173 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    High-Precision Localization Using Visual Landmarks Fused with Range Data

    Get PDF
    Abstract Visual landmark matching with a pre-built landmark database is a popular technique for localization. Traditionally, landmar

    A Novel Approach To Intelligent Navigation Of A Mobile Robot In A Dynamic And Cluttered Indoor Environment

    Get PDF
    The need and rationale for improved solutions to indoor robot navigation is increasingly driven by the influx of domestic and industrial mobile robots into the market. This research has developed and implemented a novel navigation technique for a mobile robot operating in a cluttered and dynamic indoor environment. It divides the indoor navigation problem into three distinct but interrelated parts, namely, localization, mapping and path planning. The localization part has been addressed using dead-reckoning (odometry). A least squares numerical approach has been used to calibrate the odometer parameters to minimize the effect of systematic errors on the performance, and an intermittent resetting technique, which employs RFID tags placed at known locations in the indoor environment in conjunction with door-markers, has been developed and implemented to mitigate the errors remaining after the calibration. A mapping technique that employs a laser measurement sensor as the main exteroceptive sensor has been developed and implemented for building a binary occupancy grid map of the environment. A-r-Star pathfinder, a new path planning algorithm that is capable of high performance both in cluttered and sparse environments, has been developed and implemented. Its properties, challenges, and solutions to those challenges have also been highlighted in this research. An incremental version of the A-r-Star has been developed to handle dynamic environments. Simulation experiments highlighting properties and performance of the individual components have been developed and executed using MATLAB. A prototype world has been built using the WebotsTM robotic prototyping and 3-D simulation software. An integrated version of the system comprising the localization, mapping and path planning techniques has been executed in this prototype workspace to produce validation results

    LSH-RANSAC: An Incremental Scheme for Scalable Localization

    Get PDF
    This paper addresses the problem of feature- based robot localization in large-size environments. With recent progress in SLAM techniques, it has become crucial for a robot to estimate the self-position in real-time with respect to a large- size map that can be incrementally build by other mapper robots. Self-localization using large-size maps have been studied in litelature, but most of them assume that a complete map is given prior to the self-localization task. In this paper, we present a novel scheme for robot localization as well as map representation that can successfully work with large-size and incremental maps. This work combines our two previous works on incremental methods, iLSH and iRANSAC, for appearance- based and position-based localization

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    LiDAR based multi-sensor fusion for localization, mapping, and tracking

