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Abstract

Quantitative analysis of the brain structures on magnetic resonance (MR) images

plays a crucial role in examining brain development and abnormality, as well as in

aiding the treatment planning. Although manual delineation is commonly considered

as the gold standard, it suffers from the shortcomings in terms of low efficiency and

inter-rater variability. Therefore, developing automatic anatomical segmentation of

human brain is of importance in providing a tool for quantitative analysis (e.g., volume

measurement, shape analysis, cortical surface mapping). Despite a large number

of existing techniques, the automatic segmentation of brain MR images remains a

challenging task due to the complexity of the brain anatomical structures and the

great inter- and intra- individual variability among these anatomical structures.

To address the existing challenges, four methods are proposed in this thesis. The

first work proposes a novel label fusion scheme for the multi-atlas segmentation.

A two-stage majority voting scheme is developed to address the over-segmentation

problem in the hippocampus segmentation of brain MR images. The second work of

the thesis develops a supervoxel graphical model for the whole brain segmentation, in

order to relieve the dependencies on complicated pairwise registration for the multi-

atlas segmentation methods. Based on the assumption that pixels within a supervoxel

are supposed to have the same label, the proposed method converts the voxel labeling

problem to a supervoxel labeling problem which is solved by a maximum-a-posteriori

(MAP) inference in Markov random field (MRF) defined on supervoxels. The third

work incorporates attention mechanism into convolutional neural networks (CNN),

aiming at learning the spatial dependencies between the shallow layers and the deep

layers in CNN and producing an aggregation of the attended local feature and high-

level features to obtain more precise segmentation results. The fourth method takes

advantage of the success of CNN in computer vision, combines the strength of the

graphical model with CNN, and integrates them into an end-to-end training network.

The proposed methods are evaluated on public MR image datasets, such as MIC-

CAI2012, LPBA40, and IBSR. Extensive experiments demonstrate the effectiveness

and superior performance of the three proposed methods compared with the other

state-of-the-art methods.
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Chapter 1

Introduction

In this chapter, we start with introducing the topic of this Ph.D. dissertation —

anatomical structure segmentation of the brain MR images in Section 1.1. Next, the

motivation of the study and the research challenges related to the brain anatomical

segmentation are presented in Section 1.2 and Section 1.3, respectively. Then, we

clarify the contributions of the work in Section 1.4. Finally, the structure of this

dissertation is explained in Section 1.5.

1.1 Segmentation of Brain MR Images

As an essential task in medical image analysis, segmentation aims at providing each

pixel/voxel a label which refers to the tissue or the anatomical structure. The seg-

mentation result is either a set of contours describing the region boundaries or an

image of labels which identifies each homogeneous region [29]. The brain segmenta-

tion problem discussed in this thesis mainly focuses on brain anatomical structure

segmentation, which relates to assigning each pixel/voxel in the image with a label

associated with an anatomical structure in the brain.

Brain anatomical segmentation plays an important role in clinical applications.

Growing evidence has shown that neurological disorders such as multiple sclerosis

[17, 74, 89], stroke [59, 78], and Alzheimer’s disease [30, 57] are associated with struc-
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tural changes in the brain, resulting in volume or shape alternations in magnetic

resonance (MR) images. Accurate brain anatomical segmentation is widely used to

study the morphometric changes or to measure the volume for characterizing the

neurological disorders. Moreover, segmentation not only contributes to examine the

brain development and abnormality but also plays an important role in detection

and localization of the abnormal tissues and surrounding healthy structures, which

is an essential task for surgical planning, postoperative analysis, and chemo/radio-

therapy planning [2, 54]. In addition, the segmented brain usually serves as the

preliminary step of many brain image analysis, such as cortical surface mapping [38]

and brain images registration and warping [96], of which the performance directly

influences the outcome of following procedures. Except for the clinical applications,

the anatomically segmented brain also provides a framework of functional visualiza-

tion and quantitive analysis for studying and analyzing the abnormalities such as

neurodegenerative disorder, psychiatric disorders, and healthy aging.

Magnetic resonance imaging (MRI) is an imaging technology that produces three-

dimensional detailed anatomical images. Since the MRI offers high-resolution images

and shows high contrast between soft tissues, MRI becomes the most popular medical

imaging modality used for quantitive and qualitative analysis of the brain structures.

Therefore, anatomical segmentation on brain MR images provides an effective tool

for the anatomical and functional study of the brain.

1.2 Motivation

Because of the crucial role that segmented brain MR images play in research and clin-

ical applications, precise anatomical segmentation becomes an essential prerequisite

for the quantitative assessment of the brain.

Traditionally, the brain segmentation on MR images is accomplished by trained

experts. The manual delineation (sometimes called “annotation”) is usually consid-
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ered as the “gold standard”. However, the manual annotation can take up to a week

for high-resolution MR images [35]. Moreover, it suffers from the shortcoming of

intra- and inter-rater variability [24]. As a result, the manual segmentation is prone

to errors and difficult to reproduce. Therefore, the manual delineation is not suitable

for deploying on large-scale datasets or in applications where time is critical [50].

On the other hand, some fully-automated algorithms, e.g., thresholding, region

growing, clustering methods, yield high accuracy in specific problems. Generally, the

fully-automated algorithms rely on the intensity information of the MR images to

classify the pixel/voxel or utilize a probabilistic atlas which stores the spatial infor-

mation to aid the intensity-based segmentation. Unfortunately, these fully-automated

algorithms only work for some specific segmentation tasks, e.g., tissue classification

of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) [35], while

they are not applicable to the detailed segmentation due to the overlap of intensity

profiles for the complicated anatomical structures of the brain. Moreover, the perfor-

mance of the fully-automated methods is limited by the artifacts in the MR images,

including intensity inhomogeneity, noise, and partial volume [29].

As a middle-ground method between manual delineation and fully-automated

method, the supervised methods learn/encode the relationship between the labels

and the intensity images from the manually annotated training data, and predict

the optimal segmentation for the target unlabeled image. Most importantly, the

supervised methods can deal with the segmentation of the complicated anatomical

structures. Inspired by the recent success in brain segmentation achieved by the su-

pervised methods, e.g., atlas-based methods and learning-based methods, this thesis

focuses on developing supervised segmentation algorithm for whole brain segmenta-

tion to produce fast, repeatable and accurate results.
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1.3 Challenges

Brain anatomical segmentation is a challenging task despite significant efforts made

by scientists and researchers. Figure 1.1 depicts some 2D slices of the brain images

and label images, which reflects the challenges in brain anatomical segmentation. In

this section, we present several research challenges for the field of brain anatomical

structure segmentation.

Intensity overlap. MR signal holds the properties to differentiate brain and

nonbrain tissues or even to distinguish among GM, WM, and CSF. Some methods

thus achieve competitive performance [34, 102] in basic tissue classification (i.e., GM,

WM, and CSF) or brain extraction (i.e., brain and non-brain tissue). However, as

shown in Figure 1.1, the intensity overlap between distributions of different anatomical

structures is severe, especially in the cortical area.

Large variations in shape, size, appearance. The shape, volume, and ap-

pearance of the anatomical structures relate to the gender, age, and pathological

conditions with tumors, lesions, and edemas. These factors result in significant intra-

class variations among different subjects. For example, as shown in Figure 1.1, there

are considerable variations in the appearance, shape, and the size of the brain anatom-

ical structures among different subjects. Moreover, the quality of the MR images is

also affected by the scanner, machine, and even acquisition time.

Complicated labeling protocol. Compared with the basic tissue classification

problem which only has three classes, the labeling protocol for anatomical segmen-

tation is more complicated. For some datasets, the total number of classes can be

more than 100. Some structures, e.g., hippocampus, are of small volume but sig-

nificant pathological and physiological meaning. Therefore, successful and accurate

segmentation of those small anatomical structures is a challenging task. Moreover,

the inter-class variations in terms of the structure volume are quite significant for

the brain anatomical segmentation, resulting in imbalanced class distribution, which
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Figure 1.1: 2D slice examples of the MR images for brain anatomical segmentation.
1st row, 2nd row, and 3rd row are the intensity images from three datasets; the last
row shows the corresponding label images of the 3rd row.
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becomes an obstacle for some learning-based methods.

Spatial and contextual information. The spatial information plays an essen-

tial role in brain anatomy. Given a position in the brain, the number of the possible

classes for the voxel is very limited. As a result, involving the position prior is a crucial

point for successful segmentation of the brain anatomical structure. Moreover, the

relative positions of the brain anatomical structures are fixed, e.g., the amygdala is

anterior and superior to the hippocampus; structures of the left hemisphere and right

hemisphere are rarely in the adjacent regions. Therefore, learning or interpreting this

contextual relation also contributes to improving the segmentation performance.

Precise boundaries. Limited by the confounding appearance and the compli-

cated labeling protocol, it is rather challenging to obtain a precise boundary for each

anatomical structure. Moreover, the training data is usually too small to cover the

various pattern of structure appearance. Therefore, the detailed prediction is the

most challenging task for the brain anatomical segmentation problem.

Labeling inconsistency. As for the anatomical segmentation, the labeling

within the neighborhood should be homogeneous. However, the labeling inconsis-

tency problem is common in the segmentation results produced by some learning-

based methods, e.g., support vector machine (SVM) and random forest. For the deep

learning based methods, e.g., convolutional neural network (CNN), the labeling in-

consistency is alleviated, however, the segmentation is usually followed by a graphical

model, e.g., Markov random field (MRF) and conditional random fields (CRF), to

refine the inconsistent labeling results.

1.4 Objective and Contributions

The objective of this Ph.D. dissertation is to develop supervised methods for improv-

ing the performance of the anatomical segmentation of brain MR image. To this end,

we proposed four methods in this thesis for the aim of obtaining accurate segmen-
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tation, including a two-stage majority voting scheme, a supervoxel based graphical

model, a CNN with attention mechanism, and an end-to-end trainable network which

combines CNN with high order CRF. This section enlists the major contributions of

this dissertation as follows:

1. We develop a novel two-stage majority voting framework for multi-atlas seg-

mentation of hippocampus on brain MR images. The first majority voting

fuses the atlas labels at the image patch level with sliding a window across the

target image, followed by the second majority voting which fuses the results

of the first voting for the overlapping positions. We experimentally demon-

strated the effectiveness of the two-stage majority voting strategy in avoiding

the over-segmentation problem by comparing with the original voting scheme.

2. We propose a supervoxel based graphical model for brain anatomical segmen-

tation. Supervoxel is an aggregation of voxels with similar attributes. Based on

the assumption that the voxels within the same supervoxel have the same label,

we construct the graphical model on the supervoxels. By minimizing the en-

ergy function associated with the supervoxel based graphical model, the dense

labeling of MR image is converted to the supervoxel labeling problem. Since

supervoxels are considered as the nodes in the graphical model, the number of

variables is much less than the graphical model defined on voxels, resulting in

short inference time. Moreover, because all the voxels inside the supervoxel are

assigned the same label, the labeling consistency is thus encouraged within the

supervoxel.

3. We propose a spatial attention model to capture the spatial dependencies be-

tween two feature maps based on the cosine similarity. We model this spa-

tial attention function as building layers in CNN and combine it with the

encoder-decoder CNN architecture. The spatial attention block connects the

high-level features from the up-sampling path and the finer features from the

down-sampling path and computes an attention map that highlights the related
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spatial positions in the finer feature maps. By combining the related finer fea-

tures with the high-level features, the net is equipped with the ability of precise

localizing and detailed boundaries prediction.

4. We develop a 2D CNN architecture, which benefits the model in terms of low

memory requirement, deep architecture, and fine-tuning on the pre-trained

model. In order to deal with the 3D data format in MR images, we embed

the spatial position information along with the intensity images in the inputs.

The incorporation of the position information not only compensates for the loss

of the spatial context in the third dimension but also enables the net to train

on both intensity and spatial prior.

5. We propose a unified framework which combines the strength of CNN with

high order CRF. Considering the characteristic of brain anatomical structures,

we propose a semi-densely connected pairwise potential which encourages the

smoothness of the labeling between two pixels within a neighborhood. In ad-

dition, we apply a class-specific kernel weight to the high order potential. We

derive the mean field approximation for the high order CRF and model the in-

ference as building blocks of CNN so that the CNN and high order CRF can be

trained in an end-to-end fashion where the parameters are learned jointly dur-

ing the training phase. By employing the superpixel based high order term, the

proposed high order CRF encourages the labeling consistency among the pixels

within the same superpixel. Extensive experiments demonstrate that involving

the high order potential contributes to improving the segmentation accuracy

compared with the other graphical models.

1.5 Organization of Thesis

The rest of the thesis is structured as follows: Chapter 2 reviews the existing super-

vised methods for brain anatomical segmentation. The related background details

regarding the techniques used in this thesis are also included. Chapter 3 proposes
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a novel two-stage majority voting scheme for multi-atlas based segmentation of hip-

pocampus in brain MR images. Chapter 4 proposes a new whole brain segmenta-

tion framework based on supervoxel based graphical model. Chapter 5 develops an

encoder-decoder CNN architecture for brain anatomical segmentation, which employs

the attention mechanism to improve the ability of detailed prediction. Chapter 6 de-

velops an end-to-end training network which integrates the CNN with the high order

CRF for whole brain segmentation on MR images. Chapter 7 concludes the thesis

with overall discussions and intuitive directions for future work.
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Chapter 2

Background

2.1 Overview

For anatomical segmentation of the brain MR images, the existing methodologies

can be categorized into three groups: multi-atlas segmentation, graphical model, and

learning based method. In this chapter, we review the related works regarding the

three methods along with the corresponding background knowledge.

2.2 Multi-atlases Segmentation

2.2.1 Background

Atlas-guided segmentation is a widely used method for the neuroanatomical structure

segmentation. By registering the target image to the manually labeled image, one can

obtain a mapping between two coordinate systems which can be used to transfer the

labels from the atlas to the target image. This technique refers to the classic single-

atlas segmentation procedure. However, the single atlas is not capable of dealing with

the wide anatomical variation. Consequently, instead of the single atlas, multiple

atlases are employed for brain anatomical structure segmentation.

Multi-atlases segmentation can be viewed as a supervised training algorithm which
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Figure 2.1: Building blocks of multi-atlas segmentation [50] (Dashed blocks are op-
tional steps).

relies on the manually delineated data (commonly called “atlas”). In this approach,

each atlas is potentially used for segmenting the target image. A typical multi-atlases

segmentation method includes applying registration between the target image and

each atlas image (commonly called “pairwise registration”). The pairwise registration

establishes the voxelwise spatial correspondence between the target and each atlas

image. Based on the registration results, the atlas labels are transformed to the target

image space, which refers to “label propagation”. Then, by fusing those candidate

labels, the optimal label is obtained at each voxel, which is called “label fusion”.

Figure 2.1 depicts a general framework of the multi-atlas segmentation method. In the

rest of the section, we review two key components in Figure 2.1, pairwise registration

and label fusion, which relate to the work of this thesis.
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2.2.2 Related Work

Registration. In multi-atlas segmentation, registration is in charge of establish-

ing the spatial correspondence between the target image and each atlas. Based on

the geometric transformation, it can be divided into rigid and non-rigid registration.

Rigid registration is usually applied to rigid structures, e.g., bones, or employed as a

pre-registration strategy. For brain anatomical structures, the multi-atlas segmenta-

tion methods usually adopt complex deformable models which assign each location a

spatial transformation vector, such as nonlinear deformable models [42, 86] or non-

parametric diffeomorphisms [15, 110].

For multi-atlas segmentation, since the registration is performed between the tar-

get and each atlas pairwisely, the registration step becomes the computational bottle-

neck. Some methods can reduce the computational burden of the pairwise registration

by reducing the number of atlases [124]. Alternatively, some research co-registered all

the atlases to construct a template atlas. By performing the registration between the

target and the template atlas, this approach can reduce the computation cost of regis-

tration but also might lead to the decrease of the performance due to the suboptimal

registrations [4, 98]. Moreover, the patch-based technique searches the neighborhood

in the atlas and thus relax the one-to-one correspondence assumption in multi-atlas

segmentation. Therefore, patch-based methods can be combined with the multi-atlas

segmentation for alleviating the requirements for high accurate pairwise registration.

[8, 13, 88, 116].

Label fusion. In multi-atlases segmentation, the segmentation errors stem from

the registration errors. As the core of the multi-atlases segmentation algorithm, label

fusion is applied to account for the registration errors. Majority voting [48, 91],

which selects the most frequent label at each position, is the simplest yet efficient

label fusion strategy. In order to utilize the image intensity information, majority

voting was extended to weighted fusion by assigning each atlas a global/local weight

based on the similarity between the target and the atlas. The global weighted fusion
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utilizes the global information and associate each atlas with a unique weight which is

estimated by comparing the mutual information [6] or by posing it as a least square

problem [18]. However, the global weight cannot explain the spatial variety. Instead,

local weighted fusion methods are developed to use local similarities between the atlas

and the target (e.g., local absolute difference [55], local cross-correlation [7], Gaussian

intensity difference function[58], and Jacobian determinant of the deformation fields

[85]). Wang et al. [117] developed the joint label fusion to account for the correlations

of label errors produced by different atlases in the voting strategy. The weights are

optimized to minimize the total expected segmentation error, which relates to the

pairwise dependencies among the atlases.

Sabuncu et al. [91] proposed a generative model for label fusion, which is formu-

lated by marginalizing the conditional probability with respect to a mapping field.

By configuring the mapping field, the model evolves into different label fusion algo-

rithms and generalize the global and local weighted fusion methods. Based on this

generative probabilistic model, Iglesias et al. [51] applied a joint histogram instead

of the Gaussian noise in [91], extending the generative model to intermodality fusion;

Bai et al. [13] integrated the patch-based method with the generative model, leading

to a probabilistic patch-based label fusion.

In addition, another category of probabilistic label fusion methods is established

on the simultaneous truth and performance level estimation (STAPLE) [120], which

integrates a stochastic model of rater behavior into the estimation process. Many

works have been developed in modifying the original probabilistic model, including

defining data-driven a priori distribution [70], introducing a hierarchical noise model

[9], and integrating non-local correspondence into the STAPLE framework [8].

Another progress in multi-atlas segmentation is the application of the patch-based

technique, which is derived from image denoising [26, 62]. Based on the intuitive idea

that similar patches tend to have the same label, patch-based technique searches for

similar patches in the neighborhood of the atlas images. As done in [13, 25, 117], the
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patch-based technique can be incorporated into the label fusion scheme and account

for the registration errors.

2.3 Random Field for Segmentation Problem

2.3.1 Background

The segmentation problem can be posed as a MAP estimation for an appropriately de-

fined graphical model which is associated with a CRF [65, 68, 99]. Given an image I,

a random field is defined over a set of random variables X = {X1, X2, . . . , XN}, where

each random variable is associated with a corresponding image pixel i ∈ {1, 2, . . . , N}

and takes a value from the label set L = {l1, l2 . . . , lk}. The CRF (X, I) is character-

ized by a Gibbs distribution:

P (X | I) =
1

Z(I)
exp

(
−
∑
c∈C

ψc(Xc | I)
)

(2.1)

where the partition function Z(I) is a normalizing constant, clique c is a set of random

variables that are conditionally dependent on each other, C is the set of all the cliques,

and ψc is the potential term induced by the clique c. The Gibbs energy of the labeling

configuration x ∈ LN is:

E(x) =
∑
c∈C

ψc(xc) (2.2)

where notation of conditioning on I is omitted for convenience. Therefore, the MAP

labeling of the random field in Equation (2.1) corresponds to minimizing the Gibbs

energy function in Equation (2.2).

Based on the definition of the cliques and the corresponding potentials, the CRF

model can be divided into three models:

Adjacency CRF: In the adjacency CRF model, the clique set C involves the

unary cliques and the pairwise cliques. The energy function is:

E(x) =
∑
i∈V

ψu(xi) +
∑

i∈V,j∈Ni

ψp(xi, xj) (2.3)
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Each unary clique is associated with a random variable Xi, the corresponding unary

potential ψu measures the cost of assigning label xi to pixel i. The pairwise clique

consists of a pair of random variables, Xi and its neighbor Xj. The pairwise potential

ψp measures the cost of assigning label xi and xj to pixel i and j simultaneously.

Fully connected CRF: The only difference between adjacency CRF and fully

connected CRF is that the fully connected potentials are defined over all the pixel

pairs in the image instead of a neighborhood system. The energy function is:

E(x) =
∑
i∈V

ψu(xi) +
∑
i<j

ψp(xi, xj) (2.4)

High order CRF: Besides unary cliques and pairwise cliques, the high or-

der CRF involves the high order clique which refers to a set of variables Xs =

{X1, X2, . . . , XM}. The high order CRF is of the form:

E(x) =
∑
i∈V

ψu(xi) +
∑
i,j

ψp(xi, xj) +
∑
c∈S

ψh(xc) (2.5)

where the high order potential ψh measures the cost of the label configuration xs for

the set of variables and S denotes the set of all the high order cliques. The pairwise

potentials can be defined over the neighborhood system or the whole image.

