1967). In more detail, the honeybee is able to measure and

understand the quality of the foraging, including the quality of the flower, and

use the information she gathers in order to decide whether it is worthy recruiting

more helpers or not. In order to achieve that, she considers a number of quality

factors, initially discovered and decoded by von Frisch (1967).

3.3.2 Quality factors considered by honeybees

As will be fully explained later in section 3.3.3, the pattern of the honeybee’s dance

is determined fundamentally by the distance of and the direction to the source of

food. But whether dancing occurs at all, and how vivaciously and persistently it

will be performed, depends on many factors that significantly regulate the relation

between supply and demand in the hive. The factors that determine the release

and duration of the honeybee dances are listed below.
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The sweetness of sugar. An interesting source of food has to have a certain

concentration of sugar. Honeybees are found to dance vigorously and attract more

recruits when the sweetness is high. The acceptance threshold varies between a

wide range of sucrose solution and does not depend on the quantity being car-

ried. Furthermore, experiments have shown that during dancing, a sample of the

collected nectar is released from the honey stomach, making it more interesting

to the other honeybees, that not only decode the dancing, but they are also able

to receive extra information by being allowed to taste the quality of the food.

In addition, the tempo and frequency of moving the wings also changes with an

increased concentration of sugar solution.

The purity of taste. Coupled with the sweetness described before, it has been

found that the number of dances decreases as the sugar solution is replaced with

ones slightly contaminated with salt. This is an indication that priority is given

to the purest source of food, as the eagerness to dancing is gradually inhibited.

The quantity and ease of obtaining. Although the exact reasons behind

these phenomena remain unexplained, it is discovered that even the sweetest

sources release no dances, if the productivity of the foraging does not pace with the

energy consumption within the hive. The time spent during foraging in connec-

tion to its productivity is also important. Saving energy is an important aspect of

the colony and honeybees generally discard sources of food when the energy spent

during the foraging exceeds the energy gained by the collected pollen or nectar.

Also, any obstruction affects the quality of the foraging in a negative way, such

as physical obstacles and dangers. In these cases, the number of honeybee dances

are found to diminish.

Consistency and viscosity. Time does not always play a negative role. On

account of its high viscosity, a source of food with concentrated sugar solution is

physically sucked up more slowly and with more difficulty than a thin solution.

Consequently, honeybees spend more time on the flower. Experiments have shown

that in spite the time expenditure, the enthusiasm as well as the duration of the

honeybee dance in such case are increased.
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Weight of the burden. Another factor that increases the enthusiasm of hon-

eybee dancers, is the weight of burden. Although the added weight of the load

is accompanied by an increased flight time, the eagerness to dance is increased.

Honeybees that return to their hives fully loaded are also fully satisfied by the

finding and its quality. Like the viscosity described above, under natural condi-

tions, increased weight is directly connected with a greater sugar content in the

source of food.

Distance. The nearness of the source of food to the hive plays a very important

role in the decision made by the honeybees. It is discovered that under identical

conditions, the expenditure of energy and time over longer flights is proportional

to the decrease in profitability. Obviously, flowers at a short distance from the

hive allow more frequent visits by the foragers, and thus, are more productive

than the same quality flowers at a long distance. The impact the distance has on

the dances is not only seen for the duration of the honeybee dances, but also in

how often they are performed. Taking into consideration that each dance is able

to recruit a somewhat fixed number of unemployed foragers, it is obvious that

collecting food from short distances can rapidly affect the distribution of foragers.

Type of the flower. In terms of this particular quality factor, it is found that

the type of flower also plays an important role in successful foraging and number of

dances. There are two reasons for this. Firstly, the strength of the fragrance which,

although has nothing to do with the profitability of the food, it is considered to be

an excellent tool in both enhancing the dances (as explained in 3.3.3), and aiding

the recruits to the correct direction. Secondly, the shape of the flower and its

potential in allowing the honeybees to be fed with no difficulty. Experiments have

shown that honeybees are willing to advertise flowers with greater enthusiasm,

when they physically allow easy access to the pollen and nectar.

Improvement over time. Another important quality factor that has been de-

coded is the improvement of the quality over time. Therefore, aside from the

fact that a definitely better source of food (in term of sugar solution) releases

more dances than one which is less sweet, a relative improvement over time has

also a positive effect. It is discovered that under otherwise identical conditions, if

honeybees are fed from a sugar solution whose quality is suddenly increased, the
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percentage of dancing foragers becomes greater. Similarly, when the quality of

the sugar solution is decreased after contaminating it with other material, such as

salt, less foragers are willing to perform their dances when they return to the hive.

Day conditions. Apart from several other characteristics of the source of food,

such as the aroma, the taste, the consistency and the shape, the time of the day

as well as the weather conditions can affect the performance of the foraging, and

thus, the number of dances being performed in the hive. It is found that the

number of flights from the hive to the surroundings usually drops temporarily

around noon time. Moreover, the weather also affects their willingness to dance.

Nature has given to them the gift of being able to detect impending rains and

other severe conditions. Long before bad weather occurs, honeybees decrease any

ongoing foraging activity by not dancing. Instead, they all gather inside their

protective hive, until the weather improves.

3.3.3 Recruitement through dancing

Much work has been done since the first interest in honeybees to discover how

they communicate with each other inside the hive, and how they coordinate their

activities. Within the darkness or semi-darkness of the hive, visual systems can

be of little or no importance. Hence, the known senses by which honeybees can

recognize and signal to each other are auditory, tactile and chemical by the use of

pheromones.

The main way of communication is achieved through the honeybee’s special

dance, which takes place in the dance floor of the hive (see section 3.2.2). The

principle mechanism of the recruitment communication is the waggle dance, a

unique behaviour in which a scout or a forager recruits fellow honeybees, by sharing

information about a particular source of food. Seeley describes the honeybee dance

as a miniaturized re-enactment of her recent journey to a source of food (Seeley,

1995).

Dancing patterns depend only on the distance and the direction of the par-

ticular source of food to the hive. In fact, depending on the distance, the dance

can take two forms. There is the round dance for short distances (less than 100

metres from the hive), and waggle dance for longer distances4. During a round

4Ethologists have reported other types of honeybee dances that do not actually share infor-
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dance, the performer attracts the attention of those unemployed honeybees that

happen to be waiting next to her, by moving in a small circle of such tiny diameter

that for the most part only a single cell lies within it. Just before the circle is

complete, she suddenly reverses direction and moves again to her original course,

and so on, as shown in figure 3.1(a). Interested honeybees are then touching her

body, familiarizing in that way with any pollen residues which might have been

stuck on her. For the same reason, if the performer was carrying nectar or water

she releases some of it from her mouth. Hence, future foragers are aware of what

they are about to look for, even if they do not know where exactly to find it (von

Frisch, 1967).

(a) The round dance. (b) The waggle dance.

Figure 3.1: A honeybee recruiting unemployed foragers by performing the round
dance, left (a). Information about the direction is given though the waggle dance,
right (b). Both images are taken from Prof. Karl von Frisch, “The Dance Language
and Orientation of Bees”, Oxford University Press, 1965.

The pattern is more complicated when the distance between the source of

food and the hive is more than 100 metres. In such cases, the honeybees need

to know the direction in which they should fly in order to find their target. The

orientation of honeybees for long distances is achieved by the waggle dance, a

dance which allows more information to be shared. In a typical waggle dance, the

mation about the foraging. For instance, the “grooming dance” is performed by honeybees who
want to clean certain parts of their bodies that cannot be reached by their grooming devices,
the “jerking dance” where two or more honeybees make contact to brush themselves with their
antennae, and other forms of dancing which happen only during swarming (von Frisch, 1967).
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scout or forager runs straight ahead for a short distance, where she then reverses

and returns back to the starting point by completing a semicircle to either left

or right. Once this movement is complete, she runs again straight ahead the

short distance, reverses and returns back to the starting point completing another

semicircle, but in the opposite direction. The exact pattern reminds of the Greek

letter Θ turned by 90◦, and can be seen in figure 3.1(b). The performer gives

particular emphasis to the straight part of the run, during which she vigorously

dangles her whole body sidewise, making greatest moves at the tip of her abdomen

(tail) and least at the head. The tail-wagging dance is coupled with wing shaking

and buzzing, which both indicate the enthusiasm of the dancing. Like in round

dance, the pattern may pause to allow fellow honeybees taste and touch samples of

the collected material. The pattern of the waggle dance is more complicated than

the round dance, because it includes the element of direction. In fact, the direction

and duration of each waggle dance is closely correlated with the direction of and

the distance from the source of food being advertised by the performing honeybee.

Although the orientation of honeybees is out of the scope of this thesis, it is worth

briefly explaining this magnificent phenomenon with an example. Keeping in

mind the structure of the hive, where all combs are vertically built, a flower that

is located directly in line with the sun is represented by waggle dance in an upward

direction. Any angle to the right or left of the sun is coded by a corresponding

angle to the right or left of the upward direction of the waggle dance. In terms of

duration, the further the target, the longer the waggle dance.

To conclude, it is clear that honeybees have developed an extremely sophis-

ticated yet simple mechanism to communicate with each other and share useful

foraging information. This includes the direction to the source of food and the

distance from it, the type of flower, its taste and fragrance, as well as an impres-

sion of how profitable this particular source of food has been found to be, by the

visiting scout or forager. The more interesting and profitable the flower, the more

enthusiastic the honeybee and her dance. In fact, dancing time becomes longer,

with more noisy buzzing and higher tempo. On the contrary, a deterioration in

the profitability as understood by the honeybees, leads to dull dances, or even no

dance at all.
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3.4 From natural to artificial colonies

All previous sections in this chapter have been dedicated to describe some impor-

tant principles of the honeybee colony, as well as the collective foraging behaviours

that are taking place within a hive. Due to the biology-inspired nature of this

research work, it is very important to comprehend these behaviours, distinguish

their characteristics and finally understand how they match to computer networks,

and in particular, network routing. Consequently, this section outlines those par-

ticularly inspirational behaviours and characteristics and provides the medium

that connects the two disciplines together. In addition, table 3.1 summarizes the

mapping of the terminology and the concepts, from honeybee hives to networks,

which is used throughout this work in order to enhance the understanding of the

connection between the two worlds.

3.4.1 Agent-based collective and adaptive behaviour

Honeybee colonies, as well as other insects groups such as ants and termites, are

naturally designed to be agent-based systems. Their strength is mainly driven

from the size of their population, as well as the simplicity of the rules that all

members are bound to obey. This allows nature to solve well-known optimization

problems that are difficult or impossible to solve by an individual agent or a com-

plex monolithic system. The allocation of resources under a constantly changing

environment is one of them.

What is more, in a honeybee colony each insect can undertake several different

duties throughout its life. This is a powerful adaptation mechanism which elim-

inates the need for developing special honeybee types, whereas at the same time

each existing one is able to complete an allocated task very efficiently. For exam-

ple, a honeybee worker which spends its day within the hive collecting the pollen

being carried by older foragers, can switch role and become a soldier in order to

defend the hive if an intruder decides to pass through the entrance. Similarly,

a food processing worker might take the role of a nectar receiver, if the rate of

collecting nectar is higher than processing it.



3.4. From natural to artificial colonies 73

Honeybee concepts Network concepts

the honeybee hive the source node of a communication session

the source of food (e.g., a flower) the destination node of a communication
session

the path (or flying distance) to be tra-
versed from the hive to a flower

the intermediate nodes in a multi-hop man-
ner that form a path

the honeybee scout the route request control packet e.g., the
scout packet in BeeIP (explained in section
4.4.1) or the RREQ in AODV

the honeybee forager the control packet whose payload is a piggy-
backed data packet e.g., the forager packet
in BeeIP (explained in section 4.4.1)

the type of the missing commodity as it is
monitored and signalled by the honeybees
i.e., nectar, pollen or water

the desired behaviour for selecting the op-
timal path based on the type of traffic for
a communication session (e.g., the fastest
path or the path with the least energy con-
sumption)

the foraging burden in the honey stomach
or being carried with the honeybee’ legs

the data payload (TCP segment) to be pig-
gybacked to a forager packet

the level of satisfaction (the quality) of a
food source and the foraging activity to-
wards it

the quality of a path as calculated by the
scout and the forager packets

the honeybee dance the mechanism of making changes to the
representation of how many data packets are
allowed to use the particular path for future
transmissions i.e., the foraging capacity in
BeeIP (explained in section 4.2)

the honeybee recruitment the allocation of foragers to appropriate
paths for future transmissions (according to
the foraging capacity of each path)

the entrance: the physical hole, usually at
the bottom of the hive, which serves as
both the entrance and the exit of the hive

the logical part of the source node which
provides the interface to both MAC and
transport layers

the dance floor: the physical place where
the honeybee dance is performed

a logical part of the source node where the
mechanism of making changes to the forag-
ing capacity and the allocation of foragers
are taking place

the combs: the physical places where hon-
eybees rest and store their commodities

logical parts of the source node where con-
trol packets, scouts and foragers, are stored
e.g., the local queue and the repository areas
(see section 4.5.2 for details)

Table 3.1: Mapping honeybee concepts to networks.
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3.4.2 Decentralized, distributed foraging and self-healing

As explained above, multi-agent systems eliminate the problem’s complexity by

distributing it over the system, instead of depending on an individual agent to act

like the only solver. This is the foundation of any decentralized approach, making

it independent of any strict hierarchy in decision making. Honeybees are able

to coordinate their moves and to plan their foraging without the need of central

guidance and authority. What allows thousands of honeybees to work in harmony

is their loyalty to following simple rules, common to the whole population.

The distribution of work, equal rights and responsibility amongst the hive

members, plays an important role to the overall future of the colony. The foraging

activity and thus the energy level within the hive is not affected by the loss of

a honeybee. Rather, the loss will be absorbed by the rest of the population, as

the post will be automatically replaced. The self-healing characteristic allows the

colony to adapt to any dynamic environment, independently of the frequency by

which changes occur.

3.4.3 Adaptive foraging

Foraging, as well as other activities in the daily agenda of honeybees, e.g., nursing,

food processing and drone reproduction (Seeley & Mikheyev, 2003), are influenced

by internal and external factors. Honeybees constantly monitor the remaining

energy in connection to the productivity within the hive, and make adjustments

to their activities. A forager who discovered a good flower in terms of quality

dances enthusiastically, providing positive feedback to her fellows. Similarly, she

might decide to not dance at all, or provide negative feedback through her dancing

by performing in a dull mood. Her decision is based on the measurements received

from the environment and her quality dance thresholds.

Since the pioneering work of von Frisch, it is realized that honeybees are ca-

pable of changing the dance threshold according to several foraging conditions.

Von Frisch was the first to notice that when the discovered source of food was

of high quality (e.g., increased concentration of sugar), the forager was dancing

vigorously in an attempt to attract the attention of the surrounding unemployed

foragers, and possibly allocate them first before other dancers that might perform

nearby. In addition, Seeley’s extensive experiments (Seeley & Towne, 1992) have

made it clear that between the two hypothesis: a) a forager compares her current
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finding with previously experienced findings, and b) the receiver honeybee within

the hive preferentially accept those material with the highest sugar concentration,

it is the first that is validated. This concludes that it is the foragers which assess

the quality of a finding, and adjust their dancing threshold accordingly.

Another example of reinforcing the foraging activity based on up-to-date feed-

back from external factors, is when foragers switch from one commodity collection

to another, e.g., pollen to water. It has been observed that switching depends

on the time a forager spends within the hive, waiting for a receiver honeybee to

accept her burden. When a forager spends very little time waiting for a nectar

receiver, this is a signal that the need for this particular commodity is very high,

hence foraging for it is more important to the colony.

Finally, another example of reinforcing and adaptability is presented in Seeley

and Mikheyev (2003), where the authors show that a colony might trim its allo-

cation of energy to drone production and even maintenance, if it is experiencing

difficulty building the energy reserve it needs to survive a cold winter.

3.4.4 Grouping according to odour

The internal organization of the hive leads to another remarkable phenomenon,

which was also first observed by von Frisch. During his studies with honeybee

foraging, he was surprised to see how fast each message was grasped by interested

groups of unemployed foragers waiting in the dance floor. His further experiments

show that the foraging population of honeybees is separated into several groups,

each one being unique by the odour of the particular targeting source of food.

Until then, the odour that was known to be shared amongst honeybees was the

odour of their own colony. Being used as the family’s signature, honeybees from

different colonies are easily recognized and driven off the hive.

Furthermore, grouping is also done by taking into consideration the foraging

needs. This is another reinforcing learning example being met within the hive.

When the need for a specific commodity is higher than a threshold, waiting for-

agers might become members of a different group in order to enhance its foraging

strength.
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3.4.5 Linking quality factors to network conditions

All the behaviours which are covered above, have been a great source of inspira-

tion for the work presented in this thesis. In particular, they have been studied

and mapped to the design model of the proposed routing protocol, which is fully

covered in chapter 4. The proposed approach emphasizes the monitoring and eval-

uation of the performance of each artificial finding, i.e., a path between a source

and a destination node in a mobile ad hoc network, in a similar way as real hon-

eybees do in nature. That is, assessing the quality of the path by comparing new

quality measurements with their past experience in using that path.

Section 3.3.2 lists a number of quality factors being considered by natural

foragers in the real world. Each one has a different potential for use within a

wireless network, a mapping of which is covered in this section. To start with,

both the sweetness and purity of the source of food are values related to the

amount of energy that will be generated in the hive, if material collected by the

particular finding are used. In a mobile ad hoc network, finding a path between

two nodes that fulfils the needs of the data transmission is equally important.

Here, the need to produce energy within the natural hive can be considered as the

need of transmitting data over an optimal and effective path. Common to both

worlds, optimality depends on the requirements, either set by the colony (pollen,

nectar, water) or by the source node in the computer network (transmit data with

less delay, causing less traffic congestion, etc.).

Thinking of the ease of obtaining and weight of burden, these are both factors

that natural foragers consider in order to tune their recruitment dance. In the

artificial world, paths of high delay, packet loss and frequent broken links are

decreasing the ease of maintaining an efficient communication session between a

source and a destination. In a similar way, a fully loaded honeybee considers

her finding very successful, a fact which can be interpreted as an increased of

transmission data rate in computer networks.

Improvement over time is not only a characteristic that can be mapped from

nature to networks, it is also one of the fundamental ideas behind any adaptive

routing protocol in the field of mobile ad hoc networks. Being able to respond

to changes by adjusting routing, not only enhances the self-healing aspect of the

protocols, but also aids their scalability to different network sizes. Real honey-

bees have solved these problems by constantly monitoring and evaluating their
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activities, and making changes according to their understanding.

As described in the previous chapter 2, traditional routing protocols provide

routing solutions by considering the number of hops between a source and a des-

tination, as their performance metric. The link between computer networks and

nature at this point is pretty obvious. Honeybees consider distance to be one of

the quality factors of a source of food. Depending on the conditions in each world,

decreasing the distance between the two flight points often increases the amount

of material (data in networks) being carried back and forth.

The type of the flower as a quality factor in real honeybees can also be mapped

to networks, if the Quality of Service (QoS) (Zhu et al., 2004) is being considered.

For instance, sending real-time audio and video has more strict service demands

than other types of transmissions. Being able to set the requirements and cate-

gorize routing solutions based on them, is a similar approach to what honeybees

follow in nature by understanding that a particular type of flower is more produc-

tive than others. Coupled with what has been described in section 3.4.4 regarding

adaptation and grouping, QoS-aware routing protocols can take advantage of such

a nature-inspired approach and distinguish between traffic types and select accord-

ingly.

Finally, the requirements can also be set by a network authority, such as the

administrator, to follow a specific communication policy depending on the time of

the day. This is very important for some companies, for example, as it allows them

to manage the availability of certain services and distribute the load within their

networks without causing inconvenience to the users. Mapped to real world, the

time of day is the equivalent quality factor that honeybees consider in managing

the foraging profit.

3.4.6 Swarming and colony reproduction

The honeybee colony reproduces by swarming. Normally, there is only one queen

in each colony, but before reproduction additional queens are being reared. When

one of the new queens is grown up enough to reach the pupal stage, the old

one accompanied by a proportion of the hive’s population, including workers and

drones, usually leave and fly off in a well defined group called a swarm. The swarm

might spend some time in temporary places such as branches of trees, until they all

settle down to a satisfactory place and build their new hive. Most of the additional
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queens follow the same destiny but one, which stays behind in the colony, mates,

and lays eggs. During this process, the members of the new colonies develop their

own odour and create strong, new families. Thus, they are not allowed to return

to their parent hive, for they will then appear as intruders and threats.

In the communication network environment, the principle of swarming, i.e.,

some proportion of the population fly off and never returns back to the hive, can

be found in unreliable transport protocols such as UDP. In UDP, packets are being

delivered without acknowledging their transmission success, in contradiction to

TCP where each packet’s reception is acknowledged. A first attempt to map such

an idea in routing protocols has been done in BeeAdHoc by Wedde et al. (2005a),

when UDP is chosen instead of TCP. This is better explained in section 2.6.3 of

chapter 2.

3.5 Conclusion

This chapter concludes the literature review of this research work. In particular,

it discusses the most important behaviours in terms of food collection and com-

munication between members of a honeybee colony, within their hives. In the

first part (sections 3.2 and 3.3), the types of honeybees, the hive structure and its

most important internal parts, as well as the natural foraging process itself were

described. Emphasis was given to the ability of honeybees to constantly measure

and evaluate the quality of their findings, based on a number of quality factors

and their previous knowledge.

Furthermore, in the second part of this chapter (section 3.4) a mapping be-

tween nature to networks was given. This includes a discussion of all those char-

acteristics and inspirational behaviours of the insects, in terms of foraging and

communication, which match aspects and required behaviours in wireless ad hoc

network routing.

In the next chapter, the proposed bee-inspired design for routing is thoroughly

presented. BeeIP (the name of the protocol), combines ideas from previous work,

which found in the area of wireless ad hoc network routing, with the ideas from

the organizational behaviours found in honeybee colonies.
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BeeIP: The bee-inspired protocol

4.1 Introduction

In this chapter BeeIP is described. BeeIP is a bee-inspired network layer routing

protocol for mobile ad hoc networks. By following the simple yet collaborative

principles of real honeybees, it is able to discover paths between sources and

destinations and utilize them in order to allow real data transmission. Novelty is

found in the way paths are constantly monitored and evaluated based on previous

knowledge that the artificial honeybees possess. The proposed features allow the

protocol to utilize a number of important low-level parameters in order to represent

the goodness of the paths. Furthermore, a novel way of modelling the honeybee

dance is presented. During the dance, prior knowledge is considered in order to

detect any improvement or deterioration over time. This allows the protocol to

build a list of promising paths from which the optimal one is selected, making sure

that packets are transmitted in a multi-path manner.

The rest of this chapter is organized as follows. First, a general overview of

the protocol is given. This includes a high level description in words as well as a

schematic representation of the most important states of the protocol’s algorithm.

Then, each component of the protocol is discussed in detail, providing all the

required information to understand the inner mechanisms and behaviour.

79
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4.2 General protocol description

BeeIP is a reactive routing protocol. As in other reactive approaches, it does

not maintain any routing information regarding the topology without a route re-

quest being previously triggered. Discovering new paths is done by emulating the

scouting behaviour of real honeybees. Real honeybee scouts are sent to explore

the surroundings of the hive towards the appropriate flower, and are expected to

advertise their finding upon their return to the hive. In BeeIP context, when a

route is required at the source node, the source searches its routing table for any

available paths to the destination. If none are found, a scout packet is generated

and sent by broadcast to the rest of the network. At the same time, informa-

tion about the new scouting is created, marked as unacknowledged, and scored

internally. This ensures that as long as a scout has been already sent out, future

scouting processes for the same destination will be avoided.

When a scout packet is received at a neighbouring node, information about the

particular scouting as well as the scout’s sender are created and stored internally.

This allows the nodes to be introduced to each other, and also to be able to detect

future loops as they become familiar with the particular scouting process. Then,

one of the following happens; If the receiving node is not the destination node,

the scout is broadcast further. Otherwise, the receiving node constructs a reply

packet, called ack scout, and sends it back to the source to confirm a successful

path. Unicast is used instead of broadcast, because the ack scout already knows

which nodes to visit in order to return. That is, the reverse of the path the scout

traversed in the first place.

During the journey back, ack scouts constantly collect and deliver low-level

data received from the lower layers, from one node to the other. All receiving

nodes consider the scouting process successful, create routing information, and

mark the path as acknowledged. They also update their knowledge about the

neighbouring nodes using the data attached to the ack scouts. This is a very

important step, because routing is maintained through these updates as nodes are

able to evaluate the performance of the links between them and their neighbours.

