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Abstract

Virtualization is the foundation for two important technologies: Virtualized Grid
and Cloud Computing. Virtualized Grid Computing is an extension of the Grid
Computing concept introduced to satisfy the security and isolation requirements of
commercial Grid users. Applications are con�ned in virtual machines to isolate them
from each other and the data they process from other users. Apart from these important
requirements, Virtualized Grid Computing also solves other issues associated with
Grid Computing, e.g., the problem of software deployment. Cloud Computing is
another paradigm for using remote resources. This thesis focuses on the Infrastructure
as a Service model that combines some of the ideas of (Virtualized) Grid Computing
with a new kind of business model that features on-demand provisioning of raw
computing resources (virtual machines) based on a pay-as-you-go pricing model, i.e.,
customers pay only for their actual usage.

The use of virtualization technology increases the utilization of physical hosts and
simpli�es systems management compared to physical machines, e.g., by allowing users
to clone a virtual machine or to create a snapshot of a virtual machine as a backup of
its state before it is modi�ed. However, not all challenges regarding virtualization are
solved yet, and the dynamic nature of both Virtualized Grid and Cloud Computing
poses new requirements on the technology.

This thesis addresses various aspects of virtual machine usage in Virtualized Grid
and Cloud Computing environments. First, the lifecycle of virtual machines in these
environments is analyzed and corresponding models are developed. Then, several
issues are identi�ed and solutions for these issues are proposed. The key areas this
thesis focuses on are the storage, deployment, and execution of virtual machines. Both
storage and deployment are negatively a�ected by the traditional, self-contained image
format used for storing virtual machines: large image �les that store the contents
of virtual disks. This format prevents an e�cient deployment and wastes storage
space. Furthermore, the security of virtual machines in these environments is a cross-
cutting concern a�ecting all three areas. For example, deployment processes should
consider information about the security of a virtual machine image and the execution
environment should provide means to monitor virtual infrastructures e�ectively.

This thesis proposes the concept of image composition that combines multiple layers
to a composite disk image. This facilitates sharing of common parts and reduces the de-
ployment times of virtual machines as well as their storage requirements. The Marvin
Image Compositor, an implementation of this concept, is presented. Furthermore, this
thesis introduces the Marvin Image Store, a storage system for virtual machines that
replaces traditional image �les by a specialized storage system that separately stores
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the data and metadata contained in an image �le. To improve the security of virtual
environments, four di�erent proposals are made: The Update Checker is a system that
enables scanning virtual machines for outdated software irrespective of their state.
The second proposal is an approach for centrally updating virtual machines that are
built with the image composition technique, i.e., installing updates a single time and
at the same time a�ecting multiple virtual machines. The Online Penetration Suite
is a system that can automatically scan virtual machines for vulnerabilities. The last
proposal in the security context is a monitoring concept that is based on monitoring
every layer of a virtualized system and facilitates automatic responses to detected
incidents. Finally, a virtual machine migration approach is presented that is able to
e�ciently migrate a virtual machine in the absence of a shared storage system.

The main contributions of this thesis are: an analysis of the virtual machine lifecycle
in Virtualized Grid and Cloud Computing environments for di�erent usage models,
the introduction of the Marvin Image Compositor and the Marvin Image Store that
optimize storage and deployment of virtual machines, as well as multiple solutions
for improving the security of virtual machines and their management. Design and
implementation details as well as experimental evaluations are presented for each of
the proposals. A summary of the contributions and a discussion of areas for future
work conclude this thesis.
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Zusammenfassung

Virtualisierungstechnologie ist die Grundlage für zwei wichtige Konzepte: Virtualized
Grid Computing und Cloud Computing. Ersteres ist eine Erweiterung des klassischen
Grid Computing. Es hat zum Ziel, die Anforderungen kommerzieller Nutzer des Grid
hinsichtlich der Isolation von gleichzeitig ausgeführten Batch-Jobs und der Sicherheit
der zugehörigen Daten zu erfüllen. Dabei werden Anwendungen in virtuellen Maschi-
nen ausgeführt, um sie voneinander zu isolieren und die von ihnen verarbeiteten Daten
vor anderen Nutzern zu schützen. Darüber hinaus löst Virtualized Grid Computing das
Problem der Softwarebereitstellung, eines der bestehenden Probleme des klassischen
Grid Computing. Cloud Computing ist ein weiteres Konzept zur Verwendung von
entfernten Ressourcen. Der Fokus dieser Dissertation bezüglich Cloud Computing
liegt auf dem „Infrastructure as a Service Modell”, das Ideen des (Virtualized) Grid
Computing mit einem neuartigen Geschäftsmodell kombiniert. Dieses besteht aus der
Bereitstellung von virtuellen Maschinen auf Abruf und aus einem Tarifmodell, bei
dem lediglich die tatsächliche Nutzung berechnet wird.