2.3.2 Related Work

The graphical model has been successfully applied to brain anatomical structure seg-

mentation [93, 108]. By employing a graphical model defined on voxels, one can obtain

the optimal label for each voxel by minimizing the corresponding energy function. In

these approaches, the prior knowledge is usually obtained by registering the target to

a fixed probabilistic atlas1. Those approaches can be categorized as fully-automated

1 probabilistic atlas is an anatomical template that retains quantitative information on inter-subject
variations in brain architecture. A digital probabilistic atlas of the human brain, incorporating pre-
cise statistical information on positional variability of important functional and anatomic interfaces,
may rectify many current aliasing problems since it specifically stores information on the population
variability, e.g., ICBM152, MNI152, and Harvard-Oxford cortical and subcortical structural atlases.
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algorithms, which are not in the scope of review in this thesis. In this section, we focus

on the methods that combine the graphical model with the multi-atlas segmentation.

Regarding combining the graphical model with the multi-atlas segmentation, some

methods employ the graphical model as a post-processing step following the label

fusion to refine the labeling results [107]. With employing the probabilistic map

obtained from the label fusion step as the spatial prior, the corresponding energy can

be minimized by using graph-cuts [76, 121], or max-flow [64, 84].

Alternatively, the graphical model can serve as the registration between the tar-

get and the atlas, which turns to minimize the energy function with respect to the

displacement vector [36, 43]. Moreover, some works integrate the registration and

segmentation in one graphical model to solve the registration and segmentation si-

multaneously. Alchatzidis et al. [3] designed the MRF energy function comprising

registration term and segmentation term and optimized it through dual decomposi-

tion algorithm. Gass et al. [37] cast the simultaneous segmentation and registration

problem as a two-layer graph defined on MRF and developed hierarchical implemen-

tation, allowing coarse-to-fine registration and pixelwise label estimation.

Instead of using the voxel-based graphical model, some studies employ the graphi-

cal models defined on supervoxels. There are two existing ways of applying supervoxel-

based graphical model to the brain segmentation problem. 1) The supervoxel-based

graphical model serves as the pairwise registration, where the objective is to estimate

the displacement vectors mapping the target supervoxels to the atlas supervoxels

[44, 119, 128]. The assumption that no deformation exists within the supervoxel (i.e.,

all the voxels within the supervoxel obtain the same displacement vector) exempts the

framework from the requirement for accurate supervoxel segmentation. However, the

graphical inference needs to be performed by N times (N is the number of the atlas

number), and following the supervoxel graphical model, a label fusion is required to

fuse the candidate labels of the atlases. 2) Supervoxel graphical model is directly used

in image segmentation [53]. The assumption of this framework is that all the voxels
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within the supervoxel have the same label so that accurate supervoxel segmentation

is a prerequisite. However, this requirement is difficult to achieve due to the intensity

overlap in different anatomical structures and the lack of visible boundaries in some

ROIs, especially in the cortical area. As a result, the supervoxel graphical model

is usually applied to the tumor segmentation [53] or subcortical area segmentation

instead of cortical structure segmentation.

High order potential has demonstrated the effectiveness in computer vision [65,

90, 111, 130]. However, it is unfeasible to compute the general higher-order potential

defined over many variables [79], especially for the 3D MR data. In the medical

image segmentation field, a few of studies have been proposed to involve the high

order potential for encouraging the regional labeling consistency [60], encoding the

shape prior [114], or embedding the boundary prior [5].

2.4 Convolutional Neural Network

Brain anatomical segmentation can be viewed as a voxel labeling problem, which

makes it possible to employ a classifier (e.g., SVM classifier [12], random forest [132])

to classify the voxel. However, these traditional classifier relies on domain-specific

hand-crafted features so that it is difficult to generalize the algorithm among images

obtained from different modalities. Recently, due to the success of deep learning in

computer vision, increasing deep networks have been developed for medical image

segmentation. In this section, the basic knowledge of CNN is first introduced and

follows it with the related works of using CNN for brain anatomical segmentation.

2.4.1 Background

CNN is a typical neural network which was originally used for image classification.

It takes the raw image as the inputs and outputs the score of each class by stacking

multiple convolution layers and fully connected layers. The whole network can be
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seen as a single differentiable, parameterized function that maps the raw image to

class scores. By setting the appropriate loss function, one can update the parameters

based on the partial derivatives which are computed through back-propagation.

In order to build CNN, we use the following building blocks in the studies of this

thesis.

Convolution layers. Convolutional layers are the core building blocks of the

CNN architecture, which serve as the feature extractors that map data to the trans-

formed feature space. It extracts the features by convolving a kernel (or filter) with

the inputs. The outputs are usually called feature maps or activation maps. For the

convolutional layers, there are three parameters: (1) Kernel size, which refers to the

height and weight of the kernel and relates to the receptive field, which is the region

of the particular output feature sees from its input space. (2) The depth, which cor-

responds to the number of filters that are used for the convolution operation. (3) The

stride, which refers to the number of pixels that we jump when sliding the convolution

kernel over the inputs. Stride greater than one results in reducing the spatial size.

Fully convolutional layer. To obtain a dense prediction using CNN, we apply

the fully convolutional layer at the top of the architecture. The fully convolutional

layer is 1 × 1 convolution with a depth of L, where L is the number of classes. By

appending a fully convolutional layer at the top, one can obtain the class scores at

each position simultaneously. However, due to the downsampling operations (e.g.,

strided convolution or pooling operation), directly applying the fully convolutional

layer results in a coarse prediction. Therefore, prior to fully convolution layer, up-

sampling operations (e.g., deconvolution layer or interpolation) are usually adopted

for applying CNN to segmentation problem.

Deconvolution layer. Deconvolution layer is the transpose of the convolution

layer. Therefore, performing a deconvolution with stride greater than one leads to

the increase of the spatial size of the feature maps. The rest parameters are the same

as those of the convolution layer.
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ReLU. As an activation function, ReLU helps a model account for interaction

effects and produce the non-linear mapping. The ReLU function has a derivative of 0

for negative inputs while a derivative of 1 for positive inputs, which effectively avoids

the vanishing gradient problem.

Batch Normalization. Batch normalization [52] normalizes the output of a

previous activation layer by subtracting the batch mean and dividing by the batch

standard deviation. The batch normalization reduces the internal covariate shift

that is produced by distribution variation of the layer’s inputs during the training

stage, resulting in accelerating the training speed. Moreover, by applying batch

normalization layers, the net is more tolerant to increased training rates and often

does not require Dropout for regularization.

Softmax function. Softmax function takes a vector of K real numbers as the

input and normalizes it into a probability distribution consisting of K probabilities.

y(z) =
ezi∑K
k=1 e

zi
(2.6)

After applying the softmax function, each element in the vector is normalized to

the interval (0, 1), and the elements are sum to 1. Thus the output of the softmax

function can be interpreted as the probabilities. Furthermore, the softmax function

can enlarge the difference between the elements.

It is worth noting that the softmax function has the same formulation as the Gibbs

distribution in Equation (2.1), where each zi can be considered as the energies of the

variable while the denominator is the partition function.

2.4.2 Related Work

Recently, because of the success of deep learning in computer vision, increasing deep

networks have been developed for medical image segmentation [27, 77, 103]. The

architectures fall into two categories. One approach is the voxel/pixel classification,

which directly applies the CNN to the segmentation task [28, 83, 129]. As shown in
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Figure 2.2: Directly applying classification net to segmentation task. [39]

Figure 2.2, the networks are trained on 2D/3D image patches cropped from the whole

image and produce the prediction of the central position in the image patch. However,

during the inference stage, “sliding window” is applied to obtain the pixel/voxelwise

prediction, resulting in low inference speed. Moreover, the information redundancy

in training patches hinders the performance of the model.

Another approach adopts the 2D/3D fully convolutional network (FCN) archi-

tecture [20, 32, 61], which replaces the fully connected layer with the fully convo-

lutional layer. The FCN architecture takes inputs with any size and outputs the

dense probability map of the input image. In order to capture both local and contex-

tual information, architectures with parallel convolutional pathways are employed for

multi-scale processing, as illustrated in Figure 2.3. Kamnitsas et al. [61] exploited a

two-pathway FCN to take inputs of different resolutions. Havaei et al. [39] adopted

two-pathway convolution layers with different convolutional kernel size. The multiple

pathway architecture is also prevalent in the voxel/pixel classification net, e.g., in

[82], the inputs are of different spatial sizes so that the net is capable of capturing

multi-scale context. However, the multiple pathway networks are usually designed

in a shallow fashion (two to three convolutional layers followed by fully connected/-

convolutional layer) in order to take trade-off between the increasing parameters and

memory required for training.

U-net [87] provides a novel way of applying CNN for segmentation. As shown in

Figure 2.4, it supplements a contracting network (also called “downsampling path” or

“encoder net”) by an expanding network (also called “upsampling path” or “decoder
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Figure 2.3: FCNN architecture with parallel convolutional pathways. [61]

Figure 2.4: Architecture of U-net. [87]

net”). The contracting network is topologically identical to a classification net while

the expanding network replaces the pooling layers with deconvolution layer to recover

the resolution to the input size. The contracting net and expanding net are more or

less symmetric, resulting in an u-shape in the appearance of the architecture. Fur-

thermore, the local features from the contracting net are connected to the expanding

path. The feature combination equips the U-net with the ability to capture both

local and larger contextual information. Many works extend the U-net to the spe-

cific application by using different loss function [80], using different feature combining

methods [127], combining with the state-of-the-art classification networks [33].

Since the spatial information provides valuable cues that represent the possible
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class of a voxel, in the application of brain anatomical structure segmentation, a

couple of networks encode the position information into the inputs to augment the

segmentation. Wachinger et al. [112] uses the combination of spectral brain coordi-

nates and Cartesian coordinates. de Brebisson et at. [28] adopts relative coordinates

which compute the distance from voxel to the centroid of each segmentation. The

aforementioned research experimentally demonstrated that the incorporation of the

position information leads to improvement in the anatomical structure segmentation.

Imbalanced data among different class is a challenging task for brain segmentation

even in the other medical image segmentation field. To address this problem, data

resampling technique is applied to balance the sample numbers of different classes.

Kamnitsas et al. [61] built training batches by cropping the segments with 50% prob-

abilities being centered on foreground (tumor) or background (non-tumor) voxel.

Havaei et al. [14, 39] adopted a two-phase training strategy to alleviate the class

imbalance. In the first training phase, equally sampled training samples are used

while the uniformed sampled batches are used in the second training phase with only

fine-tuning the last layer. In [112], the authors employed another two-phase training

strategy, which separates the brain tissues from the background in the first phase and

identifies the anatomical structures in the second phase.

Furthermore, some techniques are applied to deal with the complexity in medical

images. For example, integration of multiple modality images leads to significant

improvement of the performance [31, 129]. Deep supervision, which adds a group of

weighted auxiliary classifiers into the network, is applied by the works in [21, 22, 126]

to further strengthen the training process.

2.5 MRI Coordinate System

The anatomical space is the most important model coordinate system for medical

imaging. The anatomical space is also called RAS coordinate system, where “RAS”
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stands for right, anterior, and superior, respectively. With three directions left to

right, posterior to anterior, and inferior to superior, this space consists of three planes

to describe the standard anatomical position of a human:

1. The axial plane is parallel to the ground and separates the superior (head) from

the inferior (feet).

2. The coronal plane is perpendicular to the ground and separates the anterior (front)

from the posterior (back).

3. The sagittal plane separates the left from the right.

Although there is a difference between the anatomical coordinates and the 3D

image coordinates, to simplify the notations in this thesis, we refer the three axises

in the volumetric images space as x, y, and z, and represent three planes xy, xz, and

yz as axial slice, coronal slice and sagittal slice, respectively. Figure 2.5 shows the

three views of a brain MR image.

(a) Axial view (b) Coronal view (c) Sagittal view

Figure 2.5: Three planes of a brain MR image.

2.6 Datasets

There are three publicly available brain MRI datasets used in this dissertation:
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1. LONI-LPBA40 dataset

The LPBA40 dataset [97] includes 40 T1-weighted MRI scans of healthy volunteers,

which is acquired on a GE 1.5T system. The dataset consists of 20 males and 20

females, age 29.20 ± 6.30 years. The 124 coronal brain slices are 1.5 mm apart

with in-plane voxel resolution of 0.86 mm (38 subjects) or 0.78 mm (2 subjects).

The brain is manually delineated into 50 cortical structures, 4 subcortical areas,

the brainstem, and the cerebellum.

2. MICCAI 2012 Multi-Atlas Labeling Challenge dataset

The MICCAI 2012 dataset [69] includes 35 T1-weighted MRI scans obtained from

the OASIS project, where 15 subjects (5 males, 10 females, age 23.00±4.12 years)

are used as the atlases and the remaining (8 males, 12 females, age 40.40± 22.43

years) are used for testing. The labeling protocol for OASIS project is a brain

labeling protocol using 134 labels, including 36 subcortical labels and 98 cortical

labels.

3. IBSR dataset

The IBSR dataset consists of 18 T1-weighted MRI scans (14 males, 4 females),

provided by the Center for Morphometric Analysis at Massachusetts General Hos-

pital and are available at http://www.cma.mgh.harvard.edu/ibsr/. Coronal slices

are 1.5 mm apart with in-plane resolution of 0.9375 mm (8 subjects), 1 mm (6

subjects), or 0.8371 mm (4 subjects). The IBSR dataset consists of two types of

manual segmentation: 1) the images are manually segmented into 32 subcortical

structures, and 2) the cortex area is sub-divided into 96 cortical structures.

2.7 Image Pre-Processing

Image pre-processing plays a critical role in brain MR image segmentation. The

pre-processing techniques used in this thesis context include:
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1. Bias field correction

MR images often exhibit image intensity inhomogeneity that is the result of mag-

netic field variations rather than anatomical differences. These artifacts are often

described as bias, inhomogeneity, illumination non-uniformity, or gain field, can

be produced by imaging instrumentation, such as radio-frequency non-uniformity,

and static field inhomogeneity [16, 46]. These variations are often seen as a slowly

gained signal that varies spatially. Numerous methods have been proposed to cor-

rect this artifact. In this thesis context, the N4 bias field correction [106] is applied

to correct the intensity inhomogeneity.

2. Pairwise registration

In this thesis context, the term ”registration” means to determine the spatial align-

ment between two images of different subjects, acquired from the same dataset.

Registration relates to a transformation that can associate the position of features

in one image or coordinate space with the position of the corresponding feature in

another image or coordinate space [45].

In the multi-atlas segmentation, both the intensity images and the label images

of the atlases are required to be warped to the target domain with the same

transformation. Consequently, the first step of the registration is to generate the

transformation files based on the similarity between intensity images of the atlas

and the target. Then the transformation files are applied to the atlas intensity

image and the label image to generate warped atlas intensity and label image,

respectively.

3. Intensity normalization

Large variations in intensity ranges widely exist in the MRI scans, which are

caused by the differences in the protocols of MRI scans, various manufacturers

and scanner-models, and different time points of the same patient [94]. To deal

with the intensity variations, we perform the intensity normalization to ensure each

tissue to have similar intensity distributions, which has been shown importance in
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both supervised method and unsupervised segmentation approaches.
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Chapter 3

Label Fusion for Multi-Atlas
Segmentation Based on Majority
Voting

Multi-atlas based segmentation is successfully applied to medical image segmentation.

Majority voting, as the simplest label fusion method in multi-atlas based segmenta-

tion, is a powerful segmentation method. In this paper, a novel majority voting-based

label fusion is proposed by introducing patch-based analysis for automatic segmen-

tation of brain MR images. The proposed approach, by comparing the similarity

between patches, avoids the over-segmentation problem of majority fusion. The ap-

proach is successfully applied to the segmentation of hippocampus, and the experi-

mental results demonstrate significant performance improvement over three state-of-

the-art approaches in the literature.

3.1 Introduction

Atlas-based segmentation is based on the observation that segmentation strongly

correlates with image appearance. By performing registration between the target

image and the atlas, the labeled atlas image is warped to the target image space.

One can use the resulting warp to map the atlas label to the coordinates of the target

image. For the multi-atlas segmentation method, multiple atlases are separately
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registered to the target image, and voxelwise label conflicts between the registered

atlases are resolved by label fusion.

In multi-atlas segmentation, the estimated segmentation is obtained by perform-

ing label fusion on the warped atlases. Although weighted fusion and statistical fusion

yield good results in segmentation of magnetic resonance (MR) image [105, 118, 122,

123], the estimation of the weight and the expectationmaximization (EM) estimation,

which play important roles in weighted fusion and statistical fusion, is very computa-

tionally intensive. In contrast, majority voting, which is probably the simplest label

fusion method, has been demonstrated to yield powerful segmentation results with

less computation. Majority voting method, however, may yield over-segmentation

since it does not utilize image intensity information. The patch-based method, which

compares the similarity of intensity between patches, can be combined with majority

voting multi-atlases segmentation to avoid such over-segmentation errors.

Motivated by this idea, we propose a novel label fusion method which combines

majority voting with the patch-based method to achieve automatic segmentation in

brain MR images. The proposed method is successfully applied to the segmenta-

tion of hippocampus. In addition, the influences of different parameters are studied

empirically, and a comparison with three closely related methods is performed to

demonstrate the effectiveness of the proposed approach.

3.2 Method

Consider an image I = {I(x)|x ∈ Ω}, where x denotes the voxel; and Ω ⊂ R3 denotes

the lattice on which the image is defined. The goal of segmentation is to estimate a

label map L associated with the image I, in which each voxel is assigned a discrete

label l. The label l takes discrete values from 1 to L for all the possible labels for the

voxels in the image. In multi-atlas segmentation, IT is a target image and A1, · · · , An
are n atlases with Ai = (Ii, Si), where Ii is the atlas image which has aligned to
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Figure 3.1: Illustration of labeling for the target patch, where red square in target
image denotes the target patch; the blue, pink and green squares in atlas image
indicate patches in a searching window; and the best matched patch in each atlas is
shown as red squares.

the target image (Ii is also called warped atlas image); and Si is the corresponding

manual segmentation of this atlas image. After combining the warped atlas images,

a fused label map is generated which can be considered as the segmentation of the

target image.

Figure 3.1 illustrates the generation of labels for the target patch of the proposed

method. First, the atlases (intensity and label image) are pairwisely registered to

the target image. Then, for each atlas image, a patch selection scheme is performed

to choose the patch in each atlas with the highest similarity with the target patch.

Finally, by applying the label fusion algorithm to the patches with the corresponding

location of the patches in atlas images, we obtain the estimated label of each patch.

The approach is applied for every voxel in the target image to obtain the labels for

the entire target image.
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3.2.1 Patch Selection

The performance of atlas-based segmentation can be moderately improved by ap-

plying a local searching technique [25]. Although deformable registration has been

performed before label fusion, the correspondence obtained from the registration may

not guarantee the maximal similarity between the patch in the target image and that

in the warped atlas image. Therefore, local searching within a small neighborhood

around the voxel in the warped image is performed to achieve the maximal similarity.

Summed squared distance (SSD) is used to measure the similarity between the

target patch and atlas patch. The SSD of the target patch centered at x and the

atlas patch centered at x′ is shown below.

SSD(x, y) = ‖IT (N (x))− Ii(N (x′))‖2 (3.1)

where x′ ∈ N ′(x) with N ′(x) a local searched neighborhood. Equation (3.1) indicates

that given a patch IT (N (x)) in the target image and Ii(N (x)) in the ith atlas image, it

is possible to find a patch Ii(N (x′)) whose center belongs to the neighborhood N ′(x).

The patch centered at xi, which is called locally searched optimal correspondence,

has higher similarity with the target patch than other patches with centers inside the

neighborhood N ′(x). Thus, the locally searched optimal correspondence is

xi = argminx′∈N ′(x)[SSD(IT (N (x)), Ii(N (x′)))] (3.2)

where Ii(N (x′)) is the patch in the ith atlas image centered at x′ with a radius r, and

IT (N (x)) is the target patch centered at x with a radius r. x′ is the voxel in the local

neighborhood N ′(x) with a radius rs. By calculating the SSD between the patches

in the target and the atlas images, we obtain xi, which is the location from the ith

atlas with the best image matching for the location x in the target image.

3.2.2 Label Fusion and Validation

Majority voting: After patch selection, n patches are selected as the candidates of

voting for the target patch. The likelihood of that x taking label l can be computed
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by counting the number of occurrence for l from xi, i ∈ 1, 2, . . . , n. Then, the label

for x in the target image can be determined by choosing the label with the highest

posterior probability. The final label L(x) is obtained by

L̂(x) = argmaxl∈{1,...,L}

n∑
i=1

p(l|Ai, x) (3.3)

where x indexes through image voxels; p(l|Ai, x) is the posterior probability that atlas

Ai votes for the label l at x. Typically, deterministic atlases have unique label for

every location, which means p(l|Ai, x) = 1 if Si(x) = l, and 0, otherwise.