BeeIP is also a multi-path protocol, meaning that a destination node is allowed

to generate more than one ack scout, acknowledging the success of more than one

unique path. This feature allows the protocol to have easy access to alternatives in

case of path failures, or paths being dropped deliberately due to bad performance.
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While a scouting process is in progress, the application layer of the source

may require to send more packets to the same destination. This is a behaviour

caused by transport layer protocols such as TCP, due to their own communication

strategies. These packets are put in a local buffer queue and stay either until

a path is discovered, so they can be transmitted, or until they age more than a

constant number of seconds.

Data transmission is achieved by creating, loading, and sending forager packets.

Each forager is responsible for carrying data payload received from the transport

layer. Carrying is done by traversing one of the previously discovered paths to-

wards the destination. The selection mechanism for the most appropriate path

depends on the desired behaviour of the protocol, subject to its implementation

(described in section 4.7). However, the default selection is based on the fastest

path between the source and the destination.

Once a forager has piggybacked the data and is given a path to work with,

it starts its journey. At each intermediate node, the next hop is easily retrieved

from the local routing information, based on the direction of the forager. This

approach is inspired by the source routing (Forouzan, 2005; Postel, 1981) met

in other reactive protocols such as DSR (Johnson & Maltz, 1996). However, in

BeeIP the forager packet does not need to carry the whole path within its header.

Instead, each intermediate node already knows which paths it is a member of,

and based on the direction of the forager, it can decide the next node towards the

source of the destination.

When received by the destination node, the forager packet delivers the data and

stays in a buffer queue until it is again assigned to carry data back to the source.

This behaviour mimics the real honeybees which stay on the flower for some time

collecting the required commodity, such as pollen or nectar. For scheduling pur-

poses, when they are sent back to the source as ack foragers, they are utilized in

a first-in-first-out fashion. The next hop selection for an ack forager is then done

again by considering the forager’s direction.

As seen in chapter 3, foraging in nature consists of several phases; a honeybee

being recruited to follow a specific mission, flying to the target source of food, col-

lecting the actual pollen, nectar or water, and carrying it back to the hive. When

a honeybee completes a foraging cycle, thus she is back at the hive, she can either

perform a honeybee dance to share up-to-date information about the foraging, or

forget it and focus her attention to something else. The decision is based on the
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quality factors listed in chapter 3. BeeIP foragers are designed to follow similar

principles. In particular, ack foragers are able to judge the quality of the path and

detect any possible improvement or deterioration over time. Monitoring a path’s

quality is both a complicated and network-dependent procedure, the outcome of

which allows the source to adjust a path’s foraging capacity. The foraging capac-

ity is defined as the total number of foragers allowed to be recruited and use the

path in the future. In more detail, every time a new artificial dance is released for

a particular path, a small number of foragers is added (recruited) to the path’s

foraging capacity. This approach ensures that paths which release more positive

dances will end up with higher foraging capacities and become more active in the

long run, than others which release negative dances or no dances at all.

4.3 The internal states and transitions

The internal processes of the protocol and the steps that connect them are shown

in figure 4.1. A node operating with BeeIP starts with the “initial” state, where

internal variables are initialized. Being a reactive protocol, BeeIP does not start

any route-related bootstrap process. Rather, it stays in “idle” state while it waits

for an incoming packet, either from its application or the network. The state

named “send to next layer” is the state from where a packet leaves the network

layer.

In an event of a packet being received, the protocol acts according to the

packet’s type. If it is a non-BeeIP control packet (this includes the artificial

foragers that carry real data), then it is handled by the “recv data pkt” state. A

packet that is either marked for broadcast or its destination is the receiving node,

is sent directly to the “send to next layer” state for immediate delivery. Otherwise,

the receiving node must forward the packet in such a way that it will eventually

find its destination.

There are three scenarios at this point. The receiving node checks whether

there is already some routing information regarding the destination of the packet.

If the information exists, the packet is then prepared for sending by following the

states “allocate new forager”, “update hive (update tables)”, “piggyback data”

and “send to next layer”. If no routing information is available, the packet is

pushed into the BeeIP queue, and a new scout packet is created and sent, by fol-

lowing the states “create/edit scout”, “update hive (update tables)”, “send to next
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layer”. The third scenario describes the case where the receiving node is in fact the

destination of a previous communication session. In this case, the node looks for

an ack forager which may be idling in it, after having successfully delivered some

data of a previous transmission. An available ack forager is immediately allocated

to piggyback the data packet, and is sent to the next layer. The protocol moves

to the “update hive (update tables)” state, in order to build the appropriate data

structures for both scouting and routing tables (section 4.5.2). These behaviours

are described in detail in the next sections, 4.5 and 4.7.

If the receiving packet is in fact a BeeIP control packet (this includes the

artificial foragers, refer to section 4.4.1 for a full description), it is handled by

the “recv control pkt” state. Initially, a transit to the state “update hive (update

tables)” examines whether the received control packet contains useful information,

in order to update its scouting or routing tables of the receiving node. Then an

action is taken according to the type of the control packet.

BeeIP moves to a special state, named “emulate dance”, only if the receiving

node is the source of a communication session and the received control packet is

either an ack scout or ack forager. This state is responsible for recalculating the

foraging capacity of the particular route, mimicking the special dance of honey

bees. More details about this process are given in section 4.6.4.

The possible scenarios when receiving a control packet are illustrated in figure

4.1, are as follows. A scout packet which has found its destination is replied by an

ack scout, after moving to “create/edit ack scout” state, where a new ack scout

packet is created. A scout packet which needs to be propagated further is passed

to the “create/edit scout” state, where it is prepared before “send to next layer”

broadcasts it further. In a similar manner, ack scout, forager and ack forager

packets are either accepted and sent to the upper layer of the receiving node,

or propagated further via the “create/edit ack scout”, “edit forager”, or “edit

ack forager” states.

4.4 Artificial hive

Any node operating with BeeIP that participates in a communication session can

be seen as either an artificial hive, a member of a scouting/foraging path, or an

artificial flower. Depending on the network traffic, nodes may play any of these

three roles at any time. BeeIP’s potential is derived from its minimalistic yet
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modular design, simple searching algorithm, and regular housekeeping using clock

timers. In this section, the internal structure of the BeeIP node as well as the

BeeIP packet types are presented in detail.

4.4.1 BeeIP control packets

There are four control packets that are used by the protocol; scouts, ack scouts,

foragers and ack foragers. These packets not only allow path discovery and routing

maintenance, but also carry real data across the wireless network. Their headers

as well as their life span are presented below.

The scout

A scout is created and sent by the source node to discover new paths. Sending is

done by broadcast and is controlled by the use of the time-to-live (TTL) value of

the IP header. This is a very popular technique met in other reactive protocols

such as AODV (Perkins et al., 1999). A scout packet is initially sent with a small

TTL value. If it is not received back in a certain period of time, then a new scout

packet will be created and sent with a TTL value increased by a TTL step. This

will continue up to a maximum number of retries, when the TTL will get the

predefined network diameter value. The default values are presented in table A.1

of Appendix A. This strategy reduces the control overhead which is produced by

the path discoveries. Moreover, while a scouting is in progress, any path request

for the same destination at the source node is ignored. A typical scout’s header

contains the fields presented in table 4.1.

The packet type (0 for scout)

The creation time-stamp of the packet

The packet header size

The IP address of the source

The IP address of the destination

The list of IP addresses of nodes already visited

The number of nodes (hops) in the IP address list

Table 4.1: The scout packet header.
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Figure 4.2 as well as flowchart 4.3 highlight the process of a new scouting1.

When no route is available to a destination, a new scouting is created and the

internal scouting and routing tables are updated. Then, the packet is sent to the

next layer to be broadcast to the neighbouring nodes. All nodes that receive a new

scout packet immediately store the scouting details found in its header. If it has

been already received, based on its time-stamp value, then it is silently dropped

in order to avoid loops. If a receiving node is in fact the destination node, then

the scouting is marked as acknowledged and an ack scout packet is created for

the journey back. Otherwise, the scouting is marked as unacknowledged, and the

scout packet is prepared to be propagated further. The latter involves adding

the current node’s IP address to the list of nodes that have been already visited,

increasing its hop counter by 1, and finally updating the packet’s size.

The size of the scout is larger after each propagation and is directly related

to the density of the topology, thus, the number of hops between the source and

the destination. This is a common pitfall to similar route request discoveries and

source routing. To avoid packet sizes going beyond limits, the network diameter

is usually set to a constant value such as 35 for AODV (Perkins et al., 1999).

When the scout is received by its target destination, the destination imme-

diately acknowledges the path’s success and creates a routing table to store the

information about the fresh discovery. It is also the destination’s responsibility

to assign the path a unique path identification number, which will be used to

distinguish it from other future findings. The routing information and table at a

destination node is properly described in section 4.4.2. Algorithm 1 summarises

the receiving of a scout packet at a BeeIP node.

The ack scout

An ack scout is created by the destination as a reply to a previously accepted

scout. Due to the multi-path nature of the protocol, the destination is allowed

to answer to more than one scout that belong to the same source. In addition to

the scout header’s fields presented in table 4.1, a typical ack scout’s header also

carries the fields listed in table 4.2.

The packet type field for an ack scout is set to 1. The purpose of an ack scout

1Notice that states and steps diagrams are the same for all nodes operating with BeeIP.
Depending on their particular role (i.e., hive, path or flower) different parts of the algorithm are
active.
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Figure 4.3: A process flowchart that presents the internal decisions and processes
in terms of initializing a new scouting within a BeeIP source node. A data packet
is received at the network layer and the routing protocol needs to forward it to
the correct direction. If no route exists, then a new scout packet is created and
sent to the network.
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Algorithm 1 Receiving packets at a BeeIP node: Part 1 - The scouts

Input: A packet pkt received from either the upper or the lower layer

1: for all received pkt do
2: if pkt.Originator is me then
3: drop(pkt)
4: return
5: end if
6: if pkt.Type is scout then
7: result ← recvScout(pkt) . See Algorithm 7 in Appendix C
8: if result is loop then
9: drop(pkt)

10: return
11: else if result is reply with ack scout then
12: addRoutingData(pkt, FLOWER)
13: sendAckScout(pkt)
14: else if result is propagate scout then
15: propagateSout(pkt)
16: end if
17: end if

during its life span is threefold. Firstly, it acknowledges the success of the path and

advertises its unique path identification number to the nodes it visits. Secondly, it

carries the appropriate information and triggers the mechanism to create routing

information at each receiving node. Thirdly, it initializes the monitoring of each

link within the path, collects information about their quality, and finally reports

it back to the source. Although, the monitoring activity is described in detail

in sections 4.6.1 and 4.6.3, at this stage it is important to understand the data

structure used to carry the appropriate low-level information from one hop to the

other. The sender state is itself a collection of values which are selected from

each sender, and is delivered to the next receiver in the path. Any intermediate

The unique path identification number

The path selection metric value

The path quality value

The previous ack scout sender’s state

Table 4.2: Additional fields for the ack scout packet header.
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node as well as the source node which receives the ack scout, stores these values

to its current neighbouring knowledge, and uses them to calculate the quality of

the intermediate transmitting link. The process is repeated until the ack scout is

finally received at the source node, where the overall quality of the path (chain of

links) is reported. The path quality field of the header is used to hold updates of

the overall quality, and its value is updated at every next hop.

The path selection metric field is what is used to keep updates of the metric

value used for selecting the most appropriate path at the source node. Selecting

the path is designed to be a separate, flexible and configurable feature (see section

4.7 for details). Considering BeeIP as an abstract design to implement honeybee

inspired routing protocols, selecting which path is the most appropriate for a

transmission at the source node depends on the required behaviour. In any case,

the path selection metric field can be used to hold the appropriate metric’s value.

In terms of propagation, source routing is applied to ack scouts in order to

reach the source. Finding the next hop on the path is an easy process, because

the full value can be inherited from the scout unchanged. A successful single path

discovery ends when an ack scout is finally received at the source node. However,

the scouting process itself may continue, as several paths might be available and

other ack scouts are expected to return to the source. New routing information

is created for each new path discovery (initial and additional), and stored in both

intermediate and source nodes. This is particularly important as the routing tables

will be used to both maintain routing and provide routing solutions.

When the ack scout is finally at the source node, another important activity

takes place. The final update of the path quality field is calculated and its value

is reported. After a series of calculations, which are fully described in section

4.6.3, the protocol is able to make adjustments to the foraging capacity of the

path, i.e., the number of foragers that will be allowed to use it in the future. The

calculations as well as the adjustments to the foraging capacity can be considered

as the artificial counterpart of the real honeybees’ dance. The receiving of an

ack scout is illustrated in Algorithm 2.

The forager

Foragers are the workers of the BeeIP routing protocol. They are specially crafted

packets which provide the transport medium for real data. Every time the trans-
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Algorithm 2 Receiving packets at a BeeIP node: Part 2 - The ack scouts

Input: A packet pkt received from either the upper or the lower layer

18: if pkt.Type is ack scout then
19: result ← recvAckScout(pkt) . See Algorithm 8 of Appendix C
20: if result is propagate ack scout then
21: addRoutingData(pkt, PATH)
22: propagateAckScout(pkt)
23: else
24: // result is ack scout at hive
25: addRoutingData(pkt, HIVE)
26: emulateDance(pkt) . See Algorithm 5
27: // Check forager capacity of all available paths to pkt.Dest
28: // and dequeue all destination-related data packets waiting
29: // in BeeIPQueue. Send as many as possible:
30: bees ← overallForagingCapacityTo(pkt.Dest)
31: while dataPkt ← next queuing data packet and bees > 0 do
32: bees ← bees− 1
33: // Encapsulate dataPkt to new forager.
34: ppkt ← allocateToForager(dataPkt)
35: forwardForager(ppkt)
36: end while
37: drop(pkt)
38: return
39: end if
40: end if

port layer protocol delivers a segment with a destination address written on to the

network layer, a forager packet is created to undertake the packet’s transmission.

A typical forager’s header is shown in table 4.3.

To start its journey, a forager requires an identification number of a path

which will lead to the destination. BeeIP is a multi-path routing protocol, which

implies that there may be more than one path available between a source and

a destination. Therefore, the most appropriate one is selected from a populated

list of alternatives. If there is only one path available on the list, then its path

identification number is automatically selected. Continually, the source node IP

address is set to the current node’s IP address, and the destination node IP address

is set to the next hop, which is found by looking up the appropriate routing

information from the routing table, using the given path identification number.

In the unfortunate situation when there is no path available, e.g., no paths have
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The packet type (2 for forager)

The unique path identification number

The creation time-stamp of the packet

The packet header size

The IP address of the source node

The IP address of the destination node

Table 4.3: The forager packet header.

been discovered yet, foragers are pushed in a local buffer queue at the network

layer. At that time, a new scouting process may be triggered if no older scouting is

already in progress. The foragers can stay in the buffer queue for up to 4 seconds.

Then they are automatically dropped.

One of the strengths of BeeIP routing is the fast packet forwarding mechanism.

In particular, finding the next hop at each node is a matter of knowing the direction

of the forager, and the identification number of the path that it is bound to

traverse. The routing information for each path includes the IP addresses of the

two adjacent neighbouring nodes, which can be used to forward either towards

the source, or towards the destination. An example is presented in figure 4.4.

According to node’s B routing table, when a forager is received from node A with

path identification number equal to 1024, the next hop towards the destination is

C. Notice that B’s rather limited knowledge of the rest of the topology is enough

to allow packet forwarding, occupying as little memory as possible. Hence, all B

needs to do in order to forward the forager, is to alter both the forager’s source

and destination IP addresses and send it off to the data link layer.

The ack forager

Like a forager, an ack forager is a real data carrier. However, its responsibilities

also include those of an ack scout. Namely, an ack forager monitors the quality of

each link within the path, collects the information and finally reports it back to

the source. As in ack scouts, reporting the quality of the path affects the path’s

foraging capacity. Ack foragers are generated at the destination node by convert-

ing foragers who have been previously received and are waiting, until there is some

data that need to be transmitted back to the source. In a typical TCP scenario,
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Figure 4.4: A forager packet forwarding at the intermediate node B. The dotted
lines represent wireless links. The forager is bound to traverse the path with
identification number equal to 1024. The next hop, C, is found based on the path
identification number and the forager’s direction by looking at the routing table.

TCP acknowledgements are regularly sent back and forth during a communication

session. Therefore, the foragers waiting at the destination are not expected to stay

for too long. They get converted to ack foragers one by one, in a first-in-first-out

manner. A typical ack forager’s header is similar to a forager’s presented in table

4.3, with an addition of the fields presented in table 4.4.

The path selection metric value

The path quality value

The previous ack scout sender’s state

Table 4.4: Additional fields for the ack forager packet header.

Acting as an ack scout, an ack forager is designed to carry low-level values

from one hop to the next, update the value of the path quality field and perform

the artificial honeybee dance at the source node. Also, it constantly updates the

path selection metric value at every hop. The internal decisions for receiving

a forager and an ack forager, as well as a non-BeeIP data packet which has to

be piggybacked are illustrated in Algorithm 3 and Algorithm 4 respectively. In

figure 4.5 the important steps in terms of receiving an ack forager at the BeeIP

source node are highlighted. The source node updates its internal routing tables

by emulating the special honeybee dancing. Then, the packet is given to the next
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Algorithm 3 Receiving packets at a BeeIP node: Part 3 - The (ack )foragers

Input: A packet pkt received from either the upper or the lower layer

41: if pkt.Type is forager or ack forager then
42: result ← recvForager(pkt) . See Algorithm 9 of Appendix C
43: if result is forager at flower then
44: addWaitingForagerToFlowerQueue(pkt)
45: else if result is ack forager at hive then
46: emulateDance(pkt) . See Algorithm 5
47: end if
48: forwardForager(pkt)
49: end if

layer, to make sure that any data in its payload is delivered to the application

layer. The internal decisions and processes of a BeeIP node in terms of accepting

and dealing with forager and ack forager packets are also shown in the flowchart

4.6.

Algorithm 4 Receiving packets at a BeeIP node: Part 4 - The non-BeeIP

Input: A packet pkt received from either the upper or the lower layer

50: if pkt.Type not BeeIP control packet then
51: pkt.TTL ← pkt.TTL− 1
52: if pkt.TTL = 0 then
53: drop(pkt)
54: return
55: end if
56: if pkt.Dest is me or BROADCAST then
57: sendToUpperLayer(pkt)
58: return
59: end if
60: // This is a new data packet from the upper layer.
61: ppkt ← allocateToForager(pkt)
62: forwardForager(ppkt)
63: end if
64: end for
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Figure 4.6: A process flowchart that presents the internal workings of a foraging
process of a BeeIP node. The scouting part is omitted. Here, the concentration is
on the way BeeIP deals with forager and ack forager packets at the nodes where
control packets need to be either propagated or delivered directly to the upper
layer.
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4.4.2 Routing information and tables

Every time an ack scout is received, the BeeIP node acknowledges a path and

stores the appropriate routing information to its routing table. The information

is saved in such a way, that it can be easily accessed and updated when needed.

What is kept each time depends on the role that the node plays for a given

communication session. For instance, a source node is required to keep more

details regarding a specific path, because it will have to decide the appropriate

one at the beginning of the next transmission. An intermediate node on the other

hand, does not influence the transmission, apart from indicating the next hop to

a visiting forager, or ack forager.

A routing table row holds information about a single path between a source

and a destination. It is a collection of values which can be retrieved using the

unique path’s identification number. Common routing information stored in a

row includes a flag to indicate whether the path is acknowledged, its length in

hops, and the IP addresses of the neighbouring nodes which are used as the next

hops to either the source or destination. In the case of the two end peers of the

path, source and destination, the next hop is set to the node’s own IP address.

Furthermore, a routing table row includes a time-stamp value which is updated

every time the row is used to provide a routing solution. This allows it to stay

active and to avoid being removed by the housekeeping timer.

In addition to the common routing information, a source node stores two values

that are related to the population of the recruited foragers. The number of foragers

that are allowed to use the corresponding path in future transmissions, and the

number of them who are already using it. Both numbers describe the foraging

capacity of the path, which is used to bias the distribution of packets across

multiple paths. Mapping nature to networks, the number of foragers that are

allowed to use the path is considered as the number of unemployed foragers, which

are grouped and allocated to use the particular path. As in nature, they are

normally waiting in the dance floor for new dance releases to occur. Any foragers

that are already recruited and sent off from the hive are expected to return back

as ack foragers and are also used for detecting link failures. In real honeybees, the

number of foragers that become interested in working towards a specific source of

food is controlled by the number of dances being released. In turn, the number

of dances is related to the enthusiasm of the fellow honeybees who report the
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food’s goodness. Inspired by this behaviour, in BeeIP the foraging capacity of a

path changes according to the outcome of its monitoring activity. Every time that

an improvement is detected, a new artificial dance will be released and a small

number of artificial foragers will be recruited, or in other words, added to the

number of unemployed but waiting foragers.

As introduced and described in chapter 3, real honeybees possess the ability to

understand and evaluate the quality of a source of food, based on the experience

of their previous foraging activity. In this work, this feature of honeybees has

been investigated and mapped to the world of networks. Honeybee experience is

represented by keeping a record of the previous monitoring outcomes, delivered by

successful ack foragers for the same path. The record is a matrix of two columns,

namely time-stamp and path quality. Each time an ack forager returns back to the

source, a new pair of data is added to the matrix, updating in that way what the

artificial honeybees know about the performance of the path. To keep the infor-

mation fresh, the matrix always contains data from the last most recently received

ack foragers. The size of the matrix depends on how many memories foragers need

to have in order to be able to detect any improvement or deterioration over time.

The default value is empirically set to 10 and is directly related to the level of

adaptability the protocol is required to achieve. Experiments have shown that in

most cases, a number of 10 memories allow a satisfying detection of changes to

the path’s quality, where at the same time it balances the relation between the

time that is required to collect the memories (each memory is a result of a single

flight, i.e., a packet transmission), and the value of the detection based on them.

The larger the size of the matrix the longer the time that is required to be spent

in order to collect the memories, and less representative sample is generated in

order to make efficient detections. The evaluation of the performance as well as

the methodology of using the matrix data to understand a paths usability and

adjust its foraging capacity, are given in section 4.6.3 of this chapter.

4.5 Internal components of a BeeIP node

Figure 4.7 illustrates the internal interconnected components that constitute a

BeeIP node. Each component has unique networking responsibilities, while at the

same time mimics the internal structure of a real honeybee hive.
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4.5.1 Entrance

A communication session between two nodes begins when the source is required to

forward data to the destination. In a typical TCP scenario, having received data

from the upper layers, the transport layer prepares segments and forwards them

down to the network layer for further actions. Likewise, when the physical layer

picks up data from the wireless medium, it ends up being sent to the network layer.

The entrance, figure 4.7, provides the link of communication to either one step up

or down the OSI network stack (Zimmermann, 1980). Also, a screening process

for every incoming packet is done at this component. Similar to nature, where

unknown honeybees are not welcome in the hive unless they have adopted the

hive’s common odour, unrecognised packets are not allowed to enter until they are

converted to BeeIP foragers. An exception is made for those packets that target

Figure 4.7: The BeeIP internal structure at the network layer of a node. It con-
sists of three interconnected components (Entrance, BeeIPHive and BeeIPQueue)
which handle the incoming and outgoing packets from and to the other layers of
the network stack. Notice that the entrance is a unique component which is used
to pass packets to either one layer up or down the network stack and communicates
with the BeeIPHive only.
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the source node itself, for instance broadcast packets. Such packets are forwarded

directly to the upper layer. The de facto rule is that unless there is another routing

protocol operating within the same network, all incoming packets from the wireless

medium should have been already converted to BeeIP compatible.

4.5.2 BeeIPHive

This component is the place where the business logic of the routing protocol

takes place. It is where information regarding scouting, routing and neighbouring

nodes is stored and maintained. BeeIPHive is also responsible for controlling the

population of the artificial honeybees, i.e., the BeeIP packets. In terms of nature

to network mapping, the BeeIPHive component can be considered as the inner

parts of the hive; the artificial combs. In order to describe the BeeIPHive better,

it is separated into four areas as illustrated in figure 4.8.

Figure 4.8: The internal structure of the BeeIPHive as one of the three components
of a BeeIP node.
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Scouts area

To start with, the scouts area is responsible for handling both scouts and ack scouts.

When either of these packets enters the BeeIPHive, the information found in its

header is delivered to the scouting and routing repositories. If the packet is an

ack scout, the neighbouring nodes repository is also updated. Also, the scouts

area of the BeeIPHive is where scouts and ack scouts are prepared in order to be

propagated by broadcast, or sent by unicast, to the appropriate next hop.

