
Tailoring Temporal Description Logics for Reasoning
over Temporal Conceptual Models

A. Artale,1 R. Kontchakov,2 V. Ryzhikov,1 and M. Zakharyaschev2

1 KRDB Research Centre
Free University of Bozen-Bolzano, Italy
{lastname}@inf.unibz.it

2 Dept. of Comp. Science and Inf. Sys.
Birkbeck College, London, UK

{roman,michael}@dcs.bbk.ac.uk

Abstract. Temporal data models have been used to describe how data can evolve
in the context of temporal databases. Both the Extended Entity-Relationship (EER)
model and the Unified Modelling Language (UML) have been temporally ex-
tended to design temporal databases. To automatically check quality properties
of conceptual schemas various encoding to Description Logics (DLs) have been
proposed in the literature. On the other hand, reasoning on temporally extended
DLs turn out to be too complex for effective reasoning ranging from 2EXPTIME

up to undecidable languages. We propose here to temporalize the ‘light-weight’
DL-Lite logics obtaining nice computational results while still being able to rep-
resent various constraints of temporal conceptual models. In particular, we con-
sider temporal extensions of DL-LiteNbool, which was shown to be adequate for
capturing non-temporal conceptual models without relationship inclusion, and its
fragment DL-LiteNcore with most primitive concept inclusions, which are never-
theless enough to represent almost all types of atemporal constraints (apart from
covering).

1 Introduction

Conceptual data modelling formalisms such as the Unified Modelling Language (UML)
and the Extended Entity-Relationship (EER) model have become a de facto standard in
database design and software engineering by providing visual means to describe ap-
plication domains in a declarative and reusable way. Both UML and EER turn out to
be closely connected to description logics (DLs), which can encode constraints ex-
pressible in these conceptual modelling formalisms (see, e.g., [11, 12, 1]). This encod-
ing provides us with a rigorous definition of various quality properties of conceptual
schemas. For instance, given a conceptual schema, we can check its consistency (i.e.,
whether its constraints contain no contradictions), entity and relationship satisfiabil-
ity (i.e., whether given entities and relationships in the schema can be instantiated),
instance checking (i.e., whether a given individual belongs to a given entity in every
instance of the schema), and logical entailment (i.e., whether a given constraint is log-
ically implied by the schema). The encoding of conceptual models as DL knowledge
bases (KBs) opens a way for utilizing existing DL reasoning services (reasoners) for
automated checking of these quality properties, and so for providing an effective rea-
soning support for the construction phase of a conceptual model schema.

Temporal conceptual data models [31, 20, 21, 4, 26, 6, 15, 7, 10] extend standard con-
ceptual schemas with means to visually represent temporal constraints imposed on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/11305675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

temporal database instances. Temporal constraints can be grouped in three categories:
timestamping, evolution and temporal cardinality constraints. Timestamping constraints
discriminate between those entities, r relationships and attributes that change over time
and those that are time-invariant [31, 21, 16, 7, 26]. Evolution constraints control how
the domain elements evolve over time by ‘migrating’ from one entity to another [22,
25, 29, 26, 6]. We distinguish between quantitative evolution constraints that specify the
exact time of migration and qualitative evolution constraints that describe eventual tem-
poral behaviour (i.e., whether all instances will eventually migrate or will always belong
to the same entity). Temporal cardinality constraints restrict the number of times an
instance participates in a relationship; snapshot cardinality constraints do it at each mo-
ment of time, while lifespan cardinality constraints impose restrictions over the entire
existence of the instance [30, 24].

Temporal conceptual models can be encoded in various temporal description logics
(TDLs), which have been designed and investigated since the seminal paper [28] with
the aim of understanding the computational price of introducing a temporal dimension
in DLs (see [23] for a survey). A general conclusion one can draw from the obtained
results is that—as far as there is a nontrivial interaction between the temporal and DL
components—TDLs based on full-fledged DLs likeALC turn out to be too complex for
effective reasoning ranging from 2EXPTIME up to undecidable languages.

