105 research outputs found

    Virtual Machine Lifecycle Management in Grid and Cloud Computing

    Get PDF
    Virtualisierungstechnologie ist die Grundlage für zwei wichtige Konzepte: Virtualized Grid Computing und Cloud Computing. Ersteres ist eine Erweiterung des klassischen Grid Computing. Es hat zum Ziel, die Anforderungen kommerzieller Nutzer des Grid hinsichtlich der Isolation von gleichzeitig ausgeführten Batch-Jobs und der Sicherheit der zugehörigen Daten zu erfüllen. Dabei werden Anwendungen in virtuellen Maschinen ausgeführt, um sie voneinander zu isolieren und die von ihnen verarbeiteten Daten vor anderen Nutzern zu schützen. Darüber hinaus löst Virtualized Grid Computing das Problem der Softwarebereitstellung, eines der bestehenden Probleme des klassischen Grid Computing. Cloud Computing ist ein weiteres Konzept zur Verwendung von entfernten Ressourcen. Der Fokus dieser Dissertation bezüglich Cloud Computing liegt auf dem “Infrastructure as a Service Modell”, das Ideen des (Virtualized) Grid Computing mit einem neuartigen Geschäftsmodell kombiniert. Dieses besteht aus der Bereitstellung von virtuellen Maschinen auf Abruf und aus einem Tarifmodell, bei dem lediglich die tatsächliche Nutzung berechnet wird. Der Einsatz von Virtualisierungstechnologie erhöht die Auslastung der verwendeten (physischen) Rechnersysteme und vereinfacht deren Administration. So ist es beispielsweise möglich, eine virtuelle Maschine zu klonen oder einen Snapshot einer virtuellen Maschine zu erstellen, um zu einem definierten Zustand zurückkehren zu können. Jedoch sind noch nicht alle Probleme im Zusammenhang mit der Virtualisierungstechnologie gelöst. Insbesondere entstehen durch den Einsatz in den sehr dynamischen Umgebungen des Virtualized Grid Computing und des Cloud Computing neue Herausforderungen für die Virtualisierungstechnologie. Diese Dissertation befasst sich mit verschiedenen Aspekten des Einsatzes von Virtualisierungstechnologie in Virtualized Grid und Cloud Computing Umgebungen. Zunächst wird der Lebenszyklus von virtuellen Maschinen in diesen Umgebungen untersucht, und es werden Modelle dieses Lebenszyklus entwickelt. Anhand der entwickelten Modelle werden Probleme identifiziert und Lösungen für diese Probleme entwickelt. Der Fokus liegt dabei auf den Bereichen Speicherung, Bereitstellung und Ausführung von virtuellen Maschinen. Virtuelle Maschinen werden üblicherweise in so genannten Disk Images, also Abbildern von virtuellen Festplatten, gespeichert. Dieses Format hat nicht nur Einfluss auf die Speicherung von größeren Mengen virtueller Maschinen, sondern auch auf deren Bereitstellung. In den untersuchten Umgebungen hat es zwei konkrete Nachteile: es verschwendet Speicherplatz und es verhindert eine effiziente Bereitstellung von virtuellen Maschinen. Maßnahmen zur Steigerung der Sicherheit von virtuellen Maschinen haben auf alle drei genannten Bereiche Einfluss. Beispielsweise sollte vor der Bereitstellung einer virtuellen Maschine geprüft werden, ob die darin installierte Software noch aktuell ist. Weiterhin sollte die Ausführungsumgebung Möglichkeiten bereitstellen, um die virtuelle Infrastruktur wirksam zu überwachen. Die erste in dieser Dissertation vorgestellte Lösung ist das Konzept der Image Composition. Es beschreibt die Komposition eines kombinierten Disk Images aus mehreren Schichten. Dadurch können Teile der einzelnen Schichten, die von mehreren virtuellen Maschinen verwendet werden, zwischen diesen geteilt und somit der Speicherbedarf für die Gesamtheit der virtuellen Maschinen reduziert werden. Der Marvin Image Compositor ist die Umsetzung dieses Konzepts. Die zweite Lösung ist der Marvin Image Store, ein Speichersystem für virtuelle Maschinen, das nicht auf den traditionell genutzten Disk Images basiert, sondern die darin enthaltenen Daten und Metadaten auf eine effiziente Weise getrennt voneinander speichert. Weiterhin werden vier Lösungen vorgestellt, die die Sicherheit von virtuellen Maschine verbessern können: Der Update Checker ist eine Lösung, die es ermöglicht, veraltete Software in virtuellen Maschinen zu identifizieren. Dabei spielt es keine Rolle, ob die jeweilige virtuelle Maschine gerade ausgeführt wird oder nicht. Die zweite Sicherheitslösung ermöglicht es, mehrere virtuelle Maschinen, die auf dem Konzept der Image Composition basieren, zentral zu aktualisieren. Das bedeutet, dass die einmalige Installation einer neuen Softwareversion ausreichend ist, um mehrere virtuelle Maschinen auf den neuesten Stand zu bringen. Die dritte Sicherheitslösung namens Online Penetration Suite ermöglicht es, virtuelle Maschinen automatisiert nach Schwachstellen zu durchsuchen. Die Überwachung der virtuellen Infrastruktur auf allen Ebenen ist der Zweck der vierten Sicherheitslösung. Zusätzlich zur Überwachung ermöglicht diese Lösung auch eine automatische Reaktion auf sicherheitsrelevante Ereignisse. Schließlich wird ein Verfahren zur Migration von virtuellen Maschinen vorgestellt, welches auch ohne ein zentrales Speichersystem eine effiziente Migration ermöglicht