Foragers area

The foragers area controls any foragers and ack foragers which are created, re-

ceived and sent by the BeeIP node. Same as in ack scouts, the neighbouring

nodes repository is updated when an ack forager is received. The foragers area is

firmly collaborating with the routing repository and the dance floor, in a manner

that mimics real honeybees and their dancing activity. In nature, available for-

agers are recruited at the dance floor of the honeybee hive, in where they witness

other fellow honeybees’ dance and get attracted by them. During the recruitment,

a real honeybee will collect what she needs to know in order to find the particular

source of food. This is how they communicate in order to participate in a collab-

orative labour towards the collection of food. In BeeIP, foragers are recruited in

the dance floor area of the BeeIPHive. They are given the unique identification

number of the appropriate path, and the next hop towards the destination. These

details are read from the routing repository.

Another responsibility of the foragers area is to provide a temporary home for

the incoming foragers, when the current node is the destination of the path, i.e.,

the destination node of the communication session. This emulates the phase of

the real foraging, when the honeybee stays on the flower in order to collect the

nectar into her honeybee stomach, or grab a ball of pollen with her legs. This area

is not to be confused with the BeeIPQueue component, which is used to buffer

the foragers during a scouting process (details in section 4.5.3).

The dance floor area

Following the discussion above, the dance floor area is the place where the re-

cruitment of foragers is implemented. Each incoming ack scout and ack forager

delivers fresh knowledge regarding a particular path. The knowledge is added to
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the routing repository, the place where the routing tables lie. Then, along with

the knowledge from previous flights, it is used to evaluate the performance of the

path and understand its ability to serve based on experience. Both evaluating

and understanding are achieved during an artificial honeybee dance, a method

inspired by the real waggle dance found in the world of honeybees (explained in

3.3.3). Based on the outcome of the evaluation, adjustments are made to the

path’s foraging capacity, affecting in that way the maximum number of forager

packets that are allowed to be recruited. The artificial dance is explained in more

detail in section 4.6.4.

In the dance floor within a real hive several honeybees might dance at a time,

advertising different interesting sites. The decision of which dance triggers a willing

honeybee depends on her location on the dance floor, and the strength of the

signals she receives from the dancing honeybee2. For instance, if two dancers

perform at the same time, the one who dances more enthusiastically will receive

more attention. This behaviour is also emulated in the BeeIPHive’s dance floor.

Unemployed foragers are allowed to select the most appropriate path from a list of

alternatives, based on the selection path metric, described in section 4.7 in detail.

Repository areas

The neighbouring nodes repository, as well as the scouting and routing repositories,

are used to store all the data required by BeeIP to function. There are in fact

three tables of data, where rows are created, retrieved and removed according to

the protocol’s mechanisms. For instance, the low-level values, collected from and

delivered to the adjacent nodes by the returning ack scouts and ack foragers, are

stored in the appropriate rows of the neighbouring nodes table. Due to limited

resources often found in mobile nodes, good memory management is required.

Therefore, clock timers are dedicated to removing old and unused table rows, by

checking the time-stamp when they were last used. A typical neighbouring nodes

entry includes:

• The time-stamp of the last time the information was used.

• The signal strength of the last received ack scout or ack forager at the re-

ceiving node.

2Assuming that both the dancers and the unemployed foragers belong to the same group,
and work towards the same commodity.



4.5. Internal components of a BeeIP node 103

• The sender’s last reported remaining energy level.

• The sender’s last reported speed (velocity).

• The last reported size of the queue at the sender’s MAC layer.

• The transmission delay between the sender and the receiver (current node).

• The result of the (local) quality calculation for the link between the sender

and the receiver (current node).

Apart from the obvious time-stamp and local quality values, the rest are the

five low-level parameters used to evaluate the quality of the link between the two

adjacent nodes. A complete discussion and reasoning for selecting the parameters

is given in section 4.6 and, in particular, in section 4.6.1. In terms of the scouting

repository, a typical entry includes:

• The time-stamp of the beginning of the scouting process.

• The IP address of the source node which started the scouting process.

• The IP address of the target destination of the scouting process.

• The type of the node, can either be “hive” (source), “path” (intermediate),

or “flower” (destination node).

• A flag for acknowledging the success of the scouting process.

• A time-to-live value (source nodes only).

The time-to-live is only set at a source node, when the type is also set to

“hive”. Its value is used to control the propagation of the scouts while they are

broadcast to the network. The methodology is explained in 4.4.1, “The scout”.

Finally, a typical routing information entry consists of:

• The unique path identification number.

• The role of the node in terms of the particular path. Can either be “hive”

(source), “path” (intermediate), or “flower” (destination node).

• The time-stamp of the last time an ack forager returned back to the source

using this path.
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• A flag for acknowledging the path, active or not active.

• The IP address of the next hop towards the source. Set to the current node’s

IP address if it is in fact the source of the path.

• The IP address of the next hop towards the destination. Set to the current

node’s IP address if it is in fact the destination of the path.

• The number of hops within the path.

The details above are common to all types of routing entries, namely “hive”,

“path”, and “flower”. However, those which are created with their type set to

“hive”, the source node of the path, also include the following:

• The number of foragers that are allowed to be recruited, and use the partic-

ular path.

• The number of foragers that are already using the path and are expected to

return back as ack foragers.

• The value of the metric to be used as the appropriate path selection metric.

• The two-column matrix, time-stamp and path quality, which is used to keep

the past experience of the performance for the particular path.

• The number of rows already in the matrix.

4.5.3 BeeIPQueue

The BeeIPQueue is the last component of a BeeIP node, used to buffer all the

forager packets whose path is not yet discovered. Coupled with the dance floor

previously described, the BeeIPQueue can be considered as the place where ar-

tificial foragers wander around until they are recruited by the dance of a fellow

artificial honeybee. Once a data segment is prepared by the transport layer and

the routing protocol is required to forward it to the correct destination, a forager

is created to carry it further. A scouting process begins when no path is available

in the routing tables of the source, thus, no path identification number can be

assigned to the newborn forager. At this stage, the forager is added in the buffer

and is willing to accept the call of a fellow artificial honeybee dancer. This maps
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the behaviour met in the real hives. Moreover, the queue can host multiple for-

agers for the same destination. When an ack scout finally arrives at the source,

the corresponding foragers leave the queue in a first-in-first-out manner. This

schedules the packets and ensures that they will at least leave the source in the

correct order.

BeeIPQueue has a default capacity of 40 packets. A clock timer ensures that

old packets do not stay in the queue for ever. Packets older than 4 seconds are

silently dropped. The numbers are configurable and depend on the implementa-

tion. However, during the experiments of this research work, no packet has ever

been waiting in the buffer queue for more than 2 seconds.

4.6 Routing maintenance

As already mentioned in previous sections, BeeIP is a multi-path routing protocol.

Each scouting process may result in more than one path discovery, the details of

each are stored in the local routing tables of the nodes involved. Inspired by real

honeybee behaviour, BeeIP routing maintenance concentrates on the contiguous

quality monitoring of all working paths. In order to achieve that, ack scouts and

ack foragers constantly collect low-level parameter values from the nodes they

visit, and deliver them to their next adjacent hop. Moreover, BeeIP monitoring

activity is based on the assumption that the transmission links between the nodes

are bidirectional. An explanation is given in section 2.3.2.

Nevertheless, ack scouts and ack foragers monitor the path on their way back

to the source. BeeIP is designed to match nature and real honeybees as much

as possible. Foragers that return back to their hives with a honey stomach full

of nectar have completed a successful foraging cycle. That is itself proof that

the path is at least not broken at the time of the particular trip. Similarly,

when either an ack scout or an ack forager packet returns back to the source, it is

automatically implied that the corresponding routing path is still usable. However,

its performance depends on the quality value being carried within the header of

the packet.
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Figure 4.9: An artificial honeybee is monitoring the quality of the path, by mea-
suring the quality for each intermediate link. The packet carries low-level pa-
rameter values from each node, and delivers them to the next hop in the path,
towards the destination. Starting from destination E, to D, etc., until it is back
to the source A.

4.6.1 Monitoring the quality of links

Monitoring the quality of a path is the most important action performed by both

ack scouts and ack foragers (ack packets). To be able to understand and define the

quality of a path, the path is split into a chain of links between the intermediate

nodes from the destination back to the source. While traversing it, the ack packet

is responsible for collecting low-level parameter values that represent not only the

current state of its senders, but also, the network effectiveness of each intermediate

link. These are then delivered to the next hop, where the quality of the previous

link is measured. The ack packet collects the result and continues the journey

back. The process repeats until it is back at the source node. An example is given

in figure 4.9. When flying from the destination node E to the source node A, the

path quality is calculated link by link, i.e., E → D, D → C, C → B, and finally

B → A. The list of the low-level parameters used by the protocol, followed by a

brief explanation of their importance is given below.

1. The ack packet’s signal strength at the receiving node in dBms or Watts.

When received at a node, the ack scout or ack forager packet’s signal strength

is measured. A weak signal strength can be an indication of long distance

between the two nodes, intermediate obstacles, or both.

2. The moving speed of the sender (velocity) in m/s.

A moving node can easily go outside the transmission range and cause weak

or broken links. For the same reason, a node with a fixed position is more
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promising than one which moves around constantly and at high speed.

3. The sender’s remaining energy level in Joules.

Nodes with sufficient remaining energy are less vulnerable and better candi-

dates for future packet transmissions.

4. The size of the MAC queue of the sender in bits.

The precise size of the queue at the MAC layer of the sender is an indication

of how busy the sender is, in terms of traffic and network congestion.

5. The transmission delay between the sender and the receiver of a link in

seconds.

The use of time-stamps and synchronized clocks allows the measurement of

the time an ack packet requires to be transmitted from the sender to the

receiver in a link.

The parameters above can be retrieved by accessing the appropriate layers of

the OSI model, using cross-layer design (Conti et al., 2004). Unlike the traditional

way, where each layer of the stack is allowed to communicate only with its adjacent

layers (up and down), cross-layer designing allows information to be exchanged

between any layers (see section 2.7.3 for details). Figures 4.10 and 4.11 illustrate

the different designs, in the context of BeeIP. Traditionally, the network layer is not

allowed to communicate with the physical layer or the application layer. However,

in BeeIP sharing information between those layers is an important aspect of the

protocol’s design.

The application layer can provide both the moving speed and the remaining

battery strength on the node. In a similar way, the physical layer can provide the

packet’s signal strength upon its reception (Ogunjemilua et al., 2009; Bardwell,

2002). Also, knowing the size of the MAC layer’s queue (in the data link layer3)

and the allowed data rate as defined by the 802.11 network standards (Board,

IEEE-SA Standards, 2003) of the wireless adaptor, the queuing delay can be

found. Finally, the transmission delay is calculated by considering the time-stamps

of sending and receiving the packet between the two nodes of a link.

Furthermore, the parameter values are of different scales and have difference

units. In order to be used effectively, they need to be normalized. The normal-

3 ISO model describes the MAC (media access control) layer as a lower sub-layer of the data
link layer. The upper sub-layer is called LLC (logical link control).
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Figure 4.10: OSI model traditional de-
sign. Only adjacent layers are allowed
to communicate with each other follow-
ing a waterfall fashion.

Figure 4.11: Cross-layer design for
BeeIP. The network layer dynamically
communicates with the application,
DLL, and PHY layers.

ization can be done by knowing the minimum and the maximum values expected.

Using cross-layering, the protocol is able to acquire these values, as they are either

part of the network configuration (set by the wireless adaptors, network standards,

etc.), or set by the software controllers (e.g., the driver which controls the bat-

tery). Normalizing the values is done by applying the linear transformation (see

B.1 of Appendix B). It is important to notice here that the moving speed, and

both queue size and transmission delay are adversely affecting the performance.

This is better understood with an example. A node’s speed equal to zero does

not affect the transmission, as it does not alter the distance between the source

and the destination. This makes it preferable compared to a node of high moving

speed. Likewise, a node which has the smallest MAC buffer size is considered free

of congestion. Hence, inverse normalization is used for these parameters.

The next step is to utilize these numbers so that the quality of the link can

be represented. As stated above, each parameter describes a unique aspect or

characteristic of the communication between two neighbouring nodes. Their role

is important but they differ in the way they affect the performance, and thus,

the quality. Therefore, to use them efficiently, a way to express their relative

importance needs to be found. In BeeIP, a weighting system is used for this

purpose. The formula to calculate the quality q of a link from node j to k as

traversed by the ack packet b:
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qjk = sig′b ∗ wsig

+ speed′j ∗ wspeed

+ energy′j ∗ wenergy

+ qd′j ∗ wqd

+ txd′jk ∗ wtxd (4.1)

where the prime numbers are the normalized values of the parameters: sig for sig-

nal’s strength, speed for current speed, energy for remaining energy, qd for queuing

delay, and txd for transmission delay. The w′s are the appropriate weights.

Finding an appropriate set of weights for the formula 4.1 is a separate and

complicated problem. In a previous version of BeeIP published in Giagkos and

Wilson (2010), an attempt of producing a weighting system based on experience

was presented. Table 4.5 summarizes the resulting weights found empirically.

Notice that the numbers are used to represent the importance of each parameter,

therefore, they are a way of prioritizing them and express which plays the most

and least significant role in affecting the performance of the communication link.

Parameter: Signal Pow Speed Energy Q-Delay Tx-Delay

Weight (w): 0.40 0.20 0.20 0.15 0.05

Table 4.5: A weighting system based on experience. The weights are a first attempt
to prioritize the low-level parameters based on their importance, in terms of the
performance of the communication link between two nodes.

Although the results were quite promising, it was recognized that finding

the relative importance between the low-level parameters was subject to fur-

ther investigation. The next part of this section describes the methodology used

to produce a new and more accurate set of weights, using Machine Learning

(ML) (Goldberg, 1989) and, in particular, Artificial Neural Networks (ANN)

(Gurney, 1997; Haykin, 1994; Lau, 1992).
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Figure 4.12: The Multi-Layer Perceptron used to generate an accurate set of
weights. Each input parameter corresponds to one of the low-level parameter
used by BeeIP to measure the quality of a link between to nodes. The neural
network was trained by off-line supervised learning based on data sets produced
from the wireless network by data packet transmissions. The output was set to
the round trip time of each packet.

4.6.2 Towards a weighting system

An artificial neural network is a parallel system, capable of resolving paradigms

that linear computing cannot. It is an interconnected assembly of simple pro-

cessing units, the neurons, whose functionality is based on the human or animal

brain. Neural networks consist of different layers or neurons, either fully con-

nected or partially connected. Each neuron’s processing ability is represented by

its connection strength, the weight, obtained by a learning process. ANNs are able

to solve a number of different problems in different areas, including classification

(pattern recognition), and regression analysis or function approximation (Zhang,

2000; Zainuddin & Pauline, 2008). Furthermore, they can help in order to un-

derstand the relative importance between each input, and their influence to the

output of the neural network.

A multi-layer perceptron (MLP) (Gurney, 1997; Trenn, 2008) is a neural net-

work able to express a rich variety of non-linear decision surfaces of the pattern

space. It consists of the input layer, the hidden layer (or layers) and the output

layer. In each neuron in the hidden and output layers, the activation function is

non-linear. Using a sigmoid function is expected to reduce the mean squared error

(MSE) of each epoch and produce a more accurate weighting system.

In BeeIP, an MLP was used as a way to generate the set of weights. This

was achieved by applying off-line supervised learning based on data sets produced
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by the wireless network. During its training, the MLP was supplied by a variety

of patterns. A pattern consists of five inputs, each one representing a low-level

parameter used in formula 4.1, and an actual output. For the latter, the round trip

time (RTT) between two nodes was used. The reason is that RTT is affected by all

the input parameters, as well as it is a collection of delays that exist and cannot be

measured by the protocol itself. For instance, the RTT of a transmission includes

the propagation delay of the packet, which is connected to the distance between

the nodes. It also includes the computation delays within both the transmitter

and the receiver nodes. The goal of the training was to find a set of weights that

will cause the output from the neural network to match the actual target values

of the data sets, as closely as possible.

Honeybees are empirically found to make judgement based on prior foraging

knowledge and current quality observations. Von Frisch’s experiments have illus-

trated the existence of the quality factors and the honeybees’ ability to combine

them together in order to understand the goodness of their findings. Although

he proved that the quality factors exist, the exact values of their thresholds are

still unclear to us (von Frisch, 1967). Additionally, Seeley on page 121 states: “A

forager must have some means of knowing whether the flower patch she has just

visited represents a source of nectar of low, medium, or high quality. [snip] It is

now clear that each nectar forager independently assesses the profitability of her

flower patch by integrating information about energetics of foraging at her partic-

ular patch.” (Seeley, 1995). As described before, the aim of the set of weights in

BeeIP is to illustrate the relative importance of the 5 parameters in connection to

what can be generally considered as a working path of good performance. Com-

bining those parameters together is directly mimicking real honeybee behaviour

by which the honeybees understand whether the finding is worth exploiting (and

dance for it within the hive) or not by collecting information from the environ-

ment (quality factors), and considering prior knowledge (waggle dances at the

dance floor). An MLP trained with data that represent both normal and extreme

network conditions, such as the energy of the nodes drops to 0, the MAC buffers

reach their limit causing TCP packets to wait for long time and eventually drop,

and the node’s moving speed varies between low to unrealistically high values

causing frequent changes to the distance between transmitters and receivers, al-

lows a generic set of weights to be discovered and used to combine the quality

factors more efficiently. The values of the parameters being optimized are not in-
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fluenced by BeeIP algorithm. In fact, BeeIP does not make any changes to those

parameters, rather, the artificial honeybees collect their values from the artificial

environment (i.e., the layers of the network stack of each node they traverse) us-

ing cross-layering and use them in order to represent the quality of the links and

paths.

Figure 4.12 illustrates the MLP which was used in this work. It consists of one

hidden layer of four neurons. The grey neurons xb and hb are the bias neurons.

MLPs with no hidden layers are unable to solve complex problems (non-linear),

whereas those with one hidden layer are able to solve most of the problems suf-

ficiently. Two hidden layers are required for modelling problems of data with

discontinuities (e.g., a saw tooth wave pattern). Based on the literature, there is

currently no theoretical reason to use neural networks with any more than two hid-

den layers (Trenn, 2008). The number of neurons that exist in each hidden layer

is also important in order to avoid several problems. For instance, under-fitting

occurs when there are too few neurons in a hidden layer to adequately detect the

signals in a complicated data set. On the contrary, too many neurons may lead to

over-fitting, a case when the neural network has so much information processing

capacity, that the limited amount of information contained in the training set is

not enough to train all of the neurons in the hidden layer. Another problem of

using too many neurons is that it increases the time it takes to train the network.

Nevertheless, training the MLPs in the context of BeeIP happens off-line, and this

problem is ignored. The decision to use four neurons in the hidden layer, is driven

by the three rules of thumb, generally accepted in the literature (Swingler, 1996).

The number of hidden neurons should be:

• Between the size of the input layer and the size of the output layer (5 > 4 > 1).

• 2/3 the size of the input layer, plus the size of the output layer (3.3+1 ' 4).

• Less than twice the size of the input layer (4 < 10).

To train the MLP, the well-known back propagation algorithm (McClelland &

Rumelhart, 1986) was used, as it is the most widely used algorithm for training

feed-forward neural networks. Although it is seen from simulations that it takes a

long time to converge (Kuan & Hornik, 1991), in BeeIP’s content, training happens

off-line and thus, it is not a real issue. Table 4.6 lists all the training parameters.
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Training algorithm: Back Propagation

Datasets: 10 x 10.000 patterns

Training duration: 1000 epochs

Normalization: 0 to 1

Initial weights: -0.5 to 0.5

Learning rate: α set to 0.2

Table 4.6: The MLP training parameters.

A number of different methods exist in order to measure the importance of

each input in terms of the output in back propagation networks, such as the above

MLP (Sung, 1998b). These include sensitivity analysis (SA) (Saltelli et al., 2000),

change of mean squared error (MSE) and fuzzy curves (FC) (Lin & Cunning-

ham, 1995). One important characteristic of both SA and change of MSE is that

they require training the neural network, whereas the FC only analyses the in-

puts/output relationships by plotting and observing the resulting fuzzy curves of

each input (Sung, 1998a). In this work, the method of observing the change of

MSE is used, due to its simplicity. In more detail, the resulting MSE of the trained

neural network when all the inputs are present, is compared against the MSE ob-

tained from the trained network when one of the inputs is omitted. The idea

behind this methodology, is to observe the differences between the MSE values,

and thus make verdicts about the importance of each input accordingly. The input

which produces the biggest MSE difference when missing from the neural network,

is the one with the highest importance. The simplified version (only one neuron

in the output layer) of the MSE function as documented in Sung (1998a) is:

MSE =
P∑

p=1

(targetp − actualp)2/P (4.2)

where, targetp and actualp are the desired output and the calculated output re-

spectively, of the output neuron for the pth pattern. P is the total number of

patterns.

Using the formula 4.2 to calculate the MSE, training the MLP is repeated six
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times. One with all inputs present and five with an input missing each time. The

summary of the results is found in table 4.7.

Again, the degree to which both the signal strength and the remaining energy

affect the performance is clearly high, matching those empirically determined. An

interesting observation is that the difference that the speed parameter makes to

the MSE is a very small number. The speed of the nodes does not affect the

performance of the link as much as it was thought in the first weighting system.

The reason is the lack of knowledge in connection to the directions of the moving

node. While two nodes are moving towards its other and the distance between

them is getting smaller, their connection link is enhanced. On the contrary, if

they move at opposite directions the distance is increased and their connectivity

weakens. Clearly the speed could be a more valuable parameter for the system,

if it was connected to the distance between the nodes. However, the version of

BeeIP described in this work does not possess the mechanism to accurately find

the distance of the two nodes. Also, in reality, the distance is often not available.

Hence, the parameter of speed is weighted with the small outcome number, to

represent the small impact it has on the performance.

4.6.3 Monitoring the quality of paths

Following the discussion in section 4.6.1 regarding the quality of a link, a new qjk

(formula 4.1) is calculated at every node visited by the ack packet, and when it

finally arrives at the source node, the quality of the path from the destination d

to the source s can be expressed as:

Qds =
m−1∑
n=1

(qNn+1→Nn), [d = Nm, s = N1] (4.3)

wherem is the total number of nodes in a numerically ordered path, andNn+1 → Nn

the pair of nodes with direction towards the source node.

The result obtained by formula 4.3 is a number that can be used to represent

the current quality of the path, in terms of the five low-level parameters found

in each intermediate node. However, it represents only one single flight. The

nature of the network is such, that obtaining and using the results of only a single
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packet transmission can be highly misleading. In a similar way to nature, where

honeybees evaluate a finding based on their past experience and knowledge, what

is required is a way to evaluate the performance based on quality measurements

taken from a number of previous transmissions. Therefore, the latest ten Qds

values along with the corresponding times are collected and stored in the history

matrix described in section 4.4.2. Applying regression analysis on these data, the

source is able to detect whether there has been an improvement or deterioration

over time. Pearson’s correlation coefficient (Read & Cressie, 1988) is used for this

purpose. Rewritten to fit BeeIP’s design, the Pearson’s r is calculated by:

r =

∑k
i=1(ti − µt)(Qds

i − µQds)√∑k
i=1(ti − µt)2

√∑k
i=1(Q

ds
i − µQds)2

(4.4)

where ti is the time of receiving Qds
i value, µt is the mean of the time column

values, and k is the number of flights collected.

The idea of using regression analysis is to catch any strong positive or negative

correlation between the two variables: time and Qds. As real honeybees do in

nature, their artificial counterparts must possess a mechanism to detect whether

the path they are using remains worthy. In addition, following the principle of

honeybee dancing, when they have enough evidence and a clear understanding of

the quality of the path, they start the process of recruitment. In the protocol’s

context, this is translated to collecting enough data from previous flights. If the

correlation is a strong negative, then the signal which is given to the recruits

is also negative, affecting the path’s foraging capacity. The two thresholds for

catching the strong correlations are set empirically to -0.8 and 0.8. The protocol’s

behaviour with numbers between -0.5/0.5 and -0.7/0.7 is found to judge the quality

of the paths in an unfair manner, giving penalties and bonuses to paths with

no genuine changes, and thus it is unable to narrow down to those cases where

a path is close to break. Nonetheless, depending on the implementation these

thresholds can be changed, altering the sensitivity of both the monitoring and

foraging activities. The closer to -1 and 1 these thresholds get, the less sensitive

the protocol becomes in terms of applying penalties and bonuses. Additionally,

the smaller the threshold numbers the less accurate the detection. Mimicking
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nature, the artificial honeybees may dance either because of a strong negative or

positive correlation is found. If no assumptions can be made (the thresholds are

not reached), then no dance is released and in turn, no adjustments are made to

the foraging capacity of the path.