Improvement on majority voting: The label of the center voxel of the target

patch can be produced using majority voting. However, since we have chosen the

most similar patch to the target patch from each atlas image based on the intensity

information, these selected patches can be considered to have similar segmentation

to the target patch. For each voxel in the target patch, we can find a candidate voxel

from the corresponding position in each selected patch, and thus, the label of each

voxel in target patch can be determined by performing Equation (3.3) from its n

candidate voxels. Given a three-dimensional image, for every patch with a radius r

in the target image, (2r + 1)3 voxels within the patch will be labeled by performing

the above majority voting scheme. However, due to the overlapping among the target

patches, each voxel in the target image have (2r + 1)3 candidates after the majority

voting. As a result, we apply another majority voting scheme to fuse the labels from

the (2r+1)3 candidates for the overlapped positions. Therefore, the modified majority

voting scheme is a two-stage label fusion strategy where the estimated segmentation

of each target patch is obtained at the first voting stage while the voxelwise prediction

is obtained by fusing the candidate labels for the overlapped positions at the second

voting stage.

Validation: The kappa index (Dice coefficient or similarity index) was computed

by comparing the manual segmentations with those obtained with our method. For

two binary segmentations A and B, the kappa index was computed as

κ(A,B) =
2|A ∩B|
|A|+ |B|

(3.4)
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In quantitative MR analysis, manual segmentation is usually considered as a gold

standard. The segmentation quality was estimated with the Dice coefficient by com-

paring the expert-based segmentations with the automatic segmentations.

3.3 Experimental Results

The proposed approach is applied to segment the hippocampus using T1-weighted

MR images. The dataset used in the experiment includes 35 brain MR imaging scans

obtained from the OASIS project. The manual brain segmentations of these images

were produced by Neuromorphometrics, Inc., using the brain-COLOR labeling pro-

tocol. The dataset was applied in the MICCAI 2012 Multi-Atlas Labeling Challenge,

where 15 subjects were used at the atlases and the remaining 20 images were used

for testing.

In the experiment, we perform pairwise registered transformations between the

atlas and the target images, as well as between each pair of the atlas images. The

ANTs registration tool was used in this study to implement pairwise registration

[10]. The antsApplyTransforms with linear interpolation was applied to generate the

warped images, and the antsApplyTransforms with nearest neighbor interpolation

was applied to generate the warped segmentations.

3.3.1 Impact of the Size of 3D Patch and Search Volume

The proposed method has two parameters, r for the local patch radius and rs for

the local searched neighborhood. The influence of these parameters are studied by

evaluating a range of values r ∈ {1, 2, 3}; rs ∈ {1, 2, 3, 4, 5} in the experiment. First,

we studied the impact of the patch radius on segmentation accuracy. The mean dice

overlap coefficient results are shown in Figure3.2. Using the patch radius of r = 1, the

algorithm performs much better than using larger patch radius. The segmentation

accuracy also improves with the increase of the searched radius rs. However, the
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Figure 3.2: Hippocampus segmentation performance using different patch radius and
searched patch radius.

Dice coefficient decreases when the searched radius rs > 4. Larger searched radius

improves the probability to find a similar patch with target patch, however, it also

leads to an increase of mismatches. Figure3.2 indicates that the best Dice coefficient

is obtained at r = 1 and rs = 4. Figure3.3 shows the segmentation results for different

sizes of local patch and searched patch.

3.3.2 Comparison Results in Hippocampus Segmentation

The average Dice overlap between automatic segmentation and manual segmentation

for testing data is measure in the experiment. We compared our results with three

automatic approaches, i.e. majority voting, global weighted fusion, and STAPLE [91].

The dice overlap coefficient of the left and the right hippocampus by the proposed

approach is 0.8473±0.0325 and 0.8447±0.0370, respectively, and the average overlap

is 0.846 ± 0.03. The box plot is shown in Figure3.4, where the central mark is the
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Figure 3.3: Sagittal views of the segmentations produced by different patch radius and
searched patch radius. Where the red region shows the overlap between the automatic
and the manual segmentation; the green region is the manual segmentation; and the
blue region is automatic segmentation using the proposed method.

median, the edges of the box are the 25th and 75th percentiles. The whiskers extend

to 2.7 standard deviations around the mean, and the outliers are marked individually

as a ’+’. As a comparison, the average Dice overlap obtained by majority voting,

global weighted fusion, and STAPLE are 0.821, 0.807, and 0.836, respectively [91]. It

is clear that the propose technique yield more than 1.2% Dice overlap improvement.

In addition, the results of other three approaches were obtained by conducting the

experiments in a leave-one-out strategy on a data set containing 39 subjects, while

our approach use only 15 subjects as atlas set. Overall, the proposed method per-

forms better in segmentation accuracy while using significantly fewer atlases than the

reported methods.
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Figure 3.4: The dice overlap coefficient of the left and right hippocampus

3.4 Discussion and Conclusion

A novel approach to automatically segment anatomical structures based on the ma-

jority voting method is proposed. A patch selection strategy is proposed to ensure

that the patch in the atlas with the highest similarity to the target patch is selected as

the voting candidate. The proposed approach is verified by experimental evaluations

on a standard dataset. Compared with three benchmark techniques, the segmentation

results are significantly improved by the proposed method.
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Chapter 4

Supervoxel Based Method for
Multi-Atlas Segmentation of Brain
MR Images

Although multi-atlas segmentation has been widely applied to the analysis of brain

MR images, the state-of-the-art techniques in multi-atlas segmentation are strongly

dependent on the pairwise registration. In this chapter, a new segmentation frame-

work based on supervoxels is proposed to solve the existing challenges of previous

methods. The supervoxel is an aggregation of voxels with similar attributes, which

can be used to replace the voxel grid. By formulating the segmentation as a tissue la-

beling problem associated with a MAP inference in MRF, the problem is solved via a

graphical model with supervoxels being considered as the nodes. In addition, a dense

labeling scheme is developed to refine the supervoxel labeling results, and the spatial

consistency is incorporated in the proposed method. The proposed approach is robust

to the pairwise registration errors and of high computational efficiency. Extensive ex-

perimental evaluations on three publically available brain MR datasets demonstrate

the effectiveness and superior performance of the proposed approach.

36



4.1 Introduction

An alternative method for segmentation is to formulate it as the energy minimization

associated with the graphical model, in which the atlases are used to provide the

prior knowledge about the spatial constraints [107]. As a result, the graphical model

is usually considered as a post-processing technique to refine the results of the multi-

atlas label fusion [3, 64, 84].

However, as an important pre-processing step of multi-atlas segmentation, the

pairwise registration plays a crucial role in learning the spatial prior information for

the MAP inference methods. Both the label fusion method and energy minimization

method heavily rely on the complicated pairwise registration. Although the patch-

based technique is effective in accounting for the registration errors, the performance

is affected by the search radius of the local neighborhood in the registered atlases

[26]. Increasing the search radius will greatly increase the computational cost while

using a small search radius is not effective enough to remedy the registration errors.

To address these limitations, a graphical model-based multi-atlas segmentation

algorithm from the supervoxel perspective is proposed. Superpixel-based MRF frame-

work has been successfully applied to the semantic natural scene segmentation [104].

Inspired by [104], we extend it to the brain MR image segmentation using a su-

pervoxel graphical model. The supervoxel is an aggregation of voxels with similar

attributes, and thus, we can assume that the voxels within the supervoxel have the

same label. Based on this assumption, each node in the graphical model is associated

with a supervoxel, and the label minimizing the energy function is thus assigned to

each element voxel within the supervoxel.

We propose a supervoxel graphical model for the whole brain segmentation in this

chapter, and to ensure that the supervoxel segmentation fits the tissue boundaries,

we propose to apply the supervoxel segmentation on label images rather than on the

intensity images or feature images that are usually used in other studies. In addition,
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a post-processing step, based on a grid graphical model with a high order potential,

is performed to refine the supervoxel labeling results. The major contributions of this

work include:

1. The spatial consistency is encouraged in the proposed method. According to the

definition of supervoxel, the labels within the supervoxel are spatially consistent.

In addition, the label consistency between neighboring supervoxels is encouraged

by the smoothness term in the energy function.

2. The proposed method is robust to the pairwise registration errors. It searches

similar atlas supervoxels in the neighborhood and encodes the supervoxel similarity

into the data term of the energy function. It differs from the patch-based technique

in that the search radius is defined by the number of supervoxels instead of voxels,

which results in a larger search range given a fixed search radius. Consequently,

the spatial prior is acquired by the initialization of the data term, rather than

the sophisticated pairwise registration, and the dependency on the complicated

pairwise registration is greatly alleviated.

3. The proposed approach is computationally efficient. Since the supervoxels are

used as nodes in the graph construction, the number of nodes decreases to around

1/n of that in the voxel-based graphical models, where n is the average size of

the supervoxels. Moreover, thanks to the insensitivity to the pairwise registration,

affine registration can be used as a substitute for deformable registration so as to

reduce the pre-processing time.

The rest of this chapter is organized as follows. We derive the theoretical basis and

describe the implementation details of our method in Section 4.2. The experimental

evaluations on three datasets are presented in Section 4.3, where the influences of

different parameter settings are studied, and the advantages of our approach in seg-

mentation accuracy and low dependency on pairwise registration strategies over the

other state-of-the-art methods are demonstrated. Discussions about the results and
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the advantages over the patch-based technique and learning-based methods are given

in Section 4.4, and the paper is concluded in Section 4.5.

4.2 Method

Let IT be the target image IT = {IT (x)|x ∈ Ω}, where x denotes the voxel. The

goal of multi-atlas segmentation is to estimate a label map LT which assigns a label

lx ∈ {1, . . . ,L} to each voxel in the target image, given K atlases A1, . . . , AK with

Ak = (Ik, Lk) where Ik and Lk are the intensity image and the corresponding label

image, respectively. This problem can be solved via MAP estimation [91]

L̂T = arg max
L

p (IT , LT ; {Ik, Lk}) (4.1)

where p (IT , LT ; {Ik, Lk}) is the joint probability of IT and LT given the atlases. MRF

optimization is often posed as the task of finding the label map LT that optimizes

the MAP problem. The problem corresponds to minimizing the following objective

function, known as MRF energy, which is defined over an undirected graph including

node set Ω and edge set E

E(L̂T ) =
∑
x∈Ω

θx(lx) +
∑
x,y∈E

θxy(lx, ly) (4.2)

where the node set is referred to as the voxels in the target image while the edge set

consists of the undirected edges in the graph connecting pairwise nodes. The unary

data term θx(lx) encodes the probability of observing label lx at voxel x while the

smoothness term θxy(lx, ly) measures the cost of assigning lx and ly to two neighboring

voxels which are connected by the corresponding edge.

In supervoxel graph, the supervoxels are considered as the nodes, the energy

function is thus defined as:

E(L̂T ) =
∑
s∈Ωs

θs(ls) +
∑
s,t∈Es

θst(ls, lt) (4.3)
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where the node set Ωs and edge set Es denote the supervoxels and edges connecting

pairwise supervoxels, respectively. The data term θs(ls) measures the cost of assign-

ing label ls to supervoxel s, and the smoothness term θst(ls, lt) penalizes the label

inconsistency between the adjacent supervoxels s and t. The supervoxel labels are

evaluated through minimizing the energy function (Equation (4.3)). Under the as-

sumption that the voxels within the supervoxel have the same label, the supervoxel

labels are propagated to the corresponding element voxels, and the estimation of the

label map LT of the target is obtained.

Figure 4.1 illustrates the framework of the proposed method. Before implementing

the proposed method, pairwise registrations are performed between the target and

each atlas. Then, in order to construct the supervoxel graph, supervoxel segmenta-

tions are applied on the target and atlases, respectively (Section 4.2.1). The details

of the supervoxel graph construction are described in Section 4.2.2. Last, a dense la-

beling step is proposed to acquire the refined label map of the target in Section 4.2.3.

4.2.1 Supervoxel Segmentation

Supervoxel segmentation is the first step in the supervoxel graph construction. We

use the use the simple linear iterative clustering (SLIC) 1 algorithm [1], an adaptation

of k-means clustering method, to obtain the supervoxel segmentation in this work.

In the supervoxel graph, it is supposed that all the voxels within the supervoxel

have the same label. As a result, we expect the supervoxel segmentation to cluster the

voxels of the same structure. In the SLIC algorithm, the distance D, a weighted 5D

Euclidean distance in labxy space (the CIELAB color space [l a b] and spatial space

[x y]), is used to measure the distance between the voxels and possible supervoxel

center, then at each iteration, the voxels are clustered to the nearest supervoxel. This

measure relies on the intensity similarity and spatial proximity between the voxel and

1 http://ivrl.epfl.ch/research/superpixels
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Figure 4.1: Framework overview of the proposed method. Supervoxel segmentation
is performed on the target and the registered atlas images, respectively. The super-
voxel labeling corresponds to a supervoxel-based graphical model. The dense labeling
relates to a grid graphical model, aiming at refining the supervoxel labeling results.
The SVM classifier is used to generate the predicted label image of the target for
supervoxel segmentation and the probability map for initialization of data term in
dense labeling.

the supervoxel center. However, intensity overlap among different structures widely

exists in the brain MR images, so that performing SLIC algorithm upon the intensity

images will increase the possibility of clustering the voxels of different structures

into the same supervoxel. In contrast, in the label images, the voxels of a structure

are represented by the unique value so that there is no intensity overlap existing.

Consequently, it tends to cluster the voxels of the same structure into the supervoxel.

Therefore, for the atlases, we apply the SLIC algorithm to the ground truth images.

On the other hand, since the ground truth of the target is unknown, SLIC is performed

on a predicted label image obtained via an support vector machine (SVM)2 classifier

for the target. To train the SVM classifier, voxel feature, which is a concatenation

2 https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(a) Axial View (b) Sagittal View (c) Coronal View

Figure 4.2: An example of slices in the axial plane, sagittal plane, and coronal plane of
the label image. Non-smooth tissue boundaries are displayed in the axial and sagittal
plane.

of the texture, intensity, and position feature (see Table 4.1), is extracted from the

unwarped atlas intensity images. By applying the SVM classifier, we obtain not only

the predicted labels for aggregating voxels into supervoxels, but also the probability

map to be used for calculating the data cost in the dense labeling stage.

In addition, the ground truth is manually annotated in the coronal plane for the

atlases, which leads to non-smooth boundaries in both the axial and sagittal plane

in the label images (Figure 4.2). The clustering of voxels in SLIC is based on the

intensity similarity and spatial proximity. Involving spatial proximity encourages

the voxels to be clustered to the spatially nearby supervoxel so as to form compact

and nearly uniform distributed supervoxel segmentation. However, the non-smooth

boundaries increase the difficulty in fitting the supervoxel segmentation to the bound-

aries, resulting in the accuracy decrease of 3D supervoxel segmentation. As a result,

we technically perform superpixel segmentation on the coronal plane instead of su-

pervoxel segmentation in the 3D space. To avoid misunderstanding, we still use the

term “supervoxel” in this chapter.

Moreover, to calculate the data term, each supervoxel in the atlases should have

the unique label. Therefore, a refinement scheme is proposed following the supervoxel

segmentation of the atlases. First, we search for the supervoxels with multiple labels.

For the clique with label l in the supervoxel, we assign the clique a supervoxel index
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if the voxels in the clique are connective and the proportion of the clique size to the

supervoxel size p(l) > 0.5. For each voxel without being assigned a supervoxel index,

we merge the voxel v to a supervoxel s with label l which takes up the majority

among the 8-neighbor of v. It should note that the label of v may not agree with that

of s. As a result, we need to update the ground truth of v on top of merging v to

s. Apart from enforcing the label consistency within the supervoxels, the refinement

scheme also corrects the errors brought by the pairwise registration. As shown in

Figure 4.3, some isolated holes are generated due to the interpolation procedure during

the pairwise registration. By performing the refinement scheme, those isolated holes

are filled, and the smoother boundaries of the tissues are obtained.

Figure 4.3: A comparison of the label image before (left) and after (after) the refine-
ment scheme. Before performing the refinement scheme, the registered label image
demonstrates isolated holes which cause label inconsistency within the supervoxel.
After applying the refinement scheme, the isolated holes in the label image are filled,
and the label consistency is enforced within the supervoxel.

In the implementation of the supervoxel segmentation, voxel feature vectors ran-

domly selected from the unregistered atlas intensity images are used as the training

samples to train the SVM classifier while the voxel feature vectors extracted from

each voxel in the target intensity image are treated as the testing samples. In order
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to avoid the feature in greater numeric ranges dominating those in smaller numeric

ranges, the feature vector is scaled to [−1,+1] before classifier training. The texture

feature is normalized by the L2 norm while the voxel coordinate and the intensity

feature are scaled to [0,+1], respectively. The same scaling technique is applied to

the testing samples. By applying the SVM classifier to the testing samples, a pre-

dicted label image and a probability map of the target are generated simultaneously.

Then the coronal slices are extracted from the ground truth of the atlases and the

predicted label image of the target, respectively, and the SLIC is applied to those

coronal slices to acquire the supervoxel segmentation. Finally, to enforce the label

consistency within the supervoxel for the atlases, we perform the refinement scheme

on the supervoxel segmentation of the atlases.

4.2.2 Supervoxel Labeling

The unary data term θs(l) in Equation (4.3) is defined as:

θs(l) =
∑
s∈Ωs

−w(s, l)L(s, l) (4.4)

where w(s, l) is the weight computed through the Mahalanobis distance between s

and the reference samples with class l, and L(s, l) denotes the log likelihood score

[104] for each supervoxel s and each class l.

L(s, l) = − log
p(s|l)
p(s|ĺ)

(4.5)

where ĺ is the set of all classes excluding l. Let D denote the set of all the supervoxels

in the atlases, and Ns be the set of N nearest neighbors of s, which is found by

searching the neighborhood with a search radius r in atlases and sorting the candi-

date supervoxels based on the feature similarity. In our implementation, we use the

Euclidean distance to measure the feature similarity, and the supervoxel feature is a

concatenation of four types of features (see Table 4.1). The feature description will
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be given in Section 4.2.4. Thus, the likelihood score is defined as:

L(s, l) = − log
n(l, Ns)/n(l, D)

n(ĺ, Ns)/n(ĺ, D)
(4.6)

where n(l, S) and n(ĺ, S) are the number of supervoxels with and without label l in

set S, respectively.

The likelihood score L(s, l) and weight w(s, l) in our model jointly serve as the label

prior and the intensity likelihood, which can be interpreted as the cost of assigning

a label l to the supervoxel s from two perspectives. Since the contextual feature is

one of the most important properties for medical images (e.g., the relative position

of each tissue is fixed), we encode the contextual information into the likelihood

score by assigning a probability to each possible label and excluding the impossible

labels. However, there are two cases that the likelihood score is not comprehensive

for computing the data cost: 1) the size of tissue is too small, and 2) the supervoxel

is on the boundary of two types of tissues. In the first case, the target supervoxel is

likely to be surrounded by the supervoxels of other tissues. In the second case, the

target supervoxel is in the high contrast region while its candidates with the same

label are in the low contrast region, and it is not easy to obtain correct matching

between the target in the high contrast region and the candidates in the low contrast

region based on the feature similarity. To sum up, in both the cases, it tends to

yield a low likelihood score for the true label. Unlike the likelihood score computed

from a limited number of local candidates, the weight w(s, l) measures the distance

from s to the center of class l by involving the samples randomly selected from all of

the supervoxels in the atlases. The reason we use the Mahalanobis distance is that it

accounts for the variance of each variable and the covariance between variables, which

makes it meaningful in measuring the distance of data with multivariate distribution.

The smoothness term θst in Equation (4.3) estimates the cost of discontinuity of

the label assignment in the adjacent supervoxels s and t. The Potts model is used to

penalize the inequality of the labels with a constant:
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θst(ls, lt) = λδ(ls, lt) (4.7)

where λ is the constant and δ(ls, lt) is the Kronecker delta.

The supervoxel graph construction is shown in Figure 4.4a. Edges added to the

graph consist of E1 which denotes the edge between the adjacent supervoxels in the

coronal plane and E2 which connects two supervoxels from the adjacent slices. Let

{xsn , ysn , zsn} denote the coordinates of the element of the supervoxel s. An edge e ∈

E1 connecting s and t is constructed if any element of t is 4-connected neighborhood

of the element of s. Similarly, an edge e ∈ E2 is added between s and t if there exists

t which includes an element tn with ztn ∈ {zsn + 1, zsn − 1}. The number of edges

associated with s is unfixed, which depends on the supervoxel connectivity in the

inter-coronal plane and the intra-coronal plane. In this work, the MRF inference is

implemented using sequential tree-reweighted message passing (TRW-S)3 [67].