The aim of this paper is to show how temporalizing the ‘light-weight’ DL-Lite log-
ics [13, 14, 27, 2, 3] we can represent various constraints of temporal conceptual models.
In particular, we consider DL-LiteNbool, which was shown to be adequate for capturing
non-temporal conceptual models without relationship inclusion [1], and its fragment
DL-LiteNcore with most primitive concept inclusions, which are nevertheless enough to
represent almost all types of atemporal constraints (apart from covering). To capture
temporal constraints, we interpret the TDLs over the flow of time (Z, <), in which (1)
the future and past temporal operators can be applied to concepts (entities); (2) roles
can be declared flexible or rigid; (3) the ‘undirected’ temporal operators ‘always’ and
‘some time’ can be applied to roles; (4) the concept inclusions (TBox) hold at all mo-
ments of time (i.e., global) and the database assertions (ABox) are specified to hold at
particular moments of time.

Complexity results for reasoning in TDLs based on DL-Lite have been presented
in [5, 8, 9]. The most expressive TDL based on DL-LiteNbool and featuring all of (1)–(4)
turns out to be undecidable. This ‘negative’ result has motivated our study of various
fragments of the full language by restricting not only the DL but also the temporal com-
ponent. Concerning TDLs with temporalized roles, in addition to the undecidability re-
sult, we have also shown that using the undirected temporal operators always/sometime
together with temporalized roles over DL-LiteNbool results in an NP-complete language.
TDLs with rigid (and flexible but not temporalized) roles turned out to be reducible
to propositional linear temporal logic LT L (and its natural fragments). The absence
of temporalized roles makes reasoning in these logics easier with complexity results
ranging from NLOGSPACE to PSPACE.

2 DL-Lite logics

We briefly introduce DL-Lite and its relatives (see [14, 3] for more details). The lan-
guage of DL-LiteNbool contains object names a0, a1, . . . , concept namesA0, A1, . . . , and
role names P0, P1, Roles R, basic concepts B and concepts C of this language are
defined by the rules:

R ::= Pk | P−k ,

B ::= ⊥ | Ak | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q is a positive integer. A DL-LiteNbool TBox, T , is a finite set of concept inclusion
axioms of the form

C1 v C2.

An ABox, A, is a finite set of assertions of the form

Ak(ai), ¬Ak(ai), Pk(ai, aj), ¬Pk(ai, aj).

Taken together, T and A constitute the DL-LiteNbool knowledge base (KB, for short)
K = (T ,A).

An interpretation I = (∆I , ·I) of this and other DL-Lite languages consists of a
domain ∆I 6= ∅ and an interpretation function ·I that assigns to each object name ai
an element aIi ∈ ∆I , to each concept name Ak a subset AIk ⊆ ∆I , and to each role
name Pk a binary relation P Ik ⊆ ∆I ×∆I . As in databases, we adopt the unique name
assumption (UNA) according to which aIi 6= aIj for all i 6= j. The role and concept
constructs are interpreted in I as follows:

(P−k)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P Ik },
⊥I = ∅,

(≥q R)I =
{
x ∈ ∆I |]{y ∈ ∆I | (x, y) ∈ RI} ≥ q

}
,

(¬C)I = ∆I \ CI ,
(C1 u C2)

I = CI1 ∩ CI2 ,

where]X denotes the cardinality of X . The satisfaction relation |= is defined as usual:

I |= C1 v C2 iff CI1 ⊆ CI2 ,
I |= Ak(ai) iff aIi ∈ AIk , I |= ¬Ak(ai) iff aIi /∈ AIk ,

I |= Pk(ai, aj) iff (aIi , a
I
j) ∈ P Ik , I |= ¬Pk(ai, aj) iff (aIi , a

I
j) /∈ P Ik .

A knowledge base K = (T ,A) is said to be satisfiable (or consistent) if there is an
interpretation, I, satisfying all the members of T and A. In this case we write I |= K
(as well as I |= T and I |= A) and say that I is a model of K (and of T and A).

