97 research outputs found

    Automatic topic detection of multi-lingual news stories.

    Get PDF
    Wong Kam Lai.Thesis (M.Phil.)--Chinese University of Hong Kong, 2000.Includes bibliographical references (leaves 92-98).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Our Contributions --- p.5Chapter 1.2 --- Organization of this Thesis --- p.5Chapter 2 --- Literature Review --- p.7Chapter 2.1 --- Dragon Systems --- p.7Chapter 2.2 --- Carnegie Mellon University (CMU) --- p.9Chapter 2.3 --- University of Massachusetts (UMass) --- p.10Chapter 2.4 --- IBM T.J. Watson Research Center --- p.11Chapter 2.5 --- BBN Technologies --- p.12Chapter 2.6 --- National Taiwan University (NTU) --- p.13Chapter 2.7 --- Drawbacks of Existing Approaches --- p.14Chapter 3 --- Overview of Proposed Approach --- p.15Chapter 3.1 --- News Source --- p.15Chapter 3.2 --- Story Preprocessing --- p.18Chapter 3.3 --- Concept Term Generation --- p.20Chapter 3.4 --- Named Entity Extraction --- p.21Chapter 3.5 --- Gross Translation of Chinese to English --- p.21Chapter 3.6 --- Topic Detection method --- p.22Chapter 3.6.1 --- Deferral Period --- p.22Chapter 3.6.2 --- Detection Approach --- p.23Chapter 4 --- Concept Term Model --- p.25Chapter 4.1 --- Background of Contextual Analysis --- p.25Chapter 4.2 --- Concept Term Generation --- p.28Chapter 4.2.1 --- Concept Generation Algorithm --- p.28Chapter 4.2.2 --- Concept Term Representation for Detection --- p.33Chapter 5 --- Topic Detection Model --- p.35Chapter 5.1 --- Text Representation and Term Weights --- p.35Chapter 5.1.1 --- Story Representation --- p.35Chapter 5.1.2 --- Topic Representation --- p.43Chapter 5.1.3 --- Similarity Score --- p.43Chapter 5.1.4 --- Time adjustment scheme --- p.46Chapter 5.2 --- Gross Translation Method --- p.48Chapter 5.3 --- The Detection System --- p.50Chapter 5.3.1 --- Detection Requirement --- p.50Chapter 5.3.2 --- The Top Level Model --- p.52Chapter 5.4 --- The Clustering Algorithm --- p.55Chapter 5.4.1 --- Similarity Calculation --- p.55Chapter 5.4.2 --- Grouping Related Elements --- p.56Chapter 5.4.3 --- Topic Identification --- p.60Chapter 6 --- Experimental Results and Analysis --- p.63Chapter 6.1 --- Evaluation Model --- p.63Chapter 6.1.1 --- Evaluation Methodology --- p.64Chapter 6.2 --- Experiments on the effects of tuning the parameter --- p.68Chapter 6.2.1 --- Experiment Setup --- p.68Chapter 6.2.2 --- Results and Analysis --- p.69Chapter 6.3 --- Experiments on the effects of named entities and concept terms --- p.74Chapter 6.3.1 --- Experiment Setup --- p.74Chapter 6.3.2 --- Results and Analysis --- p.75Chapter 6.4 --- Experiments on the effect of using time adjustment --- p.77Chapter 6.4.1 --- Experiment Setup --- p.77Chapter 6.4.2 --- Results and Analysis --- p.79Chapter 6.5 --- Experiments on mono-lingual detection --- p.80Chapter 6.5.1 --- Experiment Setup --- p.80Chapter 6.5.2 --- Results and Analysis --- p.80Chapter 7 --- Conclusions and Future Work --- p.83Chapter 7.1 --- Conclusions --- p.83Chapter 7.2 --- Future Work --- p.85Chapter A --- List of Topics annotated for TDT3 Corpus --- p.86Chapter B --- Matching evaluation topics to hypothesized topics --- p.90Bibliography --- p.9

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    A model for information retrieval driven by conceptual spaces

    Get PDF
    A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model

    Extracting bilingual terms from the Web

    Get PDF
    In this paper we make two contributions. First, we describe a multi-component system called BiTES (Bilingual Term Extraction System) designed to automatically gather domain-specific bilingual term pairs from Web data. BiTES components consist of data gathering tools, domain classifiers, monolingual text extraction systems and bilingual term aligners. BiTES is readily extendable to new language pairs and has been successfully used to gather bilingual terminology for 24 language pairs, including English and all official EU languages, save Irish. Second, we describe a novel set of methods for evaluating the main components of BiTES and present the results of our evaluation for six language pairs. Results show that the BiTES approach can be used to successfully harvest quality bilingual term pairs from the Web. Our evaluation method delivers significant insights about the strengths and weaknesses of our techniques. It can be straightforwardly reused to evaluate other bilingual term extraction systems and makes a novel contribution to the study of how to evaluate bilingual terminology extraction systems