4.2.3 Dense Labeling

At the supervoxel labeling stage, we obtain a low resolution prediction of labeling.

Because the supervoxel may contain multiple labels, some voxels, especially those

whose ground truths differ from the others within the supervoxel, are likely to be

incorrectly assigned a label during the supervoxel labeling stage. Therefore, in or-

der to correct the mistaken labeled voxels, we perform a dense labeling strategy by

introducing the high order potential defined in the robust PN model [90].

The target image corresponds to a grid graph with 6 neighborhood system, and

the objective function is designed as:

E =
∑
x∈Ω

θx(lx) +
∑
x,y∈E

θxy(lx, ly) +
∑
s∈Ωs

θhs (ls) (4.8)

where θx(lx) = − log p(x) is the data cost, with p(x) the probability of the voxel

3 http://pub.ist.ac.at/~vnk/papers/TRW-S.html
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(a) Supervoxel Graph

(b) Dense Graph

Figure 4.4: Three consecutive slices are shown for the supervoxel graph (a), where
the blue edges E1 indicate the pairwise potential in the coronal plane while the orange
edges E2 are the pairwise potential of two adjacent slices. The dense graph (b) takes
one slice as an example, where the bottom layer and top layer illustrate the grid graph
and supervoxel layer, respectively. The blue edges indicate the pairwise potential in
the grid graph while the orange edges show the high order potential. The nodes are
indicated with red dots in both graphs.

x getting the label lx, which is obtained from the same SVM classifier used in the

supervoxel segmentation; θxy(lx, ly) is the smoothness term where the Potts model
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is employed to penalize the label discontinuity of the neighboring voxels; the high

order potential θhs (ls) takes the value rlss if all the voxels within the supervoxel take

the label ls, otherwise, each inconsistent voxel is penalized with a constant. Unlike

the robust PN model [90], rlss is initialized with rlss = min{− log(pls), r
max
s }, where pls

is the one-hot representation of the supervoxel labeling result at s. Specifically, the

vector rlss equals to 0 at the dimension which corresponds to the supervoxel labeling

result, and a constant rmaxs elsewhere. Based on the definition of θhs (ls), the high

order potential is equivalent to the following formulation:

θhs (ls) = rlss +
∑
x∈s

δ(lx, ls) = θs(ls) +
∑
x,s∈E

θxs(lx, ls) (4.9)

where θhs (ls) corresponds to a pairwise graph defined over the voxel x and the super-

voxel s. The unary potential θs(ls) relates to the cost of assigning ls to s, and the

pairwise potential θxs(lx, ls) corresponds to a Potts model that penalizes the voxels

whose labels are inconsistent with the supervoxel label.

Therefore, the energy function of the dense labeling is defined over the variables

x ∪ s

E =
∑
x∈Ω

θx(lx) +
∑
x,y∈E

θxy(lx, ly) +
∑
s∈Ωs

θs(ls) +
∑
x,s∈E

θxs(lx, ls) (4.10)

The graph (Figure 4.4b) is composed of the grid nodes and supervoxel nodes. The

edge set E consists of the edges which connect the 6 neighboring voxels in the grid

and the edges which connect the supervoxel and its element voxels. To reduce the

computational cost, the nodes in the graph are defined over the voxels and supervoxels

which are not labeled as the background at the supervoxel labeling stage. Similarly,

the optimization of the objective function is obtained via TRW-S [67].
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Table 4.1: A complete list of features used in this work.

Type
Feature

Dimension
Voxel Supervoxel

Texture response of LMFB* mean response of LMFB 38
Position 3D coordinate 3D coordinates of supervoxel center 3

Appearance
intensity mean intensity of the supervoxel 1
- intensity histogram within the supervoxel 8

* LMFB: Leung-Malik filter banks [71].

4.2.4 Feature Extraction

Table 4.1 shows the voxel feature and supervoxel feature used in this study. The

voxel descriptor used in the SVM classifier corresponds to a feature vector consisting

of texture, position, and intensity feature. The supervoxel feature descriptor includes

four components: texture, position of the supervoxel center, mean intensity, and the

histogram of the voxel intensities within the supervoxel. The Euclidean distance of

the supervoxel feature from the atlases to the target is computed so as to select

the candidate supervoxels in the atlases and initialize the data term in the energy

function. Since each type of feature shows different importance in differentiating

tissues, we assign a weight w to each type of feature to improve the accuracy of the

supervoxel matching.

The descriptor matching is considered as a convex optimization problem [100]:

arg min
w≥0

∑
(x,y)∈P
(u,v)∈N

L(wTφ(x, y)− wTφ(u, v)) + µ‖w‖1
(4.11)

where P and N are the matching pairs (i.e., x and y hold the same label) and non-

matching pairs (i.e., u and v hold different labels); L(z) = max {z + 1, 0} is the hinge

loss; ‖w‖1 is the regularization term; φ(x, y) denotes the sum of the squared difference

of the each component of the descriptor. The elements of w are non-negative and a

single weight wi is applied to all the feature channels of each descriptor component.

For instance, all the dimensions of the coordinates share the same weight. As the

constraint is defined by the Euclidean distance in the descriptor space, which is same

with feature similarity definition in Section 4.2.2, the weighted feature vector that
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satisfies the constraint is more likely to improve the probability of matching supervoxel

from the atlases to the target. We use the regularized dual averaging (RDA) method

[125] to solve the regularized stochastic learning problem defined in Equation (4.11).

More details about RDA can be found in [100, 125].

In our implementation, to construct the matching pairs, we randomly select equal

supervoxel sample pairs per class from the registered atlases. Then the equal number

of non-matching pairs are randomly selected. In this study, since the supervoxel

feature is a concatenation of four components, a 4-dimensional vector φ(x, y), which is

the sum of squared differences between the descriptors in the sample pair, is calculated

so as to apply the RDA and learn the weight of each component of the feature.

4.3 Experiment

4.3.1 Evaluation

Two matrices are used in the evaluation: segmentation accuracy and under-segmentation

error. The segmentation accuracy is evaluated by the Dice similarity coefficient be-

tween the ground truth and the segmentation result, which measures the overlapping

ratio between two segmented regions and their average volume.

The under-segmentation error, which is a metric of the total number of “leak”

caused by the supervoxels that overlap a given ground truth segment, is used for

evaluating the accuracy of the supervoxel segmentation. Given a region from the

ground truth segmentation gi and the set of supervoxels required to cover it sj, the

under-segmentation error is expressed as:

Eunder =

∑
sj |gi∩sj 6=∅Area(sj)− Area(gi)

Area(gi)
(4.12)
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4.3.2 Pre-Processing

Before applying our approach, we performed the pre-processing steps in the following

order for all the tests: bias field correction, pairwise registration, and image normal-

ization.

First, the N4 bias field correction [106] was applied to the atlas and target images

to correct the intensity inhomogeneity.

Next, the ANTs registration tool [10] was used to perform the pairwise registration

between the target and atlas images. In this study, except for the Section 4.3.6 where a

comparison of three pairwise registration strategies is conducted, all the experiments

are performed on the deformable pairwise registered data. For the MICCAI 2012

dataset, we applied the data produced by the deformable registration in the ANTs,

which was downloaded at http://placid.nlm.nih.gov/user/48. On the other hand, we

performed the deformable pairwise registration on the LPBA40 and IBSR according to

the steps mentioned at the beginning of this paragraph, but with a large convergence

threshold and a small iteration number compared with the registration parameters

used for the MICCAI 2012 dataset, aiming at reducing the pre-processing time.

Finally, decile normalization [94] was performed as follows: 1) The standard scale

landmarks corresponding to each decile were calculated using the warped atlas in-

tensity images; and 2) the image histogram (target and atlas intensity images) was

mapped to the standard scale landmarks in a piece-wise linear fashion.

In order to reduce the computation time, we employ the skull-stripped data in

this study. For the atlas image, the brain mask is derived from the ground truth

image with label greater than 0. For the target image, the brain mask is generated

from the predicted label image obtained from the SVM classifier.
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4.3.3 Influence of Parameters

Parameters evaluated in this study include the SVM parameters, the supervoxel size,

and the atlas number. We applied the empirical values on other parameters. The

search radius r and candidate supervoxel number N are set to 10 and 50, respectively.

The parameter of the Potts model λ, which is related to the smoothness term, is fixed

at 10; and the threshold rmaxs associated with the high order potential is set to 30 for

all the experiments.

Note that, the feature weight is learned from the matching pairs and non-matching

pairs generated from the atlases. Consequently, the feature weight is learned based

on each dataset, instead of being fixed for the whole study.

We applied the proposed method to the LPBA40 dataset to demonstrate the

effect of different parameter settings. We randomly selected 20 subjects as the test

data and the rest as the atlas subjects. Deformable pairwise registrations described

in Section 4.3.2 were adopted before the parameter evaluations. The skull-stripped

images provided by the dataset were used as the brain mask in this case. The feature

weight vector learned by RDA is {0.681, 2.763, 1.482, 0.542}.

4.3.3.1 SVM parameters tuning

We use the radial basis function (RBF) kernel for the SVM, where c and γ are two

key parameters. c is the penalty for misclassifying a data point while γ controls the

‘spread’ of the kernel and therefore the decision region. To estimate the parameters

c and γ, we applied the grid search with value c ∈ {2−1, 20, 21, 22, 23, 24, 25, 26, 27}

and γ ∈ {2−3, 2−2, 2−1, 20, 21, 22} using five-fold cross-validation [19] on the training

samples. Figure 4.5 shows that c = 24 and γ = 2−1 achieve the highest classification

accuracy of 85.75%.
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Figure 4.5: Influence of parameters γ and c in the SVM on classification accuracy.

(a) (b) (c)

Figure 4.6: Supervoxel segmentation results of using SLIC based on (a) intensity
image, (b) feature image using a concatenation of the texture feature, coordinates
and intensity, and (c) predicted label image obtained from the SVM classifier.

4.3.3.2 Influence of supervoxel size

The accuracy of the supervoxel segmentation plays a critical role at the supervoxel

labeling stage. We compared three types of images as the input of the SLIC algorithm:

intensity image, feature image, and predicted label image. The feature image is

defined in the voxel feature space (see Table 4.1) which consists of the texture feature,

intensity, and the coordinates in the coronal plane. 50 coronal slices randomly selected

from 20 test subjects were evaluated with the desired supervoxel number k = 1200.
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Figure 4.6 shows the supervoxel segmentation results displayed on top of the ground

truth images, where the label image outperforms the other two input images in terms

of forming uniform supervoxels and fitting the boundaries of the ground truth. For

quantitative analysis, the label image demonstrates the lowest under-segmentation

error with 0.534±0.001 in contrast to 1.049±0.015 for the feature image and 0.630±

0.002 for the intensity image.

Another important parameter of our approach is the size of the supervoxel which

is determined by k, the desired number of approximately equally sized supervoxels,

in the SLIC algorithm. We performed our approach on the 20 test subjects with

k = {500, 800, 1200, 2400}. Figure 4.7 shows the under-segmentation error, Dice

coefficient, and the processing time, averaged over the 20 subjects, with respect to the

value of k. Figure 4.8 demonstrates the supervoxel segmentation with different values

of k on the ground truth image. It is evident that the small supervoxel size makes

the over-segmentation to tightly fit the ground truth, and the segmentation accuracy

increases with the increase of k as well as the processing time of the supervoxel

segmentation. However, the computation time rises considerably when k ≥ 1200. In

this test, we make a tradeoff between the segmentation accuracy and the processing

time, and set k to 1200 in the following experiments.

4.3.3.3 Influence of atlas number

To study the influence of the atlas number, we performed the proposed method on

the 20 test subjects with the number of atlases ranging from 1 to 20. Figure 4.9

demonstrates the averaged Dice coefficient with respect to the number of atlases.

The segmentation accuracy improves with the increase of the number of atlas subjects

while the increase rate reduces when the atlas number is greater than 10.
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Figure 4.7: Supervoxel segmentation performance with respect to k. (a) and (c)
indicate the averaged accuracy and processing time for supervoxel segmentation (error
bar at ±1 std), respectively. (b) demonstrates the averaged segmentation accuracy
for the dense labeling (error bar at ±1 std).

55



(a) k = 500 (b) k = 800

(c) k = 1200 (d) k = 2400

Figure 4.8: Supervoxel segmentation on the ground truth image with different super-
voxel size k.
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Figure 4.9: Overall accuracy in terms of mean Dice coefficient, with respect to the
number of the atlases (error bar at ±1 std).
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4.3.4 Influence of Method Components

In this section, we investigate the influence of different components in the proposed

method, and the results are summarized in Table 4.2 and Figure 4.10. The labeling

results acquired from the SVM classifier are employed as the baseline. In order to

study the contributions of the smoothness term and the effectiveness of the data term,

we compare three results: 1) Labeling results by applying a graph model of 3D grids

with 6 neighborhood system to the image, where the voxel probabilities obtained from

the SVM classifier and same Potts model represent the data term and the smoothness

term, respectively (SVM+MRF); 2) the labeling results that minimize the data term

in Equation (4.4), which is equivalent to a label fusion scheme (supervoxel label

fusion); and 3) the segmentation results of the supervoxel labeling in Section 4.2.2

(supervoxel MRF). For completeness, the refinement results in Section 4.2.3 are also

included (dense MRF).

As shown in Table 4.2, there is a clear increase from the SVM (0.794± 0.028) to

SVM+MRF (0.821± 0.063), and from the supervoxel label fusion (0.817± 0.009) to

supervoxel MRF (0.839 ± 0.009). The results indicate that the graphical model is

effective in improving the segmentation accuracy compared with that just fuses the

candidate labels or utilizes the classifiers. In addition, by comparing the results of

supervoxel MRF and SVM+MRF, it is obvious that the data term, which encodes the

contextual information and the label prior, is effective in representing the likelihood

of the supervoxel, and contributes to 2.9% increase. By applying the dense labeling

refinement scheme, the Dice score continues to increase to 0.848 ± 0.010. For the

qualitative analysis in Figure4.10b, the results of SVM classifier miss the spatial

consistency and result in a noisy label image. By applying the MRF graphical model,

the spatial inconsistency is alleviated, however, due to the influence of its data term

(Figure 4.10b), all the voxels of the middle frontal gyrus are mislabeled as superior

frontal gyrus in Figure 4.10c. Compared with the results of SVM and SVM+MRF, the

mislabeling of the middle frontal gyrus area does not exist in the results of supervoxel
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Table 4.2: Dice coefficients of different components analysis.

Method Cortical labels Sub-cortical labels All labels
SVM 0.772± 0.031 0.935± 0.013 0.794± 0.028

SVM+MRF 0.805± 0.069 0.958± 0.018 0.821± 0.063
Supervoxel label fusion 0.795± 0.010 0.950± 0.012 0.817± 0.009

Supervoxel MRF 0.825± 0.010 0.956± 0.012 0.839± 0.009
Dense MRF 0.834± 0.013 0.958± 0.015 0.848± 0.010

(a) Ground truth (b) SVM (c) SVM+MRF

(d) Supervoxel label fusion (e) Supervoxel labeling (f) Dense Labeling

Figure 4.10: Segmentation results of the different components analysis.

label fusion and supervoxel MRF (Figure 4.10d and Figure 4.10e). Furthermore,

by employing the refinement dense labeling, the labels of the voxels on the tissue

boundaries are corrected (Figure 4.10f).

4.3.5 Experimental Results on Three Public Dataset

In this experiment, we compared the segmentation accuracy of the proposed method

with four baseline methods: majority voting (MV) [42], patch-based method (PB)
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[25], SVM segmentation with augmented features 4 [12], and joint label fusion5 [118].

MV is simple but yields a competitive result. PB is efficient in alleviating the depen-

dency on deformable image pairwise registration. The patch size is set to 7 × 7 × 7

and the search volume is set to 5×5×5. JLF represents the state-of-the-art weighted

label fusion method. The parameters presented here is the same as suggested in [118]

with α = 0.1, β = 2, rp = 2 and rs = 3. SVMAF is a learning-based method, which

achieves a good performance in the segmentation of the cardiac MR images. The

parameters of the SVM classifier in the SVMAF are set to γ = 2−8 and c = 21 result-

ing from a grid search with γ ∈ {2−9, 2−8, 2−7, 2−6} and c = {2−2, 2−1, 20, 21, 22, 23}.

The control point spacing, patch size, and search window size are set to 3 × 3 × 1,

7×7×1 and 5×5×1, respectively, according to [12]. We performed the four baseline

methods and the proposed method on the three datasets: the MICCAI 2012 dataset,

the LPBA40 dataset, and the IBSR dataset. As described in Section 4.3.2, the five

multi-atlas segmentation methods were applied on the same pairwised registered data

to ensure the fairness of comparison.

4.3.5.1 Experimental results on MICCAI 2012 dataset

The MICCAI 2012 dataset includes 20 test subjects and 15 atlas subjects, with 134

labels. We train the SVM classifier with c = 23 and γ = 20 resulted from a grid search

with value c ∈ {2−1, 20, 21, 22, 23, 24, 25, 26, 27} and γ ∈ {2−3, 2−2, 2−1, 20, 21, 22} using

cross-validation, and the feature weight vector learned by RDA is {0.412, 2.689, 1.50, 0.374}.

Table 4.3 lists the mean and standard deviation of the Dice coefficient for the

cortical structures, subcortical structures and all labels. The mean Dice coefficient of

the cortical structures outperforms the other baseline methods while the performance

in subcortical structures is lower than JLF and SVMAF. The reason is that the seg-

mentation of subcortical area is dependent on the intensity information. As a result,

the JLF algorithm, which computes the fusion weight based on intensity similarity,

outperforms the proposed method in several subcortical structures. Our proposed

4 http://wp.doc.ic.ac.uk/wbai/software/ 5 https://www.nitrc.org/projects/picsl_malf/
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Table 4.3: Dice coefficient and running time of four baseline methods and the proposed
method on three public datasets.

Datasets Method Cortical Sub-cortical All Time

LPBA40

MV 0.763± 0.012 0.856± 0.027 0.777± 0.072 1 min
PB 0.764± 0.012 0.854± 0.027 0.774± 0.013 25 min

SVMAF 0.624± 0.026 0.794± 0.024 0.648± 0.025 15 min
JLF 0.801± 0.009 0.881± 0.013 0.813± 0.009 60 min

Proposed Method 0.834± 0.013 0.958± 0.015 0.848± 0.010 30 min

MICCAI 2012

MV 0.702± 0.028 0.797± 0.034 0.729± 0.026 1 min
PB 0.709± 0.027 0.801± 0.031 0.734± 0.026 30 min

SVMAF 0.715± 0.028 0.818± 0.029 0.745± 0.026 20 min
JLF 0.731± 0.029 0.825± 0.030 0.758± 0.026 180 min

Proposed Method 0.748± 0.017 0.816± 0.021 0.764± 0.015 45 min

IBSR

MV 0.551± 0.022 0.772± 0.026 0.606± 0.023 1 min
PB 0.561± 0.024 0.768± 0.026 0.613± 0.024 25 min

SVMAF 0.564± 0.025 0.732± 0.039 0.606± 0.029 10 min
JLF 0.644± 0.037 0.841± 0.012 0.693± 0.031 45 min

Proposed Method 0.706± 0.022 0.852± 0.016 0.743± 0.021 20 min

method achieves a significant improvement (p < 0.01, paired t-test) in the mean Dice

coefficient compared with MV, PB, SVMAF, and JLF. In Figure 4.11, we present the

per-label accuracy. The cortical structures and the subcortical structures are shown

separately (Figure 4.11a and Figure 4.11b), the proposed method outperforms others

in the cortical area, while it does not show a high Dice coefficient as expected in the

subcortical labels. Figure 4.12 illustrates the ground truth and segmentation results

of each method. Unlike the other baseline methods, the result of the proposed method

does not contain the undesired “holes” in the anatomical structures, which indicates

the advantages of our approach in maintaining the spatial consistency.

4.3.5.2 Experimental results on LONI-LPBA40 dataset

The parameters used for the LPBA40 dataset are consistent with those in Sec-

tion 4.3.3. The Dice coefficient of each tissue is summarized in Figure 4.11, and

the proposed method performs the best except for the precentral and gyrus rectus,

and the proposed method achieves a significant improvement (p < 0.01, paired t-test)

in the mean Dice coefficient of cortical structures, subcortical structures and the
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overall labels compared with the baseline methods (Table 4.3). As with the MICCAI

2012 dataset, the high accuracy of segmentation in cortical labels is demonstrated in

the LPBA40 dataset. In the six subcortical labels (we include brain stem and cere-

bellum as subcortical labels for simplicity), the proposed method also demonstrates

significant improvement over the baseline methods. In Figure 4.12, MV, PB, and

JLF show excessive smoothness of the boundaries while the proposed method does

not. In addition, as we use a loose convergence parameter for the deformable regis-

tration, the segmentation quality of SVMAF yields a sharp decrease compared with

its performance in the MICCAI 2012 dataset.