4.6.4 Artificial honeybee dance

Artificial honeybee dance is the technique by which the foraging capacity of a

path is changed according to a new evaluation, based on both previous and new

quality measurements. There are two different cases when dance is performed,

depending on the ack packet being received. It is triggered either by an ack scout

or an ack forager.

As previously described, every time a new path is found between a source and

a destination, new routing information is stored in the routing repository area of

the source. Initially, the foraging capacity of the path, the number of foragers

that are allowed to be recruited as well as the number of foragers already using

the path, are set to zero. However, the first changes according to the advertising

of the ack scout. Since there is no previous knowledge, the ack scout dances

enthusiastically just because a new path is found. As mentioned in chapter 3, real

scouting and foraging depends on the energy demand in the hive. If the demand

is high, the first performing scout that brings fresh knowledge of a source of food

recruits more foragers, in order to satisfy the overall need of energy. Therefore the

initial foraging capacity fcinit of a path from source s to destination d is set by:

fcinit = F +Dd (4.5)

where F is a constant number of foragers, and Dd the number of packets stored

in the BeeIPQueue with destination d (demand).

A value for the constant F has been empirically set to 20 foragers. Having

in mind the mechanism for detecting any possible improvement and deterioration

over time, the initial number of foragers needs to be at least equal to the size

of the history matrix, as it is discussed in section 4.4.2. In principle, this will

allow the routing mechanism to operate. However, the nature of the network

is such, that packets can often be dropped or lost during the communication



118 4. BeeIP: The bee-inspired protocol

Algorithm 5 Emulating the honeybee dance

Input: A ack scout or an ack forager packet pkt

1: procedure EmulateDance(pkt)
2: rData ← getRouteData(pkt.PID)
3: if rData is NULL then
4: return
5: end if
6: // Add last link’s information, i.e., the selection metric’s to the sum
7: // as well as the last link’s quality result to the overall path quality.
8: editAckPacket(pkt)
9: updateRouteData(rData,pkt)

10: if pkt.Type is ack scout then
11: adj ← FIRST RECRUITS + demandFor(pkt.Src)
12: rData.ForagersIn ← adj
13: return
14: else
15: // Is an ack forager, consider prior knowledge:
16: if rData.MatrixSize = MATRIX SIZE then
17: resetMatrix(rData.Matrix)
18: end if
19: pushToMatrix(rData.Matrix, pkt.TS, rData.PathQuality)
20: if rData.MatrixSize < MATRIX SIZE then
21: rho ← PearsonRho(rData.Matrix)
22: if rho ≤ RHO MINUS then
23: adj ← rData.ForagersIn−RHO ADJ
24: rData.ForagersIn ← min(adj, MAX RECRUITS)
25: else if rho ≥ RHO PLUS then
26: adj ← rData.ForagersIn+RHO ADJ
27: rData.ForagersIn ← max(adj, 0)
28: end if
29: end if
30: end if
31: end procedure
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session. Therefore, the initial number of foragers, no matter what the demand for

the particular destination can be, is preferred to be greater than the size of the

history matrix. Experiments have shown that an initial value of double the size

of the history matrix has no negative effect to the decision making, as it ensures

that the matrix will be eventually populated, whereas at the same time it keeps

the foraging capacity within reasonable limits so that penalties (if they need to be

applied)4 will make critical sense to the potential of the path as a good candidate

in the future.

Although formula 4.5 ensures that new paths will get a balanced starting num-

ber of recruited foragers, the first path is always in favour as it is expected to satisfy

the demand at the BeeIPQueue. Nevertheless, the situation may change in the

long run, as paths are used by foragers based on their selection metric.

In addition to ack scouts, ack foragers also perform the artificial honeybee

dance. The foraging capacity of a path is also changing according to the evalu-

ation and the report or the performance by an ack forager. What interests the

mechanism is the two strong correlations between time and Qds, therefore two

thresholds are set as described previously. Adaptation is achieved by making

small changes to the foraging capacity of a path, according to the threshold which

is exceeded each time. In real honeybees, because of the physical limited number

of insects in each hive, the number of recruits responding to a new dance tends to

be fixed. Similarly in the routing protocol, the adjustments that are made to the

foraging capacity of each path are either positive or negative constant numbers.

Table A.1 of Appendix A summarizes the default values of the artificial honeybee

dance in BeeIP, and all other default values of the BeeIP implementation used in

this thesis. The artificial honeybee dance is illustrated in Algorithm 5.

4.7 Data packet forwarding

Keeping the foraging capacity of each path up-to-date, a list of working and poten-

tially good candidates can be created. However, this is one half of the mechanism

to successfully forward data packets. The next half is the selection of the best

candidate within the list. Depending on the behaviour of the routing protocol

that one may want to achieve, different selection metrics can be applied. Tradi-

4Remember that penalties as well as bonuses are small constant numbers which makes the
protocol to map the signaller-limited nature of the real colony (see section 3.3.1 for details).
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tional metrics are related to the number of hops in a path (shortest paths), the

transmission speed of its links (fastest paths), the expected transmission count,

the energy cost, the remaining energy, etc. (De Couto, 2004; Cao et al., 2007;

Balaji et al., 2011).

4.7.1 Appropriate path metric

Understanding the importance of the metric and its influence on the behaviour

of the protocol is very significant. This is better conveyed when looking at the

following example scenarios.

Scenario 1. Speed of transmission does matter: A team of robots is sent to

investigate an area where a disaster took place. They are all connected via a mobile

ad hoc network operating with BeeIP. An aerobot is flying high enough to make

use of its on-board cameras and take shots of the unknown and probably dangerous

terrain. The resulting shots reveal that there is a cliff in front, which cannot be

detected by the fellow robotic rover that accelerates towards it. Moreover, other

robots in the topology exchange interesting data with each other and keep the

network busy. Clearly, in such situation the aerobot will need to communicate

and send a stopping signal to the moribund robotic rover as fast as possible. The

most appropriate path needs to be the one with the smallest transmission delays

between the source and the destination.

Scenario 2. Saving energy does matter: Backing up data is scheduled at

an off-peak hour, where the network is expected to be less busy. Large blobs of

data are required to be transferred from node A to node B, making sure that less

energy is consumed. Furthermore, a condition is set to exclude those nodes whose

remaining energy level is below a threshold, and thus using them may get them

shut-down and go off-line. In this example, speed is not an issue. Rather, the goal

is to use the least power possible. The most appropriate path needs to consider

the energy cost between each node, and the remaining energy of their batteries.

The design of BeeIP allows the selection metric to be implemented according

to the desired behaviour of the protocol. This is achieved by considering it as

a separate measurement, the outcome of which is applied to a populated list of

alternative candidates. In the version presented in this thesis, a selection metric

relevant to the speed of the transmission is used. At each intermediate node i, the
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selection metric m for the link between i and its adjacent node j is calculated as:

mij = txdij + qdj (4.6)

where txdij is the transmission delay a packet experiences when transmitted from

j to i, and qdj is the queuing delay a packet experiences while being buffered at

node j.

At the source node, the overall path selection metric is expressed as the sum-

mation of m’s which are collected during a flight back. Finally, the path selection

metric is used in order to choose the most appropriate path from a list of interest-

ing candidates. In order to participate in the list, a path needs to be acknowledged

(acknowledgement flag = 1) and have at least 1 recruited forager waiting to use

the path (foragers waiting ≥ 1). Algorithm 6 illustrates the selection of the ap-

propriate path at the source node.

At the intermediate nodes, the selection is done by considering the direction

and the path’s identification number. Remember that every node which partici-

pates in a path has up-to-date information about the path and the two nodes used

to forward packets, towards either the source or the destination. Finally, at the

destination node the selection is done in a first-in-first-out fashion. Clearly, the

complexity of the next hop selection is small because it is not based on any search-

ing algorithm. This approach not only palliates the retransmission delays, but it

also keeps the size of the packet small, allowing other useful routing information

to be accommodated, if necessary.

4.8 Detecting link failures

Despite the constant monitoring and evaluation of the paths, where agents can

detect disturbances and prevent loss of connection by changing automatically to

another alternative, links between the nodes can still break rather unexpectedly.

An adaptive routing protocol ought to have a mechanism to detect when a link

has been broken, and update its routing knowledge. Various mechanisms have

been proposed and used for this purpose, such as the local repair using HELLO

messages in AODV and AntHocNet, or absence of broadcast packets from a
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Algorithm 6 Find the appropriate identification number at the hive

Input: A destination dst
Output: A unique path identification number or NO PID

1: // Start with something big cause the selection metric is delay.
2: next best metric← BROKEN LINK TIMEOUT
3: for all rData ∈ RoutingRepositoryToDest(dst) do
4: if rData.ACK = 1 and

rData.ForagersIn = 0 and
rData.ForagersOut = 0 then

5: rData.ACK = 0
6: end if
7: lastReturnedTS ← CURRENT TIME − rData.TSLastReturned
8: if lastReturnedTS ≥ BROKEN LINK TIMEOUT and

rData.ACK = 1 then
9: rData.ACK = 0

10: end if
11: // R is a list of optimal routes with equal selection metric.
12: if rData.ACK = 1 and rData.ForagersIn > 0 then
13: if rData.Matric = next best metric then
14: add rData to R
15: next best metric← rData.Matric
16: else if rData.Matric < next best metric then
17: empty R
18: add rData to R
19: next best metric← rData.Matric
20: end if
21: end if
22: end for
23: if sizeOf(R) > 0 then
24: opRoute← random(R)
25: opRoute.ForagersIn← opRoute.ForagersIn− 1
26: opRoute.ForagersOut← opRoute.ForagersOut+ 1
27: return opRoute.PID
28: end if
29: return NO PID
30: . Will queue data packet and trigger new scouting process.
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neighbouring node, such as in DSDV.

Since BeeIP is designed to evaluate routing based on “path” level instead of

“link” level, link breakage within a path is detected when no foragers return back

to the source node within a period of time. In such a case, the source node sets

the path’s foraging capacity to 0, and marks the path as unacknowledged. The

first ensures that no future foragers will be given the identification number of

a broken path, whereas the latter allows the path to become available again, if

a forager eventually comes back. Furthermore, in order to get rid of very old

unacknowledged paths, a timer is used for housekeeping. This simple mechanism

ensures that control overhead remains low because no special messages need to be

exchanged just to confirm nodes’ existence. In terms of the intermediate and the

destination nodes, a timer pruning is also triggered and unused routing information

is removed. Two working examples of packet data flow are included in Appendix D.

In figure D.1 a successful scouting as well as the transmission of artificial foragers

is shown, whereas figure D.2 illustrates the detection of a broken path and the

initialization of a new scouting.

4.9 Chapter summary and conclusions

In this chapter, BeeIP has been presented. BeeIP is a reactive routing protocol

for mobile ad hoc networks which focuses on the constant monitoring of available

routing paths and the evaluation of their performance. Its design consists of three

components (i.e., Entrance, BeeIPHive and BeeIPQueue) which are collaborating

in order to map several behavioural features found in the world of real honeybees.

Similarly to nature, new routing paths are discovered by initializing an artificial

scouting. Scouts are sent either at the beginning of each communication session, or

whenever the source has no more routing information to a destination. Moreover,

routing maintenance runs for the entire session. Its aim is to alter the foraging

capacity of each path, by evaluating it based on recent knowledge regarding its

quality. The foraging capacity is defined as the number of future foragers that are

allowed to be recruited and use a particular path. These numbers as well as the

numbers of foragers who have been already sent out, control the population of the

artificial hive.

Monitoring a path is also a technique inspired by the foraging behaviour of real

honeybees. Both scout and forager packets that return back to the source collect
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low-level information from the nodes that they visit. Then, the information is used

in order to measure the quality of the intermediate links and, in turn, the quality

of the overall path at the source node. The latter affects the foraging capacity as

well as the potential of the path in being selected in the future.

Finally, detection failure in BeeIP is a matter of monitoring the flow of incom-

ing foragers at the source of a communication session. When a link break occurs,

the path becomes unusable and therefore foragers cannot return back to their ar-

tificial hive. Timers are used to detect these events and the path is automatically

marked as unacknowledged. Unacknowledged paths are pruned from all nodes.

This chapter presented a number of novel features regarding the designing of

bee-inspired routing protocols. The proposed model of monitoring and evaluating

the available paths combines a number of important network factors. This results

in a list of routing solutions, each one having a different foraging capacity. This

not only allows the protocol to select the optimal path from a list of potential good

solutions, but also offers the ability to utilize the available options in a multi-path

fashion. The optimal path is selected by a separate selection metric, which rep-

resents the artificial hive’s demand towards a certain commodity (i.e., find the

fastest path in terms of delays). Additionally, BeeIP is able to use previously col-

lected knowledge in order to detect changes to the performance of the paths. This

is a new advantageous feature in terms of adaptability, as it allows the protocol

to complete recruitment cycles by considering up-to-date information.

The next couple of chapters are dedicated to the evaluation of BeeIP. Chapter

5 presents the detailed methodology which is used in order to run the comparison

experiments correctly and get valuable results. Chapter 6 is used to present the

results along with a discussion of their outcome.
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Methodology

5.1 Introduction

In order to evaluate the proposed network protocol’s design which has been pre-

sented in chapter 4, scientific experiments need to be conducted. In this chapter,

the methodology for these experiments is given. BeeIP is compared to four state-

of-the-art routing protocol extensively used in the literature, each one being con-

sidered as a representative of a routing approach. Namely, AODV (Perkins et al.,

1999), DSDV (Perins & Bhagwat, 1994), DSR (Johnson & Maltz, 1996), and the

multi-path extension to AODV, AOMDV (Marina & Das, 2001). The reason why

these four protocols were chosen for the comparison is discussed in section 5.4.1.

The results of the experiments presented in this thesis are obtained through the

use of a wireless ad hoc network simulator (discussed in 5.2). Five different sets

of simulation scenarios are designed to highlight several important aspects of the

protocols under a variety of network conditions. These scenarios are presented in

section 5.5.

5.2 Network simulation

Simulation is an important part of network research, not only for the study of

communication protocols, but also for the study of any system that is either very

costly to build, or strict in terms of flexibility. Network simulators are special

software designed to provide network researchers with a virtual and highly config-

urable environment, where they can build and test any kind of network without

125
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worrying about repeatability (Martinez et al., 2011; Köksal, 2008; Duflos et al.,

2006). Hence, network researchers can concentrate on their study and test their

developments easily. A typical network simulator provides models, not only for

well-known physical devices such as routers, switches, nodes and access points, but

also for communication protocols which offer realistic representations of wireless

or wired communication across the virtual network.

For a typical network simulator to operate productively, a virtual network has

to be created by choosing carefully the underlying infrastructure and network ele-

ments. That is the number of nodes, communication links, bridging devices, stack

of network protocols, etc. The choices depend on those particular characteristics

and network conditions a researcher wants to simulate. Next, directly related to

the aims and objectives of an experiment, network scenario or scenarios have to

be designed. A simulation scenario sets the rules and boundaries within which the

experiment lies, and therefore allows a researcher to test and monitor the new de-

velopment. Furthermore, when the simulation finishes, the results are obtained by

looking at the outcomes carefully and selecting the statistics that are required in

order to make a valuable conclusion about the network under test. In most cases,

this step also involves the visualization of the previously executed simulation.

Network simulators try to model the real world networks. They are expected

to be as realistic as possible, independent of the area of the network or the number

of network elements being used. They need to provide a good balance between

features and different technologies, be efficient, extensible and easy to use. In order

to fulfil those requirements and achieve accurate results, the simulated networks

need to be well and carefully modelled. Only then the network simulation can be

close enough to reality and allow the researcher to get a meaningful insight into

the results, and understand how changes affect them.

5.2.1 A brief survey of network simulation software

There are several network simulation software found in the literature (Di Caro,

2003), which mainly belong to one of the following categories; of discrete-event

and trace-driven simulations. The trace-driven simulation takes as input a time-

ordered record of events (a trace) from a real system and simulates the scenario

in its environment. This makes it easy to validate the results and reduces the

factor of randomness, as the implementation of models tend to be highly detailed
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to match the real system. However, the need for detailed simulation of the system

increases the complexity of the simulator. Another disadvantage is the lack of

representativeness. That is, traces of one system may not correspond to others,

which affects the evaluation in general. A trace-driven simulator has a big cost in

terms of repeating an experiment after making changes to the model. In such a

case, a new trace is required from the real system, increasing the time to conduct

an experiment. A discrete-event simulator on the other hand, changes its state

variables in correspondence to events that are happening at discrete points in time.

These events occur as a consequence of activities and delays. During a simulation,

active elements may compete for system resources, possibly waiting in queues in

order to get access to an available resource. Most of the networks simulators that

are used in the area of wireless ad hoc networks belong to the second category, the

discrete-event simulators. Examples of such simulators are the OPNET (OPNET

Technologies, Inc., 2012), GloMoSim/QualNet (GloMoSim, 2012; QualNet, 2012),

OMNeT++ (OMNeT++ Community, 2012), and ns-2 (ns-2, 2012).

OPNET (Optimized Network Engineering Tools) Modeler (OPNET Technolo-

gies, Inc., 2012) simulator is a commercial tool from OPNET Technologies Inc.

for modelling and simulating communication networks, network devices and proto-

cols. Due to its long development, OPNET is considered a mature, state-of-the-art

software in network simulation and is heavily used in the industry. Another fac-

tor of its success is the well designed graphical user interface. Although initially

intended to aid companies in order to diagnose and re-organize their networks,

OPNET is used in researching new algorithms. One of its strengths is its ability

to manage networks of large sizes by allowing most of the deployment to be made

through a hierarchical graphical user interface. An OPNET node contains a set

of transmission and reception modules, representing a protocol layer or physical

resource, to ensure its connection to communication link. Interactions between

modules are handled by exchanging messages. The simulator’s users are able to

configure the applications which are installed on a node, and set nodes and links

to fail or recover during simulation at specified times. In general, it is a powerful

and user friendly network simulator with a large library of models and a good doc-

umentation. However, as in most proprietary software, OPNET does not support

external tools and its complexity is such that makes a specific component hard to

develop (Duflos et al., 2006).

GloMoSim (GloMoSim, 2012) is a scalable simulation library designed at UCLA
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Computing Laboratory to support studies of large-scale network models (up to

millions of nodes) using parallel and/or distributed execution on a diverse set of

parallel computers of both distributed and shared memory. It is a very powerful

simulation tool, built according to the OSI layered approach for both wired and

wireless networks. The library includes a variety of network protocols for all net-

work layers, from FTP, HTTP and CBR (application layer) to AODV, DSR, DSDV

(network layer) to CSMA and IEEE 802.11 (MAC layer). However, GloMoSim

is not free to the public and has a very poor documentation (no user manual is

available). QualNet (QualNet, 2012) on the other hand, is a commercial product

from Scalable Network Technologies which is derived from GloMoSim. QualNet

has its own additional features such as an expanded library of protocols and tools

to realistically design 3D environments.

OMNeT++ (Objective Modular Network Testbed in C++) (OMNeT++ Com-

munity, 2012) is a well-designed discrete event simulation environment. The prin-

ciple author is Andras Varga from Technical University of Budapest, and there

are some occasional contributors. OMNeT++ is an open-source project, available

to the public. It is a discrete-event simulator with a modular architecture, where

in fact the basic entity is a module. Modules can be atomic, which captures an

actual behaviour, or they can be composed of sub-modules. Each module can

communicate with others by sending and receiving messages (events) through its

gates which are linked via connections. Additionally, a module is able to gener-

ate, read or react to messages. In terms of disadvantages, OMNeT++’s limited

number of out-of-the-box protocols, still-evolving documentation, poor analysis of

typical performance measures (Begg et al., 2006), and incomplete mobility exten-

sions (Hogie et al., 2005), decelerates the simulator’s usability.

Another very well-known and mature discrete-event simulator is ns-2 (ns-2,

2012). The Network Simulator (ns) began as a variant of the REAL network

simulator in 1989. In 1995, its development was supported by DARPA through

the Virtual InterNetwork Testbed (VINT) project. Currently the development

is carried out by Information Sciences Institute in California and is supported

through DARPA and NSF (ns-2, 2012). It follows a modular architecture and

is built according to the OSI layered model, similarly to GloMoSim. Its engine

code is written in C++, whereas the scenario scripts are written in OTcl (object-

oriented version of Tcl). It is well suited for both wired and wireless networks (ad

hoc, local and satellite), and for simulations of queuing and routing algorithms,



5.2. Network simulation 129

transport protocols, congestion control, and multicast related work. It comes

fully equipped with protocols, models, algorithms and accessory tools, and it is

an open source project. Due to its open source characteristic, rich documentation

and support from its community, ns-2 is the most popular simulator used in the

research field of mobile ad hoc networks. Thus, in terms of scientific acceptance,

number of tools/modules and cost, ns-2 is considered ideal choice. However, ns-2

is rather complex software and debugging is very hard due to its dual C++/OTcl

nature. Also, ns-2 has a very simplistic graphical user interface and rather limited

tools in terms of visualization. Finally, once a simulation is finished in ns-2, the

results need to be extracted from rather large trace files, which contain the events

that took place during the duration of the simulation. This assumes that the ns-2

user knows how to parse and analyse the resulting trace files, an operation which

usually involves the ability to write using scripting languages and tools, such as

awk.

After reviewing the available tools, ns-2 has been chosen as the network sim-

ulator to use during the research work presented in this thesis. ns-2 is the most

frequently used simulator in the literature, and a mature as well as respected soft-

ware in the area. It meets all of the requirements for developing a new routing

protocol comparing with others. In terms of designing, ns-2 comes with a rich

variety of built-in models, not only for network elements such as nodes and links,

but also for protocols of all relevant OSI layers. It has an excellent level of accep-

tance amongst the scientific community, and thus, the source code of the protocols

shipped with the simulator’s package can be considered accurate and error free.

It is open source and has a modular software design, which allows cross-layering

to be applied (see below in section 5.2.3 for examples). Furthermore, it has good

documentation and a very active community that provides various external tools

and reusable scripts. In terms of comparisons, ns-2 has been used as the test

bed simulation for a number of network protocol comparisons such as Tuteja et

al. (2010) as well as Sharman and Bhatia (2011).

5.2.2 Overview of mobile networks in ns-2

ns-2 (Issariyakul & Hossain, 2009) is a discrete-event network simulator which

targets research regarding transport, routing, and multicast protocols for both

wired and wireless (local and satellite) environments. When designing a simulation
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scenario, a researcher has to consider modelling the physical environment, as well

as the characteristics of the required communication. The terrain size, the number

of nodes and their mobility (in case of mobile networks), need to be set up. In

terms of the network characteristics, ns-2 is shipped with a variety of protocols

and allows any possible microscopic details (i.e., the OSI chain of protocols inside

the node) to be modelled.

The modelling of mobile networks in ns-2 consists of several components, which

simulate important aspects of wireless networking such as signal propagation, node

movement and energy consumption. Mobile nodes are a special type of network

element which have the ability to receive and transmit packets over a communi-

cation channel, and change position periodically according to boundaries defined

by the scenario’s terrain size. The inner architecture of a mobile node involves a

link and a mac layer module that simulate the data link layer and the MAC layer

protocol respectively, a network interface module to simulate the physical layer

protocol, and a radio propagation as well as an antenna module to simulate the

wireless adaptor device. In terms of energy consumption, the model is indepen-

dently built and linked to the mobile node as one of its attributes. The initial

value, which is the level of energy the node has at the beginning of the simulation,

is set by the user. Additionally, the energy usage for every packet transmission or

reception, as well as the node’s idle and sleep states can also be set.

A routing protocol module is built and linked to the mobile node. Rout-

ing agents, as they are called in ns-2 terminology, are responsible for providing

both routing and packet forwarding at the network layer of the mobile node’s

architecture. There is a number of well-known protocols for mobile nodes avail-

able with ns-2, such as AODV, DSR, DSDV, TORA (Park & Corson, 2001),

PUMA (Vaishampayan & Garcia-Luna-Aceves, 2004) and others. Their source

code has been thoroughly revised making sure that they are free of implementa-

tion errors.

For the transport layer, both TCP and UDP protocols can be modelled. In

terms of TCP, two special agents can be linked to a mobile node in order to

make it act either as the source of a communication session (TCP source), or the

destination (TCP sink). Each agent can be separately configured to match the

appropriate traffic scenario. For example, the ns-2 user can set the TCP segment’s

size to examine how the new development handles segmentation, or what is the

effect of the packet size to the routing provided by a new routing protocol.
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The application layer is modelled by the use of several known traffic generators,

examples of which are the FTP, ping, telnet and CBR. The latter, combined with

the UDP transport protocol, is frequently used in research because it is able to

constantly transmit data at different predefined sending rates and packet sizes.

Another very common combination is FTP using TCP at the transport layer.

