19 research outputs found

    Metsien kartoitus ja seuranta aktiivisella 3D-kaukokartoituksella

    Get PDF
    The main aim in forest mapping and monitoring is to produce accurate information for forest managers with the use of efficient methodologies. For example, it is important to locate harvesting sites and stands where forest operations should be carried out as well as to provide updates regarding forest growth, among other changes in forest structure. In recent years, remote sensing (RS) has taken a significant technological leap forward. It has become possible to acquire three-dimensional (3D), spatially accurate information from forest resources using active RS methods. In practical applications, mainly 3D information produced by airborne laser scanning (ALS) has opened up groundbreaking potential in natural resource mapping and monitoring. In addition to ALS, new satellite radars are also capable of acquiring spatially accurate 3D information. The main objectives of the present study were to develop 3D RS methodologies for large-area forest mapping and monitoring applications. In substudy I, we aim to map harvesting sites, while in substudy II, we monitor changes in the forest canopy structure. In studies III-V, efficient mapping and monitoring applications were developed and tested. In substudy I, we predicted plot-level thinning maturity within the next 10-year planning period. Stands requiring immediate thinning were located with an overall accuracy of 83%-86% depending on the prediction method applied. The respective prediction accuracy for stands reaching thinning maturity within the next 10 years was 70%-79%. Substudy II addressed natural disturbance monitoring that could be linked to forest management planning when an ALS time series is available. The accuracy of the damaged canopy cover area estimate varied between -16.4% to 5.4%. Substudy II showed that changes in the forest canopy structure can be monitored with a rather straightforward method by contrasting bi-temporal canopy height models. In substudy III, we developed a RS-based forest inventory method where single-tree RS is used to acquire modelling data needed in area-based predictions. The method uses ALS data and is capable of producing accurate stand variable estimates even at the sub-compartment level. The developed method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized. The method is especially suitable for large-area biomass or stem volume mapping. Based on substudy IV, the use of stereo synthetic aperture radar (SAR) satellite data in the prediction of plot-level forest variables appears to be promising for large-area applications. In the best case, the plot-level stem volume (VOL) was predicted with a relative error (RMSE%) of 34.9%. Typically, such a high level of prediction accuracy cannot be obtained using spaceborne RS data. Then, in substudy V, we compared the aboveground biomass and VOL estimates derived by radargrammetry to the ALS estimates. The difference between the estimation accuracy of ALS based and TerraSAR X based features was smaller than in any previous study in which ALS and different kinds of SAR materials have been compared. In this thesis, forest mapping and monitoring applications using active 3D RS were developed. Spatially accurate 3D RS enables the mapping of harvesting sites, the