4.3.5.3 Experimental results on IBSR dataset

We randomly selected 9 subjects as the atlases and the remaining as the test sub-

jects. The SVM classifier with c = 22 and γ = 20 is used to obtain the predicted

label image by searching the grid of c = {2−1, 20, 21, 22, 23, 24, 25, 26, 27} and γ =

{2−3, 2−2, 2−1, 20, 21, 22}, and the feature weight vector learned by RDA is {0.521, 2.234,

1.266, 0.548}.

The proposed method performs the best in the mean Dice coefficient of cortical

labels, subcortical labels and the overall labels, and it yields a significant improve-

ment (p < 0.01, paired t-test) compared with the baseline methods, as shown in

Table 4.3. However, our approach does not achieve the highest mean Dice coefficient

in four subcortical structures: hippocampus, cerebral white matter, inferior lateral

ventricle and CSF (see Figure 4.11). As with the results shown in the MICCAI 2012

and LPBA40 datasets, the performance in cortical structures is outstanding, which

achieves the highest Dice coefficient in all of the cortical labels except T3p (inferior

temporal gyrus, posterior). For the qualitative analysis in Figure 4.12, the baseline

methods show excessive smoothness so that some tiny structures are missed in the

subcortical area, and the spatial inconsistency exists in the cortical area. Like the

results of the LPBA40 dataset, SVMAF does not yield a good performance due to

the application of loose convergence parameter in the pairwise registration.
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(a) Results of subcortical labels on the MICCAI 2012 Multi-Atlas Labelling Challenge
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(b) Results of cortical labels on the MICCAI 2012 Multi-Atlas Labelling Challenge.
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(c) Results on LONI-LPBA40 dataset
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(d) Results of subcortical labels on IBSR dataset
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(e) Results of cortical labels on IBSR dataset

Figure 4.11: Per-label accuracy comparison on the whole brain segmentation using
three public datasets where the left and right hemisphere labels are shown jointly.
The proposed method is compared with four baseline methods in the experiment.
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MICCAI 2012 LPBA40 IBSR Subcortical IBSR Cortical

Ground
Truth

MV

PB

SVMAF

JLF

Proposed
Method

Figure 4.12: Segmentation results of the MICCAI 2012, the LPBA40, subcortical
labels of IBSR, and cortical labels of IBSR datasets. Common mistakes (indicated
by arrows) of the baseline methods include 1) spatial inconsistency in MICCAI 2012;
2) excessive smoothness of boundaries in LPBA40; 3) excessive smoothness in tiny
structures in subcortical labels of IBSR; and 4) spatial inconsistency in cortical labels
of IBSR.
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4.3.6 Analysis of the Influence of Pairwise Registration Strate-
gies

We analyzed the effect of applying different pairwise registration strategies on the

LPBA40 dataset. We performed the tests with rigid, affine combined with rigid, and

deformable registration strategies using the ANTs tool, with the cost of 1 min, 3

min, and 10 min for per pairwise registration. Then we applied the multi-atlas seg-

mentation on the target image and corresponding warped atlas images. As shown in

Table 4.4, the mean Dice coefficient is decreased by 0.8% (from 0.848 to 0.837) through

shifting from deformable registration to the rigid registration for our method, while

JLF and PB are decreased by 2.3% (from 0.813 to 0.794) and 11.8% (from 0.774 to

0.683). The proposed method does not show statistical significance (p > 0.01, paired

t-test) in the pair of affine combined with rigid and deformable registration while

JLF and PB do. Therefore, our method is less sensitive to the registration method.

In other words, a less time-consuming registration method can achieve equivalent

performance as those with complicated ones when incorporating our method.

Table 4.4: Dice coefficient of using different registration strategies

Method Rigid Rigid+Affine Deformable
PB 0.683± 0.033 0.723± 0.016 0.774± 0.013
JLF 0.794± 0.014 0.796± 0.010 0.813± 0.009
Our method 0.837± 0.011 0.839± 0.009 0.848± 0.010

4.3.7 Computation Time

The average training time for the SVM classifier is 2 hours on a single desktop PC (i7-

4900 CPU 3.60GHz, 16GB RAM). The testing time varies according to the number

of atlases, class labels and the size of image. The running time per test is 45 min for

the MICCAI 2012 dataset, 30 min for the LPBA40 dataset, and 20 min for the IBSR

dataset, respectively. The baseline methods are evaluated using the same platform.

Table 4.3 indicates that MV achieves the fastest running speed with only 1 min while
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the JLF needs more than 1 hour per test. The running time for each subject of our

proposed method is close to SVMAF and PB. Although the proposed method is slower

than MV, it performs much better than MV in terms of the segmentation accuracy.

The running time for the pre-processing steps is not considered in this section.

4.4 Discussion

The sensitivity of the proposed method is demonstrated with respect to the model

parameters, the pairwise registration strategies, and the datasets. Generally speaking,

the performance improves significantly by increasing the desired supervoxel number

and the atlas number, however, the increase slows down after the number of k and

atlases reach a certain value (i.e., 1200 for k and 10 for the atlas number on the

LPBA40 dataset). For the pairwise registration, the insensitivity is verified by the

experiments in Section 4.3.6. In the experiments of this work, the test subjects

and the atlas subjects are acquired from the same scanner and labeled under the

same protocol. However, further study is required to validate the performance of the

proposed method when test data and atlases are acquired form different machines.

In addition, our approach achieves a significant improvement over the recently

proposed state-of-the-art methods. The observed qualitative performance improve-

ment demonstrates that the introduction of supervoxels contributes to preserving the

spatial label consistency. As shown in the MICCAI 2012 dataset with 134 anatomical

structures, the proposed method highlights its benefits in maintaining the spatial label

consistency, particularly for the small structures. In addition, the proposed approach

performs competitively in obtaining accurate details without excessively smoothing

the boundaries, as demonstrated on the LPBA40 dataset. For the quantitative anal-

ysis, the performance in the cortical area is better than that in the subcortical area.

Since the segmentation of the subcortical area is dependent on the intensity infor-

mation, the JLF algorithm, which utilizes the intensity similarity to compute the

weight, performs the best in several subcortical structures on the MICCAI 2012 and
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IBSR datasets. For the LPBA40, a dataset with most labels within the cortex, the

proposed method outperforms the baseline methods in almost all the labels.

Although both the proposed method and the patch-based method include the

step of the local search, the aim of searching the neighborhood in the atlases is

different. The proposed method computes the likelihood score through searching

the neighborhood in the atlases so as to initialize the data term, while the local

search is employed to compute the weight that the candidate label may contribute

to the estimated label in the patch-based method. The data term is equivalent to

a label fusion scheme which is employed by the other patch-based methods on a

supervoxel level. By comparing the results of the supervoxel label fusion and other

patch-based methods, the supervoxel label fusion achieves the highest segmentation

accuracy 0.817±0.009 compared with 0.774±0.013 for PB and 0.813±0.009 for JLF.

In addition, apart from directly utilizing the intensity similarity, we also employ the

texture similarity and spatial proximity in the feature descriptor, which alleviates the

heavy dependency on intensity and contributes to preserving the label consistency.

The proposed method reduces the dependency on the pairwise registration in two

ways. First, simple registration strategy (e.g., affine registration) could become a sub-

stitute for the complicated ones (e.g., deformable registration) since the registration

errors are remedied by introducing the graphical model associated with the supervox-

els. Second, the pairwise registration number per target decreases as it achieves com-

petitive segmentation performance with a small atlas number. The learning-based

methods do not require pairwise registration or adopt one registration per target,

however, the training of the classifier requires a high computational cost in terms of

time and storage. For example, the training time for CNN networks with two la-

bels is approximately three hours on a workstation with an Nvidia Geforce GTX1080

GPU [92], and it needs three days for DeepNAT model with 25 brain structures [112].

Nevertheless, the spatial label inconsistency still exists in the segmentation results

of the learning based methods. In addition, the accuracy of learning-based methods

is affected by the number of training samples, and it needs to increase the number
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of atlases or use data augmentation techniques. As mentioned in [112], the authors

achieve comparable results with JLF by increasing the number of training scans from

15 to 20 in the MICCAI 2012 dataset.

4.5 Conclusion

In this work, we have developed a novel approach for the segmentation of the brain

structure. The proposed method overcomes the challenges existing in the previous

multi-atlas segmentation in terms of the computational efficiency and the dependency

on the complicated deformable pairwise registration. The goals are accomplished by

utilizing the graphical model associated with the supervoxels to solve the MAP esti-

mation problem defined in multi-atlas segmentation. The proposed approach demon-

strates superior performance over the state-of-the-art algorithms on three publically

available datasets, and significant improvement was achieved in terms of overall ac-

curacy, per-label accuracy, and qualitative assessment.
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Chapter 5

AttentionNet: Brain Anatomical
Structure Segmentation Using
CNN with Attention Mechanism

Encoder-decoder network has been widely applied to medical image segmentation

due to its performance in predicting the fine details. In this work, in order to further

improve the ability to predict the fine details for the encoder-decoder like network,

we propose an AttentionNet that exploits the attention mechanism to combine the

shallow features from the down-sampling layer with the deep features from the up-

sampling layer. The attention model finds the dependencies between the shallow

features and the deep features, and selectively connects the important features to the

up-sampling path. Furthermore, we develop an efficient decoder net that can be inte-

grated with the state-of-the-art classification net. Extensive experiments demonstrate

that the proposed AttentionNet significantly improve the segmentation performance

compared with the other feature combination strategies on challenging brain segmen-

tation datasets.

5.1 Introduction

Like the semantic segmentation, the goal of using ConvNets for medical image seg-

mentation is to produce the pixelwise prediction. Inspired by the encoder-decoder
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architecture that has been successfully applied to the semantic segmentation as well

as the medical image segmentation [11, 87, 127], we design an efficient architecture

for the anatomical structure segmentation of the brain MR images. The encoder is

topologically identical to a classification network with the fully connected layers being

replaced by the fully convolutional layers [23, 75], while the decoder is designed as a

stack of up-sampling units [11, 87, 127].

The encoder outputs low-resolution feature maps because of the pooling or strided

convolution operations. Directly up-sampling the coarse feature maps to the input

resolution with a large stride results in a loss of the boundary details. To address

this problem, the finer feature maps from the down-sampling path are connected to

the up-sampling path in order to combine the high-level features with the local fea-

tures. By combining the features that indicate the class with those carrying local

information, the net is capable of making more precise predictions even for the pixels

at the boundaries. Addition [127] and concatenation [80, 87] are the two most widely

used strategies for feature combination, which have been demonstrated effectiveness

in predicting the details of the segmentation. However, the existing feature combina-

tion methods did not consider the focused locations or enhanced the representations

at the corresponding locations in the finer feature maps, resulting in limiting the

performance of the feature combination.

Attention mechanism is a widely studied field in computer vision [56, 81, 115]. The

nature of the selective visual attention is to direct the gaze towards salient objects

in a cluttered visual scene [56]. Motivated by the idea of the attention mechanism

in computer vision, we focus on developing a spatial attention model for feature

combination in the encoder-decoder network, which enables the net to pay attention

to the relevant spatial positions in the finer feature maps. The proposed spatial model

is inspired by the scaled dot-product attention model [109], which was originally

exploited in addressing the natural language processing problem. It connects the

shallow features from the down-sampling layer and the high-level features from the

up-sampling layer and captures the spatial dependencies between two feature maps.
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Based on the spatial dependencies captured by the attention model, we can highlight

those relative positions in the feature maps from the down-sampling path, softly select

and connect those important features to the up-sampling path.

On the other hand, although 3D CNN is effective in capturing 3D contextual

information, the 3D networks are usually designed in a shallow fashion because of

the high requirement for the memory. Moreover, the training samples are cropped

into small sub-volumes to enable the model to accommodate more mini-batches. In

addition, there are rarely 3D CNN models pre-trained on a large dataset like the

ImageNet, which makes it challenging to train a deep network on the small dataset.

All of the factors mentioned above hamper the performance of the 3D CNN. To this

end, we adopt the 2D CNN architecture and train the network on the 2D coronal slices.

Moreover, to compensate for the loss of contextual information in the third dimension,

we encode the position information into the inputs. The major contributions of this

work include:

1. We develop and apply a spatial attention model to feature combination unit in

encoder-decoder architecture. The attention model equips the net with the abil-

ity to highlight the important finer features and contributes to the precise dense

predictions.

2. We develop a 2D CNN architecture, which benefits the model in terms of low

memory requirement, deep architecture, and fine-tuning on the pre-trained model.

The incorporation of the position information not only compensates for the loss

of the spatial context in the third dimension but also enables the net to train on

both intensity and spatial prior.

The chapter is organized as follows. We explain the design of the net architecture

in Section 5.2. Then, we analyze the influence of the components in the AttentionNet

in Section 5.3.3.3 and investigate the effect of the integration of the proposed attention

model with the other modern classification networks in Section 5.3.4. Furthermore,
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in Section 5.3.5, we compare the performance of the proposed AttentionNet with the

state-of-the-art networks for medical image segmentation on three public datasets.

5.2 Methods

5.2.1 General Architecture

As illustrated in Figure 5.1, the net consists of three components: encoder, decoder,

and feature combination. The encoder is topologically identical to a classification net

which consists of a couple of down-sampling units. Each down-sampling unit stacks

a few convolution layers and follows them with pooling layer (or strided convolution

layer), resulting in down-sampling the spatial dimension of the input. The decoder

is in charge of recovering the low-resolution, high-level feature maps to the full input

size through a couple of up-sampling units. Each up-sampling unit includes an up-

sampling operation (e.g., deconvolution layer or interpolation operation) to increase

the spatial size. The feature combination unit associates the shallow, appearance

features from the down-sampling unit with the deep, semantic features from the cor-

responding up-sampling unit. By combining the features that carry local information

with those indicating the class, the feature combination unit outputs the features

which not only are capable of localizing but also obey the global structure. Last, a

fully convolutional layer is applied after the last up-sampling unit to obtain dense

predictions.

5.2.2 Attention Model

The proposed spatial attention model finds the correspondence between the finer

features and the high-level features via computing the dot-product. In this section,

we start with introducing the original dot-product attention function, then derive the

spatial attention function which is applicable to the encoder-decoder architecture for

segmentation.
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Figure 5.1: General encoder-decoder architecture for image segmentation.

5.2.2.1 Dot-product attention model

The attention model captures two information sources: query and query context, and

a new representation is computed based on these two information sources. The query

is associated with a query vector while the query context refers to a set of key-value

pair, where the keys and values are all vectors. Generally, the dot-product attention

model computes the similarities between the query vector and each key vector, then

outputs a weighted sum of the values based on the similarity scores.

The dot product of two vectors has the geometric definition that represents the

cosine of the angle between two vectors. Consequently, by performing the dot product

of the query and all the keys we can obtain a bunch of similarity scores which indicate

how each key aligns the query. Then the similarity scores are normalized by the

softmax function, resulting in a weight map over all the values. As a result, the

attention function outputs the weighted summation over all the corresponding values.

The queries, keys, and values are packed together into matrices Q, K, and V , which

enables the attention to be performed on a set of queries simultaneously. The dot

product attention function [109] is:

Attention(Q,K, V ) = softmax(QKT )V (5.1)
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5.2.2.2 Spatial attention model

Based on the dot-product attention function, we propose a spatial attention function

and apply it to the encoder-decoder network. For the spatial attention model, the

feature maps of the up-sampling unit serve as the queries Q while the counterparts

of the down-sampling unit serve as the keys K and the values V . The dot-product

attention function computes a weight map that refers to the spatial correspondence

between the two feature maps, aggregates the features over all the corresponding

spatial positions in the finer feature maps, and combines the aggregated features

with the up-sampling features. The structure of the building block for the spatial

attention model is illustrated in Figure 5.2. The attention function is followed by

batch normalization and ReLU activation. The shortcut connection is applied to the

attention building block.

Figure 5.2: Building block of the spatial attention model.

Since the queries and keys are extracted from different feature spaces, we perform

linear projections WQ and WK on the queries and the keys to transform them to the

same subspace with dimension dk. Moreover, to facilitate the “short connection” (see

Figure 5.2), linear transformation WV is applied to the values to match the dimension

of the output of the attention function with that of the queries.

In addition, only when the two vectors are both unit vectors does the dot prod-
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Figure 5.3: Building block of the spatial attention function.

uct measure the cosine similarity. We thus normalize the queries and keys before

performing the dot product. The attention function is:

Attention(Q,K, V ) = softmax(
√
dk

QWQ

‖QWQ‖

( KWK

‖KWK‖

)T
)VWV (5.2)

In Equation (5.2), we divide the queries and keys by their L2 norm to convert

them to unit vectors. Another function of the softmax function is to enlarge the dif-

ferences of similarity scores while the range of dot-product of the unit vectors is too

small to take advantage of the softmax function. Therefore, we scale the dot product

by
√
dk so that the results range from −

√
dk to

√
dk. The spatial attention function

is implemented as a building block of CNN, as shown in Figure 5.3. Equation (5.2)

differs from the original dot product attention function [109] in terms of the normal-

ization of the QWQ and KWK . We normalize the query and key vectors so that the

dot product has the explicit meaning, which represents
√
dk times the cosine of the

angle between the two vectors. The performances of Equation (5.2) and the original

dot product attention is compared in Section 5.3.3.1.

However, it requires high memory consumption to force each query to attend all

the positions in the key feature maps. Suppose the sizes of the queries and keys
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are Nq × dk and Nk × dk, respectively (where the 2D feature maps are flattened),

performing a full attention function yields a Nq × Nk weight map. With the spatial

resolution increasing after the up-sampling unit, the spatial sizes of the queries and

keys both increase dramatically, resulting in a high memory requirement for the full

attention.

Therefore, we develop a 2D attention model to make the query only attend the

key positions within a block. To this end, we partition the queries (i.e., finer feature

maps) and keys (i.e., high-level feature maps) into the same number of blocks and

ensure the centers of the query block and the corresponding key block to be aligned.

For each position in the query block, the spatial attention function Equation (5.2)

is performed on the query and all the keys in the corresponding key block. Then

by multiplying the values with corresponding spatial weight map, we acquire the

weighted sum of the features over the positions inside the key block.

Figure 5.4 illustrates a toy example of the 2D attention module. Specifically, the

queries (B,Hq,Wq, dk) are partitioned into dHq

hq
e × dWq

wq
e (d·e is the ceiling function)

blocks with block size of Nq = hq × wq. Similarly, the keys (B,Hk,Wk, dk) are

partitioned into dHq

hq
e × dWq

wq
e key blocks with block size of Nk = hk × wk, where

hk = dHk

Hq
× hqe and wk = dWk

Wq
× wqe. The 2D attention model computes a spatial

weight map with dHq

hq
e × dWq

wq
e blocks, where each block is a Nq ×Nk sub weight map

that indicates the similarities between the queries in the query block and the keys in

the corresponding key block. Because there exists a relationship between the size of

the query block (hq×wq) and the key block (hk×wk), we only discuss the size of key

block Nk = hk × wk in the rest of this chapter and investigate the effect of varying

Nk in Section 5.3.3.2.

5.2.3 Architecture of the AttentionNet

By integrating the proposed spatial attention model with the encoder-decoder net, we

obtain a new architecture “AttentionNet”. Table 5.1 shows the architecture details of
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Figure 5.4: A toy example of the 2D attention model. For queries (1, 4, 4, dk) and
keys (1, 8, 8, dk), they are partitioned into 2 × 2 query/key blocks, where the query
block size is 2× 2 and the key block size is 4× 4. By performing the spatial attention
function on the query block and the corresponding key block, we obtain a weight map
with a size of 8 × 32. The weight map contains 2 × 2 sub weight maps, where each
sub weight map with the size of 4 × 16 indicates the similarity scores of the query
vectors and key vectors in the corresponding query and key block.

an AttentionNet that combines the ResNet-50 [41] with the spatial attention model

(Attn-Resnet-50).

Residual block is the basic building block for the family of ResNet. Following the

architecture of ResNet-50, we employ the bottleneck design for the residual block.

The bottleneck block consists of three convolution layers, with kernel size of 1 × 1,

3×3, and 1×1. The two 1×1 layers are used to reduce (with the factor of 4) and then

increase the dimension of the depth, and the 3× 3 layer serves as a bottleneck with

smaller input/output channels. Batch normalization is applied after each convolution

and prior to the non-linear activation. The identity shortcut connection is applied if

the input and output are of the same number of channels. Otherwise, the projection

shortcut connection (1 × 1 convolution) is used to match the channels of the input

with that of the output.
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We remove the max-pooling layer that follows conv1 in ResNet-50. In the down-

sampling path, the down-sampling operation is performed four times by conv1, conv3 1,

conv4 1, and conv5 1 with a stride of 2. We hence stack four 2x up-sampling units

to recover the feature maps to the input resolution. As shown in Figure 5.5, the

proposed up-sampling unit, residual upsampling block (ResBlock), is designed as a

deconvolution layer followed by a residual block. The deconvolution layer with 3× 3

filter performs the 2x upsampling on the input and outputs 256-d feature maps. The

same bottleneck design is employed in the residual block of the up-sampling unit.