The transmission of a packet in ns-2 is simulated by the radio propagation

models. These models are responsible for predicting the received signal power of

each packet. Accepting and dropping packets is done according to a receiving

threshold found at the physical layer of each mobile node. If a received packet’s

signal power is below the receiving threshold, the packet is marked as error and

is dropped by the MAC layer. ns-2 supports three propagation models. Namely,

the Free Space model, the Two-Ray Ground Reflection model, and the Shadowing

model (Eenennaam, 2009). The Free Space model assumes the ideal propagation

condition, where there is only one clear line-of-sight path between the transmitter

and receiver. It basically represents the communication range as a circle around

the transmitter. If a receiver is within the circle, it receives all packets. Otherwise,

it loses all packets. On the other hand, the Two-Ray Ground Reflection model

considers both the direct path and a ground reflection path. The model is able to

give a more accurate prediction at a long distance than the Free Space model. It is

designed to show a faster power loss than the first propagation model, as the dis-

tance increases. Furthermore, the Two-Ray Ground Reflection model works simi-

lar to the Free Space for short distances. In order to achieve the dual behaviour,

the Two-Raw Ground Reflection uses a cross-over distance threshold. Both Free

Space and Two-Ray Ground Reflection models are deterministic and assume that

the communication range is an ideal circle shape phenomenon. In reality though,

due to the signal fluctuation because of objects obstructing the propagation path

and multi-path propagation effects (fading), the calculation of the received signal

power is a complex task. The Shadowing model tries to tackle this problem by

assuming that the average received signal power decreases logarithmically with

distance. In contrast to the two deterministic models discussed before, this model

uses a path loss exponent to reflect the variation of the received power at a certain

distance. This path loss exponent is empirically determined by field measurement.

The Shadowing model extends the ideal circular propagation to a richer statistic

model, where nodes can probabilistically communicate with each other, when they

are near the edge of the communication range (Eltahir, 2007).
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After a ns-2 simulation is finished, trace files are created. Depending on both

the configuration of the simulation, and the implementation of the protocols,

the trace files contain time-ordered information about simulation events, such

as packet transmissions, mobile node position change and energy consumption.

These results can be either visualized with an external software tool, or analysed

in order to make observations and conclusion statements about the new develop-

ment.

5.2.3 Cross-layering in ns-2

Cross-layering can be achieved in ns-2. This is because the simulator is open-

source, and thus, full access to the source code is given, and also due to its available

documentation regarding its design (Issariyakul & Hossain, 2009). Its modular

architecture allows new agents to connect, and, providing the correct linkage is

available, they can communicate with others in a straight-forward manner, no

matter which layer they belong to.

However, implementation of cross-layering capabilities requires significant mod-

ifications to the ns-2 source code. According to Shannon and the “40-20-40”

rule (Shannon, 1998), when creating a new development, 40 percent of the time

and effort is recommended to be spent on defining a problem, designing a corre-

sponding model, and devising a set of experiments to be performed. Another 20

percent should be used to program the conceptual elements obtained during the

first step, and the remaining 40 percent should be utilized in verifying and vali-

dating the model, experimenting with designed inputs, and analysing the results.

Although this approach is in no way a strict one, it illustrates the significant

amount of time and effort being spent on the implementation of a new model.

Hence, it gives an idea of the important role in terms of programming flexibility

the network simulator plays.

This led the community to seek solutions, and propose ns-2 extensions to han-

dle cross-layering with no significant cost. All these extensions are great enhance-

ments for the network simulator and ease the implementation of new protocols.

One such example is MIRACLE, the Multi-Interface Cross-Layer Extension (Baldo

et al., 2007) of ns-2. Miracle enhances ns-2 by providing an efficient and embed-

ded engine for handling cross-layer messages and, at the same time, enabling the

coexistence of multiple modules within each layer of the protocol stack. In addi-
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tion, MIRACLE supports multiple transmissions rates, modulation and encoding

schemes as defined in the IEEE 802.11b/g standards, and a realistic interface

model which calculates the signal to interface and noise ratio (SINR) for each

connection. Another example of ns-2 extension to handle cross-layering, is the

Cross-Layer Framework for ns-2 (Varatharajan et al., 2012). In this framework,

a cross-layer manager is responsible for implementing inter-layer control and sig-

nalling. Also, adaptation modules are responsible for implementing cross-layer

optimisation mechanisms between agents, by generating explicit congestion, loss,

or delay messages.

Regardless of the fact that a cross-layer extension can reduce the implemen-

tation cost, in BeeIP no special cross-layering extension is used. There are two

reasons behind this choice. First, half of the cross-layering requirements in BeeIP

involve messages being exchanged between the application layer and the network

layer. Namely, the current node speed, and the remaining energy level of the bat-

tery. In ns-2, both of them are considered attributes of models linked to the mobile

node, and due to the simulator’s modular architecture, they can be accessed as

soon as there is access to the mobile node. For the next half, MAC queue size,

transmission delay and signal power, cross-layering is achieved by writing special

linkage code1. Secondly, the lack of cross-layering extension offered an in-depth

understanding about the connectivity of the OSI layers and their representation

in the network simulator. Studying well-used protocol models which have a great

scientific acceptance by the community, has been another source of inspiration for

the research work of BeeIP.

5.3 Towards BeeIP experiments and results

During the course of this research work, the design of the BeeIP routing proto-

col changed and improved many times, especially in order to support multi-path

routing and to enhance the path monitoring functionality with a more accurate

weighting system. The methodology of obtaining the results of the comparison be-

tween BeeIP and the four well-known routing protocols AODV, DSR and DSDV,

1A similar approach can be used in real applications. Linkage code or software can be used
to fetch the appropriate values to the routing protocol by accessing the appropriate resources.
For instance, the ACPI driver of the Linux kernel keeps track of the remaining battery capacity
in special state files.
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and the multi-path extension to AODV, AOMDV, is described as a series of steps

of three major phases. Chronologically, the methodology phases were followed as

they are presented in this section. Nevertheless, during the research period, each

phase went through a number of iterations in order to reach the required level

performance and results.

5.3.1 Phase 1: towards the design and implementation

The first step in the designing of the routing protocol was to conduct a systematic

literature review in the two areas of interest. Namely, the wireless network com-

munication and biologically inspired protocols, as well as the real honeybees and

their behaviours in nature. One interesting observation was the comprehensive

study of ants and ant-inspired protocols in the area of networking, and the lack of

alternatives in terms of bee-inspired work. During the literature review, a large

number of comparisons between protocols have been studied, giving an insight

into the de facto comparison strategies and network simulations, which are used

by the community. The ns-2 network simulator was chosen. BeeIP was then care-

fully designed to adopt real honeybee behaviours and, in particular, their foraging

strategy as the mechanism of discovering and maintaining routing paths between

of wireless sources and destinations in a mobile ad hoc network. Implementing

BeeIP’s design was achieved by extending the ns-2 source code. Like other routing

agents such as AODV or DSDV, the BeeIP agent designed in such a way so it could

be linked to mobile nodes of the simulator and allow them to operate according to

its routing approach. Studying the ns-2 architecture and understanding how its

models are connected to each other, cross-layering was achieved between different

layer protocols. As a network layer protocol, BeeIP is able to retrieve values from

both data link and physical layers. Furthermore, the first version of the BeeIP

protocol (Giagkos & Wilson, 2010) used an empirically found weighting system

(as discussed in section 4.6.2). However, the need to discover a more accurate set

of weights led to the second phase described below.

5.3.2 Phase 2: towards the weighting system

In order to get an accurate weighting system, which can be used to express the

relative importance of each low-level parameter of BeeIP path monitoring func-

tionality in formula 4.1, a separate light weight routing protocol was written in
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ns-2, as part of this work. The limited routing protocol, named Weighting System

protocol or simply WSYS, offers the mobile nodes very limited functionality. In

fact, its only purpose is to produce data sets that describe packet transmission,

under several conditions.

In more detail, WSYS agents depend on user configuration in order to build a

routing table. However, once the routing tables are built, a WSYS agent knows

how to generate and forward forager and ack forager packets, i.e., packets that

are able to carry real data as payload and monitor the performance of the paths

they traverse, on the way back to the source. After each packet transmission and

monitoring activity, the WSYS agent dumps the information to a log file. The idea

of the WSYS protocol is to be utilized in such a way, that during the simulation,

the five low-level parameters which are used to evaluate the performance of the

links will get a variety of possible values, and affect the performance of the links

in as many different ways as possible.

Figure 5.1: Topology and traffic model used by the limited routing protocols
WSYS, in order to generate enough data and train the MLP towards the under-
standing of the relative important between the path monitoring low-level param-
eters in BeeIP. Here, the double arrows indicate the direction of data from the
source to the destination. The solid line between node A and B means that the
traffic between the two nodes is what is being traced by WSYS. Node C sends
data to both A and B, interfering with their communication session, and pro-
ducing difficulties, such as packet loss. The dashed line traffic is not traced by
WSYS.

Therefore, the simulation scenario used for the data collection purpose has the
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following set-up. Three nodes, A, B, and C are allowed to move in a terrain of

300 × 200 m2 for 40 minutes. The small terrain size ensures that even though

the transmission links will be affected by the distance of the nodes, they will not

break, and the information regarding the links performance will still be written

in the log file. Moreover, mobile nodes start with initial energy levels of 1800

Joules. Coupled with the long duration of the simulation, this setting ensures

that the energy level parameter will take several values of the whole range, and

will affect the transmissions. Similarly, nodes are constantly moving around in

random speeds, from 1 m/s to 20 m/s, in order to allow the parameter of speed

to affect the communication. In order to trigger the queue size parameter and the

transmission delay, the routing tables provided by hand instructed the nodes to

transmit data in pairs: A to B, C to A, and C to B, while the communication

link between A and B is monitored. Nevertheless, the sending rate of which C

sends packets is higher than the others. This ensures that both A and B will have

their buffers busy, as C is constantly and rapidly transmitting packets to both of

them, interfering with their own connection. The topology is illustrated in figure

5.1.

After the data collection was finished, each pattern in the data set had the

form of five inputs and one output. The data was then fed to an artificial neural

network and, in particular, a multilayer perceptron (MLP). The Fast Artificial

Neural Network (FANN) (Nissen, 2003) library was used. Using the change of

the mean squared error (MSE) technique to measure the relative importance of

each input parameter (as discussed in section 4.6.2), an accurate set of weights

was ready to be used in the BeeIP routing protocol. Usually, training an MLP

repeats until stopping criteria are met. However, the purpose of this experiment

was to find the relative importance of each parameter, where according to Sung

the input that plays the most important role is the one with the highest change

of MSE (Sung, 1998b). Therefore, training for each missing input was repeated in

an exhaustive fashion in order to minimise the MSE scores as much as possible,

and then to compare them with the MSE score achieved when all inputs were

present. Table 4.6 of chapter 4.6.2 summarizes the MLP training parameters

that lead to the weighting system presented in table 4.7. In terms of testing and

validating the MLP training however, data sets of 5000 and 20000 patterns have

also been used. Supplementary results can be found in Appendix E. The findings

illustrate similar relevant importance of inputs which validates the success of the
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methodology adopted by Sung (1998b).

5.3.3 Phase 3: towards the comparison to other protocols

In the literature, the common methodology in order to compare a routing pro-

tocol to other representative protocols of the area, can be seen as a sequence of

the following actions. Initially, once the implementation of the new protocol has

reached the point where it can produce variable results, the protocols that will

be used for the comparison need to be chosen. Each one ought to represent a

specific approach so they can cover as much as possible of the de facto standards

applied in the field. In BeeIP comparisons, these protocols are the AODV, DSR,

DSDV and AOMDV. There are several reasons behind these choices, a discussion

of which is given in 5.4.1.

Next, the performance evaluation of the protocols needs to be considered. In

order to judge the merit of a routing protocol, one needs to think of the per-

formance metrics with which to measure its suitability and performance. These

metrics should be independent of any given routing protocol and designed to high-

light ideal aspects of the network such as, the scalability, robustness, optimality,

self-healing and self-configuration. In Corson and Macker (1993), the MANET

working group lists several protocol evaluation and performance issues, and a

number of performance metrics that researchers need to consider in order to test

their protocols. Therefore, to compare BeeIP to other protocols a rich selection of

performance metrics is used, to cover as much as possible in a both qualitative and

quantitative approach. The performance metrics are presented in section 5.4.4.

Next in the sequence is the design of the experiments. Coupled with the per-

formance metrics discussed above, the experiments need to be organized in such a

way, that they trigger a variety of network conditions. This tests the performance

under a rich number of circumstances, and offers a complete picture, in order to

make valuable observations. Unfortunately, there is no clear and well-documented

benchmark approach in designing experiments for routing protocol evaluation and

comparisons. Very recent papers, such as Friginal et al. (2011) and Maqbool et

al. (2011), are proposing ways of comparing protocols, but still need to be well-

standardised. For the time being, many researchers have focused on evaluating

the performance of routing protocols through generic measures like delay, routing

overhead and packet delivery. Notwithstanding this common practice, when con-
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sidering ns-2 an approach in comparing routing protocols was proposed by Broch

J. et al. (1998b), from the Rice Monarch project2 (Monarch Project, 2012). In the

context of BeeIP, a similar approach to these common practices has been adopted.

A particular interest is given in covering as many network conditions as possible

to highlight not only the strengths but the weaknesses of the routing protocol,

compared to others. An explanation of the BeeIP experiments is presented in

section 5.5.

Coupled with the above, the ns-2 network simulator set-up plays an important

role in producing efficient results. Again, common practices of configuring the

simulations are followed in BeeIP, the details of which are given in section 5.4.3.

Depending on the corresponding experiment, some configuration details change.

However the base set-up in terms of modelling the physical and data link layers

are kept constant. To conclude the methodology towards the BeeIP comparison

to other protocols, the trace files produced by the simulations were analysed by

the use of awk scripts, the output of which has been used to understand the

observations and understand the merits of the protocol and illustrate them by

drawing the charts, presented in chapter 6.

5.4 General design of experiments

In this section, a detailed discussion of the decisions made in order to obtain the

comparison results is given.

5.4.1 Protocols used for comparison

Testing the performance of BeeIP is done by comparing it to four existing state-

of-the-art routing protocols. Each protocol has its own characteristics and applies

different routing strategies. What follows is a discussion of the reasons these four

protocols were chosen as BeeIP’s comparison counterparts.

AODV is a reactive routing protocol which is being heavily studied in the

literature. AODV’s performance is generally considered to set the benchmark

standards in evaluating routing protocols for MANETs, as the protocol partici-

pates in most of the existing work in this particular research area. This is also due

2The Rice Monarch Project has made substantial extensions to the ns-2 network simulator,
that enable it to accurately simulate mobile nodes connected by wireless network interfaces,
including the ability to simulate multi-hop wireless ad hoc networks.
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to the current experimental status of its draft by the IETF MANET group, which

sets AODV under investigation for standardization. Being also a reactive proto-

col, BeeIP shares some common characteristics with AODV. In fact, the latter

has been a source of inspiration in terms of the route request technique for finding

new routes, as well as the gradually expanded broadcast of the scout packets, to

manage the control overhead. Therefore, it has been decided that the results of

their comparison will add valuable profit in understanding BeeIP.

DSR is also a reactive routing protocol for MANETs. It has gained consider-

able attention because of its ability to dramatically reduce control overhead, even

under high rates of node mobility. DSR is similar to AODV in terms of route

discovery, however it uses source routing in order to forward packets. Source

routing reduces the computation complexity of deciding the next hop, as well as

the amount of storage required to keep routing information, at each intermedi-

ate node. This has inspired BeeIP’s packet forwarding approach (discussed in

section 4.7), which divides the required next hop selection information to the in-

termediate nodes, reducing both computation and storage capacity. Additionally,

DSR’s draft has also an experimental status by the IETF MANET group and is

used in the literature as a comparison counterpart for reactive routing protocols.

Hence, the results of their comparison will enhance the understanding of BeeIP’s

performance.

DSDV on the other hand is a proactive routing protocol, considered to be the

de facto standard in the area of proactive routing in MANETs. Although proac-

tive routing is often seen as not the best approach for wireless ad hoc networks,

especially under large number of nodes and high mobility rates (Hassan et al.,

2010), DSDV is heavily studied and used in protocol comparisons in the litera-

ture. Comparing BeeIP to the proactive DSDV, does not only comply to good

common practice but also is expected to complete the picture of BeeIP perfor-

mance differences under a variety of conditions.

AOMDV is a multi-path extension to the previously described AODV, pro-

posed by Marina et al. (2001). Since BeeIP is a multi-path protocol, the com-

parison to an existing multi-path approach is expected to give extra value to the

investigation. For the experiments presented in this thesis, the AOMDV imple-

mentation of ns-2 has been used.

A description of AODV, DSR, DSDV and AOMDV is found in 2.5.2.
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5.4.2 Protocols not used for comparison

It is understood that due to the nature-inspired approach of this work, the compa-

rison with another nature-inspired and, in particular, bee-inspired routing protocol

such as BeeAdHoc and BeeSensor, would offer extra depth to the merits of BeeIP’s

design. However, due to technical difficulties and time constraints, these protocols

are not included in this thesis and are instead seen as future work.

All four protocols which are used for the experiments are shipped with the of-

ficial source code package of the network simulator and tested by the community.

This ensures that they are error-free in terms of their implementation. Unfortu-

nately, at the time of conducting this research, no ns-2 implementation of An-

tHocNet, BeeAdHoc or BeeSensor have been available to the public domain, after

being approved by the protocol authors. Therefore, no proper scientific compari-

son would be possible and no genuine contribution would be added to the current

work.

Implementing BeeIP’s main competitor, BeeAdHoc, from scratch without a

detailed documentation of its internal workings, constants, etc. as a guidance

would never offer the fairness, accuracy and the sufficient level of confidence to

conduct a direct comparison between the two. However, an indirect comparison

and a discussion (theoretical and logical argumentation) about the benefits of the

proposed design, is given below. It is worth keeping in mind that BeeAdHoc’s

published experimental results use traffic that is generated by constant bit rate

over UDP and make use of the swarm packets only, without covering the TCP

traffic and the use of piggybacked acknowledgement data packets to foragers. In

Wedde et al. (2005b), BeeAdHoc is compared to the state-of-the-art AODV, DSR

and DSDV (no Swarm Intelligent approaches are included, such as AntHocNet)

using a similar configuration setup to the one used in this work and is presented

in section 5.4.3.

BeeIP’s mechanism to measure the quality of a path considers five different

factors, whereas in BeeAdHoc the quality measurement is based only on the delay

between the links and the remaining energy at the nodes in a path. In addition,

BeeIP keeps recent history of previous quality findings. Combining those two fea-

tures together, BeeIP is able to detect improvements or deteriorations over time

and make changes to the foraging capacity (explained in section 4.2) accordingly.

BeeAdHoc does not consider previous knowledge nor detects improvement or dete-
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rioration on the path’s quality. Rather, each forager may dance and recruit fellow

foragers according to the new quality finding only. Mimicking nature, BeeIP is

designed to apply penalties to the foraging capacity which permits the protocol

to react faster to quality changes. Additionally, its flexible design in terms of

next hop selection metric, makes BeeIP easier to implement and fit the needs of

the different deployments. In an indirect comparison, the results of Wedde et

al. (2005a) and Wedde et al. (2005b) show that BeeAdHoc is able to send less

control overhead than the others, but achieve less or equal packet delivery ratio to

DSR, whereas BeeIP is found to achieve better packet delivery ratio than DSR.

BeeAdHoc uses source routing which is reported as a known disadvantage

of the protocol that increases the control packet size as the length of the route

gradually increases (Wedde et al., 2005c). BeeIP on the other hand uses a different

approach where the next hop at the intermediate nodes is decided based on the

path’s unique identification number and the direction (explained in section 4.7.1).

Based on this logical argument, BeeAdHoc is considered less scalable in terms of

number of nodes (longer paths in hops) as its foragers need to carry the whole

path in their headers.

Another important design difference is that in BeeAdHoc each forager has a

lifetime value. This value is considered when the protocol needs to send a matching

forager to the packing floor in response to a request from a packer. The foragers

whose lifetime has expired are not considered for matching (Farooq, 2009). Fol-

lowing this, in the forth chapter of Wedde et al. (2005c), Wang reports “Another

real disadvantage [of BeeAdHoc] is the higher memory use for storing every for-

ager. Although they are really small it is more than storing every route only once”.

Clearly, keeping foragers in memory is an expensive behaviour, especially when

the devices in MANETs and WSNs come with limited resources. In BeeIP on the

other hand, the foragers are destroyed when not used, deallocating their memory

rather than keeping it; a source node keeps track of the number of foragers cur-

rently waiting (forgers in) and currently using the path (foragers out) for every

stored entry of the routing repository. This design difference implies that BeeIP

uses less memory than BeeAdHoc in terms of storing its control packets.
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5.4.3 Base configuration and set-up

In terms of modelling the physical and data link layers of the mobile nodes, all

ns-2 scenarios have been configured to match the benchmark scenarios presented in

Broch et al. (1998b). In more detail, the Two-Way Ground Reflection propagation

model is used, with the signal power of a transmission between two antennas to

be attenuated as 1/r2 and 1/r4 (r being the distance between the antennas) for

short and long distances respectively. The crossover point is typically around

1000 metres for outdoor low-gain antennas of 1.5 metres above the ground. This

is the most common approach to model signal propagation in open space found

in the literature. Furthermore, the IEEE 802.11 protocol is used, ensuring data

transmission rates of 10Mbits/s, with an estimated transmission range of 300

metres.

At the MAC layer in particular, the IEEE 802.11 DCF (Mueller, 2007) protocol

is used. This is the most popular MAC protocol for wireless networks. It consists

of two algorithms, the contention based Carrier Sense Multiple Access with Col-

lision Avoidance (CSMA/CA), and the 802.11 Request To-Send/Clear-To-Send

(RTS/CTS). When combined, these algorithms allow single wireless channel to be

used by multiple nodes without facing the hidden node problem (better described

in chapter 2). Furthermore, the MAC interface queue is set to hold up to 50

packets.

At the transport layer the TCP protocol is used. Depending on the scenario,

several TCP sources are configured to constantly transmit FTP data packets to

TCP sinks over the wireless network. In order to simulate harsh networking condi-

tions, packet sizes are randomly set to a range of 265K to 1025K. Initially intended

for wired environments, TCP is the most common transport layer protocol used

for data transmission. However, previous studies have shown a negative perfor-

mance in wireless networks as discussed in section 2.3.4. Thus, CBR over UDP

is frequently used when comparing routing protocols. In reality, the majority of

the traffic is achieved by TCP. Friginal et al. (2011) mention the need of using

real applications (VoIP, FTP or email, for instance) to develop realistic network

configurations and increase the representativeness of results. Being a new rout-

ing protocol, BeeIP is designed to work using the current technologies and take

advantage of them and, in particular, the acknowledgement mechanism of TCP

communication sessions.
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At the application layer, at the beginning of each simulation, the initial energy

left in the node’s battery is set to a random number from a range of 200 to 1500

Joules. These numbers are rather small and therefore all batteries are close to

being flat. The reason behind this particular configuration is again to simulate

a harsh condition, when after a long constant period, some nodes will shut-down

causing transmission links to break, and in turn routing anomalies. In addition,

FTP data are generated at the application layer, and sent over TCP as explained

earlier.

Finally, nodes move according to the popular Random Waypoint (RWP) move-

ment model (Camp et al., 2002). In RWP, each node is moving along a line from

one way point to the next, at a random speed. Also, way points are uniformly

distributed over the given terrain area. Once a node reaches the target way point,

it pauses for a certain time (pause time), after which it moves again towards the

next way point at a different random speed. Speeds are selected from a range of

1 to 10 m/s, which is walking speed to a slow car moving in a city centre. RWP

was chosen over other movement models, such as its variants Random Walk (Bai

& Helmy, 2004), because of its simplicity and frequency of appearance in the

literature, and specifically the benchmark paper by Broch J. et al.

5.4.4 Performance metrics

The different performance metrics for the comparison are listed and explained

in this part of the chapter. Each one specializes in a different aspect of the

performance, which offers a comprehensive understanding of the protocol strengths

and weaknesses.

1. Packet Delivery Ratio

This is the ratio between the successfully received data packets at the desti-

nation node, to the successfully sent data packets by the source node. This

metric does not take into consideration the control packets, and achieving a

high result is required by any routing protocol.

2. Control Overhead

This is the number of routing-related packets that are sent in order to ex-

change routing information and maintain routing. For instance, these are

the scout and ack scout packets in BeeIP, and RREQ, RREP, RRERR and
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RREP-ACK in AODV. The less control overhead required by a protocol, the

better.

3. Average End-To-End Delay

This is the difference between the time a packet is received by the destination

node and the time it was originally sent by the source node. This includes all

the intermediate delays a packet has to experience during the transmission,

e.g., propagation delay, transmission delay, queuing delays, process delays,

etc. A small average end-to-end delay means faster data transmission.

