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ABSTRACT

Real time in-situ measurements are essential for monitor-
ing and understanding physical and biochemical changes within
ocean environments. Phenomena of interest usually display spa-
tial and temporal dynamics that span different scales. As a result,
a combination of different vehicles, sensors, and advanced con-
trol algorithms are required in oceanographic monitoring sys-
tems. In this study our group presents the design of a distributed
heterogeneous autonomous sensor network that combines under-
water, surface, and aerial robotic vehicles along with advanced
sensor payloads, planning algorithms and learning principles to
successfully operate across the scales and constraints found in
coastal environments. Examples where the robotic sensor net-
work is used to localize algal blooms and collect modeling data
in the coastal regions of the island nation of Singapore and to
construct 3D models of marine structures for inspection and har-
bor navigation are presented. The system was successfully tested
in seawater environments around Singapore where the water cur-
rent is around 1-2m/s.

∗Address all correspondence to this author.

INTRODUCTION

This study presents the autonomous sensor network being
developed at the Center for Environmental Sensing and Model-
ing (CENSAM) in Singapore and its applications to coastal envi-
ronments. Ocean observing and prediction systems present chal-
lenges for vehicles, sensors, motion planners, data assimilation
and predictive models. In addition, coastal environments have
particular challenges such as low depths and commercial vehicle
traffic which increase the likelihood of collisions. Our group is
developing a distributed heterogeneous autonomous sensor net-
work that combines underwater, surface, and aerial robotic ve-
hicles along with advanced sensor payloads, planing algorithms
and learning principles to successfully operate across the scales
and constraints found in coastal environments. Its effectiveness
relies on the seamless operation of all vehicles, their safe inter-
action with each other and the environment, the capability of
collecting pertinent data, and the capability to analyze the col-
lected data and use information within to optimize the sampling
process. The two applications explored herein portray examples
of basic tools for these objectives. The study first presents a de-
scription of the configuration and components of the autonomous
sensor network developed by our group and subsequently two
applications are described in detail: a procedure for algal bloom
monitoring and 3D surface reconstruction. Preliminary results
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FIGURE 1. Stratified heterogeneous sensor network. Aerial, surface and underwater vehicles along with research vessels are used to span different
spatial and temporal scales and optimally scan and monitor coastal regions. Dashed colored lines denote vehicle scanning range.

are summarized within each section and concluding remarks and
future work are outlined.

AUTONOMOUS SENSOR NETWORK
Ocean observing and prediction systems have inspired both

theoretical and experimental work. The Autonomous Ocean
Sampling Network (AOSN) project [1, 2] outlined the signifi-
cant challenges for the practical implementation of such systems.
Other studies since have explored both hardware (vehicles and
sensors) [3, 4] and software (motion planners, data assimilation,
predictive models) [5–7] for use in robotic sensor networks to ob-
serve and forecast conditions in marine environments. This study
presents an update on the autonomous sensor network being de-
veloped at CENSAM [8] and its applications to coastal environ-
ments. Fig. 1 shows a diagram of the typical spatial distribution
of the active network nodes within CENSAM’s network, which
include research vessels, autonomous surface vehicles (ASVs),
autonomous underwater vehicles (AUVs), and unmanned aerial
vehicles (UAVs) of a quad-rotor design. The autonomous vehi-
cles are shown individually in Fig 2. Large distances (∼ 103 me-
ters) are covered by the quadrotors whose mission is to rapidly
scan areas of interest and identify potential target zones. In
addition to navigation related hardware, quadrotor sensor pay-
loads include digital and infrared cameras. If a quadrotor iden-
tifies a feature of interest its location is geo-tagged and relayed

to the rest of the network, subsequently a research vessel de-
ploys autonomous underwater vehicles (Iver2 submarines from
Oceanserver) and autonomous surface vehicles (SCOUT ocean
kayaks equipped for oceanographic and undersea testing) within
the vicinity of the areas of interest (∼ 102 meters). The AUVs
and ASVs perform finer scanning passes inside the target zones
to provide denser data for further analysis. In addition to iner-
tial navigation and communication equipment, the surface and
underwater vehicles are equipped with oceanographic sensors to
measure pH, temperature, conductivity, chlorophyll, rhodamine,
turbidity, and dissolved oxygen. Spectrophotometers (AC-9 from
Wetlabs) are also used to measure the absorption and attenuation
coefficients of the elements within the sampled zones.