Der Einsatz von Virtualisierungstechnologie erhöht die Auslastung der verwende-
ten (physischen) Rechnersysteme und vereinfacht deren Administration. So ist es
beispielsweise möglich, eine virtuelle Maschine zu klonen oder einen Snapshot einer
virtuellen Maschine zu erstellen, um zu einem de�nierten Zustand zurückkehren zu
können. Jedoch sind noch nicht alle Probleme im Zusammenhang mit der Virtual-
isierungstechnologie gelöst. Insbesondere entstehen durch den Einsatz in den sehr
dynamischen Umgebungen des Virtualized Grid Computing und des Cloud Computing
neue Herausforderungen für die Virtualisierungstechnologie.

Diese Dissertation befasst sich mit verschiedenen Aspekten des Einsatzes von Vir-
tualisierungstechnologie in Virtualized Grid und Cloud Computing Umgebungen.
Zunächst wird der Lebenszyklus von virtuellen Maschinen in diesen Umgebungen
untersucht, und es werden Modelle dieses Lebenszyklus entwickelt. Anhand der
entwickelten Modelle werden Probleme identi�ziert und Lösungen für diese Probleme
entwickelt. Der Fokus liegt dabei auf den Bereichen Speicherung, Bereitstellung und
Ausführung von virtuellen Maschinen. Virtuelle Maschinen werden üblicherweise
in so genannten Disk Images, also Abbildern von virtuellen Festplatten, gespeichert.
Dieses Format hat nicht nur Ein�uss auf die Speicherung von größeren Mengen
virtueller Maschinen, sondern auch auf deren Bereitstellung. In den untersuchten
Umgebungen hat es zwei konkrete Nachteile: es verschwendet Speicherplatz und
es verhindert eine e�ziente Bereitstellung von virtuellen Maschinen. Maßnahmen
zur Steigerung der Sicherheit von virtuellen Maschinen haben auf alle drei genan-
nten Bereiche Ein�uss. Beispielsweise sollte vor der Bereitstellung einer virtuellen
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Maschine geprüft werden, ob die darin installierte Software noch aktuell ist. Weiter-
hin sollte die Ausführungsumgebung Möglichkeiten bereitstellen, um die virtuelle
Infrastruktur wirksam zu überwachen.

Die erste in dieser Dissertation vorgestellte Lösung ist das Konzept der Image Compo-
sition. Es beschreibt die Komposition eines kombinierten Disk Images aus mehreren
Schichten. Dadurch können Teile der einzelnen Schichten, die von mehreren virtuellen
Maschinen verwendet werden, zwischen diesen geteilt und somit der Speicherbedarf
für die Gesamtheit der virtuellen Maschinen reduziert werden. Der Marvin Image
Compositor ist die Umsetzung dieses Konzepts. Die zweite Lösung ist der Marvin
Image Store, ein Speichersystem für virtuelle Maschinen, das nicht auf den traditionell
genutzten Disk Images basiert, sondern die darin enthaltenen Daten und Metadaten
auf eine e�ziente Weise getrennt voneinander speichert. Weiterhin werden vier Lö-
sungen vorgestellt, die die Sicherheit von virtuellen Maschine verbessern können: Der
Update Checker ist eine Lösung, die es ermöglicht, veraltete Software in virtuellen
Maschinen zu identi�zieren. Dabei spielt es keine Rolle, ob die jeweilige virtuelle
Maschine gerade ausgeführt wird oder nicht. Die zweite Sicherheitslösung ermöglicht
es, mehrere virtuelle Maschinen, die auf dem Konzept der Image Composition basieren,
zentral zu aktualisieren. Das bedeutet, dass die einmalige Installation einer neuen
Softwareversion ausreichend ist, um mehrere virtuelle Maschinen auf den neuesten
Stand zu bringen. Die dritte Sicherheitslösung namens Online Penetration Suite er-
möglicht es, virtuelle Maschinen automatisiert nach Schwachstellen zu durchsuchen.
Die Überwachung der virtuellen Infrastruktur auf allen Ebenen ist der Zweck der
vierten Sicherheitslösung. Zusätzlich zur Überwachung ermöglicht diese Lösung auch
eine automatische Reaktion auf sicherheitsrelevante Ereignisse. Schließlich wird ein
Verfahren zur Migration von virtuellen Maschinen vorgestellt, welches auch ohne ein
zentrales Speichersystem eine e�ziente Migration ermöglicht.