monitoring of changes in the canopy structure and even the making of a fully RS-based forest inventory. ALS is carried out at relatively low altitudes, which makes it relatively expensive per area unit, and other RS materials are still needed. Spaceborne stereo radargrammetry proved to be a promising technique to acquire additional 3D RS data efficiently as long as an accurate digital terrain model is available as a ground-surface reference.Metsien kartoitus ja seuranta aktiivisella 3D-kaukokartoituksella. Metsävaroista kerätään mahdollisimman tarkkaa tietoa metsänomistajan päätöksenteon tueksi. Tietoa kerätään puustotunnusten lisäksi toimenpidekohteista ja metsässä tapahtuvista muutoksista, kuten kasvusta ja luonnontuhoista. Laajojen metsäalueiden kartoituksessa käytetään apuna lentokoneesta tai satelliiteista tehtävää kaukokartoitusta. Metsien kaukokartoitus on viime vuosina ottanut merkittävän kehitysaskeleen, kun aktiiviset 3D-kaukokartoitusmenetelmät ovat yleistyneet. Aktiivisessa kaukokartoituksessa, kuten laserkeilauksessa ja tutkakuvauksessa instrumentti vastaanottaa lähettämäänsä säteilyä. Laserkeilaus tuottaa kohteesta 3D-havaintoja, jotka metsäalueilla kuvaavat suoraan puuston pituutta ja metsän tiheyttä. Laserkeilauksella kohteesta saadaan tällä hetkellä tyypillisesti 0,5−20 havaintoa/m2. Laserkeilaus tehdään lentokoneesta 500−3000 m korkeudesta, jolloin aineiston hankinta laajoilta alueilta on kallista verrattuna satelliittikuviin. Myös satelliittitutkakuvilta voidaan tuottaa spatiaalisesti tarkkaa 3D-tietoa, jonka pistetiheys on tosin huomattavasti harvempaa kuin laserkeilauksella. Tutkimuksessa kehitettiin sovelluksia metsien kartoitukseen ja seurantaan hyödyntäen aktiivisia 3D-kaukokartoitusmenetelmiä. Metsiköiden toimenpidetarvetta ennustettiin onnistuneesti laserkeilausaineiston avulla. Harvennettaviksi luokitellut metsiköt pystyttiin kartoittamaan 70%−86% tarkkuudella. Kahden ajankohdan laserkeilausaineistoja käytettiin lumituhojen vuoksi vaurioituneiden puiden kartoittamiseen. Tuhoutuneen latvuspinta-alan kartoitus perustui laserkeilausaineistosta tuotettujen latvusmallien erotuskuviin. Kehitetty menetelmä soveltuu latvusrakenteessa tapahtuneiden muutosten, kuten lumi- ja tuulituhojen, kartoittamiseen ja seurantaan. Laajojen metsäalueiden kartoitus perustuu yleensä kaksivaiheeseen inventointimenetelmään, jossa käytetään maastomittauksia ja tiedon yleistyksessä kaukokartoitusaineistoa. Kartoitusta voidaan tehostaa joko maastomittauksia vähentämällä tai hyödyntämällä mahdollisimman halpaa kaukokartoitusaineistoa. Tutkimuksessa kehitettiin täysin kaukokartoitukseen perustuva kaksivaiheinen metsien inventointimenetelmä. Tarvittava maastotieto mitattiin suoraan laserkeilausaineistosta. Menetelmä soveltuu puuston tilavuuden tai biomassan kartoitukseen erityisesti alueille, joilla maastomittausten kustannukset ovat merkittävät. Satelliittitutkakuvat ovat potentiaalinen aineisto etenkin laajojen alueiden metsävarojen seurannassa. Synteettisen apertuurin tutka (SAR)-stereokuvilta mitattiin automaattisesti 3D-pisteitä, joita käytettiin puustotunnusten ennustamisessa. Keskitilavuus ennustettiin parhaimmillaan lähes samalla tarkkuudella kuin laserkeilauksella. Tutkimus osoitti aktiivisen 3D-kaukokartoitustiedon mahdollistavan entistä yksityiskohtaisemman metsien kartoituksen ja seurannan