ALGAL BLOOMS
The first application discussed for the robotic sensor net-

work is the location and scientific survey of algal blooms in the
coastal regions of Singapore. Harmful algal blooms are an in-
creasing problem in the coastal waterways surrounding Singa-
pore due to urban development as well as longer term climate
changes. A toxic algal bloom in December 2009 resulted in
200,000 fish killed in the Pasir Ris area alone, and a second
bloom by a different algal species occurred a month later in the
same location. An understanding of the underlying ecological,
chemical, tidal, and hydrodynamic factors is needed to develop
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FIGURE 2. The quadrotor (a), AUV (b) and ASV (c) measurement
vehicles and a bloom captured by the quadrotor’s aerial camera in the
Johor Straight (d).

reliable models of these events. However, modeling a system
with so many features and such a broad range of time and length
scales is extremely difficult, and an autonomous network of sens-
ing vehicles is an ideal approach to capture the data essential to
develop such models. Using flexible kernel regression methods,
seemingly disparate data sources can be combined in a mean-
ingful way with heavier weighting given to more accurate data
sources (such as GPS position data of the ASVs). Once com-
piled, this kind of information can be used to establish correla-
tions between measured parameters across vehicles and to map
out distributions of key parameters such as chlorophyll. As de-
scribed in the previous section, quadrotors, equipped with digital
and thermal cameras, scan large distances to identify areas of in-
terest, in this case potential bloom zones. A research vessel de-
ploys AUVs and ASVs within the vicinity of the areas of interest.
The AUVs and ASVs perform finer scanning passes inside the
target zones to provide denser data for further analysis. The ve-
hicles are shown in Fig 2 along with one identified algal bloom in
the Johor Straight between Singapore and Malaysia. Data from
the quadrotor cameras and the in-situ measurements taken along
the paths of the AUVs and ASVs must then be assembled into a
coherent picture of a bloom.

The geo-tagged and time-stamped data are processed to
identify correlations between the measured variables to help de-
velop models of the bloom activity based on more easily pre-
dicted or measured variables such as temperature, local water
depth, and tidal dynamics. An example of such data is presented
in Fig 3 for all the sensor variables over all the data collected in
one season. Because the sensors are not uniform across the ve-

FIGURE 3. Correlation matrix of measured data assembled from
multiple test sites along the northern coast of Singapore. Correlations
between all the sensor variables have been shown to highlight major cor-
relations, including the total height of the water column, the water tem-
perature, the pH, conductivity, chlorophyll, rhodamine, and dissolved
oxygen. The shape and color of the ellipse indicates if the correlation
is weak (white circle) strongly positive (blue front leaning) or strongly
negative (red back leaning), from [12].

hicles and sensors occasionally malfunction, these correlations
must be made between pairwise observations using Pearson’s
method.

While this kind of correlation information is important for
model building, the data from the ASVs and AUVs must be tied
back in to data from the quadrotor cameras and samples taken
from research vessels. These sources of data are crucial for lo-
cating the ASVs and AUVs relative to the bloom activity which is
identified visually (as in Fig 2(d)) or through positive identifica-
tion of a harmful bloom species in a water sample. This requires
that the sensor data from individual paths be extrapolated over
the whole region as in Fig 4 where data from an AUV sampling
path is extrapolated using regularized kernel regression, specif-
ically the νSVR (Support Vector Regression) of [10] and [9].
As shown, the method expands the useful domain of the data
from the path to the full region. The method also acts to filter
out noise, such as the spurious spike at t = 1200, regularizing the
signal without loosing the physical peaks.
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FIGURE 4. Depth data from a single AUV run. Figure (a) shows
the path of the AUV and the data collected. Figure (b) shows the 2D
reconstruction using regularized kernel regression with Figure (a) data
overlay ( [11]). Figure (c) shows the raw data (black) and kernel regres-
sion (blue) which shows that signal is regularized without loosing the
physical peaks.