Figure 5.5: Structure of the residual upsampling block.

As shown in Table 5.1, three spatial attention building blocks are employed in this

architecture, and each attention building block is inserted between two up-sampling

units. For attention1, attention2, and attention3, the keys and values are the feature

maps of conv4 6, conv3 4, and conv2 3, while the corresponding queries are the output

feature maps of upsample1, upsample2, and upsample3. In order to decrease memory

usage, all the up-sampling units produce feature maps with a depth of 256. To

this end, the linear projection WQ, WK , and WV transform the queries, keys, and

the values to subspace with dimension 256 for all the attention layers. Last, a 1× 1

convolutional layer is added on top of the last up-sampling unit to produce a pixelwise

prediction.
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Table 5.1: Architecture of the Attn-Resnet-50.

Layer Name Block Type Output Size Output Channel Repetition No.

input input 161× 161 3 1

conv1 7× 7 convolution 81× 81 64 1

conv2 x bottleneck 81× 81 256 3

conv3 x bottleneck 41× 41 512 4

conv4 x bottleneck 21× 21 1024 6

conv5 x bottleneck 11× 11 2048 3

upsample1 res-upsampling block 21× 21 256 1

attention1 attention block 21× 21 256 1

upsample2 res-upsampling block 41× 41 256 1

attention2 attention block 41× 41 256 1

upsample3 res-upsampling block 81× 81 256 1

attention3 attention block 81× 81 256 1

upsample4 res-upsampling block 161× 161 256 1

classification 1× 1 convolution 161× 161 No. of classes 1

For the AttentionNet, the repetition number of the down-sampling units differs

from that of the corresponding up-sampling units. Moreover, the output channels

of the up-sampling unit are not always equal to the corresponding down-sampling

unit. As a result, the asymmetric architecture of the proposed AttentionNet has

fewer parameters than the symmetric encoder-decoder architecture, which makes it

easy to train on small datasets (e.g., medical images data).

5.2.4 Spatial Information

Previous studies show that the spatial prior provides valuable information for brain

labeling [49] and demonstrate the importance of the spatial information for brain

anatomical structure segmentation using CNN [28, 113]. In addition, since we employ

the 2D CNN architecture, employing the spatial information can compensate for the

loss of the contextual information in the third dimension. In this work, we augment

the intensity image with the relative coordinates as the input.
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(a) (b) (c) (d)

Figure 5.6: Coronal image augmented by the relative coordinates: (a) x, (b) y, (c) z.
(d) is the original coronal image without position information.

To calculate the relative coordinates, we first compute the foreground mask of

the brain volume, which is a non-zero mask of the 3D brain image. The relative

coordinates are ( x−xmin

xmax−xmin
, y−ymin

ymax−ymin
, z−zmin

zmax−zmin
), where xmin, xmax, ymin, ymax, zmin,

zmax are the minimum and maximum values of the foreground mask along x, y, and

z directions. Then the relative coordinates are scaled to the range of [0, 255]. The

relative coordinates provide the estimation of the position in the anatomical space for

each voxel. We slice the three relative coordinate volumes along the coronal axis, and

element-wise added the three sliced relative coordinate images to the three channels

of the tiled coronal intensity image, resulting in an input image with three channels.

Figure 5.6 illustrates an example of the input with position information embedded.

5.3 Experimental Results

5.3.1 Preprocessing

We apply the decile intensity normalization [95] to the volumetric MR images to deal

with the intensity scale inhomogeneity with regard to intra- and inter-patient varia-

tions. Then, the 3D images are sliced into coronal images. After adding the relative

coordinates, the input images are normalized to have zero mean by subtracting the

mean value.
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5.3.2 Implementation Details

We perform online data augmentation with random scaling, random rotation, and

random cropping. The network is trained with Adam optimizer [63] with β1 = 0.9,

β2 = 0.999, and ε = 10−8. We use a mini-batch of 8 images and initial learning rate of

0.001. We apply an exponential decay to the learning rate (decay every 20 epochs with

a base of 0.8). The model is trained for 150 epochs on the corresponding Imagenet-

pretrained model. Except for the weights of the deconvolutional layers, all the weights

are initialized as in [40]. For the deconvolutional layers, we follow the scheme in [75]

to initialize the up-sampling to bilinear interpolation. Dice coefficient between the

ground truth and the dense prediction produced by the network is adopted as the

evaluation metric. All the networks are evaluated with 5-fold cross-validation on the

corresponding datasets. Our CNN is implemented using the Tensorflow library on

an NVIDIA GTX 1080 Ti GPU. Dice coefficient between the ground truth and the

dense predictions is used as the evaluation metric.

5.3.3 Analysis of the Network Architecture

In this section, we quantitatively analyze the effect of the components of the proposed

AttentionNet. All the models examined in this section use ResNet50 as the encoder

net and are evaluated on LPBA40 dataset using the training scheme in Section 5.3.2.

The parameters of the encoder net are initialized with model pre-trained on Imagenet.

5.3.3.1 Effects of normalization of the queries and keys

To investigate the effectiveness of the proposed spatial attention model, we compare

our model with the original scaled dot-product attention model in [109] by evaluating

the mean Dice coefficients. For the attention model in [109], the keys and queries are

not normalized into the unit vectors while a layer normalization is applied after the

attention function. Consequently, following the expression Output = layernorm(Q+
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Attention(Q,K, V )) in [109], we construct the building block by applying a “short

connection” to the output of the attention function and the queries and following it

with a layer normalization. Note that no L2 normalization is employed in this original

attention function.

Two attention models are integrated with the same encoder-decoder architecture

(i.e., the down-sampling and up-sampling paths in Attn-ResNet50) and employ the

2D attention modes (Nk = 42 for all the attention layers). We train the two nets on

LPBA40 dataset using the same training scheme as discussed in Section 5.3.2. The

results show that the proposed attention model obtains the mean Dice coefficient of

0.853±0.010, and yields 1.5% improvement over the attention model in [109], of which

the mean Dice coefficient is 0.838± 0.015. Compared with the unnormalized vectors,

the dot-product of normalized vectors explicitly represents the cosine similarities,

resulting in the improvement of segmentation performance.

5.3.3.2 Size of key block

In this section, we investigate the effect of using different sizes of the key block Nk.

Nk determines the size of the region in the key feature maps that the query vector

attends. In this study, the square key block is employed for all the attention layers.

We compare two schemes for Nk: 1) Unique Nk where all the attention layers are

set to the unique size and 2) Staircase Nk where an increasing size from attention1

to attention3 is employed. Table 5.2 shows the mean Dice coefficients of the Attn-

Resnet-50 on LPBA40 dataset for the two schemes of a range of different values.

The baseline model is the case of the unique block size Nk = 12, where the query

vector only attends the same position in the finer feature maps. Compared with

the baseline model, the staircase Nk significantly improves the performance to 0.864.

When the unique block size increases to Nk = 22 and 42, the mean Dice coefficients

significantly improve to 0.856 and 0.853, respectively, compared with the baseline.

However, the performance decreases to 0.848 with using a larger unique block size of
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Table 5.2: Dice coefficients of LPBA40 for Attn-Resnet-50 at different settings of Nk.
Unique block size Nk = 12 is the baseline. Compared with the baseline, the staircase
Nk, unique Nk = 22, and unique Nk = 42 achieve significant improvement, according
to two-sided, paired t-test (**p < 0.005,*p < 0.001).

Unique Nk Staircase Nk

Nk = 12 Nk = 22 Nk = 42 Nk = 82 Nk = 22, 42, 82,

for attention1,2,3

Dice 0.850± 0.0100 0.856± 0.011* 0.853± 0.010** 0.848± 0.010 0.864± 0.010*

Nk = 82. We observe that the staircase block size outperforms any unique block sizes

in this experiment. Furthermore, for the three cases of the unique Nk, small block

size achieves better performance than the large block size.

Figure 5.7 shows the weight maps of three attention layers with different settings

of Nk. For each weight map, the block indicated by the black square is the sub weight

map that indicates the similarities between the queries in the query block and the

keys in the corresponding key block.

In each block, i.e., the sub weight map, the diagonal values demonstrate how

much a query vector correlates to the same position in the key feature maps. For the

staircase Nk, we observe that most of the large weights concentrate on the diagonal

for each attention layer, which agrees with the intuition that the queries are supposed

to strongly correlate to the same position inside the key block. In contrast, the weight

maps of the unique Nk do not demonstrate strong diagonal response. By comparing

the weight maps of the three cases of unique Nk (Nk = 22, Nk = 42, and Nk = 82), we

found that the weight map of the small unique Nk shows much more intensive diagonal

values than that of the large unique Nk for attention1. Because the key feature maps

of attention1 (i.e., conv4 6) is repeatedly sub-sampled feature maps, enlarging the

key block size is bound to involve a lot of distant and irrelevant positions and to

allocate weights to those positions. As a result, the attention model pays increasing

attention to the neighboring positions other than the same position in the key feature

maps, which undoubtedly hinders the feature representation ability of the net.
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attention1 attention2 attention3 Details of attention3

Nk = 22

Nk = 42

Nk = 82

Nk =
22, 42, 82

for atten-
tion1,2,3

Figure 5.7: Visualization of the weights maps of three attention layers with different
settings of Nk. Column 4 indicates the details of the red square in attention3.

However, for attention3, the weight values tend to be balanced for the small unique

Nk while the diagonal values are dominant for the large unique Nk. It is because

the feature difference is subtle among positions within the small neighborhood for

the key feature maps of high-resolution (i.e., conv2 3 ). Consequently, using small

unique Nk causes the attention layer to average the features over the positions in

the block other than to select the correlated ones. We also infer that the balanced

distributed weights in the last attention layer (e.g., attention3 of Nk = 22) cause some
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negative effects during the backpropagation, resulting in a cluttering weight map for

the corresponding previous attention layer (e.g., attention1 of Nk = 22). In contrast,

as shown in Figure 5.7, the staircase Nk ensures that the dominant weight locates

at the same position or its small neighborhood for each attention layer. The clear

correlation between the queries and keys also reflects the ability of representative

learning of the network.

5.3.3.3 Effectiveness of the AttentionNet

In this section, we quantitatively analyze the effectiveness of the AttentionNet. Resnet-

50 is adopted as the encoder for all the nets. Moreover, all the nets are evaluated on

LPBA40 dataset with 5-fold cross-validation using the training scheme discussed in

Section 5.3.2.

First, to investigate the effectiveness of the spatial attention model, we compare

the proposed spatial attention model with the other two feature combination variants:

addition and concatenation. Addition [127] and concatenation [87] have been widely

used in the existing encoder-decoder architectures and have shown the effectiveness

in localizing the details in both semantic and medical image segmentation problems.

Then, we examine the performance of the residual upsampling block (ResBlock).

Another two up-sampling units are compared in this section: Deconvolution up-

sampling unit (Deconv) [75] and U-net up-sampling unit (UnetDec) [87]. Deconv

only includes a 3 × 3 deconvolution layer to up-sample the feature maps. UnetDec

consists of a 3×3 deconvolution layer followed by two successive 3×3 convolution lay-

ers. All the convolution and deconvolution layers are followed by batch normalization

and ReLU activation.

We integrate the three up-sampling variants with the three feature combination

methods, resulting in nine architectures. Following [87, 127], for the architectures

using addition or concatenation as the feature combination unit, the corresponding

up-sampling unit halves the number of the feature channels. For the architectures
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with attention layers, we make the output of all the three up-sampling units be 256-d

feature maps as discussed in Table 5.1.

Figure 5.8 shows the training behavior on LPBA40, micro-average accuracy is

used to measure the performance of the nine architectures on the training data and

the validation data. By comparing the three up-sampling units, we found that all

of them achieve comparable performance at 150th epoch on the training data when

the same feature combination method is applied. However, the UnetDec converges

slower than the other two. On the validation data, The Resblock outperforms the

other two up-sampling units, especially when the attention model is employed as the

feature combination. The UnetDec achieves similar performance to the Deconv in

combination with attention model whereas its validation accuracy is much lower than

the other two when addition or concatenation are employed.

By comparing the training curves of three feature combination units, we did not

find any obvious difference for the training accuracy. However, the attention model

(Figure 5.8b) achieves higher validation accuracy than addition and concatenation

(Figures 5.8d and 5.8f). Specifically, Attention+ResBlock achieves the highest accu-

racy among all the nine architectures, while Addition+UnetDec acquires the lowest

accuracy on the validation data.

Table 5.3 summarizes the mean Dice coefficients, number of the parameters, and

the inter time for the nine architectures. The mean Dice coefficients are evaluated on

the model of the 150th epoch on training and validation data; the parameters of the

encoder net are not counted in Table 5.3. The Attn+ResBlock achieves the highest

validation segmentation score. In contrast, Concat+Deconv obtains the highest train-

ing Dice coefficient while a low validation Dice coefficient. Table 5.3 demonstrates

that addition and concatenation achieve higher training accuracy but a lower valida-

tion accuracy compared with the proposed spatial attention model, which indicates

that the overfitting problem exists in the architectures with attention and concate-

nation. Although the overfitting problem is unavoidable when the training data is
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(c) (d)

(e) (f)

Figure 5.8: Training behavior of nine architectures on training data (left column) and
validation data (right column). The nine architectures share the same encoder net
and vary the decoder net and the feature combination unit. The up-sampling units are
residual upsampling block (ResBlock), deconvolution up-sampling unit (Deconv), and
U-net up-sampling unit (UnetDec). Also, the feature combination units are spatial
attention model (Attn), addition (Add), and concatenation (Concat).
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Table 5.3: Dice coefficients, parameter numbers, and the inference time of 2D slice
of nine architectures with different up-sampling variants and feature combination
variants. On validation data, the Attn+ResBlock achieves a significant improvement
over the other eight nets in validation Dice coefficients, according to a paired, two-
sided t-test (p < 0.001).

Params (M) Train Dice Validation Dice Infer time (ms)

Attention+Deconv 6.80 0.974± 0.001 0.860± 0.011 24.5

Attention+UnetDec 11.53 0.973± 0.002 0.855± 0.011 29.6

Attention+ResBlock 7.08 0.974± 0.001 0.864± 0.010 28.4

Addition+Deconv 7.08 0.978± 0.001 0.851± 0.010 19.2

Addtion+UnetDec 14.56 0.973± 0.002 0.848± 0.011 21.3

Addition+ResBlock 9.25 0.974± 0.001 0.853± 0.011 20.9

Concatenation+Deconv 9.21 0.979± 0.001 0.852± 0.010 19.8

Concatenation+UnetDec 16.45 0.977± 0.001 0.845± 0.011 21.5

Concatenation+ResBlock 10.45 0.977± 0.001 0.853± 0.001 20.1

limited, the spatial attention model effectively reduces the depth of the combined

feature maps to a small number and has less trainable parameters compared with the

other combination techniques, which contributes to the alleviation of the overfitting

problem. Models using the spatial model have much fewer parameters than their

counterparts using addition or concatenation. However, the inference time of the

AttentionNet is longer than the other two feature combination methods because the

AttentionNet introduces additional matrix manipulation to compute the aggregated

feature maps.

Figure 5.9 demonstrates the visual quality comparisons with regard to the fea-

ture combination variants and up-sampling unit variants. Figure 5.9a illustrates the

segmentation results of three feature combination units using ResBlock as the up-

sampling unit, indicating that the attention model generally yields more accurate

segmentation (e.g., area A and C). Moreover, since the attention model aggregated

relevant features from the neighborhood, the predictions do not demonstrate isolated

regions compared with the segmentation results using addition and concatenation

(the isolated regions are indicated by arrows). Figure 5.9b shows examples of differ-

ent up-sampling units using the spatial attention model as the feature combination

unit. The ResBlock outperforms the other two up-sampling units in predicting the
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Figure 5.9: Visual quality comparison of (a) different feature combination methods,
(b) different up-sampling units. In (a), area A and C show that the attention outper-
forms concatenation and addition in predicting the details; area B demonstrates the
common mistake made by the three methods; arrows refer to the “isolated regions”
predicted by the concatenation and addition. In (b), area A illustrates that ResBlock
yields better segmentation performance; area B is the common mistake of the three
up-sampling units.

details. For example, most of the structures in area A are mislabeled for UnetDec,

while the segmentation of area A produced by Deconv demonstrates intensive label

inconsistency. In contrast, ResBlock successfully predicts the structure details in area

A. However, due to the complexity of the brain anatomical structure, it is difficult to

find a model that performs very well on all the anatomical structures of the brain.

Area B in Figure 5.9a and area B in Figure 5.9b show common mistakes.
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Table 5.4: Comparison of encoder nets on LPBA40 dataset, including the parameters
of the encoder, mean Dice coefficients on validation data, and inference time per
coronal slice. The 8x up-sampling scheme in FCN (FCN-8s) is used as the baseline.

Encoder Params(M)
FCN-8s (baseline) AttentionNet

Dice Time (ms) Dice (pre-trained) Tme (ms)

ResNet-50 23.56 0.852± 0.010 16.0 0.864± 0.010 28.4

ResNet-101 42.61 0.853± 0.011 22.2 0.863± 0.011 34.5

DenseNet-121 70.33 0.853± 0.010 22.5 0.866± 0.011 34.7

VGG-16 14.71 0.841± 0.011 20.5 0.850± 0.011 31.7

5.3.4 Integration with Modern Classification Nets

We also investigate the performance of integrating the AttentionNet with different

modern classification nets on LPBA40 dataset. In this section, we employ four state-

of-the-art encoder networks, including ResNet-50 [41], ResNet-101 [41], DenseNet-

121 [47], and VGG-16 [101] (only the convolution layers are used for VGG-16), and

integrate them with the proposed AttentionNet. All the nets are trained on the cor-

responding pre-trained model using the training scheme as described in Section 5.3.2.

For comparison, we use the 8x up-sampling scheme in FCN (FCN-8s) [75] as the

baseline.

Table 5.4 reports the number of the parameters of the encoder net, validation

Dice coefficients, and corresponding inference time of the 2D coronal slice. For each

encoder net, the corresponding AttentionNet yields a significant improvement over

the FCN-8s, according to paired, two-sided t-tests (p < 0.001). Among the four

encoder nets, the mean Dice coefficient of VGG16 is not comparable with the other

three encoder nets. However, we do not see any significant difference in the mean

Dice coefficients of Attn-ResNet-50, Attn-ResNet-101, and Attn-DenseNet-121. For

a well-performed model, the number of trainable parameters relates to the amount of

the training data. As shown in Table 5.4, the trainable parameters of ResNet-101 and

DenseNet-121 are too many to train on a small or medium dataset like LPBA40. As a

result, increasing the trainable parameters contributes to the improvement of training

accuracy other than the validation accuracy, which is the overfitting problem.
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5.3.5 Comparison with the State-of-the-art Architectures

In this section, we compare the Attn-ResNet-50 with another two state-of-the-art

3D CNN architectures, V-net [80] and Deepmedic [61], which have been successfully

applied to medical image segmentation. V-net is a 3D encoder-decoder like network.

Following the training scheme in [80], we cropped the inputs to 128 × 128 × 64 and

trained the network with the batch size of 2. Deepmedic [61] is a fully convolutional

network which is trained on image segments. We followed the training scheme in [61]

and trained Deepmedic on image segments of size 37× 37× 37 with mini-batches of

10. Since V-net and Deepmedic are trained from the scratch, we trained the two 3D

models for 300 epochs with an initial learning rate of 0.01. Like the Attn-ResNet-50,

we adopt the Adam optimizer and applied exponential decay to the learning rate.

Attn-ResNet-50 is trained using the training scheme discussed in Section 5.3.2. We

exam the performance of the three networks on IBSR dataset.

The mean Dice coefficients of the validation set are summarized in Table 5.5.

The proposed AttentionNet demonstrates significant improvement compared with the

other two 3D CNN architectures, according to paired, two-sided t-tests (p < 0.001).

Figure 5.10 lists segmentation results of three coronal slices in the IBSR dataset.

Compared with the 3D networks, Attn-ResNet-50 produces a precise segmentation

(e.g., area B and C in slice 1). Moreover, Attn-ResNet-50 outperforms the V-net and

Deepmedic in the segmentation of anatomical structures with small size (e.g., area

A and B in slice 2). On the other hand, for the regions with fewer labels (e.g., slice

3), V-net and Deepmedic achieve comparable segmentation performance with Attn-

ResNet-50. For the 3D networks, since the training samples are cropped into small

volumetric images, it is hard to capture the large contextual relation, which hinders

the ability to predict details, especially for the complicated anatomical structures in

the brain. For V-net and Deepmedic, because of the limitation of memory, we adopt

overlap-tile strategy [87] for inference stage to obtain seamless segmentation, which

leads to a slower inference speed.
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Figure 5.10: Examples of segmentation results on the IBSR dataset.
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Table 5.5: Validation Dice coefficients and inference time of each 3D image of the
proposed AttentionNet with the state-of-the-art architectures on IBSR.