    Resource-Efficient Replication and Migration of Virtual Machines.

    Full text link
    Continuous replication and live migration of Virtual Machines (VMs) are two vital tools in a virtualized environment, but they are resource-expensive. Continuously replicating a VM's checkpointed state to a backup host maintains high-availability (HA) of the VM despite host failures, but checkpoint replication can generate significant network traffic. Each replicated VM also incurs a 100% memory overhead, since the backup unproductively reserves the same amount of memory to hold the redundant VM state. Live migration, though being widely used for load-balancing, power-saving, etc., can also generate excessive network traffic, by transferring VM state iteratively. In addition, it can incur a long completion time and degrade application performance. This thesis explores ways to replicate VMs for HA using resources efficiently, and to migrate VMs fast, with minimal execution disruption and using resources efficiently. First, we investigate the tradeoffs in using different compression methods to reduce the network traffic of checkpoint replication in a HA system. We evaluate gzip, delta and similarity compressions based on metrics that are specifically important in a HA system, and then suggest guidelines for their selection. Next, we propose HydraVM, a storage-based HA approach that eliminates the unproductive memory reservation made in backup hosts. HydraVM maintains a recent image of a protected VM in a shared storage by taking and consolidating incremental VM checkpoints. When a failure occurs, HydraVM quickly resumes the execution of a failed VM by loading a small amount of essential VM state from the storage. As the VM executes, the VM state not yet loaded is supplied on-demand. Finally, we propose application-assisted live migration, which skips transfer of VM memory that need not be migrated to execute running applications at the destination. We develop a generic framework for the proposed approach, and then use the framework to build JAVMM, a system that migrates VMs running Java applications skipping transfer of garbage in Java memory. Our evaluation results show that compared to Xen live migration, which is agnostic of running applications, JAVMM can reduce the completion time, network traffic and application downtime caused by Java VM migration, all by up to over 90%.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111575/1/karenhou_1.pd

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Improving Application Performance in the Emerging Hyper-converged Infrastructure