SURFACE RECONSTRUCTION
Another application of the robotic sensor network is to con-

struct 3D models of marine structures. Marine structures are
structures that are partially submerged. For safety, marine struc-
tures need to be inspected regularly for wear and tear. Manual
inspection is tedious and even a small oversight can have severe
consequences for the structure and the people inside or around it.
A robotic system that can construct 3D models of marine struc-
tures would enable remote inspection and allow human field in-
spectors to focus on higher risk areas. This inspection strategy
reduces the likelihood of oversights and improves the safety of
marine environments. In this section we present the hardware
and software infrastructure to construct 3D models of marine
structures. Our current system uses a single ASV with multi-
ple sensors. The hardware setup can be easily implemented on
multiple ASVs to speed up inspection of large marine structures
whenever necessary. Various multi-robot mapping algorithms,
such as [13], can then be used to merge the 3D scan data from
different ASVs.

Hardware setup
Due to the water currents and wakes that may move the ASV

adversely, we would like to use a scanning sensor that can fin-
ish each scanning cycle quickly and has a relatively wide field
of view. The high scanning frequency allows each scanning cy-
cle to be completed before the ASV drifts significantly far from
the position where the scanning cycle was started. This reduces
the need to adjust different points within a single scan according
to the ASV movement, and hence simplifies 3D model recon-
struction. The wide field of view provides significant overlaps
between subsequent scans of the environment, despite the unin-
tended movement of the ASV due to water currents and wakes.
Significant overlaps between subsequent scans allows merging
subsequent scans into one coordinate system without knowing
the scanner pose when the scans were taken, which is an impor-
tant capability for 3D model reconstruction when the accuracy
of the robot’s positioning sensors is low. Note that the above
sensor requirements do not need to be satisfied by both the sen-
sor that scans above the waterline and the underwater part of the
structures. When one of these sensors satisfies the above require-
ments, we can use the information for merging the scan data from
one of the sensors to help the merging process of the scan data
generated by the other sensor. In this work, the above require-
ments are satisfied by the sensor that scans the above the water-
line part of the structures. To scan the above the waterline we
use a Velodyne HDL-64E S2, a 3D LiDAR (Light Detection and
Ranging) that finishes each scanning cycle in 0.1 seconds. In
each scanning cycle, the LiDAR captures the entire 3600 hori-
zontal and 26.80 vertical field of view with 0.090 × 0.40 reso-
lution. Unfortunately the Velodyne LiDAR cannot be mounted
in its standard configuration on the ASV. When the LiDAR is
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FIGURE 5. (a) The ASV setup for scanning the above and underwater parts of a marine structure. Note that additional pontoons are attached to the
ASV to improve its stability. (b) The Velodyne LiDAR and the mounting platform for placing the LiDAR in an inverted configuration on the ASV. (c)
The BlueView MB2250 micro-bathymetry sonar mounted in a sideways configuration.

mounted in its standard configuration, it sits low on the water rel-
ative to the structures we would like to scan. Since the LiDAR’s
vertical field of view spans from −24.80 to +20 and its range
limit is 50m, in its standard configuration, the LiDAR can only
scan parts of the marine structures from the water surface up to
around 2 meters above the water surface. This is insufficient for
our purpose. To overcome this difficulty, we mount the LiDAR
in an inverted configuration, thereby generating a vertical field of
view that spans from −20 to +24.80 and enables the LiDAR to
scan parts of the marine structures from the water surface up to
around 20 meters above the water surface.

However, mounting the LiDAR in an inverted configuration
makes the ASV less stable. Since the LiDAR is quite heavy
(around 13 kilograms) and its center of gravity lies near its
bottom, which would sit high up in an inverted configuration,
mounting the LiDAR in an inverted configuration significantly
raises the center of gravity of the entire system. As a result,
the ASV becomes less stable, especially in roll, and vulnerable
to capsizing when operating in rough water environments. To
mount the LiDAR in an inverted configuration and maintain sta-
bility, we designed a platform to mount the LiDAR in an inverted
configuration on the ASV with two primary considerations: ve-
hicle stability and sensor visibility. Fig 5(b) shows the mounting
platform. The entire mounting structure is made with lightweight
aluminium extrusions. The four posts bearing the weight of the
sensor are tied together with triangulating pieces in the hull of
the ASV to create a rigid platform to mount the LiDAR that is
robust to motion in all directions. Furthermore, the four posts are
narrow so that they have a minimal effect on the data collected
by the LiDAR. Experiments with the LiDAR in this mount show
that these posts cast insignificant shadows on the LiDAR returns.
In order to ensure the stability of the ASV, we keep the cen-
troid of the craft low by mounting the LiDAR as low as possible
without encroaching on the sensor’s field of view. Additionally,