    Get PDF
    Viimeisen vuosikymmenen aikana täysin itseohjautuvien ajoneuvojen kehitys on herättänyt laajaa kiinnostusta niin teollisuudessa kuin tiedemaailmassakin, mikä on merkittävästi edistänyt tilannetietoisuuden ja anturiteknologian kehitystä. Erityisesti LiDAR-anturit ovat nousseet keskeiseen rooliin monissa havainnointijärjestelmissä niiden tarjoaman pitkän kantaman havaintokyvyn, tarkan 3D-etäisyystiedon ja luotettavan suorituskyvyn ansiosta. LiDAR-teknologian kehittyminen on mahdollistanut entistä luotettavampien ja kustannustehokkaampien antureiden käytön, mikä puolestaan on osoittanut suurta potentiaalia parantaa laajasti käytettyjen kuluttajatuotteiden tilannetietoisuutta. Uusien LiDAR-antureiden hyödyntäminen tarjoaa tutkijoille monipuolisen valikoiman tehokkaita työkaluja, joiden avulla voidaan ratkaista paikannuksen, kartoituksen ja seurannan haasteita nykyisissä havaintojärjestelmissä. Tässä väitöskirjassa tutkitaan LiDAR-pohjaisia sensorifuusioalgoritmeja. Tutkimuksen pääpaino on tiheässä kartoituksessa ja globaalissa paikan-nuksessa erilaisten LiDAR-anturien avulla. Tutkimuksessa luodaan kattava tietokanta uusien LiDAR-, IMU- ja kamera-antureiden tuottamasta datasta. Tietokanta on välttämätön kehittyneiden anturifuusioalgoritmien ja yleiskäyttöisten paikannus- ja kartoitusalgoritmien kehittämiseksi. Tämän lisäksi väitöskirjassa esitellään innovatiivisia menetelmiä globaaliin paikannukseen erilaisissa ympäristöissä. Esitellyt menetelmät kartoituksen tarkkuuden ja tilannetietoisuuden parantamiseksi ovat muun muassa modulaarinen monen LiDAR-anturin odometria ja kartoitus, toimintavarma multimodaalinen LiDAR-inertiamittau-sjärjestelmä ja tiheä kartoituskehys. Tutkimus integroi myös kiinteät LiDAR -anturit kamerapohjaisiin syväoppimismenetelmiin kohteiden seurantaa varten parantaen kartoituksen tarkkuutta dynaamisissa ympäristöissä. Näiden edistysaskeleiden avulla autonomisten järjestelmien luotettavuutta ja tehokkuutta voidaan merkittävästi parantaa todellisissa käyttöympäristöissä. Väitöskirja alkaa esittelemällä innovatiiviset anturit ja tiedonkeruualustan. Tämän jälkeen esitellään avoin tietokanta, jonka avulla voidaan arvioida kehittyneitä paikannus- ja kartoitusalgoritmeja hyödyntäen ainutlaatuista perustotuuden kehittämismenetelmää. Työssä käsitellään myös kahta haastavaa paikannusympäristöä: metsä- ja kaupunkiympäristöä. Lisäksi tarkastellaan kohteen seurantatehtäviä sekä kameraettä LiDAR-tekniikoilla ihmisten ja pienten droonien seurannassa. ---------------------- The development of fully autonomous driving vehicles has become a key focus for both industry and academia over the past decade, fostering significant progress in situational awareness abilities and sensor technology. Among various types of sensors, the LiDAR sensor has emerged as a pivotal component in many perception systems due to its long-range detection capabilities, precise 3D range information, and reliable performance in diverse environments. With advancements in LiDAR technology, more reliable and cost-effective sensors have shown great potential for improving situational awareness abilities in widely used consumer products. By leveraging these novel LiDAR sensors, researchers now have a diverse set of powerful tools to effectively tackle the persistent challenges in localization, mapping, and tracking within existing perception systems. This thesis explores LiDAR-based sensor fusion algorithms to address perception challenges in autonomous systems, with a primary focus on dense mapping and global localization using diverse LiDAR sensors. The research involves the integration of novel LiDARs, IMU, and camera sensors to create a comprehensive dataset essential for developing advanced sensor fusion and general-purpose localization and mapping algorithms. Innovative methodologies for global localization across varied environments are introduced. These methodologies include a robust multi-modal LiDAR inertial odometry and a dense mapping framework, which enhance mapping precision and situational awareness. The study also integrates solid-state LiDARs with camera-based deep-learning techniques for object tracking, refining mapping accuracy in dynamic environments. These advancements significantly enhance the reliability and efficiency of autonomous systems in real-world scenarios. The thesis commences with an introduction to innovative sensors and a data collection platform. It proceeds by presenting an open-source dataset designed for the evaluation of advanced SLAM algorithms, utilizing a unique ground-truth generation method. Subsequently, the study tackles two localization challenges in forest and urban environments. Furthermore, it highlights the MM-LOAM dense mapping framework. Additionally, the research explores object-tracking tasks, employing both camera and LiDAR technologies for human and micro UAV tracking