The two sub-languages of DL-LiteNbool we deal with in this article are obtained by re-
stricting the Boolean operators on concepts. In DL-LiteNkrom TBoxes,1 concept inclusions
are of the form

B1 v B2, B1 v ¬B2 or ¬B1 v B2. (krom)

(Here and below the Bi are basic concepts.) In DL-LiteNcore, we can only use concept
inclusions of the form

B1 v B2 or B1 uB2 v ⊥. (core)

As B1 v ¬B2 is equivalent to B1 u B2 v ⊥, DL-LiteNcore is a sub-language of
DL-LiteNkrom.

The extra expressive power, gained from covering constraints, comes at a price: the
satisfiability problem is NLOGSPACE-complete for DL-LiteNcore and DL-LiteNkrom KBs
and NP-complete for DL-LiteNbool KBs [2].

3 Temporal Conceptual Modelling

Temporal conceptual data models extend standard conceptual schemas with means to
visually represent temporal constraints imposed on temporal database instances [31, 20,
21, 4, 26]. When introducing a temporal dimension into conceptual data models, time is
usually modelled by a linearly ordered set of time instants, so that at each moment we
can refer to its past and its future. We assume that the flow of time is isomorphic to the
strictly linearly ordered set (Z, <) of integer numbers. (For a survey of other options,
including various interval-based and branching models of time, consult, e.g. [18, 19,
17].)

A basic assumption made in temporal conceptual models is that entities, relation-
ships and attributes may freely change over time—as long as they satisfy the schema
constraints at each time instant. Temporal constructs are then used to impose constraints
on the temporal behaviour of various components of conceptual schemas. We group
these constructs into three categories—timestamping, evolution constraints and tem-
poral cardinality constraints—and illustrate them using the temporal data model in
Figure 1.

Timestamping constraints [31, 21, 26] distinguish between entities, relationships and
attributes that are temporary, i.e., cannot keep a single element over the whole time-
line; snapshot, or time-invariant; and unconstrained (all others). In temporal entity-
relationship (TER) diagrams, temporary entities, relationships and attributes are marked
with T and snapshot ones with S. In Figure 1, ‘Employee’ and ‘Department’ are snap-
shot entities, ‘Name,’ ‘PaySlipNumber’ and ‘ProjectCode’ are snapshot attributes and
‘Member’ a snapshot relationship. On the other hand, ‘Manager’ is a temporary entity,
‘Salary’ a temporary attribute and ‘WorksOn’ a temporary relationship.

1 The Krom fragment of first-order logic consists of all formulas in prenex normal form whose
quantifier-free part is a conjunction of binary clauses.

Department S InterestGroup

OrganizationalUnit

d

Member S

(1,∞)

org

mbr
Employee S

Name(String)

S

PaySlipNumber(Integer)

S Salary(Integer)

T

Manager T

TopManagerAreaManager

dex−

dev

pex

WorksOn T

(3,∞)

act

emp

Project

ProjectCode(String)

S
Ex-Project tex

Manages
man

(1,1)

[0,5]

prj

(1,1)

1

Fig. 1. A temporal conceptual model of a company information system.

To represent timestamping constraints in temporal description logics we employ the
temporal operator 2∗ , which is read as ‘always’ or ‘at all—past, present and future—
time instants.’ Intuitively, for a conceptC, 2∗ C contains those elements that belong toC
at all time instants. Using this operator, the constraints ‘Employee is a snapshot entity’
and ‘Manager is a temporary entity’ can be represented as follows:

Employee v 2∗ Employee, (1)
2∗ Manager v ⊥. (2)

The first inclusion says that, at any moment of time, every element of ‘Employee’ has
always been and will always be an element of ‘Employee.’ The second one states that
no element can belong to ‘Manager’ at all time instants. Note that we consider concept
inclusions to hold globally, that is, at all moments of time.

The same temporal operator 2∗ together with rigid roles (i.e., roles that do not change
over time) can be used to capture timestamping of (reified) relationships. Rigid roles
can also represent snapshot attributes, while temporary attributes can be captured by
using temporalized roles: ∃2∗ salary v ⊥, where 2∗ salary denotes the intersection of
the relations salary at all time instants, model salary as a temporary attribute.