FIGURE 6. Processing steps for 3D model reconstruction of partially
submerged marine structures.

to protect the ASV from rolling, its most vulnerable direction,
we attach port and starboard stabilizers. These stabilizers con-
sist of buoyant pontoons mounted on an aluminum square extru-
sion assembly that is fixed directly to the LiDAR’s mount. The
pontoons are streamlined to minimize the added drag. To scan
the underwater part of the marine structure of interest, we use
a 3D Microbathymetry sonar from BlueView (model MB2250-
45). The MB2250-45 sonar uses 256 beams with one degree
beam width in the elevation. Since we are interested in mapping
marine structures, instead of mounting the sonar in the default
forward-looking configuration, we mount it sideways on the ve-
hicle (Fig 5(c)). The overall setup of is shown in Fig 5(a).

Software for 3D model reconstruction
The main difficulty in 3D model reconstruction is that GPS

signals are often blocked by the structures themselves during op-
eration. Furthermore, we need to merge the 3D scan data of the
above the waterline part of the structures with 2D scan data of the
underwater part of the structures. To overcome the lack of GPS
information, we use a scan matching technique to construct the
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FIGURE 7. Mesh-based map for the above the waterline part of the
jetty.

3D model for above the waterline part of the structures. We then
use the transformations, computed by the scan matching algo-
rithm for the above the waterline part, to construct the 3D model
of the underwater part of the structures. We combine the 3D
model of above the waterline and underwater parts to construct a
complete 3D model of the partially submerged marine structure.
A diagram of this process is shown in Fig 6.

Experimental Results
We have tested our system successfully to construct a jetty

in Pulau Hantu, Singapore. The water currents during operation
were around 1-2m/s. The reconstructed 3D model can be seen in
Fig 7 and Fig 8. Higher resolution mesh-based maps are shown
in Fig 7, while lower resolution point cloud maps are shown in
Fig 8. The maps can be used for inspection (high resolution) or
navigation in cluttered environements (lower resolution).

CONCLUSIONS AND FUTURE WORK
The vehicles and operational configuration of the coastal

distributed autonomous sensor network being developed at CEN-
SAM were presented in this study. Two applications showcasing
important tools for ocean surveys and modeling were described:
algal bloom monitoring and 3D surface reconstruction.

Algal blooms represent a major concern in coastal environ-
ments as they have significant humanitarian and economical im-
pacts. Our group uses the exploration and monitoring capabilities
of a sensor network along with statistical analysis to enable in-

(a)

(b)

FIGURE 8. Point clouds map for the above and underwater part of
the jetty.

creasingly accurate models of bloom activity. Aerial, surface,
and underwater vehicles were combined to sample and detect
biochemical preconditions for algal blooms in the coasts of Sin-
gapore. A wealth of biochemical data (ph, chlorophyll, temper-
ature among others) is being analyzed using learning models to
understand and predict algal bloom occurrences.

Inspection and operation in cluttered environments requires
3D maps to facilitate the operation of autonomous vehicles. 3D
feature reconstruction of a medium sized marine structure (jetty)
was successfully tested using surface vehicles equipped with Li-
DAR and sonar. Both low and high resolution maps can be gen-
erated with the presented approach which can be used for either
navigation or inspection depending on mission goals. In the cur-
rent setup, the LiDAR’s sampling rate and its relatively wide field
of view allow each scanning cycle to be completed before the
ASV drifts significantly far from the position where the scanning
cycle began, even in currents as high as 1-2m/s. However, further
tests are still needed to find the actual operating limits and relia-
bility under stronger environmental disturbances (e.g. wind and
wave conditions) typically encountered in marine applications.

Our group will continue testing these tools in larger scale
missions involving more vehicles and more severe environmen-
tal disturbances as well as developing further tools for oceano-
graphic studies.
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