    Forest inventory attribute estimation using airborne laser scanning, aerial stereoimagery, radargrammetry and interferometry - Finnish experiences of the 3D techniques

    Get PDF
    Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widespread, and the popularity of ALS has also raised interest toward alternative 3D techniques, including airborne and spaceborne techniques. Point clouds can be generated using photogrammetry, radargrammetry and interferometry. Airborne stereo imagery can be used in deriving photogrammetric point clouds, as very-high-resolution synthetic aperture radar (SAR) data are used in radargrammetry and interferometry. ALS is capable of mapping both the terrain and tree heights in mixed forest conditions, which is an advantage over aerial images or SAR data. However, in many jurisdictions, a detailed ALS-based digital terrain model is already available, and that enables linking photogrammetric or SAR-derived heights to heights above the ground. In other words, in forest conditions, the height of single trees, height of the canopy and/or density of the canopy can be measured and used in estimation of forest inventory attributes. In this paper, first we review experiences of the use of digital stereo imagery and spaceborne SAR in estimation of forest inventory attributes in Finland, and we compare techniques to ALS. In addition, we aim to present new implications based on our experiences

    Forest mapping by the radargrammetric processing of TerraSAR-X satellite images

    Get PDF
    Metsävarojen inventointiin tarvittaisiin ympäri maailman entistä tarkempaa ja edullisempaa kaukokartoitusmenetelmää, jonka avulla metsävaratiedot voitaisiin myös päivittää nopeasti. Optisiin satelliittikuviin perustuva puustotulkinta on epätarkkaa ja nopeasti saturoituvaa. Lentolaserkeilaus olisi tarkka kartoitusmenetelmä, mutta sen kustannukset ovat suuret ja inventointiprosessi on hidas. Uudet, korkearesoluutioisia tutkakuvia ottavat satelliitit ovat viime vuosina lisänneet tutkijoiden kiinnostusta SAR-kuvien (Synthetic Aperture Radar) hyödyntämiseen luonnonvarojen kartoituksessa. Maisterin tutkielmassa tarkasteltiin stereokuvamittauksella TerraSAR-X -kuvista tuotettua 3D-tietoa (eng. SAR radargrammetry) metsävarojen inventoinnissa. Radargrammetriassa tutkasatelliitin ottamasta stereokuvaparista etsitään vastinpisteitä, joiden sijainti paikanne-taan. Havaintojen korkeus maanpinnasta saatiin erotuksena laserkeilattuun maastomalliin. Stereokuvamitattua 3D-pistepilveä käytettiin opinnäytetyössä puustotunnusten estimointiin aluepohjaisen laserkeilausinventoinnin menetelmillä. Koealatasolla radargrammetria tuotti puuston kokonaistilavuuden, biomassan, pohjapinta-alan ja keskipituuden estimointitarkkuuksiksi (suhteellinen RMSE) 40,3 %, 39,9 %, 34,0 % ja 15,9 %. Yli 2 hehtaarin metsikkökuvioilla vastaavat tarkkuudet olivat 20,2 %, 20,4 %, 36,1 % ja 6,9 %. Ainoastaan pohjapinta-alan arviointi ei tarkentunut kuviokoon kasvaessa. Yhteenvetona voidaan todeta, että radargrammetrian perusteella puiden latvusten korkeus pystytään määrittämään erittäin tarkasti, mutta puuston pohjapinta-alan kanssa pistepilvestä lasketut puuston tiheyttä kuvaavat piirteet korreloivat huonosti. Siitä huolimatta gradun tulokset puuston kokonaistilavuuden ja biomassan estimointitarkkuudesta olivat selvästi optisiin satelliittikuviin perustuvaa puustotulkintaa tarkempia.Accurate and economical remote sensing method with good temporal resolution is required for mapping up-to-date information about the forest resources. Detecting forests by optical satellite images is an inaccurate procedure with the saturation problem. Airborne laser scanning (ALS) is a precise application, but the inventory process is slow and expensive. Recently the new synthetic aperture radar (SAR) satellites with a high spatial resolution have caused a renaissance of radar-based remote sensing. The purpose of the master’s thesis was to investigate the accuracy of forest mapping by radargrammetric processing of TerraSAR-X satellite images. The radargrammetry is based on stereoscopic measurement, which calculates 3D coordinates for corresponding points of the SAR image pair. In the research an area-based approach (ABA) was utilized to estimate forest attributes from the 3D points, and digital terrain model (DTM) produced by ALS was used to calculate height of the corresponding points. In plot-level the relative RMSEs for stem volume, biomass, basal area and mean height were 40.3 %, 39.9 %, 34.0 % and 15.9 %. In stands larger than 2 hectares the corresponding RMSEs were 20.2 %, 20.4 %, 36.1 % and 6.9 %. It’s notable that the estimation of basal area didn’t improve in stand-level at all. According to the research SAR radargrammetry is a precise technology to estimate forest canopy height, but the mapping of forest density is very unclear. Nevertheless the results about the estimation accuracy of forest stem volume and biomass by SAR radargrammetry were clearly better than the comparable estimation accuracy of optical satellite images