Network Dice Infer time(s)

Attn-Resnet50 0.840± 0.022 3.4

V-Net 0.725± 0.040 16

DeepMedic 0.803± 0.028 36

5.4 Conclusion

In this chapter, we proposed a novel spatial attention model, which can be applied

to selectively combine the finer features with the up-sampling path in the encoder-

decoder architecture. The proposed attention model captures the spatial dependen-

cies between the deep features from the up-sampling path and the finer features from

the down-sampling path. By attending the relative positions, the attention model

outputs weighted aggregated finer features, which contributes to the precise segmen-

tation of the brain anatomical structure. Compared with the other feature combina-

tion methods, the proposed spatial attention model achieves outstanding performance

in terms of Dice coefficients and visual segmentation results.

Moreover, the proposed 2D architecture yields significant improvement compared

with the 3D architectures. The 2D architecture benefits the networks in terms of the

usage of the large batches and the capture of large context information in the coronal

plane. Moreover, the embedded position information also provides the net with 3D

spatial prior, which is effective for the anatomical structure segmentation of brain

MR images.
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Chapter 6

End-to-End Trainable CNN-CRF
with High Order Potentials

In Chapter 4, we have demonstrated that the superpixel based graphical model bene-

fits the brain anatomical structure segmentation in terms of encouraging the labeling

consistency. In order to combine the strength of the CNN with that of the graphical

model, we propose an end-to-end network to incorporate CNN with high order CRF

of which the high order term is defined on the superpixels. Moreover, we derive the

mean field inference for the proposed high order CRF, which enables to implement

the CRF inference as a stack of the CNN building layers. Therefore, the errors can be

back-propagated to the CNN layers through the CRF layers so that the parameters of

the CNN and CRF can be learned jointly. Extensive experiments demonstrate that

the proposed end-to-end trainable network significantly improves the segmentation

performance compared with the existing methods that combine the CNN with the

CRF. Moreover, we also experimentally show that the proposed high order CRF can

be integrated with the modern CNN models and improve the segmentation perfor-

mance quantitatively and qualitatively.
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6.1 Introduction

In Chapter 4, we have demonstrated that employing a graphical model yields a sig-

nificant improvement of the segmentation accuracy for brain anatomical structure

segmentation. The smoothness term associated with the graphical model encourages

the labeling consistency between neighboring pixels and alleviates the labeling incon-

sistency produced by the unary classifier. Recently, CNN has achieved remarkable

improvements in both semantic and medical image segmentation. Although the large

receptive fields contribute to the capture of rich contextual information, the inconsis-

tent labeling problem still exists in the CNN based segmentation models. Therefore,

we propose to combine the strengths of the graphical model with the state-of-the-art

CNN architecture, aiming at addressing the label inconsistency problem and improv-

ing the segmentation performance.

Several studies have been proposed to combine the CNN architecture with the

graphical model (e.g., CRF). One of them [23, 61] employs CRF as a post-processing

strategy to refine the labeling results obtained by CNN. Although the post-processing

strategy contributes to the quantitative and qualitative improvements, the separate

training system disables the CNN to adapt its weights to the CRF during the training

phase [131]. Alternatively, several frameworks are developed to incorporate the CRF

into the deep networks so that they can be trained jointly. Lin et al. [72] model the

pairwise potentials as the fully connected layers. However, this modeling formulation

of the pairwise potentials outputs L × L channels that indicate the possible label

combinations for a pair of pixels, which is expected to consume very high memory for

training. Liu et al. [73] employ the mean field algorithm to obtain the CRF inference,

and thus model the pairwise potentials as a stack of well-designed convolution layers.

Most of the existing methods that combine CRF with CNN [23, 61, 72, 73, 131], no

matter the post-processing methods or the end-to-end trainable models, employ the

pairwise CRF (refer Chapter 2 for details). However, high order potentials, which also

play an essential role in improving the segmentation accuracy, are rarely discussed in
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the existing studies. Besides, experiments in [73, 131] demonstrated that end-to-end

training of CNN and CRF yields a significant improvement over the disjoint training

system. In this chapter, we aim at developing an end-to-end trainable network that

combines CNN with the high order CRF.

Like Chapter 4, we define the high order potentials over the superpixels to encour-

age the labeling consistency in the superpixel. We solve the high order CRF using

the mean field approximation and model each iteration of the mean field algorithm as

a stack of the building layers in CNN. Extensive experiments indicate that involving

the superpixel based high order CRF contributes to the improvement of the segmen-

tation accuracy for the brain anatomical structure segmentation. The contributions

of this work include:

1. We derive the mean field approximation of the superpixel-based high order poten-

tial and model the mean field update of the high order potential as building blocks

in CNN.

2. We develop a semi-dense pairwise potential and model the corresponding mean

field update as a depthwise convolution.

3. We obtain the superpixel segments based on the predicted label images and update

the superpixel segments during the training stage in order to guarantee the positive

labeling consistency in superpixels.

This chapter is organized as follows. In Section 6.2, we derive the formulation

of the mean field approximation for the high order CRF inference, and describe the

details of modeling the mean field update as CNN building blocks. Then we perform

the network analysis in Section 6.3, and the performance of combining the proposed

high order CRF with different state-of-the-art CNNs are evaluated in the same section.
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6.2 Method

6.2.1 CRF with High Order Potentials

Given an image I, a random field is defined over a set of random variables X =

{X1, X2, . . . , XN}, where each random variable is associated with a corresponding

image pixel i ∈ {1, 2, . . . , N} and takes a value from the label set L = {l1, l2 . . . , L}.

The CRF energy of the configuration x ∈ LN is

E(x) =
∑
i∈V

ψu(xi) +
∑

i∈V,j∈Ni

ψp(xi, xj) +
∑
s∈S

ψh(xs) (6.1)

where V denotes the set of the pixels in the image, Ni is the neighborhood of pixel

i, and S denotes the set of high order cliques, i.e., superpixels in this work. In the

energy function, ψu(xi), ψp(xi, xj), and ψh(xs) represent unary potential, pairwise

potential, and high order potential, respectively.

The unary potential ψu(xi) is defined on unary pixels, and it describes the cost

of assigning the label xi to the pixel at i ∈ V . In this model, the unary potential

is computed as the negative log likelihood of pixel i taking the label, xi, which is

produced by the CNN.

The pairwise potential ψp(xi, xj) measures the cost of assigning a pair of labels

xi, xj to a pair of pixels at i, j. Krähenbühl et al. [68] demonstrate that densely con-

nected system, where the CRF is defined over a complete graph (refer to Section 2.3

for details), leads to significant improvements for semantic segmentation. However,

for brain anatomical structure segmentation, the interaction between two pixels can

be neglect if the distance measure is very large (e.g., pixels in the left hemisphere

and right hemisphere). Consequently, instead of the fully connected system [68] or

grid neighborhood system [99], we propose a semi-dense pairwise potential which is

defined over the neighborhood system N , where Ni denotes a r × r neighborhood of

the pixel i.
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Following [68], we use the Gaussian function to model the pairwise potentials:

ψp(xi, xj) = µ(xi, xj) exp

(
− |pi − pj|

2

2θ2
γ

)
(6.2)

The Gaussian kernel, which is defined on the spatial location p, encourages the nearby

pixels to be assigned the same label. θγ is the standard derivation of the Gaussian

kernel, which will be discussed in Section 6.2.2. The compatibility function µ(xi, xj)

captures the label compatibility between two nearby pixels. It introduces a penalty

for assigning different labels to a pair of pixels. If the two labels are highly compatible,

the compatibility function assigns a low penalty for this pair of labels. For example,

“superior frontal gyrus” indicates that nearby pixels may be “middle frontal gyrus”

in the anatomy of the human brain, thus the label compatibility of “superior frontal

gyrus” and “middle frontal gyrus” is high. Otherwise, a high penalty is assigned to

the pair of labels. The µ(xi, xj) is learned from the data, as described in Section 6.2.2.

The high order potential ψh(xs) measures the cost of the label assignment

xs = {xi : i ∈ s} for a high order clique s which is associated with a set of pixels

(refer to Section 2.3, for details). In this study, we use the superpixel-based high order

potential, where the high order cliques refer to superpixels. The PN Potts is employed

to model the high order potential, encouraging the pixels inside the superpixel to take

the same label:

ψh(xs) =

{
whγ

l, if ∀i ∈ S, xi = l

whγ
max otherwise

(6.3)

The PN Potts penalizes the case of inconsistent labeling throughout the superpixel

with a high cost γmax, otherwise obtains a low cost γl if all the pixels in the superpixel

are assigned the same label. wh is the learnable parameter, indicating the weight of

the high order potential. The configurations of γmax, γl, and wh are described in

Section 6.2.2

6.2.2 Mean Field approximation of the high order CRF

Mean field approximation algorithm [66] is employed to approximate the posterior

probability P (X | I) of the CRF. The mean field algorithm computes a distribution
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Q(X) to approximate P (X) by minimizing the KL-divergence. Q(X) is a simpler

distribution, which can be expressed as the product of the independent marginals:

Q(X) =
∏
i

Qi(Xi) (6.4)

Minimizing the KL-divergence yields the general iterative update equation of the

mean field inference [66]:

Qi(xi = l) =
1

Zi
exp

(
−
∑
c∈C

∑
xc|xi=l

Qc−i(xc−i)ψc(xc)

)
(6.5)

where Zi is the partition function, xc is the label assignment of the clique c, and

xc−i is the label assignment of the clique apart from pixel i. Equation (6.5) indicates

that the mean field update of variable Xi is the summation of the mean field updates

of all the cliques associated with variable Xi. In our model, each variable Xi is

associated with three types of cliques: unary clique, pairwise clique, and high order

clique (superpixel). Consequently, to obtain the mean field for the proposed high

order CRF, the mean field update for each clique is a prerequisite.

Based on the assumption in Equation (6.4), we obtain thatQc−i(xc−i) =
∏

j∈c,j 6=iQj(xj).

For the high order potential, by substituting Equation (6.3) into the general update

equation in Equation (6.5), we obtain the mean field update of the high order poten-

tial:∑
xs|xi=l

Qs−i(xs−i)ψh(xs) =
∏

j∈s,j 6=i

Qj(xj = l)whγ
l + (1−

∏
j∈s,j 6=i

Qj(xj = l))whγ
max

(6.6)

Similarly, the update of the pairwise clique is derived by putting Equation (6.2)

into Equation (6.5), which is:∑
j∈Ni

∑
xj |xi=l

Qj(xj = l′)ψp(pi, pj) =
∑
l′∈L

µ(l, l′)
∑
j∈Ni

Qj(xj = l′)kG(pi, pj) (6.7)

where kG(pi, pj) denotes the Gaussian kernel in Equation (6.2). The update of the
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mean field inference for the proposed high order CRF is:

Qi(xi = l) =
1

Zi
exp

(
− ψu(xi)−

∑
l′∈L

µ(l, l′)
∑

j∈Ni,j 6=i

Qj(xj = l′)kG(pi, pj)

∏
j∈s,j 6=i

Qj(xj = l)whγ
l + (1−

∏
j∈s,j 6=i

Qj(xj = l))whγ
max

) (6.8)

Equation (6.8) results in the following algorithm:

Algorithm 1: Mean field of the high order CRF

Result: The approximated distribution Q(X)
Initialization: Qi(xi)← 1

Zi
exp(−ψu(xi));

while not converged do

Pairwise message passing: Q̃i(l)←
∑

j∈Ni,j 6=i kG(pi, pj)Qj(l);

Compatibility transform: Q̂i(xi)←
∑

l∈L µ(xi, l)Q̃i(l);
High order message passing:

Q̌i(xi)← wh

(∏
j∈s,j 6=iQj(l)γ

l + (1−
∏

j∈s,j 6=iQj(l))γ
max

)
;

Local update: Q̆i(xi)← −ψu(xi)− Q̌i(xi)− Q̂i(xi);

Normalization: Qi(xi)← 1
Zi

exp Q̆i(xi)

end

Each iteration can be decomposed into five steps: pairwise message passing, com-

patibility transform, high order message passing, local update, and normalization. In

the next section, we will describe the details of performing the mean field inference

as a stack of CNN layers.

6.2.3 Architecture

Initialization: Following [131], we use the output logits U(xi) of the CNN as the neg-

ative unary potential, i.e., U(xi) = −ψu(xi). Qi(xi) is initialized with 1
Zi

exp(−ψu(xi)),

where Zi is the partition function, Zi =
∑

xi
exp(−ψu(xi)). Therefore, initializing

Qi(xi) is equivalent to applying a softmax function to U(xi).

Pairwise message passing: As discussed in Section 6.2.1, Ni indicates a r × r

neighborhood of pixel i. Therefore, the pairwise message passing can be expressed as
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a convolution with the Gaussian kernel kG:

Q̃i(l) =
∑
j∈Nj

kG(pi, pj) ∗Qj(xi = l)−Qi(xi = l) (6.9)

Qi(xi = l) is subtracted from the convolution because the message passing does not

sum over Qi. Since the spatial location is fixed, we can precompute the Gaussian

kernel and perform the convolution on each channel of Qi. Therefore, the pairwise

message passing can be implemented as a r × r depthwise convolution layer followed

by subtracting Qi from the convolution results without learnable parameters for this

step.

Compatibility transform: The compatibility transform can be implemented as a

1 × 1 convolution, and the inputs and outputs channels are both the number of the

classes, L.

High order message passing: In the high order message passing step, we first

compute the joint probability
∏

j∈sQj(xj = l). Then
∏

j∈s,j 6=iQj(xj = l) can be

computed as dividing
∏

j∈sQj(xj = l) by Qi(xi = l). We set γl to be the negative log

of the average of the Q values across all the pixels within the superpixel, i.e., γl =

− log 1
Ns

∑
j∈sQj(xj = l) with Ns being the number of pixels within the superpixel,

and multiply γl by
∏

j∈s,j 6=iQj(xj = l) elementwise. On the other hand, we use

independent γmax for each class. As a result, (1 −
∏

j∈s,j 6=iQj(l))γ
max is equivalent

to stacking a scale layer on the results of 1−
∏

j∈s,j 6=iQj(l), where γmax with size of

1× 1× 1× L serves as the parameter of the scale layer.

Last, motivated by the intuition that the importance of high order potential for

each class is different, we use class-specific weight wh for the high order potential.

Therefore, multiplying wh is equivalent to stacking a 1 × 1 convolution layer, with

inputs and outputs channels being the number of the classes, L.

Local update: In this step, the output of unary update ψu(xi), pairwise update

Q̂i(xi), and high order update Q̆i(xi) are summed up elementwise.

Normalization: Based on the definition of the partition function, the normalization
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can be implemented using a softmax layer.

One iteration of the mean field approximation of the proposed high order CRF is

shown in Figure 6.1. The inputs include the spatial positions p, the superpixel seg-

ments S, the negative unary potential U , and the unnormalized distribution at the

tth iteration Q̆t. For each iteration, we start with normalization so that the initializa-

tion can be integrated into the building block. The output Q̆t+1 is the unnormalized

distribution at t+ 1 iteration.

Figure 6.1: Building block of one iteration of the mean field approximation algorithm,
Q̄ =

∏
j∈c,j 6=iQj(xj = l).

The architecture of the unified network that combines CNN with the proposed

high order potential (CNN-HOCRF) is shown in Figure 6.2. The iterative update of

the mean field approximation is implemented by stacking several mean field building

blocks shown in Figure 6.1. The number of the mean field building block refers to

the iterations of the algorithm, which is a hyperparameter in this network.
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As illustrated in Figure 6.2, the four inputs of the CRF are obtained as follows.

(1) U is the raw scores (a.k.a logits) obtained from the CNN, which represents the

negative unary potential −ψu. (2) For the superpixel segmentation, we apply SLIC

algorithm [1] on the estimated label image (a.k.a pixelwise predictions obtained from

the CNN) instead of the intensity image, as discussed in Chapter 4. Specifically, the

superpixel segmentation is updated and refined during the training stage, resulting

in the encouragement of the positive labeling consistency in the superpixel. (3) To

perform the pairwise message passing, we precompute the Gaussian kernel kG based

on the spatial positions p and the size of Ni. (4) According to Algorithm 1, −ψu, i.e.

U , is used to initialize Q̆0, while for the rest mean field building blocks, the input Q̆t

is the output of the previous mean field building block. The CRF parameters share

the same values for each mean field approximation block.

Since the mean field building block outputs the unnormalized Q, we stack a soft-

max layer after the last mean field building block to produce the probability maps

that sum to one. Since each step in Algorithm 1 can be implemented as the basic

building layer or operation in CNN, error derivatives w.r.t. the parameters can be

calculated during back-propagation, resulting in an end-to-end trainable network.

For the CNN part, we adopt a 2D CNN architecture which benefits the model in

terms of low memory requirement, deep architecture, and fine-tuning on pre-trained

mode.

Figure 6.2: Architecture of the proposed CNN-HOCRF.
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6.3 Experiments

6.3.1 Preprocessing

First, decile intensity normalization is applied to the 3D images to ensure the tissues

to have the similar intensity distribution. Then, the 3D data are sliced into 2D

coronal images. Last, after adding the relative coordinates, all the input images are

normalized to have zero mean by subtracting the mean value.

6.3.2 Implementation Details

A two-stage training strategy is applied to train the network. First, the CNN part

is trained alone at the first stage. Then, the high order CRF is added to the net-

work, and all the parameters are learned jointly. The network is trained using the

Adam optimizer with β1 = 0.9, β2 = 0.999 and ε = 10−8. We train the CNN part

with an initial learning rate of 0.001 for 50 epochs while we fine-tune the whole net

with an initial learning rate of 0.0005 for another 100 epochs. Exponential decay is

applied to the learning rate, where the learning rate decays every 25 epochs with a

base of 0.8. Online data augmentation with random scaling, random rotation, and

random cropping is applied before training. As demonstrated in Figure 6.2, the su-

perpixel segmentation S is obtained by performing SLIC on the outputs of CNN. To

improve computational efficiency, we update the superpixel segmentation every 10

epochs during the second training stage. All the networks are evaluated with 5-fold

cross-validation on the corresponding datasets. Our CNN is implemented using the

Tensorflow library on an NVIDIA GTX 1080 Ti GPU.

For the parameters of the high order CRF, we initialize the compatibility matrix µ

with the Potts model, which is -1 on the diagonal and 0 elsewhere. γmax is initialized

with− log(0.005), truncating the high order cost if the probability of superpixel taking

label l is lower than 0.005. The high order weight is initialized with an identity matrix,

which is 1 on the diagonal and 0 elsewhere. The standard deviation of the Gaussian
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kernel θγ is obtained from a cross-validation process. Dice coefficient between the

ground truth and the dense predictions is used as the evaluation metric.

6.3.3 Evaluation of the Hyperparameter

All the models examined in this section use FCN-8s as the CNN part. We report

the mean validation Dice coefficients of the LPBA40 dataset with a 5-fold cross-

validation. All the coronal images are center cropped to the size of 161 × 161. The

parameters of the CNN are initialized with the ImageNet pre-trained model.

6.3.3.1 Number of the mean field iterations

Each mean field approximation building block models one iteration in the mean field

algorithm. We examine the mean Dice coefficients with respect to the number of

the mean field approximation building blocks. In this experiment, the neighborhood

Ni that defines the pairwise potential is set to 5 × 5. Figure 6.3 illustrates that the

proposed model reaches a good segmentation accuracy by stacking three mean field

approximation building blocks. It is notable that the end-to-end trainable CNN-CRF

[131] needs 5 to 10 iterations to converge while CRF post-processing [68] requires

10 to 20 iterations to converge. In the rest experiments, we stack three mean field

approximation blocks for the CNN-HOCRF network.

6.3.3.2 Approximate size of the superpixel

SLIC algorithm is a modified k-means clustering method, and its superpixel seg-

mentation relates to the parameter k which approximates the number of superpixel

segments. For the brain anatomical structures of which the size varies from one to an-

other, coarse superpixel segmentation leads to an increase in the number of incorrectly

clustered superpixels while fine superpixel segmentation decreases the computational

efficiency. In this section, we study the effect of varying the parameter k in the SLIC.

All the models examined in this experiment adopt 5×5 neighborhood for the pairwise

104



Figure 6.3: Dice coefficients w.r.t. the number of mean field iterations

Table 6.1: Mean Dice coefficients of different settings of the average size of the su-
perpixel (SP).

