159 research outputs found

    Terrain visibility optimization problems

    Get PDF
    Ankara : The Department of Industrial Engineering and the Institute of Engineering and Sciences of Bilkent University, 2001.Thesis (Master's) -- Bilkent University, 2001.Includes bibliographical references leaves 92-96The Art Gallery Problem is the problem of determining the number of observers necessary to cover an art gallery such that every point is seen by at least one observer. This problem is well known and has a linear time solution for the 2 dimensional case, but little is known about 3-D case. In this thesis, the dominance relationship between vertex guards and point guards is searched and found that a convex polyhedron can be constructed such that it can be covered by some number of point guards which is one third of the number of the vertex guards needed. A new algorithm which tests the visibility of two vertices is constructed for the discrete case. How to compute the visible region of a vertex is shown for the continuous case. Finally, several potential applications of geometric terrain visibility in geographic information systems and coverage problems related with visibility are presented.Düger, İbrahimM.S

    Fast approximation of visibility dominance using topographic features as targets and the associated uncertainty

    Get PDF
    An approach to reduce visibility index computation time andmeasure the associated uncertainty in terrain visibility analysesis presented. It is demonstrated that the visibility indexcomputation time in mountainous terrain can be reduced substantially,without any significant information loss, if the lineof sight from each observer on the terrain is drawn only to thefundamental topographic features, i.e., peaks, pits, passes,ridges, and channels. However, the selected sampling of targetsresults in an underestimation of the visibility index ofeach observer. Two simple methods based on iterative comparisonsbetween the real visibility indices and the estimatedvisibility indices have been proposed for a preliminary assessmentof this uncertainty. The method has been demonstratedfor gridded digital elevation models

    How do treadmill speed and terrain visibility influence neuromuscular control of guinea fowl locomotion?

    Get PDF
    Locomotor control mechanisms must flexibly adapt to both anticipated and unexpected terrain changes to maintain movement and avoid a fall. Recent studies revealed that ground birds alter movement in advance of overground obstacles, but not treadmill obstacles, suggesting context-dependent shifts in the use of anticipatory control. We hypothesized that differences between overground and treadmill obstacle negotiation relate to differences in visual sensory information, which influence the ability to execute anticipatory manoeuvres. We explored two possible explanations: (1) previous treadmill obstacles may have been visually imperceptible, as they were low contrast to the tread, and (2) treadmill obstacles are visible for a shorter time compared with runway obstacles, limiting time available for visuomotor adjustments. To investigate these factors, we measured electromyographic activity in eight hindlimb muscles of the guinea fowl (Numida meleagris, N=6) during treadmill locomotion at two speeds (0.7 and 1.3 m s−1) and three terrain conditions at each speed: (i) level, (ii) repeated 5 cm low-contrast obstacles (90% contrast, black/white). We hypothesized that anticipatory changes in muscle activity would be higher for (1) high-contrast obstacles and (2) the slower treadmill speed, when obstacle viewing time is longer. We found that treadmill speed significantly influenced obstacle negotiation strategy, but obstacle contrast did not. At the slower speed, we observed earlier and larger anticipatory increases in muscle activity and shifts in kinematic timing. We discuss possible visuomotor explanations for the observed context-dependent use of anticipatory strategies

    Nationwide monitoring of geohazards in Great Britain with InSAR: feasibility mapping based on ERS-1/2 and ENVISAT imagery

    Get PDF
    We model terrain visibility and topographic distortions to the ERS-1/2 SAR and ENVISAT ASAR IS2 satellite acquisition modes in Great Britain using the 5m NEXTMap DTM. Predictions of Persistent Scatterers (PS) densities identifiable over the landmass are drawn using the CORINE Land Cover 2006 dataset which is calibrated based on 6 PS datasets available for various areas of the UK. InSAR feasibility to monitor ground motions is discussed through the example of the Manchester area, with particular regard to landslide deposits in the Peak District

    Learned navigation in unknown terrains: A retraction method

    Get PDF
    The problem of learned navigation of a circular robot R, of radius delta (is greater than or equal to 0), through a terrain whose model is not a-priori known is considered. Two-dimensional finite-sized terrains populated by an unknown (but, finite) number of simple polygonal obstacles are also considered. The number and locations of the vertices of each obstacle are unknown to R. R is equipped with a sensor system that detects all vertices and edges that are visible from its present location. In this context two problems are covered. In the visit problem, the robot is required to visit a sequence of destination points, and in the terrain model acquisition problem, the robot is required to acquire the complete model of the terrain. An algorithmic framework is presented for solving these two problems using a retraction of the freespace onto the Voronoi diagram of the terrain. Algorithms are then presented to solve the visit problem and the terrain model acquisition problem

    Terrain visibility impact on the preparation of landslide inventories: a practical example in Darjeeling district (India)

    Get PDF
    Landslide inventories are used for multiple purposes including landscape characterisation and monitoring, and landslide susceptibility, hazard and risk evaluation. Their quality and completeness can depend on the data and the methods with which they were produced. In this work we evaluate the effects of a variable visibility of the territory to map on the spatial distribution of the information collected in different landslide inventories prepared using different approaches in a study area. The method first classifies the territory in areas with different visibility levels from the paths (roads) used to map landslides and then estimates the landslide density reported in the inventories into the different visibility classes. Our results show that (1) the density of the information is strongly related to the visibility in inventories obtained through fieldwork, technical reports and/or newspapers, where landslides are under-sampled in low-visibility areas; and (2) the inventories obtained by photo interpretation of images suffer from a marked under-representation of small landslides close to roads or infrastructures. We maintain that the proposed procedure can be useful to evaluate the quality and completeness of landslide inventories and then properly orient their use.This research has been supported by the Natural Environment Research Council (grant no. NERC/DFID NE/P000649/1) and the Eusko Jaurlaritza (grant no. POS_2020_2_0010)

    Siting Multiple Observers for Maximum Coverage: An Accurate Approach

    Get PDF
    The selection of the minimal number of observers that ensures the maximum visual coverage over an area represented by a digital elevation model (DEM) have great interest in many elds, e.g., telecommunications, environment planning, among others. However, this problem is complex and intractable when the number of points of the DEM is relatively high. This complexity is due to three issues: 1) the di culty in determining the visibility of the terrain from one point, 2) the need to know the visibility at all points of the terrain and 3) the combinatorial complexity of the selection of observers. The recent progress in total-viewshed maps computation not only provides an e cient solu- tion to the rst two problems, but also opens other ways to new solutions that were unthinkable previously. This paper presents a new type of cartography, called the masked total viewshed map, and provides optimal solutions for both sequential and simultaneous observers location.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore