39 research outputs found

    Improving 3D Scan Matching Time of the Coarse Binary Cubes Method with Fast Spatial Subsampling

    Get PDF
    Morales, J.; Martinez, J.L.; Mandow, A.; Reina, A.J.; Seron, J.; Garcia-Cerezo, A., "Improving 3D scan matching time of the coarse binary cubes method with fast spatial subsampling," 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 4168-4173, 2013 doi:10.1109/IECON.2013.6699804Exploiting the huge amount of real time range data provided by new multi-beam three-dimensional (3D) laser scanners is challenging for vehicle and mobile robot applications. The Coarse Binary Cube (CBC) method was proposed to achieve fast and accurate scene registration by maximizing the number of coincident cubes between a pair of scans. The aim of this paper is speeding up CBC with a fast spatial subsampling strategy for raw point clouds that employs the same type of efficient data structures as CBC. Experimental results have been obtained with the Velodyne HDL-32E sensor mounted on the Quadriga mobile robot on irregular terrain. The influence of the subsampling rate has been analyzed. Preliminary results show a relevant gain in computation time without losing matching accuracy.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Calibration of a multi-beam Laser System by using a TLS-generated Reference

    Get PDF

    Infrastructure for 3D model reconstruction of marine structures

    Get PDF
    3D model reconstruction of marine structures, such as dams, oil-rigs, and sea caves, is both important and challenging. An important application includes structural inspection. Manual inspection of marine structures is tedious and even a small oversight can have severe consequences for the structure and the people around it. A robotic system that can construct 3D models of marine structures would hopefully reduce the chances of oversight, and hence improve the safety of marine environment. Due to the water currents and wakes, developing a robotic system to construct 3D models of marine structures is a challenge, as it is difficult for a robot to reach the desired scan configurations and take a scan of the environment while remaining stationary. This paper presents our preliminary work in developing a robotic and software system for construction of 3D models of marine structures. We have successfully tested our system in a sea water environment in the Singapore Straits

    Image Simulation in Remote Sensing

    Get PDF
    Remote sensing is being actively researched in the fields of environment, military and urban planning through technologies such as monitoring of natural climate phenomena on the earth, land cover classification, and object detection. Recently, satellites equipped with observation cameras of various resolutions were launched, and remote sensing images are acquired by various observation methods including cluster satellites. However, the atmospheric and environmental conditions present in the observed scene degrade the quality of images or interrupt the capture of the Earth's surface information. One method to overcome this is by generating synthetic images through image simulation. Synthetic images can be generated by using statistical or knowledge-based models or by using spectral and optic-based models to create a simulated image in place of the unobtained image at a required time. Various proposed methodologies will provide economical utility in the generation of image learning materials and time series data through image simulation. The 6 published articles cover various topics and applications central to Remote sensing image simulation. Although submission to this Special Issue is now closed, the need for further in-depth research and development related to image simulation of High-spatial and spectral resolution, sensor fusion and colorization remains.I would like to take this opportunity to express my most profound appreciation to the MDPI Book staff, the editorial team of Applied Sciences journal, especially Ms. Nimo Lang, the assistant editor of this Special Issue, talented authors, and professional reviewers

    Experiments on Surface Reconstruction for Partially Submerged Marine Structures

    Get PDF
    Over the past 10 years, significant scientific effort has been dedicated to the problem of three-dimensional (3-D) surface reconstruction for structural systems. However, the critical area of marine structures remains insufficiently studied. The research presented here focuses on the problem of 3-D surface reconstruction in the marine environment. This paper summarizes our hardware, software, and experimental contributions on surface reconstruction over the past few years (2008–2011). We propose the use of off-the-shelf sensors and a robotic platform to scan marine structures both above and below the waterline, and we develop a method and software system that uses the Ball Pivoting Algorithm (BPA) and the Poisson reconstruction algorithm to reconstruct 3-D surface models of marine structures from the scanned data. We have tested our hardware and software systems extensively in Singapore waters, including operating in rough waters, where water currents are around 1–2 m/s. We present results on construction of various 3-D models of marine structures, including slowly moving structures such as floating platforms, moving boats, and stationary jetties. Furthermore, the proposed surface reconstruction algorithm makes no use of any navigation sensor such as GPS, a Doppler velocity log, or an inertial navigation system.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Modelin

    An overview of depth cameras and range scanners based on time-of-flight technologies

    Get PDF
    “The final publication is available at Springer via http://dx.doi.10.1007/s00138-016-0784-4.This work has received funding from the French Agence Nationale de la Recherche (ANR) under the MIXCAM project ANR-13-BS02-0010-01, and from the European Research Council (ERC) under the Advanced Grant VHIA Project 340113

    UAV-LiCAM SYSTEM DEVELOPMENT: CALIBRATION AND GEO-REFERENCING

    Get PDF
    In the last decade, applications of unmanned aerial vehicles (UAVs), as remote-sensing platforms, have extensively been investigated for fine-scale mapping, modeling and monitoring of the environment. In few recent years, integration of 3D laser scanners and cameras onboard UAVs has also received considerable attention as these two sensors provide complementary spatial/spectral information of the environment. Since lidar performs range and bearing measurements in its body-frame, precise GNSS/INS data are required to directly geo-reference the lidar measurements in an object-fixed coordinate system. However, such data comes at the price of tactical-grade inertial navigation sensors enabled with dual-frequency RTK-GNSS receivers, which also necessitates having access to a base station and proper post-processing software. Therefore, such UAV systems equipped with lidar and camera (UAV-LiCam Systems) are too expensive to be accessible to a wide range of users. Hence, new solutions must be developed to eliminate the need for costly navigation sensors. In this paper, a two-fold solution is proposed based on an in-house developed, low-cost system: 1) a multi-sensor self-calibration approach for calibrating the Li-Cam system based on planar and cylindrical multi-directional features; 2) an integrated sensor orientation method for georeferencing based on unscented particle filtering which compensates for time-variant IMU errors and eliminates the need for GNSS measurements

    Modeling and Inspection Applications of a Coastal Distributed Autonomous Sensor Network

    Get PDF
    Real time in-situ measurements are essential for monitoring and understanding physical and biochemical changes within ocean environments. Phenomena of interest usually display spatial and temporal dynamics that span different scales. As a result, a combination of different vehicles, sensors, and advanced control algorithms are required in oceanographic monitoring systems. In this study our group presents the design of a distributed heterogeneous autonomous sensor network that combines underwater, surface, and aerial robotic vehicles along with advanced sensor payloads, planning algorithms and learning principles to successfully operate across the scales and constraints found in coastal environments. Examples where the robotic sensor network is used to localize algal blooms and collect modeling data in the coastal regions of the island nation of Singapore and to construct 3D models of marine structures for inspection and harbor navigation are presented. The system was successfully tested in seawater environments around Singapore where the water current is around 1-2m/s. Topics: Inspection , Modeling , Sensor networks , ShorelinesSingapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology (SMART)
    corecore