Evolution constraints control how the domain elements evolve over time by ‘migrat-
ing’ from one entity to another [22, 25, 29, 26, 6]. We distinguish between qualitative
evolution constraints that describe eventual temporal behaviour and do not specify the
moment of migration, and quantitative evolution (or transition) constraints that spec-
ify the exact moment of migration. The dashed arrow marked with TEX in Figure 1 is
an example of a quantitative evolution constraint meaning that each ‘Project’ expires
in exactly one year and becomes an ‘Ex-Project.’ The dashed arrow marked with DEV
is a qualitative evolution constraint meaning that every ‘AreaManager’ will eventually
(at some moment in the future) become a ‘TopManager.’ The DEX− dashed arrow says
that every ‘Manager’ was once an ‘Employee,’ while the PEX dashed arrow means that

a ‘Manager’ will always be a ‘Manager’ and cannot be demoted. In temporal descrip-
tion logic, these evolution constraints are represented using temporal operators such as
‘at the next moment of time’ ©F , ‘some time in the future’ 3F , ‘some time in the past’
3P and ‘always in the future’ 2F :

Project v ©FEx-Project, (3)
AreaManager v 3FTopManager, (4)

Manager v 3PEmployee, (5)
Manager v 2FManager. (6)

We note again that these concept inclusions hold at every moment of time.
Temporal cardinality constraints [30, 24, 20] restrict the number of times an in-

stance participates in a relationship. Snapshot cardinality constraints do it at each mo-
ment of time, while lifespan cardinality constraints impose restrictions over the entire
existence of the instance. In Figure 1, we use (k, l) to specify the snapshot cardinalities
and [k, l] the lifespan cardinalities: for example, every ‘TopManager’ manages exactly
one project at each moment of time (snapshot cardinality), but not more than five differ-
ent projects over the whole career (lifespan cardinality). If the relationship ‘manages’
is represented by a role in temporal description logic then these two constraints can be
expressed by the following concept inclusions:

TopManager v ≤ 1manages,

TopManager v ≤ 53∗ manages,

where 3∗ means ‘sometime’ (in the past, present or future), and so 3∗ manages is the
union of the relations manages over all time instants.

Finally, to represent temporal database instances associated to a temporal concep-
tual model, we use assertions like ©PManager(bob) for ‘Bob was a manager last year’
and ©Fmanages(bob, cronos) for ‘Bob will manage project Cronos next year.’

3.1 Temporal DL-Lite logics

It is known from temporal logic [18] that all the temporal operators used in the previous
section can be expressed in terms of the binary operators ‘since’ S and ‘until’ U . So
we formulate our ‘base’ temporal extension TUSDL-LiteNbool of the description logic
DL-LiteNbool using only these two operators. The language of TUSDL-LiteNbool contains
object names a0, a1, . . . , concept names A0, A1, . . . , flexible role names P0, P1, . . .
and rigid role names G0, G1, Role names S, roles R, basic concepts B, concepts
C and temporal concepts D are defined by the following rules:

S ::= Pi | Gi,
R ::= S | S−,
B ::= ⊥ | Ai | ≥ q R,
C ::= B | D | ¬C | C1 u C2,

D ::= C | C1 U C2 | C1 S C2,

where, as before, q is a positive integer. A TUSDL-LiteNbool TBox, T , is a finite set of
concept inclusions of the form C1 v C2. An ABox,A, consists of assertions of the form

©nAk(ai), ©n¬Ak(ai), ©nS(ai, aj) and ©n¬S(ai, aj),

where Ak is a concept name, S a (flexible or rigid) role name, ai, aj object names and,
for n ∈ Z,

©n = ©F · · ·©F︸ ︷︷ ︸
n times

, if n ≥ 0 and ©n = ©P · · ·©P︸ ︷︷ ︸
−n times

, if n < 0.

Taken together, the TBox T and ABox A form the knowledge base (KB) K = (T ,A).
A temporal interpretation, I, gives a standard DL interpretation, I(n), for each

time instant n ∈ Z:

I(n) =
(
∆I , aI0 , . . . , A

I(n)
0 , . . . , P

I(n)
0 , . . . , GI0 , . . .

)
.