Eines der zentralen Ergebnisse dieser Dissertation ist eine Analyse des Lebenszyklus
von virtuellen Maschinen in Virtualized Grid und Cloud Computing Umgebungen für
verschiedene Anwendungsszenarien. Weiterhin zählen der Marvin Image Compositor
und der Marvin Image Store zu den zentralen Ergebnissen, zwei Lösungen zur Opti-
mierung der Speicherung und Bereitstellung von virtuellen Maschinen. Zusätzlich
werden verschiedene Lösungen zur Verbesserung der Sicherheit und des Manage-
ments von virtuellen Maschinen vorgestellt. Alle Lösungen werden detailliert mit
Design, Implementierung und Evaluation beschrieben. Eine Zusammenfassung und
ein Ausblick auf künftige Forschung schließen die Arbeit ab.

vi



Erklärung

Ich versichere, daß ich meine Dissertation

Virtual Machine Lifecycle Management in Grid and Cloud Computing

selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der
von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Die Dissertation
wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule
eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient.

Marburg, den 11.11.2015 Roland Schwarzkopf

vii



This page is intentionally le� blank.



Acknowledgments

First of all, I would like to thank Prof. Dr. Bernd Freisleben for supervising me over
the course of my dissertation, for his assistance and the valuable discussions that
helped me to advance this thesis.

I would also like to thank Prof. Dr. Manfred Grauer at the University of Siegen for
kindly taking the time to act as a reviewer of my thesis and for his support during the
three years I was part of his working group.

Furthermore, I would like to thank Prof. Dr. Helmut Dohmann at the Fulda University
of Applied Sciences for encouraging me to pursue a dissertation and supporting me in
the initial phase of the thesis.

During the work on this thesis, I was �nancially supported by the German Ministry of
Research and Education (BMBF) and the Hessen State Ministry of Higher Education,
Research and the Arts (HMWK).

I would like to thank my colleagues and students past and present at the Distributed
Systems Group who were invaluable in the realization of the projects in this thesis (in
alphabetical order): Lars Baumgärtner, Kay Dörnemann, Dr. Tim Dörnemann, Sascha
Fahl, Dr. Niels Fallenbeck, Pablo Graubner, Katharina Haselhorst, Prof. Dr. Ste�en
Heinzl, Dr. Ernst Juhnke, Matthias Leinweber, Simon Martin, Dr. Markus Mathes,
Mathias Rüdiger, Dr. Matthias Schmidt, Prof. Dr. Matthew Smith, and Christian Strack.
I’m especially thankful to my long-term o�ce mates Niels, Matthias, Kay, and Pablo
for providing such a pleasant working environment. Thanks to you all for many
interesting and helpful conversations, lots of fun and for a helping hand when time
was running out occasionally. Additionally, I would like to thank Mechthild Kessler
for being the “good soul of the working group” and taking care of all administrative
tasks.

Moreover, I would like to thank Hans-Michael Mahr who has decisively in�uenced
my decision to study computer science with his enthusiasm for this subject that he
showed in every lesson.

I would also like to thank my parents for supporting me throughout my studies and
always encouraging me to pursue my goals.

Finally, I would like to thank Sabrina for her support and patience during the work on
this thesis.

ix



This page is intentionally le� blank.



Contents

Abstract iii

Zusammenfassung v

Erklärung vii

Acknowledgments ix

1 Introduction 1
1.1 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Grid Security Infrastructure . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Grid Job and Data Management . . . . . . . . . . . . . . . . . 9

2.3 Virtualized Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Virtual Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Dedicated Virtual Machines . . . . . . . . . . . . . . . . . . . . 11

2.4 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Deployment Models . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Formal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Virtualization Approaches for the x86 and x86-64 Architectures 18

2.5.2.1 Full Virtualization . . . . . . . . . . . . . . . . . . . . 19
2.5.2.2 Paravirtualization . . . . . . . . . . . . . . . . . . . . 20

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Lifecycle Management 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Lifecycle of Virtual Machines . . . . . . . . . . . . . . . . . . . 24
3.2.2 Virtual Machine Management Systems . . . . . . . . . . . . . 24