    Enhancing RGB-D SLAM Using Deep Learning

    Get PDF

    Analysing Large-scale Surveillance Video

    Get PDF
    Analysing large-scale surveillance video has drawn signi cant attention because drone technology and high-resolution sensors are rapidly improving. The mobility of drones makes it possible to monitor a broad range of the environment, but it introduces a more di cult problem of identifying the objects of interest. This thesis aims to detect the moving objects (mostly vehicles) using the idea of background subtraction. Building a decent background is the key to success during the process. We consider two categories of surveillance videos in this thesis: when the scene is at and when pronounced parallax exists. After reviewing several global motion estimation approaches, we propose a novel cost function, the log-likelihood of the student t-distribution, to estimate the background motion between two frames. The proposed idea enables the estimation process to be e cient and robust with auto-generated parameters. Since the particle lter is useful in various subjects, it is investigated in this thesis. An improvement to particle lters, combining near-optimal proposal and Rao-Blackwellisation, is discussed to increase the e ciency when dealing with non-linear problems. Such improvement is used to solve visual simultaneous localisation and mapping (SLAM) problems and we call it RB2-PF. Its superiority is evident in both simulations of 2D SLAM and real datasets of visual odometry problems. Finally, RB2-PF based visual odometry is the key component to detect moving objects from surveillance videos with pronounced parallax. The idea is to consider multiple planes in the scene to improve the background motion estimation. Experiments have shown that false alarms signi cantly reduced. With the landmark information, a ground plane can be worked out. A near-constant velocity model can be applied after mapping the detections on the ground plane regardless of the position and orientation of the camera. All the detection results are nally processed by a multi-target tracker, the Gaussian mixture probabilistic hypothesis density (GM-PHD) lter, to generate tracks

    Inertial learning and haptics for legged robot state estimation in visually challenging environments

    Get PDF
    Legged robots have enormous potential to automate dangerous or dirty jobs because they are capable of traversing a wide range of difficult terrains such as up stairs or through mud. However, a significant challenge preventing widespread deployment of legged robots is a lack of robust state estimation, particularly in visually challenging conditions such as darkness or smoke. In this thesis, I address these challenges by exploiting proprioceptive sensing from inertial, kinematic and haptic sensors to provide more accurate state estimation when visual sensors fail. Four different methods are presented, including the use of haptic localisation, terrain semantic localisation, learned inertial odometry, and deep learning to infer the evolution of IMU biases. The first approach exploits haptics as a source of proprioceptive localisation by comparing geometric information to a prior map. The second method expands on this concept by fusing both semantic and geometric information, allowing for accurate localisation on diverse terrain. Next, I combine new techniques in inertial learning with classical IMU integration and legged robot kinematics to provide more robust state estimation. This is further developed to use only IMU data, for an application entirely different from robotics: 3D reconstruction of bone with a handheld ultrasound scanner. Finally, I present the novel idea of using deep learning to infer the evolution of IMU biases, improving state estimation in exteroceptive systems where vision fails. Legged robots have the potential to benefit society by automating dangerous, dull, or dirty jobs and by assisting first responders in emergency situations. However, there remain many unsolved challenges to the real-world deployment of legged robots, including accurate state estimation in vision-denied environments. The work presented in this thesis takes a step towards solving these challenges and enabling the deployment of legged robots in a variety of applications

    Pre-Trained Driving in Localized Surroundings with Semantic Radar Information and Machine Learning

    Get PDF
    Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung, diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmentierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzwerk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird eine beispielhafte autonome Parkfunktionalität in einem realen Versuchsträger umgesetzt. Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit. Im ersten Schritt wird ein Datensatz von 8.2 · 10^6 punktweise semantisch gelabelten Radarpunktwolken über eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren Datensätze dieser Annotationsebene und Radarspezifikation öffentlich verfügbar. Das überwachte Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen. Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstützt. Für die kohärente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Aktivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen unterdrückt. Ein speziell für Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorgefilterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste semantische Radar Graph-SLAM für beliebige statische Umgebungen realisiert. Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmentierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten autonomen Parkfunktionalität evaluiert. Im Durchschnitt über 42 autonome Parkmanöver (∅3.73 km/h) bei durchschnittlicher Manöverlänge von ∅172.75m wird ein Median absoluter Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare Radar-Lokalisierungsergebnisse um ≈ 50% übertrifft. Die Kartengenauigkeit von veränderlichen, neukartierten Orten über eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige Kartenkonsistenz bei einer Abweichung von ∅0.163m. Für das autonome Parken wurde ein gegebener Trajektorienplaner und Regleransatz verwendet
    corecore