We assume, however, that the domain∆I and the interpretations aIi ∈ ∆I of the object
names and GI0 ⊆ ∆I ×∆I of rigid role names are fixed for all time. (Recall also that
we adopt the UNA.) The interpretations AI(n)i ⊆ ∆I of concept names and P I(n)i ⊆
∆I × ∆I of flexible role names can vary. The atemporal constructs are interpreted in
I(n) as before; we write CI(n) for the extension of concept C in the interpretation
I(n). The interpretation of the temporal operators is as in temporal logic:

(C1 U C2)
I(n) =

⋃
k>n

(
C
I(k)
2 ∩

⋂
n<m<k

C
I(m)
1

)
,

(C1 S C2)
I(n) =

⋃
k<n

(
C
I(k)
2 ∩

⋂
n>m>k

C
I(m)
1

)
.

Concept inclusions are interpreted in I globally:

I |= C1 v C2 iff C
I(n)
1 ⊆ CI(n)2 for all n ∈ Z.

And for the ABox assertions, we set:

I |= ©nAk(ai) iff aIi ∈ A
I(n)
k , I |= ©n¬Ak(ai) iff aIi /∈ A

I(n)
k ,

I |= ©nS(ai, aj) iff (aIi , a
I
j) ∈ SI(n), I |= ©n¬S(ai, aj) iff (aIi , a

I
j) /∈ SI(n).

We call I a model of a KB K and write I |= K if I satisfies all elements of K. If K
has a model then it is said to be satisfiable. A concept C (role R) is satisfiable w.r.t. K
if there are a model I of K and n ∈ Z such that CI(n) 6= ∅ (respectively, RI(n) 6= ∅).
It is readily seen that the concept and role satisfiability problems are equivalent to KB
satisfiability.

We now define a few fragments and extensions of the base language TUSDL-LiteNbool.
Recall that to say that C is a snapshot concept, we need the ‘always’ operator 2∗ with
the following meaning:

(2∗ C)I(n) =
⋂
k∈Z

CI(k).

In terms of S and U , this operator can be represented as 2∗ C = ¬(> S ¬C) u C u
¬(> U ¬C). Define TUDL-LiteNbool to be the sublanguage of TUSDL-LiteNbool the tem-
poral concepts D in which are of the form:

D ::= C | 2∗ C. (U)

Thus, in TUDL-LiteNbool, we can express timestamping constraints (see Section 3).

The temporal operators 3F (‘some time in the future’) and 3P (‘some time in the
past’) that are required for qualitative evolution constraints with the standard temporal
logic semantics

(3FC)
I(n) =

⋃
k>n

CI(k) and (3PC)
I(n) =

⋃
k<n

CI(k)

can be expressed via U and S as 3FC = > U C and 3PC = > S C; the operators
2F (‘always in the future’) and 2P (‘always in the past’) are defined as dual to 3F and
3P : 2FC = ¬3F¬C and 2PC = ¬3P¬C. We define the fragment TFPDL-LiteNbool
of TUSDL-LiteNbool by restricting the temporal concepts D to the form:

D ::= C | 2FC | 2PC. (FP)

Clearly, we have the following equivalences:

2∗ C = 2F2PC and 3∗ C = 3F3PC.

In what follows they will be regarded as definitions for 2∗ and 3∗ in the languages,
where they are not explicitly present. Thus, TFPDL-LiteNbool is capable of expressing
both timestamping and qualitative (but not quantitative) evolution constraints.

The temporal operators ©F (‘next time’) and ©P (‘previous time’), used in quanti-
tative evolution constraints, can be defined as ©FC = ⊥ U C and ©PC = ⊥ S C, so
that we have:

(©FC)
I(n) = CI(n+1) and (©PC)

I(n) = CI(n−1).

The fragment of TUSDL-LiteNbool with temporal concepts of the form

D ::= C | 2FC | 2PC | ©FC | ©PC (FPX)

will be denoted by TFPXDL-LiteNbool. In this fragment, we can express timestamping,
qualitative and quantitative evolution constraints.

We have the following inclusions between the languages:

TUDL-LiteNbool ⊆ TFPDL-LiteNbool ⊆ TFPXDL-LiteNbool ⊆ TUSDL-LiteNbool.