4. Average Path Duration

This is the average time a path stays active and constantly used for data

transmission, before it breaks. Routing protocols that manage to keep path

durations high tend to be more robust and require less route discovery pro-

cesses to be initiated, thus, less control overhead.

5. Average Throughput

This is the average of the throughputs as calculated for each session between

a TCP source and a TCP sink. The throughput is defined as the number of

bits that have been delivered to a node for the duration of a session. The

greater the average throughput, the better.

6. Network Life

This metric is related to the energy-efficiency aspect of the performance. It is

the average remaining battery capacity of the nodes after the simulation has

finished. At the end of the simulations, the most energy-efficient protocol is

the one with the highest remaining network life.

7. Route Requests

This metric is used only for the three reactive counterpart protocols, BeeIP,

AODV and AOMDV, which share similar route request mechanisms. It gives

an idea of the effectiveness of the routing solutions that are found. It is the

number of new scouting and route request processes during the simulation.

The smaller the number, the more effective the solutions have been during

the simulation, and more space has been available for real data transmission.

This is because the number of route requests is directly related to the control

overhead. Additionally, a small number of route requests in connection with
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better throughput, indicates that multiple paths have been discovered during

a single route request, and used to transmit data.

5.5 Design of simulation scenarios

In this section, a justification regarding the simulation scenarios used for the com-

parison between BeeIP and the other four routing protocols (AODV, DSR, DSDV

and AOMDV) is included. There are five distinct sets of scenarios, which are care-

fully designed in order to cover as much as possible of the network conditions that

occur in real networking. Namely, they cover alterations in node mobility (i.e.,

changing pause times and node speeds), communication (i.e., number of nodes

participating in the topology, number of sources and destinations), as well as ter-

rain alterations (i.e., changing of terrain size). Once run by the simulator, each

scenario produces data which is checked against the performance metrics presented

in the previous section.

5.5.1 Pause time scenarios

A pause time is the period for which a node stays in a fixed position, after which

it moves again towards the next destination point at a random speed. Thus, the

pause time affects the mobility of the nodes which, in turn, affects the network

topology and the transmissions within. As the pause time increases, the mobility

of the nodes decreases, making the topology less dynamic. Altering the pause

time is a common practice when evaluating the performance of a routing protocol.

The observations made from the obtained results offer an understanding about the

protocol’s robustness as well as self-healing and self-configuration. Since the pause

time is one of the values which affect the topology, it plays a significant role in the

data transmissions between the nodes and the stability of the communication.

In order to understand the degree to which the protocol’s behaviour is affected,

a wide range of pause time values need to be examined. Ideally, the range must

cover both static, and highly dynamic networks. For this reason, BeeIP’s pause

time scenarios repeated with 0, 75, 150, 300 and 600 seconds. The latter is set to

be the duration of the simulation. Coupled with the random speed selection of

each node (1m/s to 10m/s), the progressively increased values cover the range of

movements, starting from nodes with fixed positions (600 seconds) to nodes which
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never stop moving around the terrain (0 seconds). To make sure that there will

be more than one path available between sources and destinations, the number

of nodes is set to 100 and the terrain size to 3000 × 1000m2. This ensures that

multiple connection will exist due to the density of the topology.

5.5.2 Terrain size scenarios

Changing the terrain size, is another important scenario which is used to evalu-

ate the protocol’s behaviour. When increased, the average communication path

length between sources and destination nodes is also increased, in terms of both

hops and physical distance. Additionally, increasing the size of the terrain de-

creases the nodes’ density in the topology. In consequence, the scenario is made

more difficult. For instance, during a transmission session within a sparser net-

work environments, fewer alternatives are generally available between sources and

destinations, affecting dramatically the number of successful data deliveries. In

some worse cases, sparse networks offer limited connectivity (increased packet loss)

or no connectivity at all.

In BeeIP, four different terrain sizes are used with the same number of nodes

operating within. Namely, 1800 × 600m2, 2400 × 800m2, 3000 × 1000m2, and

3600 × 1200m2, with 100 nodes exploring the areas. The scenarios are designed in

this way, so the obtained results will highlight the scalability of the protocols and

give an idea of how they perform in both dense and sparse network environments.

5.5.3 Network traffic load scenarios

Traffic between nodes is achieved by several FTP/TCP communication sessions,

between sources and destinations. For this scenario, the number of active sources

and data sessions is changed. Active sources are the nodes which have an active

TCP source agent linked to them, and require data packets to be sent to a specific

destination (to a TCP sink agent, linked to destination node). Furthermore, each

active source may participate in more than one data session, or act as a destina-

tion (TCP sink) for one or more of the data session during the simulation. The

number of data sessions also varies. Both these parameters constitute the traffic

model of the simulation, and affect the performance in the two following ways.

As the number of active sources increases, the traffic within the network topol-

ogy also increases, keeping more nodes busy in packet forwarding. Also, when
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the number of data sessions is increased, then the active sources are expected

to participate in more than one data session, causing possible bottle necks and

congestion. Therefore, robustness as well as adaptability are examined by this

scenario.

BeeIP’s network traffic load scenarios involve altering the number of active

sources and data sessions, starting from 10/15 (sources/connections) to 60/80,

with intermediate values of 20/25, 30/45, 40/60, 50/80. These values are chosen

to help build a solid understanding of how good or bad the protocol performs,

compared to others, under stressful situations. Low (10-20), medium (30-40), and

high (50-60) active FTP/TCP source nodes are randomly chosen between 100, in

large enough area able to create a dense topology (3000 × 1000m2), ensuring that

more than one path will be available between a source and a destination.

5.5.4 Mobile node speed scenarios

Another way of examining the behaviour of the protocols in terms of how easily

they adapt to dynamic networks, is by making changes to the node mobility model.

The obvious effect is that the higher the speed of the nodes, the higher their

mobility. The latter leads to more frequent changes of the network topology, and

thus, difficult circumstances to occur which require the ability to self-configure

and adapt to changes. Similarly to the values of the previous scenarios, the node

speed has to be widely chosen in order to represent the whole range, from low to

high dynamic networks. Hence, for the BeeIP experiments, nodes are allowed to

reach four maximum yet realistic speeds. Starting from maximum 5m/s for low

mobility, to 10m/s for normal, 15m/s high, to 20m/s very high (running vehicle

with 72 km per hour). Coupled with a fixed pausing time, in a terrain of 3000

× 1000m2, these values ensure a rich collection of network conditions where the

mobility of the nodes dramatically affect the performance.

5.5.5 Number of mobile nodes scenarios

The scalability of a routing protocol is also examined by considering the number

of nodes which participate in a network topology. The size of the network in terms

of node, affects the performance in several ways. Initially, an increased number of

nodes increases the number of alternatives between a source and the destination of

a communication session. It also leads to longer paths, by increasing the number
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of hops a packet has to take towards its final receiver. Depending on the number of

data sessions started, the generated load for a large number of nodes is more likely

to be distributed across different parts of the network, leading to less congestion

points and increased throughput. This is less likely to happen in a small network,

where traffic from different session occupies the same number of nodes, leading to

bottle necks and low packet delivery ratio. Finally, altering the number of nodes

is directly related to the network density. A sparse topology causes packets to

be dropped or missed by nodes at the edge of the sender’s transmission range,

whereas in dense topologies links are less likely to break for the opposite reason.

The number of mobile nodes scenarios in BeeIP are designed to examine the

cases where 50, 100, 150 and 200 nodes are participating in the same wireless

network. For each number of nodes, almost one third of the total population is

used as active sources. By this, a proportional amount of traffic is generated for

each case. Namely, 15 active sources for 50 nodes, 30 for 100, 50 for 150 and 60

for 200. The terrain size is kept constant, 3000 × 1000m2, so that the obtained

results will reveal how BeeIP behaves under different topology densities, and how

it is compared to the other protocols.

5.6 Chapter summary

In this chapter, the methodology used for comparing BeeIP to the state-of-the-art

AODV, DSR, DSDV and AOMDV routing protocols is presented. Using a net-

work simulator not only speeds up the process of researching, but also provides

the means to test and analytically evaluate the conceptual models under investi-

gation. A brief summary of the most frequently used network simulators is given,

where positive and negative characteristics of each existing software are discussed.

A justification for choosing ns-2 in this research is also given, taking into con-

sideration its scientific acceptance in the field, its rich variety of built-in protocol

models, open-source availability, and good documentation and helpful community.

An overview of both ns-2 and its strength in cross-layering, show the simulator’s

potential to produce valid and accurate results.

The steps that are taken towards the BeeIP design, implementation, and eval-

uation through an extensive set of comparisons, constitute the methodology of

this research. Following the de facto standards, which are found in the related

literature, the performance of BeeIP compared to the other protocols is evaluated
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against a variety of performance metrics. The five sets of experimental scenarios

are presented and discussed, in order to provide a good understanding before the

actual results are given, in chapter 6.



Chapter 6

Evaluation study

6.1 Introduction

This chapter presents the results of the extensive comparison between BeeIP

and the four well-known routing protocols in the area: the three state-of-the-art

AODV, DSR, and DSDV, as well as the multi-path version of AODV, AOMDV.

In order to build a complete understanding of the strengths and weaknesses of the

proposed protocol, a variety of network simulation experiments have been con-

ducted. Namely, the protocols are evaluated using several performance metrics

such as control overhead, packet delivery ratio and average and-to-end delay, un-

der five distinct simulation scenarios. These scenarios are designed to explore the

behaviour of the protocols and include changes in the pause times, terrain size,

network traffic, speed of the nodes and number of nodes in the topology. The

methodology which is used in order to design, execute and obtain the results is

presented in chapter 5.

6.2 Experimental Results

The base network simulation set-up is given in 5.4.3 and is the same for all the

simulation runs. However, depending on the scenario, several characteristics of the

network change in order to match the required condition under which the protocols

are tested. These changes are reported at the beginning of each study and are

followed by a graphical representation of the results, as well as an evaluation

discussion. A summary of all the experiment settings is also found in table 6.1.

150
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The experiments for each scenario are repeated 10 times, and the average results

obtained from each experiment are illustrated in figures and reasoned according

to the mechanisms applied by each protocol.

6.2.1 Studying pause times

The first set of experiments examines how the protocol behaves in terms of chang-

ing the pause times during the simulations. The pause time affects the mobility

of the nodes which in turn affects the network topology. For these experiments,

the pause times of 0s up to 600s are used, with intermediate values of 75s, 150s,

and 300s. The simulations last for 600 seconds. A pause time of 0s means that

the nodes are constantly moving. A pause time of 600s means that the nodes have

fixed positions and the network topology is static. The number of nodes is set to

100, the terrain area is 3000 × 1000m2, and each node speed is set randomly from

1 m/s to 10 m/s. In terms of data traffic, 40 nodes act as TCP sources, constantly

transmitting data to TCP sinks, forming up to 60 data sessions in total. The

results for each individual performance metric is shown below.

Packet delivery radio

Figure 6.1 shows the packet delivery ratio (%) as a function of the varying pause

times. The error bars show the standard error from the mean. The first ob-

servation is that BeeIP shows the best packet delivery ratio for highly dynamic

networks and is rather insensitive to the pause time variations, whereas AODV’s

performance is slightly decreased as the network loses its dynamic characteristic.

Being able to find more paths than a single one, AOMDV achieves better packet

delivery ratio than AODV. The result of this experiment agrees with the results

obtained in Biradar et al. (2010), where AOMDV is shown to achieve better packet

delivery ratio than the single-path AODV. On the other hand, due to its aggressive

caching, DSR is able to perform better under less stressful situations, i.e., when

the topology is less dynamic (pause time increases). For small pause times, its

lack of removing inactive and out-of-date entries from the routing caches leads to

packets being sent to broken links, causing increased packet loss. Nevertheless,

all the reactive protocols are much more effective that DSDV, which due to its

proactive nature performs poorly, especially when the pause times are small.

In order to understand the statistical significance of the difference of their
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Figure 6.1: Packet delivery ratio as a function of pause times. Here, BeeIP is
shown to outperform all other protocols, and manage to keep a balanced PDR for
all pause times. Due to the stale cache entries problem, DSR is performing worst
when the network is highly dynamic. Rather expected, DSDV on the other hand
has a low PDR due to its proactive nature.

Figure 6.2: 95th confidence interval of PDR as a function of pause times. BeeIP is
able to achieve a significantly better result than AODV and DSDV for all pause
times.
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performance, the 95th confidence interval has been measured and shown in figure

6.2. The 95% confidence level shows that for the 95% of the times, the protocol’s

average packet delivery ratio will lie within the upper and lower limits. It is clearly

proven that under the same experimental conditions, BeeIP’s performance in terms

of packet delivery ratio is significantly better than both AODV and DSDV, while

its 95% confidence upper limit is greater than all other protocols.

Control Overhead

Looking at the control overhead caused by the five routing protocols in figure

6.3, it is understood that as nodes lose their mobility, the number of control

packets required to maintain routing is also reduced. The lack of a local link

repair mechanism in DSR allows it to produce a significantly less control packets

during the simulations. This is reinforced by figure 6.4 where the 95th confidence

interval is also shown.

Figure 6.3: Control overhead as a function of pause times. Here, BeeIP is shown to
outperform AODV, AOMDV and DSDV, and produce a balanced control overhead
for a variety of pause times. Its ability to use multiple paths allows the protocol
to achieve better results for constantly moving nodes.

Between BeeIP and AODV there are two noticeable observations. BeeIP sig-

nificantly outperforms AODV as well as manages to keep a balanced behaviour

for broadcasting control packets, whereas AODV’s route requests and replies are
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gradually decreased as nodes tend to become immobilised. This is an indication

of the pay-off the multi-path feature BeeIP is giving to the performance. A single

scouting process is able to find more than one routing path between a TCP source

and a TCP sink. Although this increases the number of ack scouts that return to

the source, in the long run it allows the source to work with a number of alterna-

tives, and switch between them in case that one of the paths is broken. Similar

results are shown for AOMDV, which is also able to find alternative paths using a

single route request process. Being able to find alternative paths, AOMDV starts

less route discovery processes and thus incurs less control overhead than AODV.

However, the mechanism of how the alternative paths are used is more less the

same for the two protocols. That is, an alternative path is used only when the

previous working path is broken. In BeeIP on the other hand, alternative paths

are allowed to be used concurrently (depending on the number of available for-

agers), allowing the protocol to monitor and evaluate them while they are all in

use. DSR is shown to outperform all other protocols, due to its lack of local repair

mechanism, which reduces the control overhead dramatically. The significance of

the difference between BeeIP, AODV, and DSDV is show in figure 6.4.

Figure 6.4: 95th confidence interval of control overhead as a function of pause times.
The significant improvement in control overhead is shown, as BeeIP’s upper limit
is lower than AODV, AOMDV, and DSDV’s which produce more routing packets
in order to discover and maintain routing.
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Finally, the DSDV protocol follows expected proactive behaviour. Exchanging

route messages periodically increases the control overhead. It is also interesting

to notice that BeeIP’s, AOMDV and DSDV’s standard error bars are quite short,

which shows that the amount of control overhead produced by them is constant

no matter the variation of the pause time.

Average end-to-end delay

Figure 6.5: The average end-to-end delay as a function of pause times. BeeIP is
shown to outperform all other protocols, due to its minimalistic approach in packet
switching between the intermediate nodes of a path. Additionally, using more than
one paths concurrently allows the protocol to overcome traffic congestions and
spread the packet load better throughout the topology, reducing the end-to-end
delay.

The average end-to-end delay is presented in figures 6.5 and 6.6. Here, the

strength of combining traditional routing tables with the minimalistic approach

of source routing developed in BeeIP is shown. BeeIP is able to outperform all

the other protocols under the various different pause times. Additionally, its small

error from the mean is another indication that the protocol is not sensitive to the

increase of pause times. This is due to the fact that BeeIP’s buffering is always

kept to a minimum, which is achieved for two reasons. Firstly, being multi-path

the protocol uses more than one path to transmit packets for each session. Rather
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than occupying the buffers of the same nodes, the load is spread over the topology.

Secondly, BeeIP has balanced control overhead and fewer packets flood the network

and the MAC interface queue of each of the nodes. Moreover, the performance of

both DSR and DSDV is noticeably worse than BeeIP, AODV and AOMDV under

the situations of small pause times. It is seen that up to 150s, their end-to-end

delay is gradually decreased.

In figure 6.6, the statistical significance of BeeIP’s improvement is shown. The

results show that for the 95% of the time, the average end-to-end delay achieved

by the protocol lies between the upper and lower limits, which are less than what

is achieved by the other protocols. By looking at the length of the CI95 bars of the

protocols, it is also noticeable that BeeIP, AODV, and AOMDV are less sensitive

to the changes of pause times, compared to DSR and DSDV.

Figure 6.6: 95th confidence interval of the average end-to-end delay as a function
of pause times. Here, BeeIP is shown to significantly outperform the other four
protocols, in terms of end-to-end delay. This is due to its ability to use spread the
traffic over multiple paths and overcome traffic congestions and bottlenecks.

Average path duration

The aggressive scouting behaviour of BeeIP, comes with a cost. Observing the

experimental results in figure 6.7, the average path duration produced by BeeIP

is rather ambiguous as the pause times vary, and is less than its three reactive
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counterparts. Unlike AODV and AOMDV, where a path’s future is compromised

only by the links which may be found to be broken by the local HELLO messages

technique, in BeeIP a path can be dropped either because the foragers have not

used it for some time, or it has stopped having sufficient foraging capacity, or

both.

Figure 6.7: The average path duration as a function of pause times. Here, BeeIP
is shown to have unbalanced and weak average path duration compared to AODV,
AOMDV and DSR. This is due to the aggressive scouting of the protocol.

Although it does not make any significant difference as shown in figure 6.8, it is

considered be to a feature of the protocol which contradicts to the behaviour of real

honeybees. In nature, when the demand of food is high and the working paths

are found to gradually deteriorate over time, honeybees initialize new scouting

processes to discover new interesting sites. This is a wise behaviour for the real

world, though in wireless networks the number of new paths to be discovered is

limited, and there is always the possibility that a scouting process will end up

with the same result.

An interesting observation regarding AODV and AOMDV, is that when the

network is highly dynamic (0s to 150s pause time), AOMDV suffers more in terms

of path duration. This is explained by considering the design of AOMDV and

the way it handles multiple paths between sources and destinations. Although a
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Figure 6.8: 95th confidence interval of the average path duration as a function
of pause times. Here, no statistical significance can be seen regarding the im-
provement of BeeIP. However, the weakness of BeeIP for applying an aggressive
foraging is highlighted, as although reactive in nature and multi-path, the aver-
age path duration is lower than the other reactive counterparts, namely AODV,
AOMDV and DSR.

single route request may return information for multiple paths, the information is

stored in the routing tables and is not used as long as the links which constitute

the current path are not broken. Hence, due to high mobility, alternatives may be

already broken when they are selected as the next available solutions. To reduce

the magnitude of this problem, AOMDV is using time-out values and extra local

repair HELLO messages as AODV does for the single-path maintenance (Marina

& Das, 2006).

Although this technique slightly increases the control overhead of AOMDV,

it reduces the need of extra route discovery processes, which will be shown later

in this comparison. Moreover, as the network becomes static, both AOMDV and

AODV achieve similar results. That happens because AOMDV is using its multi-

path ability less frequently when no links break due to mobility.

Average throughput

For the average throughput (as seen in figure 6.9), BeeIP is a competent reactive

counterpart despite its low average path duration, explained earlier. This is rea-
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Figure 6.9: Average throughput as a function of different pause times. Here,
BeeIP is shown to be a competent reactive counterpart, when compared to the
multi-path AOMDV, as well as DSR which is generally strong in reducing the
control overhead and increasing throughput.

Figure 6.10: 95th confidence interval of the average throughput as a function of
pause times. The average limits of BeeIP, AOMDV and DSR is another illustration
of the similar throughputs achieved by BeeIP, AOMDV and DSR.
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soned by considering again the multi-path ability of the protocol, which allows it

to utilize several path alternatives that might be found by a single scouting pro-

cess. Compared to AODV, the difference in average throughput is scaling up to

double for pause times 150s to 600s, compared to more dynamic 0s and 75s. Not

surprisingly, the less dynamic the network, the better the performance of DSDV,

even when it sacrifices a significant amount of bandwidth and buffering capacity

for the periodical control packet transmissions.

Considering the 95th confidence interval in figure 6.10, no clear assumption

can be made. However, looking at the average limits, the results enhance the

previous discussion on the ability of BeeIP to achieve similar throughput to DSR

and AOMDV.

Network life

In terms of the average remaining battery at the end of the simulations, there is a

slight difference which can be spotted in figure 6.11. All reactive protocols (BeeIP,

DSR, AODV and AOMDV) are found to compete with no significant changes (see

figure 6.12), for all pause times. On the contrary, DSDV can be considered a less

Figure 6.11: Network life as a function of different pause times. All reactive
protocols are shown to compete in terms of remaining energy. As expected, DSDV
is found to have used more energy, as a result of its proactive route discovery
mechanism.
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energy-efficient protocol. This is explained by the increased number of control

packets that are required to maintain routing paths, due to its proactive behaviour.

In conjunction with the average throughput which is illustrated in figure 6.9, it is

noticed that as DSDV’s throughput performance speeds up for pause times 150s,

300s and 600s, the energy drain is increased.

Figure 6.12: 95th confidence interval of the network life as a function of pause
times. The only assumption that can be made here, is that BeeIP is significantly
better than DSDV in terms of remaining energy after the simulation has finished,
and a strong competent amongst the other reactive routing protocols, AODV,
AOMDV and DSR.

Route requests (BeeIP, AODV and AOMDV only)

In addition to the above tests, BeeIP, AODV, and AOMDV have been studied

in a bit more detail due to their common route request mechanisms. Table 6.2

below shows the average number of route requests (or scouting processes in the

context of bee-inspired routing) initialized during each simulation, when varying

the pause time. The difference in route requests is in favour of BeeIP, which also

explains the difference in the control overhead the protocols produce, as shown

in figure 6.3. DSR is not participating in this comparison mainly because of its

difference in route request process. Namely, the route cache technique being used

for constructing RREPs. In DSR, if an intermediate node receiving a RREQ has

a route to the destination node in its cache, the it replies to the source node by
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sending a RREP with the entire path from the source to the destination node.

Protocol: \ Pause times(s): 0 75 150 300 600

BeeIP 4796 3296 4169 3995 4589

AODV 5511 4595 5805 4950 5925

AOMDV 5117 4004 5478 4646 5802

Table 6.2: Number of route requests during 600s of simulation, when studying
pause times. For all different situations, BeeIP is shown to have started less route
discoveries than AODV and its multi-path extension AOMDV.

6.2.2 Studying terrain size

The scalability in terms of terrain sizes of BeeIP compared to the other protocols

is examined by this set of experiments. Here, the pause time is kept to 75 seconds

for all 100 nodes, which are allowed to move according to RWP in random speeds

from 1 m/s up to 10 m/s. What varies is the terrain size. In particular, results

of simulations with 1800 × 600 m2, 2400 × 800m2, 3000 × 1000m2 and 3600 ×
1200m2 are obtained. As previously, 40 TCP sources are constantly transmitting

data packets to TCP sinks via 60 data sessions, for 600 seconds.

Packet delivery ratio

In the results found in figure 6.13, one can see that BeeIP, AODV and AOMDV

have similar behaviour with BeeIP outperforming the other two, which have

slightly different packet delivery ratio during the simulations for different net-

work areas. All protocols outperform DSDV which struggles as the density of

the topology decreases. Facing the problem of the stale entries in nodes’ cache,

DSR also shows a decreasing performance in terms of packet delivery ratio, as the

distance between the nodes exceeds the transmission range and causes frequent

broken links.

Control overhead

Nevertheless, the effect is not the same for the control overhead. It is to be

expected that as the network area increases in size, broken links occur more of-

ten triggering new route discovery processes. In figure 6.14 the control overhead
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Figure 6.13: Packet delivery ratio as a function of different terrain sizes. BeeIP is
shown to outperform all other routing protocols, achieving better packet delivery
ratio for all network sizes. Here, as the number of nodes remains the same, the
density of the topology is under investigation.

Figure 6.14: Control overhead as a function of different terrain sizes. Here, BeeIP
is shown to produce less routing packets than both AODV and AOMDV for dense
network topologies. When the density of the topology is reduced, BeeIP is shown
to be outperformed, due to its aggressive scouting.
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caused during the simulations is illustrated. The aggressive behaviour of BeeIP

is again shown, especially within terrain size of 3600 × 1200m2. In this case, the

increase in terms of control overhead is expected, as paths tend to be judged as

having low quality. In order to understand it better, it is important to bring to

mind what the effect of a long distance between two nodes is. It dramatically

affects the transmission signal strength of the packet. This is also shown in the

previous chapter 4 and, in particular, 4.6.2, where the investigation towards the

understanding of the relevant important of each low-level parameter is presented.