    Puustobiomassan ennustaminen harvapulssisella lentolaserkeilausaineistolla

    Get PDF
    Viime aikoina asetetut tavoitteet puun energiakäytön lisäämiseksi ovat luoneet tarpeen kehittää uusia kaukokartoitukseen perustuvia inventointimenetelmiä energiapuun kartoitukseen. Laser-keilaus on kaukokartoitusmenetelmä, jota käytetään laajojen alueiden metsän inventoinneissa. Tähän asti laserkeilausta on käytetty pääasiassa tuottamaan tietoa puutavaralajeista. Energia-puun kartoitusta käsitelleet tutkimukset ovat tutkineet tarkkuutta pääasiassa koealatasolla. Tässä tutkielmassa tarkasteltiin aluepohjaisella laserkeilausinventoinnilla ennustettujen energia-puun määrää kuvaavien tunnusten tarkkuutta kuviotasolla. Laserkeilausaineistosta ennustettiin tilavuusestimaatit kahdella eri tavalla, käyttäen pisteaineistoa ja maanpintamallia. Estimaatit laskettiin puuston kokonaistilavuudelle ja puutavaralajien tilavuuksille. Lisäksi laskettiin biomas-saestimaatit puun koko maanpäälliselle biomassalle, runkopuun biomassalle, latvusbiomassalle ja kantobiomassalle. Saatuja estimaatteja verrattiin maastomittauksiin ja monilähteisen valta-kunnan metsien inventoinnin tuottamiin estimaatteihin samalla alueella. Kahdesta ennustamisessa käytetystä menetelmästä todettiin pistepilven käyttö latvusmallin käyttöä tarkemmaksi menetelmäksi. Pistepilveä käyttäen tuotettujen tärkeimpien biomassaes-timaattien tarkkuus (suhteellinen RMSE) oli hukkapuulle 37,4 %, latvusbiomassalle 21,8 % ja kantobiomassalle 18,6 %. Tuloste perusteella energiapuun kartoituksessa laserkeilausaineistolta päästiin suurin piirtein samaan tarkkuuteen kuvioittaisella arvioinnilla. Tässä tutkielmassa tarkasteltiin ainoastaan energiapuuksi kelpaavan puuston määrää kuviota-solla. Tutkielmassa ei pyritty etsimään energiapuun korjaamiseen soveltuvia kohteita tai määrit-tämään toimenpidetarpeita. Jotta energiapuun kartoittaminen laserkeilausaineistolta palvelisi metsäteollisuuden energiapuuhankintaa, tulisi jatkossa kehittää menetelmiä, joilla maastosta löydetään energiapuunkorjuuseen soveltuvat kohteet.In recent years objectives to increase fuelwood usage have created a need to develop new re-mote sensing based methods to map fuelwood reserves. Laser scanning (LiDAR) is a remote sensing method which has been used in traditional forest inventories on large forest areas. These inventories have mainly concentrated on the stem volume instead of the total tree bio-mass. Former studies concerning fuelwood inventory accuracy have been made on a sample plot level. The aim of this study was to determine the precision of LiDAR based fuelwood inventory on a forest stand level. Wood stem volume and biomass estimates were produced by using two dif-ferent methods: point cloud and digital terrain model. The estimates were compared with field inventory results and results from the multi-source National Forest Inventory. Of the two compared methods the point cloud method was found to be more accurate than the method based on digital terrain model. When the point cloud was used, the accuracy (RMSE %) of the most important fuelwood estimates were following: waste wood vol-ume 37.4 %, branch biomass 21.8 % and stump biomass 18.6 %. The study indicates that re-sults got by laser scanning are on similar level as results got with traditional standwise inventory. This study concentrated only to predict the amount of fuelwood on the forest stand level. The suitability of the stand for fuelwood harvesting was not estimated. In order to utilize LiDAR-based fuelwood inventory for wood acquisition in forest industry, methods to estimate the suita-bility of the stand for harvesting need to be developed

    Predicting vegetation characteristics in a changing environment by means of laser scanning