SP Size (k) 9× 9 (320) 8× 8 (400) 7× 7 (530) 6× 6 (720) 5× 5 (1000)

Dice 0.805± 0.011 0.816± 0.011 0.821± 0.011 0.822± 0.011 0.822± 0.011

potential.

For the inputs with size of 161×161, we compared different settings of the average

size of the superpixel, including ‘9×9’,‘8×8’,‘7×7’,‘6×6’, and ‘5×5’ (the corresponding

k are 320, 400, 530, 720, and 1000, respectively). Table 6.1 demonstrates that the

‘6 × 6’ and ‘5 × 5’ achieve the best mean Dice coefficients, which are slightly higher

than ‘7 × 7’. Although the high order CRF does not enforce the pixels inside the

superpixel to take the same label, adopting a large superpixel size (e.g., ‘9 × 9’ and

‘8× 8’) tends to incorrectly encourage labeling consistency for the pixels of different

anatomical structures, resulting in the decrease of segmentation performance.

6.3.3.3 Size of neighborhood in the pairwise term

Since the pairwise message passing is implemented as a depthwise convolution, the

size of neighborhood Ni relates to the receptive field. We evaluate the mean Dice

coefficients of different receptive fields, including ‘3×3’, ‘7×7’, ’15×15’, and ‘31×31’.
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Table 6.2: Mean Dice coefficients of the different sizes of the neighborhood Ni.

Receptive field 3× 3 7× 7 15× 15 31× 31

Dice 0.821± 0.011 0.827± 0.010 0.831± 0.009 0.824± 0.011

All the models use the hyperparameter k = 530 for SLIC algorithm. As summarized

in Table 6.2, the receptive field 15 × 15 achieves the highest mean Dice coefficient,

which indicates that for a 161 × 161 image, a neighborhood of 15 × 15 is enough to

capture the relation between pixels.

6.3.4 Ablation Study

To study the behavior of the proposed CNN-HOCRF, we conducted several abla-

tion studies. For the proposed CNN-HOCRF, we adopt the optimal hyperparameters

discussed in Section 6.3.3. First, we show the effect of employing the high order po-

tential by comparing the proposed CNN-HOCRF with CNN-pairwiseCRF. For the

pairwiseCRF, we employ the same pairwise potential model in Equation (6.2) and set

the kernel size to 15 × 15. Next, to investigate the effect of the superpixel segmen-

tation scheme of the proposed model, we exam the performance of implementing the

superpixel segmentation on the intensity image. To this end, we adopt the same high

order CRF model except that the superpixel segmentation is obtained through the

intensity image (CNN-HOCRF-Intensity) using SLIC (k=530). The CNN-HOCRF,

the CNN-pairwiseCRF, and the CNN-HOCRF-Intensity are trained using the same

two-stage training strategy, where the CNN is trained alone for 50 epochs then the

CRF is added to the network at the second stage for fine-tuning of 100 epochs. The

CNN (FCN-8s), which is fine-tuned for another 100 epochs after the first training

stage, is used as the baseline. Moreover, a disjoint learning scheme is included for

completeness, where the denseCRF [68] is employed as a post-processing of the base-

line results.

Table 6.3 reports the per-class and mean Dice coefficients for the five models. The

proposed high order CRF achieves significant improvement over the other four models
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in the mean Dice coefficient. Table 6.3 indicates that CRF inference, including joint

training and post-processing, yields improvements over the baseline. However, CRF

post-processing does not back-propagate the error to the CNN, resulting in lower Dice

coefficients than the counterparts of the end-to-end training networks. Next, we com-

pare the performances of the three end-to-end trainable networks: CNN-pairwiseCRF,

CNN-HOCRF-Intensity, and CNN-HOCRF. Compared with the pairwiseCRF, intro-

ducing the high order potential significantly improves the segmentation performance

in terms of the per-class accuracies and the mean accuracy. In addition, by comparing

the CNN-HOCRF with CNN-HOCRF-Intensity, we found that the proposed label-

based superpixel segmentation benefits most of the classes. However, for structures

‘putamen’, ‘hippocampus’, ‘superior temporal gyrus’, and ‘middle temporal gyrus’,

the intensity-based superpixel segmentation achieves higher Dice scores.

Figure 6.4 illustrates the segmentation results. For the baseline method, the seg-

mentation results show much more labeling inconsistency than those of involving the

CRF inference. For example, the labeling results produced by the baseline method

show some small “holes”, e.g., area A and C in slice 2, while we can find few small

“holes” in the segmentations obtained by the methods using CRF inference. There-

fore, the CRF inference contributes to the labeling consistency of the neighboring

pixels.

However, for the four models using CRF inference, Figure 6.4 also illustrates their

flaws in the pixelwise prediction results. First, the post-processing tends to over-

smoothes the boundaries, resulting in some structures with small size “eroded” by

the surrounding/adjacent structures (e.g., area A in slice1, area A and C in slice2, and

area B in slice3). Next, the CNN-pariwiseCRF has the problem of over-segmentation,

where the mistaken labeling area in the CNN’s output is enlarged through the pair-

wise CRF (e.g., area B in slice2). Then, for CNN-HOCRF-Intensity, it is difficult

to obtain precise superpixel segments for the structure with small size, which leads

to negative encouragement of the labeling consistency. As a result, for the small

structures surrounded by other anatomical structures (e.g., area A in slice1), CNN-
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HOCRF-Intensity does not yield good segmentation results. The proposed CNN-

HOCRF achieves the best performance in preserving the labeling consistency and

avoiding over-segmentation and over-smoothing. However, for the “isolated” struc-

tures of which the surrounding pixels are labeled as background, e.g., caudate (area

A) in slice3, the CNN-HOCRF-Intensity outperforms the CNN-HOCRF, which agrees

with the results in Table 6.3.

6.3.5 Visualization of the Learned HOCRF Parameters

Figure 6.5a illustrates the learned label compatibilities µ, which indicates the penalty

for a pair of nearby pixels that are assigned different labels. The high penalty in-

dicates low label compatibility between nearby pixels. From Figure 6.5a, we have

the following observations: 1. label pairs of the same lobe are of high compatibility.

For example, the structures in the frontal lobe, including SFG, MFG, IFG, PRFG,

MOrbG, and GR, have a low penalty for each other while show a high penalty for the

structures outside the frontal lobe. In other words, if a pixel is labeled as one of the

structures in the frontal lobe, the neighbors of the pixel also tend to be labeled as one

of the structures in the frontal lobe. 2. The subcortical structures, e.g., hippocam-

pus, putamen, and caudate, are delineated as “isolated” structures in this dataset.

Since surrounding pixels are not annotated as valid label, the subcortical structures

are incompatible with any other structures except the background. 3. we observe

that the labels of adjacent rows have a high penalty. This is because the labels of

adjacent rows in Figure 6.5a are the same structure of the left and right hemisphere

(e.g., left caudate and right caudate). Through the end-to-end training, the network

learns the relation between label compatibility and the spatial context for the brain

MR images.

Figure 6.5b is the learned weights of the high order term wh, where each column

is the learned kernel weights for each class. Figure 6.5b indicates that the wh learns

much less contextual information than the compatibility function µ. The reason is
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Table 6.3: Per-class and mean Dice coefficient comparison on the LPBA dataset,
where left and right hemisphere labels are shown jointly. The proposed CNN-HOCRF
yields significant improvement comparing with the other four models, according to
two-sided, paired t-test on the Dice coefficient (p < 0.001).

Structures (Abbreviation) Baseline
Post-

Processing
CNN-

pairwiseCRF

CNN-
HOCRF-
Intensity

CNN-
HOCRF

Frontal lobe

superior frontal gyrus (SFG) 0.866 0.874 0.887 0.885 0.900

middle frontal gyrus (MFG) 0.842 0.855 0.867 0.868 0.880

inferior frontal gyrus (IFG) 0.798 0.807 0.823 0.829 0.836

precentral gyrus (PrCG) 0.794 0.806 0.822 0.816 0.837

middle orbitofrontal gyrus (MOrbG) 0.768 0.787 0.795 0.800 0.808

lateral orbitofrontal gyrus (LOrbG) 0.678 0.667 0.711 0.708 0.728

gyrus rectus (GR) 0.788 0.804 0.806 0.810 0.820

Paritetal lobe

postcentral gyrus (PoCG) 0.753 0.770 0.780 0.779 0.795

superior parietal gyrus (SPG) 0.805 0.822 0.828 0.830 0.839

supramarginal gyrus (SMG) 0.768 0.784 0.778 0.764 0.794

angular gyrus (AG) 0.738 0.766 0.769 0.780 0.782

precuneus (PCUN) 0.771 0.774 0.790 0.786 0.803

Occipital lobe

superior occipital gyrus (SOG) 0.713 0.724 0.741 0.751 0.753

middle occipital gyrus (MOG) 0.771 0.797 0.787 0.797 0.799

inferior occipital gyrus (IOG) 0.781 0.803 0.796 0.803 0.807

cuneus (CUN) 0.781 0.778 0.814 0.803 0.827

Temporal lobe

superior temporal gyrus (STG) 0.848 0.872 0.872 0.888 0.882

middle temporal gyrus (MTG) 0.791 0.826 0.812 0.838 0.827

inferior temporal gyrus (ITG) 0.788 0.810 0.817 0.825 0.831

parahippocampal gyrus (PHG) 0.823 0.832 0.854 0.859 0.865

lingual gyrus (LG) 0.826 0.844 0.859 0.868 0.869

fusiform gyrus (FuG) 0.803 0.813 0.829 0.828 0.841

Other structures

insular cortex (INS) 0.881 0.894 0.913 0.923 0.927

cingulate gyrus (CG) 0.797 0.802 0.818 0.813 0.833

caudate 0.900 0.914 0.919 0.931 0.928

putamen 0.876 0.893 0.900 0.909 0.912

hippocampus 0.838 0.857 0.863 0.884 0.877

mean 0.799 0.814 0.824 0.829 0.837
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Slice1 Slice2 Slice3

Ground Truth

Baseline

Post-
processing

CNN-
PairwiseCRF

CNN-HOCRF-
Intensity

CNN-HOCRF

Figure 6.4: Comparision of the segmentation results of three coronal slices on
LPBA40. Refer to [97] for color index.
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that the pairwise clique is defined on the pixel and one of its neighborhood in Ni,

where the contextual information is implied in the pairwise potential. However, the

high order clique consists of pixels that are of high probability of belonging to the

same anatomical structure, which makes it difficult to learn the contextual relation

from the high order term. Figure 6.5b also indicates that the importance of the

high order term varies with the class. For example, for the structures with small

size, e.g. putamen, hippocampus, caudate, LorbG, the high order potential are more

important, resulting in a high weight.

6.3.6 Integration with the State-of-the-art CNN

In this section, we combined the proposed high order CRF with the state-of-the-art

CNNs. The networks for comparison include: FCN-8s, Deeplabv2 [23] and Attn-

ResNet-50 in Chapter 5. For the Attn-ResNet-50, we embedded the position infor-

mation in the intensity images to compensate for the loss of contextual information

in the third dimension as done in Chapter 5. We set hyperparameters of the high

order CRF as done in Section 6.3.4. The parameters of FCN-8s, Deeplabv2, and the

encoder net of the Attn-ResNet50 are initialized with the corresponding ImageNet

pre-trained models. All the CNN-HOCRF models are trained with the two-stage

training strategy. We use the corresponding CNN as the baseline, which is fine-tuned

for another 100 epochs after the first training stage.

The results are summarized in Table 6.4. By integrating the high order CRF

(HOCRF) into the network, the segmentation performance of FCN-8s and Deeplabv2

yields significant improvements compared with the corresponding baselines, according

to two-sided, paired t-tests on Dice coefficients (p < 0.005). However, for the Attn-

ResNet-50, the improvement brought by incorporating high order CRF is not as much

as the other two CNN models.
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(a) label compatibility

(b) high order term weights

Figure 6.5: Learned parameters of µ and wh. The adjacent rows (columns) in the
matrix stand for the same structures of left and right hemisphere. The left and right
heimisphere labels are merged for the notation of structure names in rows (columns).
Refer to Table 6.3 for the full name of the anatomical structures.
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Table 6.4: Mean Dice coefficient comparison on the LPBA dataset.

Networks Dice

FCN-8s 0.799± 0.012

FCN-8s+HOCRF 0.839± 0.011

Deeplabv2 0.815± 0.012

Deeplabv2+HOCRF 0.842± 0.010

Attn-Resnet50 0.864± 0.010

Attn-Resnet50+HOCRF 0.869± 0.010

6.4 Conclusion

We present a novel end-to-end training CNN architecture which incorporates a high

order CRF to tackle the neuroanatomical structure segmentation for brain MR im-

ages. To integrate the high order CRF into the CNN, we derive the mean field

approximation update for the proposed high order CRF and model the mean field

approximation as CNN layers. We also propose a label-based superpixel high order

potential so that the high order cliques are adaptive during the training phase. More-

over, the semi-dense pairwise potential enables to model the mean field approximation

as depthwise convolution layer.

We experimentally show that involving the high order CRF contributes to seg-

mentation quantitatively and qualitatively. Moreover, the label based superpixel high

order potential also yields superior performance over the intensity-based superpixel.

By incorporating the proposed high order CRF with the modern CNN models, the

performance yields significant improvement.
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Chapter 7

Conclusion

This chapter presents a summary of the proposed brain anatomical segmentation

methods and the conclusions inspired by them. The brain anatomical segmentation

is often considered as the most core and challenging task in medical image analy-

sis. In this dissertation, anatomical segmentation of the brain MR image has been

extensively studied, and several methods, including the multi-atlas based method,

graphical model, and the CNN model, have been proposed. Chapter 3 presents a

two-stage majority voting scheme for hippocampus segmentation. Chapter 4 pro-

poses a supervoxel based graphical model for whole brain segmentation. Chapter 5

develops a spatial attention model and applies the attention model to the encoder-

decoder CNN architecture in order to obtain the detailed boundary segmentation

results. Chapter 6 combines the strength of CNN with high order CRF and develops

an end-to-end network. Finally, possible future research directions are presented in

this chapter.

7.1 Contributions

The major contributions can be categorized into four groups: 1) Enhancing the tradi-

tional majority voting as a two-stage majority voting scheme. 2) Combination of the

supervoxel graphical model with the multi-atlas based method for anatomical seg-
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mentation of brain MR images. 3) Proposing AttentionNet which integrate spatial

attention mechanism with the CNN. 4) Combination of CNN with high-order CRF

for whole brain segmentation.

7.1.1 Two-stage Majority Voting

In the third chapter, we develop a novel two-stage majority voting framework for

multi-atlas segmentation of hippocampus on brain MR images. The first majority

voting fuses the atlas labels at the image patch level with sliding a window across the

target image, followed by the second majority voting which fuses the results of the

first voting for the overlapping positions. We experimentally demonstrated the effec-

tiveness of the two-stage majority voting strategy in avoiding the over-segmentation

problem compared with the original voting scheme.

7.1.2 Supervoxel Graphical Model

Multi-atlas based methods have been successfully applied to anatomical segmentation

of brain MR images. However, multi-atlas based methods are sensitive to pairwise

registration errors. To address this problem, we propose a supervoxel based graphical

model in the fourth chapter of this dissertation, which makes the following contribu-

tions:

1. We characterize the anatomical structure segmentation of brain MR images as

a supervoxel labeling through energy minimization associated with a supervoxel

graphical model.

The unary potential related to the supervoxel, i.e., the likelihood, is obtained

by searching the neighborhood of the supervoxel in the atlases. Since the size of

the neighborhood is defined on the supervoxels instead of voxels, the supervoxel

graphical model has a large range of the searching radius compared with the

patch-based technique. As a result, the proposed supervoxel graphical can bear

115



much more registration errors and is less sensitive to the pairwise registrations.

2. Because of the intensity overlap in MR images, we propose to perform the su-

pervoxel segmentation on the estimated label images instead of the intensity

images in order to acquire the precise supervoxel segmentation. We also exper-

imentally show the effectiveness of the proposed supervoxel method in terms of

precise aggregation.

3. The supervoxel graphical model is computationally efficient. Since supervoxels

are used as nodes in the graph construction, the number of variables is much

less than the graphical model defined on voxels or pixels, resulting in efficient

inference.

4. We also propose a dense graphical model with high order potential to refine the

results of the supervoxel graphical model.

The proposed method overcomes the challenges existing in the previous multi-

atlas segmentation in terms of computational efficiency and the dependency on the

complicated deformable pairwise registration. The proposed approach demonstrates

superior performance over the state-of-the-art algorithms on three publicly available

datasets, and significant improvement was achieved in terms of overall accuracy, per-

label accuracy, and qualitative assessment.

7.1.3 AttentionNet

Encoder-decoder network is one of the most effective CNN architectures for seman-

tic segmentation and medical image segmentation. The feature combination unit

connects the high-level features from the decoder net and the finer features from the

encoder net and output features that combine where and what. In Chapter 5, we pro-

pose a spatial attention model which can model the spatial dependencies between two

feature maps and integrate the attention model with the encoder-decoder network to
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perform anatomical segmentation on brain MR images. The proposed AttentionNet

has the following contributions:

1. The spatial attention model captures the spatial dependencies between the high-

level features and the finer features, selectively combines the related positions

in the finer feature maps with the high-level feature maps. As a result, the

attention model enables the net to highlight the relevant features to obtain a

detailed prediction.

2. We develop an efficient decoder net which includes a deconvolution layer and a

residual block. The decoder along with the attention model can keep the output

channel to a small number. This design reduces the trainable parameters, which

is efficient in alleviating the over-fitting problem for small datasets.

3. A 2D AttentionNet is developed, where the 3D relative coordinates are encoded

into the intensity images. The 2D architecture benefits the net in terms of low

memory requirement, deep architecture, and fine-tuning on pre-trained model.

The incorporation of the spatial information not only compensates the spatial

context in the third dimension but also equips the net with both intensity and

spatial prior.

The proposed AttentionNet yields significant improvements in terms of segmen-

tation accuracy and qualitative analysis compared with the other encoder-decoder

networks with alternative feature combination units. Moreover, the proposed 2D At-

tentionNet demonstrated superior performance over the state-of-the-art 3D networks.

7.1.4 End-to-end Trainable CNN-HOCRF

Inspired by the experiment results and conclusions from Chapter 4, we add a high

order potential to the pairwise CRF, resulting in a high order CRF. In order to

combine the strength of CNN with the graphical model, we propose an end-to-end
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trainable network which integrates CNN with a high order CRF in Chapter 6. The

contributions of this work are as follows:

1. We derive the mean field approximation inference of the proposed high order

CRF, which can be implemented as building blocks of CNN. Consequently,

high order CRF is combined with CNN in a unified network. During the back-

propagation, the derivatives of the error with respect to the parameters can be

calculated and learned jointly.

2. Two modifications are made upon the energy function of high order CRF. First,

we propose a semi-dense pairwise potential where the pairwise potential is de-

fined in a pair of pixels within a neighborhood. The semi-densely pairwise

potential not only agrees with the characteristic of the brain anatomical struc-

tures but also is easy to be implemented as a depthwise convolution in CNN.

Second, inspired by the idea that the importance of high order potential for

each class is different, we apply a class-specific weight kernel to the weight of

the high order potential, increasing the flexibility of the network.

3. We develop a two-stage training strategy to train the unified network. The CNN

is trained at the first training stage while the high order CRF is added for fine-

tuning at the first training stage. The superpixel segments are updated during

the second training stage, aiming at obtaining precise superpixel segmentation

for the encouragement of the positive labeling consistency inside the sueperpxiel.

We experimentally show that involving the high order CRF contributes to the

improvement of the segmentation accuracy and qualitative analysis compared with

other graphical models. Moreover, the proposed high order CRF can be integrated

with other modern CNN architectures and yields significant improvement.
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7.2 Scope for Future Work

In this section, we thoroughly present the future works for enhancing and evaluating

the proposed brain anatomical segmentation as follows:

1. Although we experimentally demonstrated the proposed 2D CNN architecture

achieves significant improvement over the 3D architecture. However, 3D net-

works are capable of capturing 3D contextual information, which plays an im-

portant role in MR image segmentation. In the future, based on the proposed

AttentionNet, we plan to develop the 3D model for anatomical brain segmen-

tation.

2. Currently, all the datasets involved in this thesis are small, which hinders the

performance of the network. We target to develop a transfer learning strategy

which can transfer the knowledge among datasets with different labeling pro-

tocols. For example, MICCAI2012 and LPBA have different labeling protocols

but similar intensity images. We aim to develop a transfer learning strategy

which can deal with training data with varying protocols of labeling, in order

to enlarge the size of the training data.

3. In brain segmentation field, the tumor segmentation is another important re-

search field. The brain tumor segmentation is of larger variation in terms of the

shape, appearance, and volume compared with the anatomical segmentation

problem. We plan to modify and apply the AttentionNet to address the tumor

segmentation in brain MR images.
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