    Computational approaches to semantic change (Volume 6)

    Get PDF
    Semantic change — how the meanings of words change over time — has preoccupied scholars since well before modern linguistics emerged in the late 19th and early 20th century, ushering in a new methodological turn in the study of language change. Compared to changes in sound and grammar, semantic change is the least understood. Ever since, the study of semantic change has progressed steadily, accumulating a vast store of knowledge for over a century, encompassing many languages and language families. Historical linguists also early on realized the potential of computers as research tools, with papers at the very first international conferences in computational linguistics in the 1960s. Such computational studies still tended to be small-scale, method-oriented, and qualitative. However, recent years have witnessed a sea-change in this regard. Big-data empirical quantitative investigations are now coming to the forefront, enabled by enormous advances in storage capability and processing power. Diachronic corpora have grown beyond imagination, defying exploration by traditional manual qualitative methods, and language technology has become increasingly data-driven and semantics-oriented. These developments present a golden opportunity for the empirical study of semantic change over both long and short time spans

    Language representations for computational argumentation

    Full text link
    Argumentation is an essential feature and, arguably, one of the most exciting phenomena of natural language use. Accordingly, it has fascinated scholars and researchers in various fields, such as linguistics and philosophy, for long. Its computational analysis, falling under the notion of computational argumentation, is useful in a variety of domains of text for a range of applications. For instance, it can help to understand users’ stances in online discussion forums towards certain controversies, to provide targeted feedback to users for argumentative writing support, and to automatically summarize scientific publications. As in all natural language processing pipelines, the text we would like to analyze has to be introduced to computational argumentation models in the form of numeric features. Choosing such suitable semantic representations is considered a core challenge in natural language processing. In this context, research employing static and contextualized pretrained text embedding models has recently shown to reach state-of-the-art performances for a range of natural language processing tasks. However, previous work has noted the specific difficulty of computational argumentation scenarios with language representations as one of the main bottlenecks and called for targeted research on the intersection of the two fields. Still, the efforts focusing on the interplay between computational argumentation and representation learning have been few and far apart. This is despite (a) the fast-growing body of work in both computational argumentation and representation learning in general and (b) the fact that some of the open challenges are well known in the natural language processing community. In this thesis, we address this research gap and acknowledge the specific importance of research on the intersection of representation learning and computational argumentation. To this end, we (1) identify a series of challenges driven by inherent characteristics of argumentation in natural language and (2) present new analyses, corpora, and methods to address and mitigate each of the identified issues. Concretely, we focus on five main challenges pertaining to the current state-of-the-art in computational argumentation: (C1) External knowledge: static and contextualized language representations encode distributional knowledge only. We propose two approaches to complement this knowledge with knowledge from external resources. First, we inject lexico-semantic knowledge through an additional prediction objective in the pretraining stage. In a second study, we demonstrate how to inject conceptual knowledge post hoc employing the adapter framework. We show the effectiveness of these approaches on general natural language understanding and argumentative reasoning tasks. (C2) Domain knowledge: pretrained language representations are typically trained on big and general-domain corpora. We study the trade-off between employing such large and general-domain corpora versus smaller and domain-specific corpora for training static word embeddings which we evaluate in the analysis of scientific arguments. (C3) Complementarity of knowledge across tasks: many computational argumentation tasks are interrelated but are typically studied in isolation. In two case studies, we show the effectiveness of sharing knowledge across tasks. First, based on a corpus of scientific texts, which we extend with a new annotation layer reflecting fine-grained argumentative structures, we show that coupling the argumentative analysis with other rhetorical analysis tasks leads to performance improvements for the higher-level tasks. In the second case study, we focus on assessing the argumentative quality of texts. To this end, we present a new multi-domain corpus annotated with ratings reflecting different dimensions of argument quality. We then demonstrate the effectiveness of sharing knowledge across the different quality dimensions in multi-task learning setups. (C4) Multilinguality: argumentation arguably exists in all cultures and languages around the globe. To foster inclusive computational argumentation technologies, we dissect the current state-of-the-art in zero-shot cross-lingual transfer. We show big drops in performance when it comes to resource-lean and typologically distant target languages. Based on this finding, we analyze the reasons for these losses and propose to move to inexpensive few-shot target-language transfer, leading to consistent performance improvements in higher-level semantic tasks, e.g., argumentative reasoning. (C5) Ethical considerations: envisioned computational argumentation applications, e.g., systems for self-determined opinion formation, are highly sensitive. We first discuss which ethical aspects should be considered when representing natural language for computational argumentation tasks. Focusing on the issue of unfair stereotypical bias, we then conduct a multi-dimensional analysis of the amount of bias in monolingual and cross-lingual embedding spaces. In the next step, we devise a general framework for implicit and explicit bias evaluation and debiasing. Employing intrinsic bias measures and benchmarks reflecting the semantic quality of the embeddings, we demonstrate the effectiveness of new debiasing methods, which we propose. Finally, we complement this analysis by testing the original as well as the debiased language representations for stereotypically unfair bias in argumentative inferences. We hope that our contributions in language representations for computational argumentation fuel more research on the intersection of the two fields and contribute to fair, efficient, and effective natural language processing technologies