    Get PDF
    University of Minnesota Ph.D. dissertation.April 2019. Major: Computer Science. Advisor: David Du. 1 computer file (PDF); viii, 118 pages.In today's world, the hyper-converged infrastructure is emerging as a new type of infrastructure. In the hyper-converged infrastructure, service providers deploy compute, network and storage services on inexpensive hardware rather than expensive proprietary hardware. It allows the service providers to customize the services they can provide by deploying applications in Virtual Machines (VMs) or containers. They can have controls on all resources including compute, network and storage. In this hyper-converged infrastructure, improving the application performance is an important issue. Throughout my Ph.D. research, I have been studying how to improve the performance of applications in the emerging hyper-converged infrastructure. I have been focusing on improving the performance of applications in VMs and in containers when accessing data, and how to improve the performance of applications in the networked storage environment. In the hyper-converged infrastructure, administrators can provide desktop services by deploying Virtual Desktop Infrastructure application (VDI) based on VMs. We first investigate how to identify storage requirements and determine how to meet such requirements with minimal storage resources for VDI application. We create a model to describe the behavior of VDI, and collect real VDI traces to populate this model. The model allows us to identify the storage requirements of VDI and determine the potential bottlenecks in storage. Based on this information, we can tell what capacity and minimum capability a storage system needs in order to support and satisfy a given VDI configuration. We show that our model can describe more fine-grained storage requirements of VDI compared with the rules of thumb which are currently used in industry. In the hyper-converged infrastructure, more and more applications are running in containers. We design and implement a system, called k8sES (k8s Enhanced Storage), that efficiently supports applications with various storage SLOs (Service Level Objectives) along with all other requirements deployed in the Kubernetes environment which is based on containers. Kubernetes (k8s) is a system for managing containerized applications across multiple hosts. The current storage support for containerized applications in k8s is limited. To satisfy users' SLOs, k8s administrators must manually configure storage in advance, and users must know the configurations and capabilities of different types of the provided storage. In k8sES, storage resources are dynamically allocated based on users' requirements. Given users' SLOs, k8sES will select the correct node and storage that can meet their requirements when scheduling applications. The storage allocation mechanism in k8sES also improves the storage utilization efficiency. In addition, we provide a tool to monitor the I/O activities of both applications and storage devices in Kubernetes. With the capabilities of controlling client, network and storage with hyper-convergence, we study how to coordinate different components along the I/O path to ensure latency SLOs for applications in the networked storage environment. We propose and implement JoiNS, a system trying to ensure latency SLOs for applications that access data on remote networked storage. JoiNS carefully considers all the components along the I/O path and controls them in a coordinated fashion. JoiNS has both global network and storage visibility with a logically centralized controller which keeps monitoring the status of each involved component. JoiNS coordinates these components and adjusts the priority of I/Os in each component based on the latency SLO, network and storage status, time estimation, and characteristics of each I/O request

    Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud

    Get PDF
    It has been six years since Ristenpart et al. demonstrated the viability of co-location and provided the first concrete evidence for sensitive information leakage on a commercial cloud. We show that co-location can be achieved and detected by monitoring the last level cache in public clouds. More significantly, we present a full-fledged attack that exploits subtle leakages to recover RSA decryption keys from a co-located instance. We target a recently patched Libgcrypt RSA implementation by mounting Cross-VM Prime and Probe cache attacks in combination with other tests to detect co-location in Amazon EC2. In a preparatory step, we reverse engineer the unpublished nonlinear slice selection function for the 10 core Intel Xeon processor which significantly accelerates our attack (this chipset is used in Amazon EC2). After co-location is detected and verified, we perform the Prime and Probe attack to recover noisy keys from a carefully monitored Amazon EC2 VM running the aforementioned vulnerable libgcrypt library. We subsequently process the noisy data and obtain the complete 2048-bit RSA key used during encryption. This work reaffirms the privacy concerns and underlines the need for deploying stronger isolation techniques in public clouds

    Proceedings of the 12th International Conference on Digital Preservation

    Get PDF
    The 12th International Conference on Digital Preservation (iPRES) was held on November 2-6, 2015 in Chapel Hill, North Carolina, USA. There were 327 delegates from 22 countries. The program included 12 long papers, 15 short papers, 33 posters, 3 demos, 6 workshops, 3 tutorials and 5 panels, as well as several interactive sessions and a Digital Preservation Showcase