3.3 Lifecycle of Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Continuous Execution Model . . . . . . . . . . . . . . . . . . . 26

3.3.1.1 Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1.2 Implications . . . . . . . . . . . . . . . . . . . . . . . 28

xi



Contents

3.3.2 On-demand Execution Model . . . . . . . . . . . . . . . . . . . 29
3.3.2.1 Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2.2 Implications . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Virtual Machine Image Composition 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Distribution of Virtual Machine Images . . . . . . . . . . . . . 39
4.2.2 Reduction of the Size of Virtual Machine Image . . . . . . . . 40
4.2.3 Caching of Virtual Machine Images . . . . . . . . . . . . . . . 42

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1.1 Fundamental Requirements . . . . . . . . . . . . . . . 46
4.3.1.2 Grid-specific Requirements . . . . . . . . . . . . . . . 48

4.3.2 Composition Techniques . . . . . . . . . . . . . . . . . . . . . 49
4.3.2.1 Block Device Level: Redirect-on-write . . . . . . . . . 49
4.3.2.2 File System Level: Union Mounts . . . . . . . . . . . . 51
4.3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Integration into the Boot Process . . . . . . . . . . . . . . . . . 54
4.3.3.1 Linux Boot Process on Physical Machines . . . . . . . 55
4.3.3.2 Linux Boot Process in Virtual Machines . . . . . . . . 57
4.3.3.3 Potential Boot Process Phases for Integration . . . . . 59
4.3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 The Debian-style Initial RAM File System . . . . . . . . . . . . 64
4.4.1.1 Functioning of the Initial RAM File System . . . . . . 65
4.4.1.2 Integration Options . . . . . . . . . . . . . . . . . . . 67

4.4.2 The Composition Process . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Configuration Stage . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.4 Composition Stage . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.5 Boot Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.6 System Modifications . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.6.1 Boot Process . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.6.2 Shutdown Process . . . . . . . . . . . . . . . . . . . . 81

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.1 Storage E�iciency of Composite Disk Images . . . . . . . . . . 90
4.5.2 Runtime Impact of Composite Disk Images . . . . . . . . . . . 94

4.5.2.1 bonnie++ Benchmark . . . . . . . . . . . . . . . . . . 94
4.5.2.2 Linux Kernel Compilation . . . . . . . . . . . . . . . . 96
4.5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.3 Virtualized Grid Computing Use Case . . . . . . . . . . . . . . 98
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Virtual Machine Image Storage 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



Contents

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1.1 Fundamental Requirements . . . . . . . . . . . . . . . 106
5.3.1.2 Additional Requirements . . . . . . . . . . . . . . . . 107

5.3.2 Storage of Virtual Machine Images . . . . . . . . . . . . . . . . 108
5.3.2.1 Deduplication Technology . . . . . . . . . . . . . . . 109
5.3.2.2 Content Agnostic Storage - A Black Box Approach . . 109
5.3.2.3 Content Aware Storage - A White Box Approach . . . 110
5.3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.3 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.3.1 Import and Export of Virtual Machines . . . . . . . . 113
5.3.3.2 Sharing and Cloning of Virtual Machines . . . . . . . 116
5.3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.4 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.4.1 Layered Image Support . . . . . . . . . . . . . . . . . 119
5.3.4.2 Merge and Di� Operations . . . . . . . . . . . . . . . 120
5.3.4.3 Direct Mounts . . . . . . . . . . . . . . . . . . . . . . 121
5.3.4.4 Exchangeable Data Store Back Ends . . . . . . . . . . 121
5.3.4.5 E�icient Virtual Machine Updates . . . . . . . . . . . 122
5.3.4.6 Advanced Content Filtering . . . . . . . . . . . . . . . 123
5.3.4.7 Architecture . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.1 Anatomy of Manifests . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.1.1 File System Overview . . . . . . . . . . . . . . . . . . 127
5.4.1.2 Basic Manifests . . . . . . . . . . . . . . . . . . . . . 129
5.4.1.3 Extended Manifests . . . . . . . . . . . . . . . . . . . 131
5.4.1.4 Hard Links in Manifests . . . . . . . . . . . . . . . . . 132
5.4.1.5 In-memory Representation . . . . . . . . . . . . . . . 133
5.4.1.6 On-disk Representation . . . . . . . . . . . . . . . . . 136

5.4.2 Storage Architecture . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.2.1 Metadata Store . . . . . . . . . . . . . . . . . . . . . . 138
5.4.2.2 Data Store . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4.3 Import and Export of Images . . . . . . . . . . . . . . . . . . . 142
5.4.3.1 Import . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4.3.2 Export . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.4.3.3 On the Fly Modifications during Export . . . . . . . . 155