    Itzulpen automatiko gainbegiratu gabea

    Get PDF
    192 p.Modern machine translation relies on strong supervision in the form of parallel corpora. Such arequirement greatly departs from the way in which humans acquire language, and poses a major practicalproblem for low-resource language pairs. In this thesis, we develop a new paradigm that removes thedependency on parallel data altogether, relying on nothing but monolingual corpora to train unsupervisedmachine translation systems. For that purpose, our approach first aligns separately trained wordrepresentations in different languages based on their structural similarity, and uses them to initializeeither a neural or a statistical machine translation system, which is further trained through iterative backtranslation.While previous attempts at learning machine translation systems from monolingual corporahad strong limitations, our work¿along with other contemporaneous developments¿is the first to reportpositive results in standard, large-scale settings, establishing the foundations of unsupervised machinetranslation and opening exciting opportunities for future research

    Itzulpen automatiko gainbegiratu gabea

    Get PDF
    192 p.Modern machine translation relies on strong supervision in the form of parallel corpora. Such arequirement greatly departs from the way in which humans acquire language, and poses a major practicalproblem for low-resource language pairs. In this thesis, we develop a new paradigm that removes thedependency on parallel data altogether, relying on nothing but monolingual corpora to train unsupervisedmachine translation systems. For that purpose, our approach first aligns separately trained wordrepresentations in different languages based on their structural similarity, and uses them to initializeeither a neural or a statistical machine translation system, which is further trained through iterative backtranslation.While previous attempts at learning machine translation systems from monolingual corporahad strong limitations, our work¿along with other contemporaneous developments¿is the first to reportpositive results in standard, large-scale settings, establishing the foundations of unsupervised machinetranslation and opening exciting opportunities for future research

    Augmenting Translation Lexica by Learning Generalised Translation Patterns

    Get PDF
    Bilingual Lexicons do improve quality: of parallel corpora alignment, of newly extracted translation pairs, of Machine Translation, of cross language information retrieval, among other applications. In this regard, the first problem addressed in this thesis pertains to the classification of automatically extracted translations from parallel corpora-collections of sentence pairs that are translations of each other. The second problem is concerned with machine learning of bilingual morphology with applications in the solution of first problem and in the generation of Out-Of-Vocabulary translations. With respect to the problem of translation classification, two separate classifiers for handling multi-word and word-to-word translations are trained, using previously extracted and manually classified translation pairs as correct or incorrect. Several insights are useful for distinguishing the adequate multi-word candidates from those that are inadequate such as, lack or presence of parallelism, spurious terms at translation ends such as determiners, co-ordinated conjunctions, properties such as orthographic similarity between translations, the occurrence and co-occurrence frequency of the translation pairs. Morphological coverage reflecting stem and suffix agreements are explored as key features in classifying word-to-word translations. Given that the evaluation of extracted translation equivalents depends heavily on the human evaluator, incorporation of an automated filter for appropriate and inappropriate translation pairs prior to human evaluation contributes to tremendously reduce this work, thereby saving the time involved and progressively improving alignment and extraction quality. It can also be applied to filtering of translation tables used for training machine translation engines, and to detect bad translation choices made by translation engines, thus enabling significative productivity enhancements in the post-edition process of machine made translations. An important attribute of the translation lexicon is the coverage it provides. Learning suffixes and suffixation operations from the lexicon or corpus of a language is an extensively researched task to tackle out-of-vocabulary terms. However, beyond mere words or word forms are the translations and their variants, a powerful source of information for automatic structural analysis, which is explored from the perspective of improving word-to-word translation coverage and constitutes the second part of this thesis. In this context, as a phase prior to the suggestion of out-of-vocabulary bilingual lexicon entries, an approach to automatically induce segmentation and learn bilingual morph-like units by identifying and pairing word stems and suffixes is proposed, using the bilingual corpus of translations automatically extracted from aligned parallel corpora, manually validated or automatically classified. Minimally supervised technique is proposed to enable bilingual morphology learning for language pairs whose bilingual lexicons are highly defective in what concerns word-to-word translations representing inflection diversity. Apart from the above mentioned applications in the classification of machine extracted translations and in the generation of Out-Of-Vocabulary translations, learned bilingual morph-units may also have a great impact on the establishment of correspondences of sub-word constituents in the cases of word-to-multi-word and multi-word-to-multi-word translations and in compression, full text indexing and retrieval applications
    corecore