194 research outputs found

    EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow

    Get PDF
    We propose a novel approach for optical flow estimation , targeted at large displacements with significant oc-clusions. It consists of two steps: i) dense matching by edge-preserving interpolation from a sparse set of matches; ii) variational energy minimization initialized with the dense matches. The sparse-to-dense interpolation relies on an appropriate choice of the distance, namely an edge-aware geodesic distance. This distance is tailored to handle occlusions and motion boundaries -- two common and difficult issues for optical flow computation. We also propose an approximation scheme for the geodesic distance to allow fast computation without loss of performance. Subsequent to the dense interpolation step, standard one-level variational energy minimization is carried out on the dense matches to obtain the final flow estimation. The proposed approach, called Edge-Preserving Interpolation of Correspondences (EpicFlow) is fast and robust to large displacements. It significantly outperforms the state of the art on MPI-Sintel and performs on par on Kitti and Middlebury

    A generative traversability model for monocular robot self-guidance

    Get PDF
    The research work disclosed in this publication is partially funded by the Strategic Educational Pathways Scholarship (Malta). The scholarship is part-financed by the European Union - European Social Fund (ESF) under the Operational Programme II - Cohesion Policy 2007-2013, Empowering People for More Jobs and a Better Quality of Life.In order for robots to be integrated into human active spaces and perform useful tasks, they must be capable of discriminating between traversable surfaces and obstacle regions in their surrounding environment. In this work, a principled semi-supervised (EM) framework is presented for the detection of traversable image regions for use on a low-cost monocular mobile robot. We propose a novel generative model for the occurrence of traversability cues, which are a measure of dissimilarity between safe-window and image superpixel features. Our classification results on both indoor and outdoor images sequences demonstrate its generality and adaptability to multiple environments through the online learning of an exponential mixture model. We show that this appearance-based vision framework is robust and can quickly and accurately estimate the probabilistic traversability of an image using no temporal information. Moreover, the reduction in safe-window size as compared to the state-of-the-art enables a self-guided monocular robot to roam in closer proximity of obstacles.peer-reviewe

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestĂŒtzten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal fĂŒr fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestĂŒtzten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollstĂ€ndige volumetrische Information einer Szene. Diese Technologie bietet dabei das grĂ¶ĂŸte Potenzial, immersive Erlebnisse zu mehr RealitĂ€tsnĂ€he zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der InkompatibilitĂ€t derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen fĂŒr 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die KompatibilitĂ€t zwischen Anwendungen und GerĂ€ten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken fĂŒr eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollstĂ€ndige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen AnsĂ€tze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung

    Scene Segmentation and Object Classification for Place Recognition

    Get PDF
    This dissertation tries to solve the place recognition and loop closing problem in a way similar to human visual system. First, a novel image segmentation algorithm is developed. The image segmentation algorithm is based on a Perceptual Organization model, which allows the image segmentation algorithm to ‘perceive’ the special structural relations among the constituent parts of an unknown object and hence to group them together without object-specific knowledge. Then a new object recognition method is developed. Based on the fairly accurate segmentations generated by the image segmentation algorithm, an informative object description that includes not only the appearance (colors and textures), but also the parts layout and shape information is built. Then a novel feature selection algorithm is developed. The feature selection method can select a subset of features that best describes the characteristics of an object class. Classifiers trained with the selected features can classify objects with high accuracy. In next step, a subset of the salient objects in a scene is selected as landmark objects to label the place. The landmark objects are highly distinctive and widely visible. Each landmark object is represented by a list of SIFT descriptors extracted from the object surface. This object representation allows us to reliably recognize an object under certain viewpoint changes. To achieve efficient scene-matching, an indexing structure is developed. Both texture feature and color feature of objects are used as indexing features. The texture feature and the color feature are viewpoint-invariant and hence can be used to effectively find the candidate objects with similar surface characteristics to a query object. Experimental results show that the object-based place recognition and loop detection method can efficiently recognize a place in a large complex outdoor environment

    Brain MR Image Segmentation: From Multi-Atlas Method To Deep Learning Models

    Get PDF
    Quantitative analysis of the brain structures on magnetic resonance (MR) images plays a crucial role in examining brain development and abnormality, as well as in aiding the treatment planning. Although manual delineation is commonly considered as the gold standard, it suffers from the shortcomings in terms of low efficiency and inter-rater variability. Therefore, developing automatic anatomical segmentation of human brain is of importance in providing a tool for quantitative analysis (e.g., volume measurement, shape analysis, cortical surface mapping). Despite a large number of existing techniques, the automatic segmentation of brain MR images remains a challenging task due to the complexity of the brain anatomical structures and the great inter- and intra-individual variability among these anatomical structures. To address the existing challenges, four methods are proposed in this thesis. The first work proposes a novel label fusion scheme for the multi-atlas segmentation. A two-stage majority voting scheme is developed to address the over-segmentation problem in the hippocampus segmentation of brain MR images. The second work of the thesis develops a supervoxel graphical model for the whole brain segmentation, in order to relieve the dependencies on complicated pairwise registration for the multi-atlas segmentation methods. Based on the assumption that pixels within a supervoxel are supposed to have the same label, the proposed method converts the voxel labeling problem to a supervoxel labeling problem which is solved by a maximum-a-posteriori (MAP) inference in Markov random field (MRF) defined on supervoxels. The third work incorporates attention mechanism into convolutional neural networks (CNN), aiming at learning the spatial dependencies between the shallow layers and the deep layers in CNN and producing an aggregation of the attended local feature and high-level features to obtain more precise segmentation results. The fourth method takes advantage of the success of CNN in computer vision, combines the strength of the graphical model with CNN, and integrates them into an end-to-end training network. The proposed methods are evaluated on public MR image datasets, such as MICCAI2012, LPBA40, and IBSR. Extensive experiments demonstrate the effectiveness and superior performance of the three proposed methods compared with the other state-of-the-art methods
    • 

    corecore