Similarly to the non-temporal case, we can also identify sub-Boolean fragments
of the above languages. A temporal TBox T will be called a Krom (core) TBox if it
contains only concept inclusions of the form:

D1 v D2, D1 v ¬D2, ¬D1 v D2, (Krom)
D1 v D2, D1 uD2 v ⊥, (core)

respectively, where the Di are temporal concepts defined by (FPX), (FP) or (U) with
C ::= B | D (so, no Boolean operators are allowed in the Di). This gives us 6 different
fragments TFPXDL-LiteNα , TFPDL-LiteNα and TUDL-LiteNα , for α ∈ {core, krom}.
We do not consider the core and Krom fragments of the full language with U /S be-
cause these operators allow one to go beyond the language of binary clauses of the
core and Krom fragments; the resulting languages would have the same complexity as
TUSDL-LiteNbool and yet be less expressive (see [9] for more details).

We note here that both Krom and Bool TBoxes have the full negation, and so one can
freely use 3-shaped counterparts of the 2 temporal operators allowed in the language.
This is not the case for the core fragments where timestamping can still be expressed
(cf. (1) and (2)) but evolution constraints involving 3 (e.g., a Manager was once an
Employee; cf. (5)) are not expressible.

Table 1. The temporal extended DL-Lite family and complexity of its members.

temporal constructsconcept
inclusions U/S,©F /©P ,2F /2P

a 2F /2P 2∗

Bool

TUSDL-LiteNbool
TFPXDL-LiteNbool

PSPACE

TFP DL-LiteNbool

NP

TUDL-LiteNbool

NP

Krom
TFPXDL-LiteNkrom

NP

TFP DL-LiteNkrom

NP

TUDL-LiteNkrom

NLOGSPACE

core
TFPXDL-LiteNcore

in PTIME

TFP DL-LiteNcore

in PTIME

TUDL-LiteNcore

NLOGSPACE

temporalized
roles

TR
XDL-LiteNbool

undec. ?
TR
U DL-LiteNbool

NP

a Sub-boolean fragments of the language with U/S are not defined.

As we have seen in our running example, in order to express lifespan cardinality
constraints, temporal operators on roles are required: for a role R of the form

R ::= S | S− | 3∗ R | 2∗ R,

the extensions of 3∗ R and 2∗ R in an interpretation I are defined as

(3∗ R)I(n) =
⋃
k∈Z

RI(k) and (2∗ R)I(n) =
⋂
k∈Z

RI(k).

We denote by TRβ DL-LiteNbool, for β ∈ {FPX,FP,U}, the extensions of the respective
Bool fragments with temporalized roles.

To summarize, the temporal extensions of the DL-Lite logics we consider in this
paper are collected in Table 1. The tight (unless specified otherwise) complexity bounds
of Table 1 have been established in [9].

4 Conclusions

From the complexity-theoretic point of view, the best candidates for reasoning about
TCMs appear to be the TDLs TFPXDL-LiteNcore and TFPXDL-LiteNbool, the former of
which is NP-complete and the latter PSPACE-compete. Moreover, as showed in [9],
the reduction of TFPXDL-LiteNcore to LT L can be done deterministically, thus standard
LT L provers can be used for TCM reasoning. We also believe that TFPXDL-LiteNcore
extended with temporalized roles can be decidable, which remains one of the most chal-
lenging open problems. But it seems to be next to impossible to reason in an effective
way about all TCM constrains without any restrictions.

References

1. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Reasoning
over extended ER models. In Proc. of the 26th Int. Conf. on Conceptual Modeling (ER’07),
volume 4801 of Lecture Notes in Computer Science, pages 277–292. Springer, 2007.

2. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the light of
first-order logic. In Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pages
361–366, 2007.

3. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

4. A. Artale, E. Franconi, and F. Mandreoli. Description logics for modelling dynamic infor-
mation. In J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging
Applications of Databases. Lecture Notes in Computer Science, Springer, 2003.