    Get PDF
    Accurate and up-to-date information concerning vegetation characteristics is needed for decision-making from individual-tree-level management activities to the strategic planning of forest resources. Outdated information may lead to unbeneficial or even wrong decisions, at least when it comes to the timing of management activities. Airborne laser scanning (ALS) has so far been successfully used for applications involving detailed vegetation mapping because of its capability to simultaneously produce accurate information on vegetation and ground surfaces. The aim of this dissertation was to develop methods for characterizing vegetation and its changes in varying environments. A method called multisource single-tree inventory (MS-STI) was developed in substudy I to update urban tree attributes. In MS-STI stem map was produced with terrestrial laser scanning (TLS) and by combining the stem map with predictors derived from ALS data it was possible to obtain improved estimates of diameter-at-breast height but also to produce new attributes such as height and crown size. Boat-based mobile laser scanning (MLS) data were employed in substudy II to map riverbank vegetation and identify changes. The overall classification accuracy of 73% was obtained, which is similar to accuracies found in other studies. With multi-temporal MLS data sets changes in vegetation were mapped year to year. In substudy III, open access ALS data were combined with multisource national forest inventory (NFI) data to investigate the drivers associated to wind damage. The special interest was in ALS-based predictors to map areas with wind disturbance and apply logistic regression to produce a continuous probability surface of wind predisposition to identify areas most likely to experience wind damage. The results demonstrated that a combination of ALS and multisource NFI in the modelling approach increased the prediction accuracy from 76% to 81%. The dissertation showed the capability of ALS and MLS for characterizing vegetation and mapping changes in varying environments. The developed applications could increase and expand the utilization of multi-temporal 3D data sets as well as increase data value. The results of this dissertation can be utilized in producing more accurate, diverse, and up-to-date information for decision-making related to natural resources.Luonnonvaroja koskevaa päätöksentekoa varten tarvitaan luotettavaa ja ajantasaista tietoa, oli kyse sitten yksittäiseen puuhun liittyvistä toimenpiteistä tai laajojen alueiden strategisesta suunnittelusta. Vanhentunut tieto voi johtaa epäedullisiin tai jopa vääriin ratkaisuihin, erityisesti hoitotoimenpiteiden ajoituksen osalta. Ilmalaserkeilaus on menetelmä, jossa yksityiskohtaista kolmiulotteista tietoa tuotetaan esimerkiksi lentokoneeseen tai helikopteriin asennetun laserkeilaimen avulla. Laserkeilan mittaa etäisyyttä kohteeseen laserpulssin kulkuajan perusteella. Ilmalaserkeilaus on jo operatiivisessa käytössä metsävaratiedonkeruussa Pohjoismaissa sillä sen avulla voidaan tuottaa tarkkaa tietoa samanaikaisesti sekä maanpinnan korkeudesta ja maaston muodoista että kasvillisuuden pituudesta ja tiheydestä. Maastolaserkeilauksella tarkoitetaan pienemmän alueen inventointiin soveltuvaa menetelmää, jossa laserkeilain on kolmijalan päällä tai liikkuvalla alustalla. Väitöskirjan tavoitteena oli kehittää menetelmiä kasvillisuuden ominaisuuksien ennustamiseen laserkeilauksen avulla erilaisissa ympäristöissä. Väitöskirja koostuu kolmesta osajulkaisusta, joista ensimmäisessä kehitettiin monilähteinen yksittäisten puiden inventointimenetelmä kaupunkipuiden tunnusten päivittämiseen. Kyseisessä menetelmässä maastolaserkeilauksen avulla tuotettiin puukartta, joka yhdistettiin ilmalaserkeilauksella saatuihin tietoihin. Ilmalaserkeilauksesta saatujen yksittäisten puiden latvojen pituus- ja tiheystunnusten avulla voitiin parantaa kaupunkipuiden läpimittatietoja sekä tuottaa uusia tunnuksia kuten pituus ja latvuksen koko lisättäväksi kaupunkipuurekisterin tietokantaan. Toisessa osajulkaisussa käytettiin veneeseen asennettua laserkeilainta jokiympäristön kasvillisuuden kartoittamiseen sekä kasvillisuudessa tapahtuneiden muutosten havainnoimiseen. Kasvillisuus ja paljas maa oli mahdollista erotella 73 prosentin tarkkuudella, vastaaviin tarkkuuksiin on päästy myös aiemmissa tutkimuksissa, joissa tosin hyödynnettiin tarkempaa maastoaineistoa. Useampiaikaisilla aineistoilla oli mahdollista kartoittaa vuosien välillä tapahtuneita kasvillisuuden muutoksia. Kolmannessa osajulkaisussa hyödynnettiin avoimesti saatavilla olevaa ilmalaserkeilaus- ja monilähteistä valtion metsien inventoinnin (VMI) aineistoa tuulituhojen kartoittamiseen sekä ennustamiseen. Osajulkaisussa ennustettiin tuulituhoriskin suuruutta ilmalaserkeilauksesta saatavien maanpinnan korkeuden ja kasvillisuuden pituuden sekä monilähde-VMI-aineistosta saadun puulajitiedon avulla. Tarkoituksena oli selvittää tuhoriskille erityisen alttiit alueet mahdollisia metsänhoitotoimenpiteitä varten. Puulajitieto lisäsi tuulituhojen kartoitustarkkuutta 76 prosentista 81 prosenttiin. Väitöskirja esitteli erilaisilta alustoilta tehtävän laserkeilauksen kykyä kasvillisuuden luonnehtimiseen sekä muutosten huomioimiseen erilaisissa ympäristöissä monipuolista päätöksentekoa varten. Kaupunkiympäristöissä yksittäisten puiden tunnukset ovat kohdennettujen toimenpiteiden kannalta tärkeitä, kun taas tietoa jokiympäristöjen kasvillisuudesta ja sen muutoksista voidaan hyödyntää päivitettäessä tulvariskimalleja. Tieto tuulituhoille riskialttiista alueista voi auttaa metsänomistajia ja ammattilaisia metsänhoitotoimenpiteiden suunnittelussa. Väitöskirjassa kehitettyjen menetelmien avulla voidaan laajentaa useampiaikaisten laserkeilausaineistojen hyödyntämistä sekä saada lisäarvoa aineistoista. Väitöskirjan tuloksia voidaan hyödyntää tarkemman, monipuolisemman ja ajantasaisemman tiedon tuottamisessa erilaisessa luonnonvaroja koskevassa suunnittelussa ja päätöksenteossa

    3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

    Get PDF
    Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed
    corecore