5.4.4 Manifest Operations . . . . . . . . . . . . . . . . . . . . . . . . 156
5.4.4.1 The Filter Operations . . . . . . . . . . . . . . . . . . 156
5.4.4.2 The Merge Operation . . . . . . . . . . . . . . . . . . 161
5.4.4.3 The Di� Operation . . . . . . . . . . . . . . . . . . . . 165

5.4.5 Direct Mounts . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.4.6 Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.4.6.1 E�icient Updates . . . . . . . . . . . . . . . . . . . . . 174
5.4.6.2 Updating Image Files . . . . . . . . . . . . . . . . . . 179
5.4.6.3 Advanced Content Filtering . . . . . . . . . . . . . . . 181

xiii



Contents

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.5.1 Virtual Machines Used in the Evaluation . . . . . . . . . . . . 185
5.5.2 Evaluation of Compression Algorithms . . . . . . . . . . . . . 186
5.5.3 Manifest Formats . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.5.4 Storage E�iciency . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.5.4.1 Set A – Individual Data Stores . . . . . . . . . . . . . 193
5.5.4.2 Set A – Common Data Store . . . . . . . . . . . . . . 195
5.5.4.3 Set B – Common Data Store . . . . . . . . . . . . . . 197
5.5.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 198

5.5.5 Access E�iciency . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.5.5.1 Import of Virtual Machines . . . . . . . . . . . . . . . 199
5.5.5.2 Export of Virtual Machines . . . . . . . . . . . . . . . 201
5.5.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 204

5.5.6 Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.5.6.1 Direct Mounts . . . . . . . . . . . . . . . . . . . . . . 205
5.5.6.2 E�icient Updates . . . . . . . . . . . . . . . . . . . . . 206

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6 Virtual Machine Security 209
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.2.1 Update Checker . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.2.2 Centralized Update Process . . . . . . . . . . . . . . . . . . . . 213
6.2.3 Online Penetration Suite . . . . . . . . . . . . . . . . . . . . . 214
6.2.4 Security Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 214

6.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.3.1 Update Checker . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.3.1.1 Package Management Systems . . . . . . . . . . . . . 216
6.3.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . 219
6.3.1.3 Virtualized Grid Computing Use Case . . . . . . . . . 221

6.3.2 Centralized Update Process . . . . . . . . . . . . . . . . . . . . 221
6.3.2.1 Updating So�ware . . . . . . . . . . . . . . . . . . . . 222
6.3.2.2 Merging the Package Database . . . . . . . . . . . . . 224
6.3.2.3 Detecting Relation Incompatibilities . . . . . . . . . . 225
6.3.2.4 E�icient Distribution of Updated Base Layers . . . . 225
6.3.2.5 Limitations of the Approach . . . . . . . . . . . . . . 225

6.3.3 Online Penetration Suite . . . . . . . . . . . . . . . . . . . . . 227
6.3.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . 228
6.3.3.2 Virtualized Grid Computing Use Case . . . . . . . . . 229

6.3.4 Security Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 229
6.3.4.1 Sensor Framework . . . . . . . . . . . . . . . . . . . . 230
6.3.4.2 Action Framework . . . . . . . . . . . . . . . . . . . . 231
6.3.4.3 ACCEPT-VM . . . . . . . . . . . . . . . . . . . . . . . 231
6.3.4.4 Mode of Operation and Example Scenario . . . . . . . 233

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6.4.1 Update Checker . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.4.1.1 Machine Importer . . . . . . . . . . . . . . . . . . . . 235

xiv



Contents

6.4.1.2 Repository Importer . . . . . . . . . . . . . . . . . . . 247
6.4.1.3 Internal Databases and Caches . . . . . . . . . . . . . 253
6.4.1.4 Scan Engine . . . . . . . . . . . . . . . . . . . . . . . 256
6.4.1.5 Remote Importer . . . . . . . . . . . . . . . . . . . . . 259

6.4.2 Centralized Update Process . . . . . . . . . . . . . . . . . . . . 260
6.4.2.1 Relevant Parts of the Package Database . . . . . . . . 260
6.4.2.2 Merging the Package Database . . . . . . . . . . . . . 261
6.4.2.3 Detecting Relation Incompatibilities . . . . . . . . . . 264