5. A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising tractable
description logics. In 14th Int. Symposium on Temporal Representation and Reasoning
(TIME07). IEEE Computer Society, 2007.

6. A. Artale, C. Parent, and S. Spaccapietra. Evolving objects in temporal information systems.
Annals of Mathematics and Artificial Intelligence, 50(1-2):5–38, 2007.

7. A. Artale and E. Franconi. Foundations of temporal conceptual data models. In Concep-
tual Modeling: Foundations and Applications, volume 5600 of Lecture Notes in Computer
Science. Springer, 2009.

8. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. DL-Lite with temporalised
concepts, rigid axioms and roles. In Proc. of FroCoS-09, volume 5749 of Lecture Notes in
Artificial Intelligence, pages 133–148. Springer, 2009.

9. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. TDL-Lite: How to cook
decidable temporal description logics. To be submitted, 2011.

10. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Complexity of reasoning
over temporal data models. In Proc. of the 29th Int. Conf. on Conceptual Modeling (ER’10),
volume 6412 of Lecture Notes in Computer Science, pages 174–187. Springer, 2010.

11. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003. (2nd edition, 2007).

12. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams. Artificial
Intelligence, 168(1–2):70–118, 2005.

13. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
description logics for ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), pages 602–607, 2005.

14. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reason-
ing and efficient query answering in description logics: The DL-Lite family. J. of Artificial
Intelligence Research (JAIR), 39(3):385–429, 2007.

15. C. Combi, S. Degani, and C. S. Jensen. Capturing temporal constraints in temporal ER
models. In Proc. of the 27th Int. Conf. on Conceptual Modeling (ER’08). Lecture Notes in
Computer Science. Springer, 2008.

16. M. Finger and P. McBrien. Temporal conceptual-level databases. In D. Gabbay,
M. Reynolds, and M. Finger, editors, Temporal Logics – Mathematical Foundations and
Computational Aspects, pages 409–435. Oxford University Press, 2000.

17. D. Gabbay, A.Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal logics:
theory and applications. Studies in Logic. Elsevier, 2003.

18. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foundations
and Computational Aspects, Volume 1. Oxford University Press, 1994.

19. D. Gabbay, M. Finger, and M. Reynolds. Temporal Logic: Mathematical Foundations and
Computational Aspects, volume 2. Oxford University Press, 2000.

20. H. Gregersen and J.S. Jensen. Conceptual modeling of time-varying information. Technical
Report TimeCenter TR-35, Aalborg University, Denmark, 1998.

21. H. Gregersen and J.S. Jensen. Temporal Entity-Relationship models – a survey. IEEE Trans-
actions on Knowledge and Data Engineering, 11(3):464–497, 1999.

22. G. Hall and R. Gupta. Modeling transition. In Proc. of ICDE’91, pages 540–549, 1991.
23. C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey. In Proc. of

15th Int. Symposium on Temporal Representation and Reasoning (TIME08). IEEE Computer
Society, 2008.

24. P. McBrien, A.H. Seltveit, and B. Wangler. An Entity-Relationship model extended to de-
scribe historical information. In Proc. of CISMOD’92, pages 244–260, Bangalore, India,
1992.

25. A.O. Mendelzon, T. Milo, and E. Waller. Object migration. In Proc. of the 13th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS94),
pages 232–242, New York, NY, USA, 1994. ACM Press.

26. C. Parent, S. Spaccapietra, and E. Zimanyi. Conceptual Modeling for Traditional and Spatio-
Temporal Applications—The MADS Approach. Springer, 2006.

27. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

28. K. Schild. Combining terminological logics with tense logic. In Proc. of the 6th Portuguese
Conf. on Artificial Intelligence, pages 105–120, London, UK, 1993. Springer.

29. J. Su. Dynamic constraints and object migration. Theoretical Computer Science, 184(1–
2):195–236, 1997.

30. B. Tauzovich. Towards temporal extensions to the entity-relationship model. In Proc. of the
Int. Conf. on Conceptual Modeling (ER’91). Lecture Notes in Computer Science. Springer,
1991.

31. C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptual modelling formalism for
temporal database applications. Information Systems, 16(3):401–416, 1991.