Therefore, BeeIP shows better results within network areas of high density, than

operating within sparse terrain environments.

Although BeeIP’s performance gets worst as the terrain size increases, for the

first three terrain sizes (up to 3000 × 1000m2) its performance is better than

AODV and AOMDV. In turn, they are all outperformed by DSR, which although

shows an increasing behaviour as the terrain also increases, it still manages to keep

the number of control packets low. Last, DSDV shows a poor behaviour compared

to the others, as it is negatively affected as the terrain size increases.

Average end-to-end delay

In terms of this performance metric, a deteriorating performance for DSR is shown

in figure 6.15, where the average end-to-end delay for each protocol is presented.

Although according to the standard error bars there is no significant difference

between the protocols up to 2400 × 800m2 terrain size, packets routed by DSR

as well as AODV tend to face higher delays than BeeIP. This is another indica-

tion that the multi-path distribution of packets that BeeIP applies pays off, in

conjunction with the current selection metric used by the protocol (paths with

lowest transmission and queuing delays are preferred). It is important to notice

that although AOMDV is also multi-path protocol, the way it switches between

alternative paths differs from BeeIP. AOMDV starts utilizing an alternative path

when the initial is found to be broken, whereas BeeIP switches between them de-

pending on the number of foragers that are allowed to be recruited to each one.

Finally, the small standard error bar of BeeIP indicates a balanced behaviour.
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Figure 6.15: Average end-to-end delay as a function of different terrain sizes. Here,
is shown that up to 2800 × 800m2 terrain sizes, Both BeeIP and AOMDV achieve
equal performance, outperforming all other protocols. However, BeeIP is able to
keep an equally good end-to-end delay for larger terrain sizes where the network
topologies become less dense.

Average path duration

The average path duration is illustrated in figure 6.16. The standard error bars

show that up to 2400 × 800m2 there is no significant difference. However, BeeIP is

clearly outperformed by DSR, AODV and AOMDV as the network size increases.

This is an expected behaviour of the protocol. For the largest area all three reactive

protocols achieve similar results, whereas BeeIP swaps between alternative links

reducing the average duration.

Average throughput

The average throughput is kept high for BeeIP, as illustrated in figure 6.17. Due

to already increased packet delivery radio and low end-to-end delay, BeeIP is able

to keep the average throughput between the data sessions high. A common as-

sumption to all protocols is that as the density gets lower, the average throughput

is negatively affected.
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Figure 6.16: Average path duration as a function of different terrain sizes. Here,
BeeIP is shown to be outperformed by all three reactive routing protocols, which
manage to score a better average path duration for all terrain sizes, at the end of
the simulations.

Figure 6.17: Average throughput as a function of different terrain sizes. Here,
BeeIP is shown to outperform all other routing protocols, achieving the highest
throughput for all terrain sizes.
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Network life

When considering energy consumption, there is again no significant difference

seen between the five protocols in figure 6.18. There is a slight variation which is

reported in favour of BeeIP and AOMDV during the last two simulation experi-

ments (areas 3000 × 1000 m2 and 3600 × 1200m2), but no clear assumptions can

be made.

Figure 6.18: Network life as a function of different terrain sizes. Similarly to other
comparison results, no significant difference is shown between the protocols as
none of them is designed to be energy-efficient.

6.2.3 Studying network traffic

The effect of varying the number of active sources and data sessions to the per-

formance of the protocols, is examined with this set of experiments. The base

scenario is used, that is, 100 nodes moving according to RWP with random speeds

between 1m/s to 10m/s is used in a 3000 × 1000m2 terrain for 600 seconds.

The pause time is fixed to 75 seconds. The number of active sources and data

connections are gradually increased, in order to investigate BeeIP’s robustness

and compare it to other protocols. TCP sources and sinks are again picked up

randomly, starting from 10/15 (sources/connections) to 60/80, with intermediate

values of 20/25, 30/45, 40/60 and 50/80. These values are designed to help build
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a solid understanding of how good or bad each protocol performs, under stressful

situation of low (10-20), medium (30-40), and high (50-60) traffic loads.

Packet delivery ratio

Figure 6.19: Packet delivery ratio as a function of different number of active
sources. Here, BeeIP is found to perform better than the other protocols, achieving
a better PDR especially when the traffic is high (40-60 active sources).

An initial observation that can be made from figure 6.19 is that the delivery

ratio achieved by all five protocols is between 97% (DSDV with 60 active sources)

and 99.8% (BeeIP and AOMDV with 10 active sources). Initially, this might be

considered too high and unrealistic compared to other similarly configured exper-

iments which are found in the literature (Arun Kumar B. R. et al., 2008; Rahman

& Zukarnain, 2009). However, the traffic model used in the majority of those

comparisons is constant bitrate (CBR) that uses UDP instead of TCP (refer to

section 2.3.4 for details). Depending on the configuration, CBR has significantly

higher and constant sending rate which causes congestion points (bottle necks),

interference, and eventually increased packet loss. Furthermore, being an unreli-

able protocol UDP does not guarantee that the packet is successfully accepted by

a destination, as TCP does by utilizing packet acknowledgements. Rather, UDP

just sends the packet to its way from the source to the destination. So, TCP by
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its nature will increase the control overhead1 and thus will negatively affect the

performance of the protocols. It is that mechanism, amongst other issues (refer

to chapter 2 for a detailed discussion), that researchers prefer to use UDP as the

transport layer protocol. Nevertheless, a comparison with both CBR and TCP

traffic has been made in Mali and Barwar (2011), producing similar results to the

ones presented in this thesis.

Contrariwise, BeeIP is designed to take advantage of that mechanism by pig-

gybacking the acknowledgement packets to ack foragers that are sent back to the

source node of a communication session. To continue with the observation in terms

of packet delivery ratio, BeeIP performs better than the others. The difference is

clearly observed when 40 to 60 nodes act as sources. Additionally, the proactive

approach is proven quite unreliable as DSDV’s performance rapidly deteriorates

as the number of nodes increases.

Control overhead

Figure 6.20: Control overhead as a function of different number of active sources.
Here it is shown that DSR outperforms all other four protocols. BeeIP and
AOMDV are found to follow and achieve better results than AODV.

Varying the number of active sources and data connections also affects the

1Here, control overhead refers to the transport layer packets being sent in order to successfully
and efficiently transfer TCP segments.
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control overhead. The results are included in figure 6.20, where DSR is proven

the best performing protocol. BeeIP and AOMDV come second by transmitting

less control packets particularly when 30 and 40 sources are active (in BeeIP)

and 50 and 60 (in AOMDV). Both multi-path routing protocols seem to perform

better than the single-path AODV. Moreover, the periodically and incrementally

transmitted routing advertisements produced by DSDV when changes occur, are

noticeable under high traffic networks.

Average end-to-end delay

Figure 6.21: Average end-to-end delay as a function of different number of active
sources. Here, BeeIP is shown to have a balanced and low average end-to-end
delay. Coupled with the high packet delivery ratio, this complements the protocol’s
robustness under high network traffic.

The average end-to-end delay is illustrated in figure 6.21. When the network

traffic is low, the observed difference between the protocols is quite small. This

changes though for medium to high traffic, where BeeIP is shown to be the best

performing protocol. In addition to that, the error bars of the standard error from

the mean for BeeIP, AOMDV and AODV are rather short, from which a balanced

end-to-end delay is concluded. The latter, together with the already high packet

delivery ratio highlights the protocols robustness under several network traffic

conditions.
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Average path duration

Figure 6.22: Average path duration as a function of different number of active
sources. Here, the effect of low and high traffic in connection with the aggressive
scouting of BeeIP is illustrated. BeeIP has the lowest average path duration when
the traffic is low. However, the difference is getting smaller as the network traffic
is increased.

The aggressive scouting of BeeIP appears again when the average duration of

paths during the simulation is examined. This is shown in figure 6.22 when low

traffic is applied to the wireless network. Under the same situation, the reactive

approach makes the other three protocols, AODV, AOMDV and DSR, perform

better with the first outperforming the other two. Furthermore, the difference

between the reactive protocols is reduced, when the traffic is medium to high.

DSDV on the other hand, is following the opposite trend. The average path

duration is reduced dramatically when the traffic is increased. This is an indication

of how sensitive the protocol is to stressful conditions and network bottlenecks.

Average throughput

The above verdicts are also made by looking at figure 6.23 where the average

throughput is illustrated. Here, the negative affect of the high network traffic is

visible to all protocols. AODV, AOMDV and DSR are less sensitive to bottle necks,
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Figure 6.23: Average throughput as a function of different number of active
sources. All protocols are affected by high traffic, and achieve low throughputs.
BeeIP is shown to have better performance, when compared to other reactive pro-
tocols and, in particular, AOMDV which is able to discover multiple alternatives
between a source and a destination.

than DSDV which has the worst performance (only ∼45KB/s average throughput

within busy networks, compared to ∼98KB/s of BeeIP and ∼95KB/s of DSR).

Also, BeeIP is capable of handling high traffic much better as a result of being

able to use concurrently multiple paths between sources and destinations.

Moreover, between BeeIP and AOMDV (the two multi-path routing protocols)

it is seen that they are both able to overcome network congestion better than the

others with a slightly better throughput, under medium to high traffic (40 and 50

active sources). However, their different approach in multi-path usage pays off for

BeeIP, which is found to overcome all other protocols under high traffic.

Network life

Considering network life, the results in figure 6.24 bear resemblance to those of

the previous sets of experiments. No clear statistical significance can be detected

between their differences, which is partially expected since none of these protocols

is designed to be energy-efficient2. Still, it is seen that BeeIP has a constantly

2Although BeeIP is designed to easily accept different selection metrics, as discussed in 4.7.
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decreasing behaviour, with no extreme values reported.

Figure 6.24: Network life as a function of different number of active sources. Sim-
ilarly to previous results, there is no significant difference between the protocols’
behaviour, nor any extreme values are reported.

6.2.4 Studying node speeds

The experiments included in this section study the adaptation to frequent link

breaks and robustness of each protocol. The scenario is designed as follows. For

600 seconds, 100 nodes are moving according to the RWP model in a network

area of 3000 × 1000m2. The pause time is fixed to 75 seconds. Similarly, the

number of TCP sources and connections are fixed to 40 and 60, respectively. The

experiments are repeated by gradually widening the speed range of the nodes,

starting from 1-5 m/s, to 1-10 m/s, 1-15 m/s and 1-20 m/s. As the maximum

speed that the nodes can reach is increased, the average speed is also increased,

as well as the frequency by which links break. Thus, the aim is to investigate how

the protocols are able to adapt to the topological changes. It is worth mention

that 1 metre per second is a good walking speed for a man, whereas 20 metres per

second is the speed of a car being driven slowly, e.g., in a city centre.
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Packet delivery ratio

As previously, the packet delivery ratio is the first performance metric to be exam-

ined. Figure 6.25 shows that BeeIP keeps a steady performance, slightly deterio-

rating as the mobility of the nodes increases. Its packet delivery ratio varies from

∼98.9% to ∼99.6% when the second best reactive protocol AOMDV fluctuates

between ∼98.8% and ∼99.4%. AODV and DSR are found to have more packet

loss for highly dynamic networks, amongst the reactive protocols in comparison.

Moreover, the proactive DSDV is also losing in delivering packets on time, as its

packet deliver ratio is dropped to ∼97.5% for speed range 1-20m/s.

Figure 6.25: Packet delivery ratio as a function of different node speeds. Amongst
the reactive protocols, BeeIP and AOMDV are shown to be less affected by the
mobility, with BeeIP having a slightly better performance.

Control overhead

In terms of control overhead in figure 6.26, DSR is found to be the least sensitive

protocol. In addition, BeeIP, AODV and AOMDV increase the amount of packets

required to maintain routing, with BeeIP achieving a lower overhead.

The results obtained from this experiment show that the multi-path extension

to AODV is more sensitive to high mobility networks, in terms of the number of

control packets being produced. This agrees with the results obtained in Marina
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Figure 6.26: Control overhead as a function of different node speeds. BeeIP is
shown to be a strong competent to other reactive protocols, namely AODV and
AOMDV. In particular, BeeIP is found to less control overhead for high mobility
networks, outperformed only by DSR.

and Das (2006), where the frequency of route discoveries and routing overhead

is similar for AODV and AOMDV with varying mobility. Finally, increasing the

average speed of the nodes affects the proactive DSDV more, as route update

messages flood the network in an effort to maintain routing.

Average end-to-end delay

In terms of end-to-end delay, the results are summarized in figure 6.27 and are as

expected. DSDV follows the opposite trend compared to the reactive protocols, as

its ability to adapt to consistently dynamic networks is quite limited. Again, BeeIP

is shown to be able to perform better than AODV, AOMDV and DSR, achieving a

balanced packet delay. Keeping in mind that the path selection metric of BeeIP is

set to the fastest path (see section 4.7.1), the low and balanced behaviour of BeeIP

in connection to its high packet delivery ratio can be considered an indication of

achieving efficient and optimal routing.
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Figure 6.27: Average end-to-end delay as a function of different node speeds.
BeeIP is shown to result in low and balanced average end-to-end delay over the
other reactive routing protocols. DSDV follows an opposite trend as it deteriorates
as the average moving speed of nodes increases.

Average path duration

The average path duration results are shown in figure 6.28. Faster nodes lead to

frequent link breaks, and thus paths are cut sooner. BeeIP is in a more difficult

position compared to the other three reactive protocols, because of its aggres-

sive scouting. Although speed is less important parameter for BeeIP’s monitoring

mechanism (as described in 4.6.2), it affects the distance between two communi-

cating nodes. For this reason, the signal strength of packet transmissions become

weaker. This itself leads to dull artificial honeybee dances by the ack foragers that

consistently reduce each path’s foraging capacity.

Average throughput

Considering the average throughput in figure 6.29, it is understood that the perfor-

mance of all the protocols deteriorates as the average speed becomes higher. Due

to the highly dynamic network when the node speed range is 1-20m/s, BeeIP’s

average throughput is less than DSR and AODV. Nevertheless, under less stress-

ful conditions, namely when the speed ranges are 1-5m/s to 1-15m/s, BeeIP is
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Figure 6.28: Average path duration as a function of different node speeds. The
aggressive scouting is again shown to be a downside of the protocol. Although all
protocols are found to deteriorate in average path duration due to frequent link
breaks, BeeIP is found to be in the worst position followed only by DSDV.

Figure 6.29: Average throughput as a function of different node speeds. BeeIP is
shown to achieve better results than the other reactive protocols, AODV, AOMDV
and DSR, for low to average mobility networks. Its performance is observed to
be deteriorating when the average moving speed of the nodes is high (1-20m/s).
Here, BeeIP is outperformed by AODV and DSR.
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found to strongly compete with the other reactive protocols, achieving better per-

formance (∼155KB/s, ∼100KB/s, ∼89KB/s), followed by AOMDV (∼152KB/s,

∼96KB/s, ∼87KB/s). To conclude, DSDV throughput is low, demonstrating its

need to incrementally exchange route update messages to maintain routing, wast-

ing a significant amount of bandwidth.

Network life

At the end of the simulations, DSDV tends to have low average remaining energy

and, in particular, when the average moving speed is medium to high. The results

are summarized in figure 6.30. DSDV has a deteriorating performance mainly

because of the amount of control overhead being spent, as explained previously.

Otherwise, all protocols seem to be equally affected since the resulting numbers

are similar and no significant difference is shown by the standard error bars. To

this, AOMDV is found to be an exception, as it is observed to outperform BeeIP,

AODV and DSR for node moving speeds up to 1-15m/s.

Figure 6.30: Network life as a function of different node speeds. Constantly mov-
ing nodes affect all protocols equally. As in previous experimental scenarios, no
extreme values are reported.



180 6. Evaluation study

Route requests (BeeIP, AODV and AOMDV only)

In order to investigate further the table 6.3 is produced, summarizing the total

number of route requests and scouting processes started by the three protocols.

The table highlights the effectiveness of allowing a BeeIP scouting process to

discover more than one path between the source and the destination node, ending

in collecting multiple routing alternatives. Between AODV and AOMDV, it is

observed that the latter starts less route discoveries, which are able to find more

than one paths. Although being multi-path like BeeIP, AOMDV still incurs extra

overhead, especially when the mobility of the network is increased. Again, this

is reasoned by the protocol’s approach to multi-path routing, i.e., an alternative

path is used only when the current one breaks. In a high mobility network paths

are more likely to break before being utilized as next hops.

Protocol: \ Node speeds(m/s): 1-5 1-10 1-15 1-25

BeeIP 2681 3424 5117 6236

AODV 3483 5752 6033 8996

AOMDV 3164 5504 5905 8067

Table 6.3: Number of route requests during 600s of simulation, when studying
node speeds.

6.2.5 Studying number of nodes

For the last set of experiments, the scalability of the protocol in terms of adapt-

ing to different network sizes is investigated. The scenario is similar to the one

presented in the previous section, namely the nodes are moving in an area of 3000

× 1000m2 for 600 seconds. The pause time is again fixed to 75 seconds. Nodes

are moving around in a RWP fashion, at speeds between 1m/s to 10m/s. The

simulations have been repeated for 50, 100, 150 and 200 nodes. Each time, almost

one third of the total number of nodes are used as active sources. Namely, 15

active sources for 50 nodes, 30 for 100, 50 for 150 and 60 for 200 nodes.

Packet delivery ratio

Looking at the packet delivery ratio, as presented in figure 6.31, it is seen that all

reactive protocols can easily adapt to the network sizes, with BeeIP outperforming
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Figure 6.31: Packet delivery ratio as a function of different number of nodes.

AODV, AOMDV and DSR. The latter is becoming less strong in terms of delivery

efficiency as the number of nodes increases, achieving an average of ∼97.5% for

200 nodes. On the other hand, the local repair proves to be effective in enhancing

AODV as under similar conditions its average does not drop lower than ∼99%.

Compared to DSDV, BeeIP is clearly the best performer as the proactive nature

of the first produces much more control overhead which slows down the real data

transmissions.

Control overhead

In terms of control overhead, figure 6.32 shows that BeeIP outperforms AODV,

AOMDV and DSDV as they all tend to take bigger steps increasing the number of

control packets as the network size is getting bigger. DSR performance is steadily

low, which is to be expected, again, as it lacks a local repair mechanism. This

is not the case for BeeIP though, which even though it does not use local repair

as AODV or AOMDV do, it initializes more route discovery processes than DSR,

and thus, produces more control overhead.
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Figure 6.32: Control overhead as a function of different number of nodes. Here,
BeeIP is shown to take bigger steps than DSR in terms of the number of routing
packets, but it outperforms AODV, AOMDV and the proactive DSDV.

Average end-to-end delay

Results for the end-to-end packet delays are shown in figure 6.33. Although BeeIP

outperforms the others, the delays for all protocols are kept quite low. This is

because the TCP traffic load is also kept balanced, as explained at the beginning

of this section. Moreover, from the error bars of the obtained results it can be

seen than BeeIP has a constant behaviour for all network sizes. This is one of

the protocol’s strengths which is also confirmed by all the previous experimental

results. Additionally, with a large number of nodes participating in the network,

the number of hops between a source and a destination is also increased. This

causes packets routed by DSR to face an increased delay, due to the fact that the

source routing mechanism increases the size of the packet by adding a considerable

amount of data to its header. This extra size is proportional to the length of the

path to be traversed, and affects the packets transmission delay.

Average path duration

The average path duration performance metric is again highlighting BeeIP’s ag-

gressiveness in starting new scouting processes. As generally found during the
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Figure 6.33: Average end-to-end delay as a function of different number of nodes.
Here, BeeIP is shown to outperform all other protocols, for all different numbers of
nodes in the topology. The standard error from the mean bars indicate a balanced
behaviour.

Figure 6.34: Average path duration as a function of different number of nodes.
BeeIP’s aggressive scouting behaviour is what keeps the average small, up to 100
nodes. However, as the number of nodes increases more alternative paths are
created, which pays off as scouts can always make new discoveries.
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experiments in this chapter, the average duration of which links between sources

and destinations are used to constantly transmit data using BeeIP, is lower than

AODV, AOMDV and DSR. This is also observed in this set of experiments, when

the number of nodes is 50 and 100. However, it is found that the difference between

the BeeIP and the other reactive protocols is reduced as the network increases in

size. In these cases, the performance of the protocol is balanced by combining the

aggressive scouting with the multi-path feature, which is a sign that the protocol

mimics nicely the honeybees’ behaviour in the real world. Figure 6.34 illustrates

the results.

Average throughput

Figure 6.35: Average throughput as a function of different number of nodes. BeeIP
is found to perform better than the others, keeping a constantly higher average
throughput. As number of the nodes is increased, multi-path protocols are in
favour.

Finally, the average throughput is illustrated in figure 6.35. The following

similar impression for all protocols is made; the average throughput is deteriorating

as the number of nodes increases. However, by studying the graph lines and the

values obtained by the experiments, further observations can be made. Firstly,

the lines representing BeeIP and AODV are downgrading by taking smaller steps

than DSR, when the number of nodes changes from 100 to 150 and finally to 200.
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This is an indication that the protocols are less sensitive to varying this particular

network condition. Secondly, BeeIP outperforms the other protocols, especially

when the network size is large, by utilizing its concurrent use of paths to spread the

load to alternative paths avoiding congestion points and bottlenecks. Thirdly, by

using their local repair mechanism AODV and AOMDV are able to detect broken

links and update their routing table faster than DSR, which due to stale entries

sends packets in out-of-date directions. The latter is also explained by the already

low packet delivery ratio of DSR for 150 and 200 nodes, presented in figure 6.31.

Network life

Figure 6.36: Network life as a function of different number of nodes. Here, BeeIP
is shown to produce similar results to the other protocols, which is an expected
behaviour.

When considering the energy consumption, similar results to the previous ex-

periments are observed. An interesting outcome from 6.36 is that the average

remaining energy is much higher for 200 nodes, than for smaller networks. In fact,

keeping in mind the size of the terrain (3000 × 1000m2), 50 nodes form a topol-

ogy of pretty low density. Therefore, less paths are physically available between

the sources and the destinations, and fewer nodes are used to transmit packets.

Hence, the battery of a particular group of nodes is drained faster, leading to
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a lower average remaining energy. When 200 nodes participate in the topology,

more paths are physically available. This keeps more nodes busy, achieving a

better distribution of the energy consumption.

6.2.6 Summary of the observations

When considering the pause times, BeeIP is found rather insensitive to changes

showing the significantly better packet delivery ratio, control overhead, and end-

to-end delay. Its results in connection to the average throughput are also positive,

showing that BeeIP competes with DSR and is able to transmit more KB/s un-

der low or high dynamic networks than AODV, AOMDV and DSR. A negative

observation is BeeIP’s average path duration, where due to its aggressive scouting

behaviour the average time a link stays active is smaller compared to the other

protocols. Considering the remaining network life at the end of the simulations,

although no significant difference is reported, BeeIP shows slightly better results.

When changing the network terrain size, the results indicate that BeeIP, AODV

and AOMDV are outperforming DSR and DSDV, in terms of packet delivery ratio

and end-to-end delay. Additionally, BeeIP has a better average throughput than

the others and, based on the results, it is understood that the protocol is able

to operate more efficiently in a network with higher density. In terms of control

overhead, a difference in favour of BeeIP compared to AODV and its multi-path

extension AOMDV is reported initially (1800 × 600m2, 2400 × 800m2), but it

reduces as network size increases. The aggressive scouting feature is again keeping

BeeIP’s performance behind in terms of average path duration, compared to DSR,

AODV and AOMDV, which score equally higher.

Looking at the impact of traffic on the protocol’s performance, BeeIP is found

to be less sensitive compared to the other protocols. It manages to achieve high

packet delivery ratio, especially under high traffic networks. In terms of control

overhead, all protocols’ performance is gradually decreased, as the network traffic

becomes higher. The experiments have shown that BeeIP manages to send less

control packets for medium traffic networks, compared to AODV and DSDV, and

is outperformed by DSR which has the least control overhead. BeeIP is found

to be the best performing protocol in terms of average end-to-end delay for any

traffic model (low, medium, and high). Also, its aggressive scouting behaviour

leads to poor average path duration, especially for low traffic networks.
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The speed of the nodes in the topology also affects the performance of the pro-

tocol. The experiments which have been conducted show that like AODV, BeeIP

increases the number of control packets as the speed of nodes is increased. On the

contrary, the packet delivery ratio deteriorates slightly. Additionally, BeeIP’s av-

erage throughput is found to be less than AODV, AOMDV and DSR under highly

dynamic networks, where nodes are allowed to reach a speed of 20m/s. However,

under less dynamic networks, such as 1-5m/s to 1-15m/s, BeeIP is found to have

a better throughput.

