248,478 research outputs found

    Temporal Support in Relational Databases

    Get PDF
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. © 2012 Higher Education AcademyThis paper examines the current state of temporal support in relational databases and the type of situations where we need that support. There has been much research in this area and there were attempts in the American National Standards Institute (ANSI) and the International Organisation for Standardisation (ISO) standards committees in the late 1990s to add an extension called TSQL2 to the existing SQL standard. However no agreement could be reached as it was felt that some of the suggested extensions did not fit well with the relational model, as well as being difficult to implement. TSQL2 was abandoned and since then vendors have added their own data types, and if we are lucky, operators too in an attempt to provide support. However, to novice students and database designers it is often not apparent why some temporal concepts are difficult to deal with in a relational database. In teaching these concepts to students we use a Case Study (based on a real example) which illustrates the problems of providing temporal support by using examples of the data types which could be useful to solve temporal problems and the operators which are necessary to provide this

    Bipolarity in the querying of temporal databases

    Get PDF
    A database represents part of reality by containing data representing properties of real objects or concepts. To many real-world concepts or objects, time is an essential aspect and thus it should often be (implicitly) represented by databases, making these temporal databases. However, like other data, the time-related data in such databases may also contain imperfections such as uncertainties. One of the main purposes of a database is to allow the retrieval of information or knowledge deduced from its data, which is often done by querying the database. Because users may have both positive and negative preferences, they may want to query a database in a bipolar way. Moreover, their demands may have some temporal aspects. In this paper, a novel technique is presented, to query a valid-time relation containing uncertain valid-time data in a heterogeneously bipolar way, allowing every elementary query constraint a specific temporal constraint

    Expressiveness of Temporal Query Languages: On the Modelling of Intervals, Interval Relationships and States

    Get PDF
    Storing and retrieving time-related information are important, or even critical, tasks on many areas of Computer Science (CS) and in particular for Artificial Intelligence (AI). The expressive power of temporal databases/query languages has been studied from different perspectives, but the kind of temporal information they are able to store and retrieve is not always conveniently addressed. Here we assess a number of temporal query languages with respect to the modelling of time intervals, interval relationships and states, which can be thought of as the building blocks to represent and reason about a large and important class of historic information. To survey the facilities and issues which are particular to certain temporal query languages not only gives an idea about how useful they can be in particular contexts, but also gives an interesting insight in how these issues are, in many cases, ultimately inherent to the database paradigm. While in the area of AI declarative languages are usually the preferred choice, other areas of CS heavily rely on the extended relational paradigm. This paper, then, will be concerned with the representation of historic information in two well known temporal query languages: it Templog in the context of temporal deductive databases, and it TSQL2 in the context of temporal relational databases. We hope the results highlighted here will increase cross-fertilisation between different communities. This article can be related to recent publications drawing the attention towards the different approaches followed by the Databases and AI communities when using time-related concepts

    Bipolar querying of valid-time intervals subject to uncertainty

    Get PDF
    Databases model parts of reality by containing data representing properties of real-world objects or concepts. Often, some of these properties are time-related. Thus, databases often contain data representing time-related information. However, as they may be produced by humans, such data or information may contain imperfections like uncertainties. An important purpose of databases is to allow their data to be queried, to allow access to the information these data represent. Users may do this using queries, in which they describe their preferences concerning the data they are (not) interested in. Because users may have both positive and negative such preferences, they may want to query databases in a bipolar way. Such preferences may also have a temporal nature, but, traditionally, temporal query conditions are handled specifically. In this paper, a novel technique is presented to query a valid-time relation containing uncertain valid-time data in a bipolar way, which allows the query to have a single bipolar temporal query condition

    Tailoring temporal description logics for reasoning over temporal conceptual models

    Get PDF
    Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of DL-Lite^N_bool, which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment DL-Lite^N_core with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering)
    • 

    corecore