    Energy efficient heterogeneous virtualized data centers

    Get PDF
    Meine Dissertation befasst sich mit software-gesteuerter Steigerung der Energie-Effizienz von Rechenzentren. Deren Anteil am weltweiten Gesamtstrombedarf wurde auf 1-2%geschätzt, mit stark steigender Tendenz. Server verursachen oft innerhalb von 3 Jahren Stromkosten, die die Anschaffungskosten übersteigen. Die Steigerung der Effizienz aller Komponenten eines Rechenzentrums ist daher von hoher ökonomischer und ökologischer Bedeutung. Meine Dissertation befasst sich speziell mit dem effizienten Betrieb der Server. Ein Großteil wird sehr ineffizient genutzt, Auslastungsbereiche von 10-20% sind der Normalfall, bei gleichzeitig hohem Strombedarf. In den letzten Jahren wurde im Bereich der Green Data Centers bereits Erhebliches an Forschung geleistet, etwa bei Kühltechniken. Viele Fragestellungen sind jedoch derzeit nur unzureichend oder gar nicht gelöst. Dazu zählt, inwiefern eine virtualisierte und heterogene Server-Infrastruktur möglichst stromsparend betrieben werden kann, ohne dass Dienstqualität und damit Umsatzziele Schaden nehmen. Ein Großteil der bestehenden Arbeiten beschäftigt sich mit homogenen Cluster-Infrastrukturen, deren Rahmenbedingungen nicht annähernd mit Business-Infrastrukturen vergleichbar sind. Hier dürfen verringerte Stromkosten im Allgemeinen nicht durch Umsatzeinbußen zunichte gemacht werden. Insbesondere ist ein automatischer Trade-Off zwischen mehreren Kostenfaktoren, von denen einer der Energiebedarf ist, nur unzureichend erforscht. In meiner Arbeit werden mathematische Modelle und Algorithmen zur Steigerung der Energie-Effizienz von Rechenzentren erforscht und bewertet. Es soll immer nur so viel an stromverbrauchender Hardware online sein, wie zur Bewältigung der momentan anfallenden Arbeitslast notwendig ist. Bei sinkender Arbeitslast wird die Infrastruktur konsolidiert und nicht benötigte Server abgedreht. Bei steigender Arbeitslast werden zusätzliche Server aufgedreht, und die Infrastruktur skaliert. Idealerweise geschieht dies vorausschauend anhand von Prognosen zur Arbeitslastentwicklung. Die Arbeitslast, gekapselt in VMs, wird in beiden Fällen per Live Migration auf andere Server verschoben. Die Frage, welche VM auf welchem Server laufen soll, sodass in Summe möglichst wenig Strom verbraucht wird und gewisse Nebenbedingungen nicht verletzt werden (etwa SLAs), ist ein kombinatorisches Optimierungsproblem in mehreren Variablen. Dieses muss regelmäßig neu gelöst werden, da sich etwa der Ressourcenbedarf der VMs ändert. Weiters sind Server hinsichtlich ihrer Ausstattung und ihres Strombedarfs nicht homogen. Aufgrund der Komplexität ist eine exakte Lösung praktisch unmöglich. Eine Heuristik aus verwandten Problemklassen (vector packing) wird angepasst, ein meta-heuristischer Ansatz aus der Natur (Genetische Algorithmen) umformuliert. Ein einfach konfigurierbares Kostenmodell wird formuliert, um Energieeinsparungen gegenüber der Dienstqualität abzuwägen. Die Lösungsansätze werden mit Load-Balancing verglichen. Zusätzlich werden die Forecasting-Methoden SARIMA und Holt-Winters evaluiert. Weiters werden Modelle entwickelt, die den negativen Einfluss einer Live Migration auf die Dienstqualität voraussagen können, und Ansätze evaluiert, die diesen Einfluss verringern. Abschließend wird untersucht, inwiefern das Protokollieren des Energieverbrauchs Auswirkungen auf Aspekte der Security und Privacy haben kann.My thesis is about increasing the energy efficiency of data centers by using a management software. It was estimated that world-wide data centers already consume 1-2%of the globally provided electrical energy. Furthermore, a typical server causes higher electricity costs over a 3 year lifespan than the purchase cost. Hence, increasing the energy efficiency of all components found in a data center is of high ecological as well as economic importance. The focus of my thesis is to increase the efficiency of servers in a data center. The vast majority of servers in data centers are underutilized for a significant amount of time, operating regions of 10-20%utilization are common. Still, these servers consume huge amounts of energy. A lot of efforts have been made in the area of Green Data Centers during the last years, e.g., regarding cooling efficiency. Nevertheless, there are still many open issues, e.g., operating a virtualized, heterogeneous business infrastructure with the minimum possible power consumption, under the constraint that Quality of Service, and in consequence, revenue are not severely decreased. The majority of existing work is dealing with homogeneous cluster infrastructures, where large assumptions can be made. Especially, an automatic trade-off between competing cost categories, with energy costs being just one of them, is insufficiently studied. In my thesis, I investigate and evaluate mathematical models and algorithms in the context of increasing the energy efficiency of servers in a data center. The amount of online, power consuming resources should at all times be close to the amount of actually required resources. If the workload intensity is decreasing, the infrastructure is consolidated by shutting down servers. If the intensity is rising, the infrastructure is scaled by waking up servers. Ideally, this happens pro-actively by making forecasts about the workload development. Workload is encapsulated in VMs and is live migrated to other servers. The problem of mapping VMs to physical servers in a way that minimizes power consumption, but does not lead to severe Quality of Service violations, is a multi-objective combinatorial optimization problem. It has to be solved frequently as the VMs' resource demands are usually dynamic. Further, servers are not homogeneous regarding their performance and power consumption. Due to the computational complexity, exact solutions are practically intractable. A greedy heuristic stemming from the problem of vector packing and a meta-heuristic genetic algorithm are investigated and evaluated. A configurable cost model is created in order to trade-off energy cost savings with QoS violations. The base for comparison is load balancing. Additionally, the forecasting methods SARIMA and Holt-Winters are evaluated. Further, models able to predict the negative impact of live migration on QoS are developed, and approaches to decrease this impact are investigated. Finally, an examination is carried out regarding the possible consequences of collecting and storing energy consumption data of servers on security and privacy