Finally, when the number of nodes varies, it is found that all reactive proto-

cols can easily adapt to the network changes, with BeeIP outperforming AODV,

AOMDV, DSR, and also DSDV which due to its proactive nature is dramatically

affected by the network size. Again, BeeIP’s average path duration is outper-

formed by AODV and DSR for sparse networks, however, when the number of

nodes is increased, their performance match. In terms of average throughput, all

protocols are downgrading, but BeeIP, AODV and AOMDV take smaller steps

than DSR, under medium to high density networks, with BeeIP outperforming.

6.3 Conclusion

In this chapter, an evaluation of the proposed protocol is presented. BeeIP is com-

pared with four well-known routing protocols in the area, namely DSR, AODV,

AOMDV, and DSDV. DSR and AODV as well as its multi-path extension AOMDV

are following a reactive approach in providing routing solutions. One main differ-

ence between the these protocols, is that DSR is using source routing. In source

routing, each packet knows the full path to the destination and carries it in its

header. DSDV on the other hand, is the de facto proactive protocol for MANETs,

heavily used for routing protocol comparisons.

The experiments are separated into five sets, where different network conditions

are changed. Scalability, robustness and routing efficiency are studied, the results

of which are presented and discussed. To summarize, BeeIP is found to outperform

the other protocols in terms of most of the performance metrics, under several

conditions. A reported strength of the protocol is its ability to keep low and

balanced end-to-end packet delay, even under stressful network conditions such as

high traffic and mobility rates. This, in connection to the high average throughput

results, is an indication that the decision of the path selection metric (selection of
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delays, equation 4.6), which was used for the presented comparisons, has proven

to pay off as the protocol is able to select the fastest paths between the sources

and the destinations of each communication session. Selecting the appropriate

path is discussed in section 4.7.1.

On the downside, BeeIP shows an aggressive behaviour as it is constantly

monitoring the working paths. That leads to generally smaller average path du-

ration and increased control overhead. Considering these performance metrics,

it is observed that under low mobility and/or sparse network topologies, BeeIP

is outperformed by AODV, AOMDV and DSR. Furthermore, this behaviour is

balanced when the network gains in number of nodes, and BeeIP is able to utilize

its multi-path feature more effectively.



Chapter 7

Conclusions and future work

7.1 Overview

In this thesis, the problem of routing in mobile wireless ad hoc networks is ad-

dressed using nature inspired techniques. In particular, the problem is solved by

emulating the collaborative behaviours of honeybees when engaged in food for-

aging and communication within their hive. Honeybees are able to find multiple

paths to an interesting flower, and by applying several techniques driven by team-

work, they are able to distinguish the most profitable and efficient one, or ones,

and use them according to their needs.

Mapping and modelling honeybee behaviours to an agent-based routing pro-

tocol for wireless ad hoc networks is a new research area, started with Wedde

et al. (2005a) and Saleem and Farooq (2007b), where the routing problem was

addressed for MANETs and WSNs respectively. The difference and novelty of the

work presented in this thesis lies on three distinct aspects. Firstly, the proposed

design focuses on the way artificial honeybees constantly monitor and evaluate the

goodness of each path by utilizing a rich number of low-level pieces of information

that describe and represent the quality of a wireless transmission of data. This

follows the foraging rules of the real insects by which a forager is able to evaluate

the goodness of a finding according to a variety of quality factors. Low-level pa-

rameters are used by the model (presented in section 4.6 of chapter 4) to calculate

the quality of the intermediate links, and then, the overall quality of a path. Sec-

ondly, focus is given on the way communication is achieved within the artificial

hive. Honeybees exchange information about foraging and paths by the means
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of a special dance. During a dance, a forager reports the outcome of her latest

investigation: an enthusiastic dance concentrates the attention of more waiting

foragers and, in turn, has a better chance to recruit new members. Coupled with

this, one of the honeybees’ abilities in evaluating a finding is to detect any im-

provement or deterioration over time. In this work, this behaviour is modelled by

using a statistical tool which allows the detection of quality changes for each path

as time progresses. Finally, the decision of which is the best path a packet must

use to be transmitted from a source to a destination, is also modelled according

to what is found in nature. It is reported in von Frisch (1967), that foragers get

feedback from the workers within the hive. The feedback informs them of which

of the three important commodities (i.e., water, nectar and pollen) is running low,

and bias their foraging towards the specific commodity. Based on this concept,

the best path selection in the proposed system is designed to be done by consid-

ering the application’s requirements. Considering the application needs, a path

is selected amongst a list of promising paths, discovered and evaluated by the

artificial foragers. For instance, if the application requires packets to be sent as

fast as possible, the selection is done based on the sending delays (queuing plus

transmission delay). Thus, the selection metric is designed to be separated from

the path evaluation model.

The second and third chapters of this thesis give the related literature review

which is important to understand the internal mechanisms and design of the pro-

posed work. In particular, chapter 2 gives an introduction to the field of routing

in wireless ad hoc networks and provides an overview of a number of important

solutions found in the literature. In addition to several well-known classifications

of protocols, such as reactive, proactive and hybrid, Internet-inspired and nature-

inspired, location-aware and power-aware, this chapter also introduces the idea of

cross-layering. Cross-layering is a collection of techniques which are used to en-

hance optimality to network protocols, and it is heavily used by adaptive routing

protocols which make use of information that is not available to the network layer

by default. Being an adaptive routing protocol, BeeIP is designed in a cross-layer

manner and therefore is able to access and utilize low-level information generated

within different layers (i.e., level of the energy remaining in batteries, size of the

interface queue at the MAC layer, moving speed of nodes, etc.).

The third chapter discusses all the exciting information related to real honeybee

foraging and communication and builds a solid background for chapter 4, where
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the new routing protocol, BeeIP, is thoroughly described. Apart from the use of

quality factors to evaluate the goodness of a finding, chapter 3 makes the following

important points. A hive consists of a large number of similar insects (the workers),

which change their roles depending on the type of work they are required to

complete. This implies a powerful adaptation mechanism which eliminates the

need to develop special honeybee types. Another important point is related to the

decentralized and distributed approach the insects apply to their foraging. The

lack of hierarchical decision making and central guidance in terms of coordinating

moves, allows the honeybees able to work in harmony despite their large population

or unfortunate events (e.g., an insect is damaged). The next important point made

in chapter 3, is the adaptive approach met in natural foraging. Foragers are able

to adjust their dancing and affect the recruitment of others. Additionally, they

are able to compare different findings with prior knowledge, instead of selecting

the one with, for example, the higher concentration of sugar. Finally, another

important point of chapter 3 is the idea of grouping. Honeybees are able to form

groups which work towards the same commodity and/or source of food. Foragers

that carry pollen from the same flower adopt the same odour, which speeds up

their communication and thus their foraging.

In chapter 4, BeeIP is described. The internal parts of the artificial hive (En-

trance, BeeIPHive, and BeeIPQueue) as well as the types of control packets that

are used by the protocol are presented. The chapter also describes the mechanism

of routing maintenance (monitoring the quality of links and paths, the artificial

honeybee dancing), data packet forwarding, and detecting link failures.

Chapters 5 and 6 present an extensive range of experimental tests, in which

BeeIP is evaluated and compared to four state-of-the-art protocols. Five distinct

sets of scenarios are used in such a way that they cover as much as possible of the

network conditions that occur in real networking. They cover alterations in node

mobility (i.e., changing pause times and node speeds), communication (i.e., num-

ber of nodes participating in the topology, number of sources and destinations),

as well as terrain alterations (i.e., changing of terrain size). Additionally, a rich

number of performance metrics are for the comparison of the five protocols includ-

ing packet delivery radio, control overhead and average throughput. A summary

of the observations is given in section 6.2.6.

In what follows, the initial research hypothesis and question are revisited and

possible future directions of this research are discussed.
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7.2 Revisiting research hypothesis and question

The initial research hypothesis, as presented in section 1.2.1, is:

Hypothesis: “If the method used by a honeybee colony in order to evaluate the

quality of a food source is a corporate consideration of a number of factors, which

indicate different attributes of the food source as well as the foraging process in

general (environmental conditions), then an artificial colony based on similar prin-

ciples should be able to obtain analogous information, and use it to evaluate the

quality of the paths between sources and destinations and control the number of

transmissions that will use the paths in the future.”

In order to provide credit to the initial research hypothesis, it is important to

consider both the routing design and the observations of the experimental tests.

In BeeIP, the evaluation of paths is designed to mimic the real behaviour of hon-

eybees. That is, low-level information retrieved dynamically from other layers

(media access control, physical, and application layers) is used to measure the

quality of the intermediate links of a path between a source and a destination

(formulas 4.1 and 4.3, in sections 4.6.1 and 4.6.3 respectively). In nature, foragers

utilise their quality factors and set thresholds, which allows them to build an idea

of how good or bad a foraging process with respect to a particular finding becomes

over time. It is unclear what the precise values of those thresholds are (because of

the different circumstances and combinations), but it has been empirically shown

that they exist and they alter the behaviour of honeybees (von Frisch, 1967) while

foraging or dancing back within their hive to recruit others. Combined together,

the quality factors represent and describe the overall quality of the foraging pro-

cess, e.g., the flying between the flower and the hive and the quality of the nectar

found.

Based on this understanding, a similar approach has been taken in networks.

BeeIP’s quality factors are used to represent the quality of paths. The formula to

measure an overall path quality takes into consideration the importance of each

factor, as they all exist and play different roles in the data transmission. Then,

the artificial foragers report their finding and with the use of regression analysis,

improvement or deterioration over time can be detected. This methodology allows

recruitment to take place, and controls the number of transmissions that will use
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a specific path in the future. The results of comparing BeeIP to other routing

protocols show interesting and competitive results, as BeeIP is able to outperform

the others in terms of packet delivery ratio and end-to-end delay. Therefore, the

initial hypothesis is successfully validated.

The initial hypothesis allowed the formulation of the following research ques-

tion:

Research Question: “To what extent will a bee-inspired model that allows

agents to discover and constantly measure and monitor the quality of paths in

a MANET, based on low-level information obtained by the network, be able to

adjust the future transmissions over those paths, in order to provide adaptive,

decentralized and robust routing in comparison to other existing state-of-the-art

approaches?”

This research question is answered when considering chapters 5 and 6, where

the methodology of the experimental tests and the comparison results are given

and discussed. As illustrated, the proposed bee-inspired model is able to utilize

agents in a decentralized way, in order to discover and constantly measure and

monitor the quality of paths in a mobile ad hoc network. By modelling the special

honeybee dance and the ability of the honeybees to select the most appropriate of

the list of promising paths, packets are able to be transmitted over multiple routes

over time. Therefore, adaptability is achieved when artificial honeybees adjust the

recruitment process of each discovered path, according to the low-level up-to-date

information which represents its quality.

Furthermore, the proposed design model achieves robust routing as is seen from

the results of the simulation comparison between BeeIP (the implementation) and

the four state-of-the-art routing protocols in the area of wireless ad hoc routing.

As described in chapter 5, the simulation scenarios are designed in such a way

that several realistic topologies, as well as movement and traffic patterns, are

tested. What is observed is the potential of the protocol to adapt, scale up and

efficiently provide routing solutions, outperforming the others in terms of packet

delivery radio, end-to-end delay and average receiving throughput. The protocol

can also perform better under stressful network conditions such as high traffic and

mobility rates. When considering the network density, the proposed bee-inspired

routing protocol is found to scale up much better within dense topologies, e.g.,
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large number of nodes and high traffic.

7.3 Future research directions

There are several research directions which are considered in order to improve

the design of the proposed bee-inspired routing protocol. Due to the time limits

during the course of this research project, the completion of some aspects of the

protocol has been limited. However, in this section, these aspects are identified

and briefly discussed.

In chapter 4, where the design is described, it is mentioned that the artificial

foragers are carrying real data and stay at the destination node as long as there are

some data that need to go back to the source. In a TCP scenario, the artificial for-

agers are frequently utilized as the transport protocol is sending acknowledgement

packets for each data packet being received. However, in an unreliable service with

no acknowledgements such as UDP, there may not be a data packet available to

drive the forager back unless the destination needs to send some data back to the

source. A possible way to solve this problem is to apply some extra rules for such

protocols that follow the honeybee swarming when a new honeybee queen and her

followers are swarming in order to create a new hive. In Wedde et al. (2005a), such

behaviour has been mapped to help UDP foragers travel back to the source as a

group, once the difference between the incoming foragers from a destination and

the outgoing foragers to the same destination reaches a threshold value. In BeeIP,

this behaviour is incompatible with the principle of the protocol to constantly

monitor the quality of the path. If forager packets return to the source in groups

after some time interval (or another criterion which allows “idle” gaps to the traf-

fic towards the source node), then the protocol stops being adaptive and in turn

operates in a traditional best-effort mode of delivering packets to what it knows

already– providing that there are foragers waiting in the routing repositories (refer

to section 4.5 for the internal details). For this reason, the swarming technique

has not been introduced in BeeIP. A potential way to address this issue, would

be to force the foragers to return to the source, just as they would when carrying

a data packet, but after shorter intervals to match a TCP behaviour. Moreover,

the performance of this behaviour must be investigated in order to understand the

impact it will have on the control overhead and throughput.

In section 4.6.2, a weighting system is found and presented by using the change



7.3. Future research directions 195

of the mean squared error (MSE) method. Compared to sensitivity analysis (SA),

and fuzzy curves (FC), MSE is the most straight-forward method to be used.

However, in order to improve the weighting system and thus the optimality of

the routing protocol, other methods need to be considered. In Sung (1998b), a

comparison of these three methods is given and the author observes that both SA

and FC methods perform very well in identifying the importance of each input,

in relation to the output, even when a noisy input is present. Therefore, an

interesting future research direction which will contribute to this work, would be

to investigate the results of a different method to measure the inputs’ ranking

importance, and compare them in order to produce the optimal weighting system

for the model.

In section 4.7.1, the metric of the best path selection is discussed. In the

current design, the selection metric is chosen before the initialization of the ad

hoc network, and stays static for as long as the network is used. An interesting

direction for future research is to elaborate further the idea of dynamically switch-

ing the selection metric, according to the application needs. Cross-layering can

be used for this and mark each communication session with a predefined type of

behaviour. Such an investigation is expected to contribute towards the quality

of service (QoS) (I.Jawhar & Wu, 2004) ability of the proposed design. What

needs to be researched is the ability of the protocol to dynamically perform for

each communication session and, in connection to the UDP acknowledgements

discussed before, to offer an extra level of data transfer reliability at the network

layer’s level.

Furthermore, section 5.4.2 has pointed out an important research step that

needs to be taken in the future. That is, the need to compare the proposed

bee-inspired routing with other nature-inspired protocols and, in particular, bee-

inspired protocols of the same area, namely BeeAdHoc. Unfortunately, due to

the lack of availability of approved source code of these protocols for the ns-

2 network simulator, a valid direct scientific comparison could not be achieved.

Directly comparing to nature-inspired in addition to the state-of-the-art protocol

is expected to give extra merit to the contributions of the new design, specifically

to the field of applying swarm intelligence to computer networks.

Finally, the implementation of BeeIP for additional network simulators and

also for real applications of collaborative agent-based systems (e.g., module for

the Linux kernel to be utilized by Wi-Fi devices) will give an extra value to the
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understanding its performance. Interesting future work would also be to apply

the proposed design to other types of networks, such as wireless sensor networks.

Different simulators such as GloboSim/QualNet1 or SensorSim (a sensor network

extension for ns-2) (Park et al., 2000) can be used to simulate sensor networks

more efficiently.

7.4 Publications of the work in this thesis

The research work presented in this thesis has led to the following publications.

Paper 1. Abstract: “The field of robotics relies heavily on various technologies

such as mechanical and electronic engineering, computing systems, and wireless

communication. The latter plays a significant role in the area of mobile robotics

by supporting remote interactions. An effective, fast, and reliable communication

between homogeneous or heterogeneous robots, as well as the ability to adapt

to the rapidly changing environmental conditions predicates the robots’ success

and completion of their tasks. In this paper we present our research position in

the area of adaptive nature-inspired routing protocols for mobile ad hoc networks

(MANETs). Our approach is based on the honeybee foraging behaviour and ability

to find and exchange information about productive sources of food in a rapidly

changed environment. We describe the research problem, present a brief review

of the relative literature, and illustrate our future plan.”

Paper 1. Citation: “Giagkos A., Wilson, M.S.: ”A Cross-layer Design for Bee-

Inspired Routing Protocols in MANETs”. In Proceedings of Towards Autonomous

Robotic Systems (TAROS) Conference. Kyriacou, T., et al. (eds.). TAROS 2009,

pp. 25-32. Ulster University (2009)”

Paper 2. Abstract: “We introduce a new bee-inspired routing protocol for

mobile ad hoc networks. Emphasis is given to the ability of bees to evaluate paths

by considering several quality factors. In order to achieve similar behaviour in the

networking environment, BeeIP is using cross-layering. Fetching parameters from

the lower PHY and MAC layers to the core of the protocol, offers the artificial

1See section 5.2 for information regarding this network simulator.
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bees the ability to make predictions of the link’s future performance. The simula-

tion results show that BeeIP achieves higher data delivery rates and less control

overhead compared to DSDV, and has slightly better results to AODV, initializing

less routing discovery processes.”

Paper 2. Citation: “Giagkos, A., Wilson, M.S.: ”BeeIP: Bee-Inspired protocol

for routing in mobile ad-hoc networks”. In Proceedings of the 11th International

Conference on Simulation of Adaptive Behaviour - From Animals to Animats 11.

Doncieux et al. (eds). SAB 2010, LNAI 6226, pp. 263-272, Springer-Verlag

(2010)”



Appendix A

BeeIP default values

The following table A.1 lists all the default values of BeeIP’s internal mechanisms,

e.g., thresholds for the timers, honeybee dancing emulation, etc. As in most of

other protocol’s RFC reports, these variables may be set by the user’s best guess,

according to the network characteristics. Here, each variable is briefly explained.

NETWORK DIAMETER is the maximum number of hops that can be found

in the longest route within the network topology.

MULTI PATH NO is the number of alternative paths that are allowed to be

found by each new scouting process. The larger the number, the longest the list

of alternatives.

MAX RECRUITS and FIRST RECRUITS are used to define the maxi-

mum and the first number of unemployed foragers to be recruited for a path.

RHO MINUS, RHO PLUS and RHO ADJ are used for the emulation of

the honeybee dancing and the Pearson’s r thresholds for negative and positive

correlation between time and path quality. The RHO ADJ is the constant number

which is added or removed from tha foraging capacity, when either a strong positive

or a strong negative correlation is found.

SCOUT START TTL, RESEND, STEP, and TRIES are used to con-

trol the scouting process. A new scout packet starts with an initial TTL and is

resent every RESED seconds. Each time the scout packet is resent, its TTL value
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is increased by a STEP. This makes sure that the scout packets do not flood the

network in order to find a destination close to the source node. However, after

TRIES number of resending a scout, the NETWORK DIAMETER is used.

BROKEN LINK TIMEOUT, NEIGHBOURS , SCOUTING , RDATA

are all used to control the timers’ with respect to cleaning the neigbouring nodes’,

scouting and routing repositories.

QUEUE PRUNE TIMEOUT and QUEUE MAX LEN are used to con-

trol the BeeIP queues (this is not the MAC interface queue which is controlled

by another protocol). QUEUE MAX LEN defines the number of packets that are

allowed to stay in the queue simultaneously.
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Variable Name Default Value Value Type

NETWORK DIAMETER 35 integer (hops)

MULTI PATH NO 4 integer (paths)

MAX RECRUITS 40 integer (pkts)

FIRST RECRUITS 20 integer (pkts)

RHO MINUS -0.8 float (Pearson’s r)

RHO PLUS 0.8 float (Pearson’s r)

RHO ADJ 4 integer (pkts)

SCOUT START TTL 3 integer (hops)

SCOUT TTL RESEND 0.4 float (secs)

SCOUT TTL STEP 3 integer (hops)

SCOUT MAX TRIES 5 integer

BROKEN LINK TIMEOUT 3 integer (secs)

NEIGHBOURS TIMEOUT 10 integer (secs)

SCOUTING TIMEOUT 6 integer (secs)

RDATA TIMEOUT 9 integer (secs)

QUEUE PRUNE TIMEOUT 4 integer (secs)

QUEUE MAX LEN 40 integer (pkts)

Table A.1: BeeIP default values.



Appendix B

Normalization to different scales

The following formula is used to convert two numbers of a scale A to B, to a

different scale C to D:

y = C + (x− A) ∗ (D − C)/(B − A) (B.1)

Simple practical illustration:

If x = 5 in a scale of 1 to 10, convert x to a number y in a scale of 1 to 100.

Answer:

Let, A = 1, B = 10, C = 1, D = 100. Using formula B.1:

y = C + (x− A) ∗ (D − C)/(B − A)

= 1 + (5− 1) ∗ (100− 1)/(10− 1)

= 50

(B.2)

Notice that if x = A, then y = C, and if x = B, y = D as required.
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Appendix C

Processing BeeIP control packets

Algorithms 7, 8 and 9 illustrate the logic for processing the BeeIP control packets

at any BeeIP node.
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Algorithm 7 Processing a scout packet

Input: A scout packet pkt
Output: A “loop”, “propagate scout” or a “reply with ack scout” result

1: procedure recvScout(pkt)
2: if pkt.Originator is me then
3: return loop
4: end if
5: if pkt.Dest is me then
6: if pkt’s scouting is unknown then
7: createScoutingData(pkt)
8: else
9: count ← 0

10: // Lookup acknowledged routing entries of previous scoutings
11: // with the same hive and me as the flower (multipath):
12: for all rData ∈ RoutingRepository do
13: if rData.ACK = 1 then
14: count ← count+ 1
15: end if
16: end for
17: if count ≥ MULTI PATH NO then
18: return loop
19: end if
20: end if
21: return reply with ack scout
22: end if
23: // I am a path node and I might want to propagate this.
24: if pkt.TTL > 0 then
25: if pkt’s scouting is unknown then
26: createScoutingData(pkt)
27: return propagate scout
28: end if
29: end if
30: return loop
31: end procedure
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Algorithm 8 Processing an ack scout packet

Input: An ack scout packet pkt
Output: An “ack scout at hive” or “propagate ack scout” result

1: procedure recvAckScout(pkt)
2: sData ← getScoutingData(pkt)
3: sData.ACK ← 1
4: updateNeighbouringData(pkt)
5: if pkt.Src is me then
6: return ack scout at hive
7: end if
8: return propagate ack scout
9: end procedure

Algorithm 9 Processing a forager or an ack forager packet

Input: A forager or an ack forager packet pkt
Output: A forager “at path”, or “at hive”, or “at flower”

1: procedure recvForager(pkt)
2: if pkt.Type is ack forager then
3: updateNeighbouringData(pkt)
4: end if
5: rData ← getRoutingData(pkt.PID) . Path ID
6: if rData not NULL then
7: rData.TSLastUsed ← max(rData.TSLastUsed, pkt.TS)
8: rData.ACK ← 1
9: if rData.Type is FLOWER and pkt.Dest is me then

10: return forager at flower
11: end if
12: if rData.Type is HIVE and pkt.Dest is me then
13: rData.TSLastReturned ← CURRENT TIME
14: rData.ForagersIn ← rData.ForagersIn+ 1
15: rData.ForagersOut ← rData.ForagersOut− 1
16: return forager at hive
17: end if
18: end if
19: return forager at path
20: end procedure



Appendix D

Working examples of packet flow

Two working examples of data packet flow are presented in this Appendix. Figure

D.1 illustrates the data flow between node A and node C using the path A ↔
B ↔ C, starting by a successful scouting process.

Figure D.2 illustrates an example where the link between A and C breaks due

to intermediate node B being disconnected. A new scouting process is initialized

when node A detects the broken path and an alternative path A ↔ D ↔ C is

discovered and used.
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Supplementary MLP training

results (MSE change)
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Di Caro, Gianni. 2003 (Dec.). Analysis of simulation environments for mobile

ad hoc networks. Tech. rept. 24-03. IDSIA, Lugano, (Switzerland).

Di Caro, Gianni, Ducatella, Frederick, & Gambardella,

Luca Maria. 2005. Special Issue on Self-organisation in Mobile Net-

working: AntHocNet: an adaptive nature-insipred algorithm for routing in

mobile ad hoc networks. AEIT.

Dorigo, Marco, & Stutzle, Thomas. 2004. Ant Colony Optimization. MIT

Press, Cambridge.
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