    Proceedings of the 12th International Conference on Digital Preservation

    Get PDF
    The 12th International Conference on Digital Preservation (iPRES) was held on November 2-6, 2015 in Chapel Hill, North Carolina, USA. There were 327 delegates from 22 countries. The program included 12 long papers, 15 short papers, 33 posters, 3 demos, 6 workshops, 3 tutorials and 5 panels, as well as several interactive sessions and a Digital Preservation Showcase

    Distributed services across the network from edge to core

    Get PDF
    The current internet architecture is evolving from a simple carrier of bits to a platform able to provide multiple complex services running across the entire Network Service Provider (NSP) infrastructure. This calls for increased flexibility in resource management and allocation to provide dedicated, on-demand network services, leveraging a distributed infrastructure consisting of heterogeneous devices. More specifically, NSPs rely on a plethora of low-cost Customer Premise Equipment (CPE), as well as more powerful appliances at the edge of the network and in dedicated data-centers. Currently a great research effort is spent to provide this flexibility through Fog computing, Network Functions Virtualization (NFV), and data plane programmability. Fog computing or Edge computing extends the compute and storage capabilities to the edge of the network, closer to the rapidly growing number of connected devices and applications that consume cloud services and generate massive amounts of data. A complementary technology is NFV, a network architecture concept targeting the execution of software Network Functions (NFs) in isolated Virtual Machines (VMs), potentially sharing a pool of general-purpose hosts, rather than running on dedicated hardware (i.e., appliances). Such a solution enables virtual network appliances (i.e., VMs executing network functions) to be provisioned, allocated a different amount of resources, and possibly moved across data centers in little time, which is key in ensuring that the network can keep up with the flexibility in the provisioning and deployment of virtual hosts in today’s virtualized data centers. Moreover, recent advances in networking hardware have introduced new programmable network devices that can efficiently execute complex operations at line rate. As a result, NFs can be (partially or entirely) folded into the network, speeding up the execution of distributed services. The work described in this Ph.D. thesis aims at showing how various network services can be deployed throughout the NSP infrastructure, accommodating to the different hardware capabilities of various appliances, by applying and extending the above-mentioned solutions. First, we consider a data center environment and the deployment of (virtualized) NFs. In this scenario, we introduce a novel methodology for the modelization of different NFs aimed at estimating their performance on different execution platforms. Moreover, we propose to extend the traditional NFV deployment outside of the data center to leverage the entire NSP infrastructure. This can be achieved by integrating native NFs, commonly available in low-cost CPEs, with an existing NFV framework. This facilitates the provision of services that require NFs close to the end user (e.g., IPsec terminator). On the other hand, resource-hungry virtualized NFs are run in the NSP data center, where they can take advantage of the superior computing and storage capabilities. As an application, we also present a novel technique to deploy a distributed service, specifically a web filter, to leverage both the low latency of a CPE and the computational power of a data center. We then show that also the core network, today dedicated solely to packet routing, can be exploited to provide useful services. In particular, we propose a novel method to provide distributed network services in core network devices by means of task distribution and a seamless coordination among the peers involved. The aim is to transform existing network nodes (e.g., routers, switches, access points) into a highly distributed data acquisition and processing platform, which will significantly reduce the storage requirements at the Network Operations Center and the packet duplication overhead. Finally, we propose to use new programmable network devices in data center networks to provide much needed services to distributed applications. By offloading part of the computation directly to the networking hardware, we show that it is possible to reduce both the network traffic and the overall job completion time
    corecore