6.4.3 Online Penetration Suite . . . . . . . . . . . . . . . . . . . . . 265
6.4.3.1 Controlling the Vulnerability Scanners . . . . . . . . 265
6.4.3.2 Structure of the Reports . . . . . . . . . . . . . . . . . 266

6.4.4 Security Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 267
6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

6.5.1 Update Checker . . . . . . . . . . . . . . . . . . . . . . . . . . 268
6.5.2 Centralized Update Process . . . . . . . . . . . . . . . . . . . . 270
6.5.3 Online Penetration Suite . . . . . . . . . . . . . . . . . . . . . 272
6.5.4 Security Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 273

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

7 Virtual Machine Migration 277
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

7.2.1 Virtual Machine Migration . . . . . . . . . . . . . . . . . . . . 279
7.2.2 Live Migration in Local Networks . . . . . . . . . . . . . . . . . 280
7.2.3 Storage Migration . . . . . . . . . . . . . . . . . . . . . . . . . 280
7.2.4 Image Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.3.1 Virtual Machine Image Composition . . . . . . . . . . . . . . . 282
7.3.2 Disk Image Synchronization . . . . . . . . . . . . . . . . . . . 283

7.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
7.4.1 DRBD Device Configuration . . . . . . . . . . . . . . . . . . . 287
7.4.2 Node Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
7.4.3 Migration Process . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
7.5.1 Idle Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 289
7.5.2 Live Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 289
7.5.3 Runtime Impact of DRBD in Standalone Mode . . . . . . . . . 292

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

8 Conclusion 295
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Appendix

A Virtual Machine Image Storage – Detailed Evaluation Results 299

xv



Contents

List of Figures 311

List of Tables 315

List of Listings 317

Bibliography 319

Curriculum Vitae 333

xvi



“The last thing one discovers in composing a work is what to put first.”

T. S. Eliot (1888–1965)

1
Introduction

More than one and a half decades ago, Foster and Kesselman published a book that
described the fundamental concepts of Grid Computing [54]. In the following years,
Grid Computing became an important concept in academia, because it enabled re-
searchers of institutions without su�cient local resources to use the resources of other
institutions for their research, e.g., compute intensive simulations. However, in Grid
Computing resources are not limited to plain compute power, but also include storage
space for data.

The popularity of the Grid among researchers soon aroused commercial interest.
Commercial users in the Grid, however, had di�erent requirements compared to
researchers. The applications, data, and results of academic research are typically
not con�dential, mostly because academic research is depending on public funding
and thus committed to publishing results. On the other hand, the applications, data,
and results of commercial users are mostly con�dential. The security mechanisms
available in the Grid were not su�cient for the industry to adapt Grid Computing.

The need for improved security in Grid Computing became visible in three research
projects with commercial partners. All three projects were part of the D-Grid Initia-
tive [31] and funded by the Federal Ministry for Education and Research (Bundesmin-
isterium für Bildung und Forschung, BMBF) [20]. The Business to the Grid (Biz2Grid)
project [18] aimed to �t the Grid into the organizational frameworks of commercial IT
infrastructures and to develop billing and pricing models. However, in the course of
the project the security aspect became more important for the partner from the auto-
motive industry. No only was the data processed in the Grid considered sensitive, but
also the information about the application used to process the data, because it could
leak information about the progress of product developers to competitors. Strong
security mechanisms to protect the data and strong isolation between users to prevent
leaking of information were identi�ed as critical requirements for the use of the Grid
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in the automotive industry. The Financial Business Grid (FinGrid) project [48] aimed
to port selected business processes and services to the Grid as a prototype of novel
Grid-based �nancial applications that have previously been impossible to implement
because of restricted computation power. Because these applications process �nancial
data of customers that is very sensitive, strong security mechanisms were one of the
most important requirements in this project. The Plasma Technology Grid (PT-Grid)
project [121] aimed to provide Grid-based modeling and simulation environments for
plasma technology applications using software provided by the partners. Again, the
data processed is sensible and requires strong security mechanisms to protect the
intellectual property of customers.

The solution for the security and isolation requirements that emerged in these projects
was the use of virtualization: the concept of Virtualized Grid Computing. It is an
extension of the Grid Computing concept that con�nes applications in virtual machines
to isolate them from each other and protect the data they process from other users.

Two other research projects that were not part of the D-Grid initiative strengthened
the need for virtualization. The Tools for Intelligent System Management of Very
Large Computing Systems (TIMaCS) project [155] aimed to reduce the complexity
of administrating computing systems by introducing a management system that
automates many tasks. Virtualization was used in this project to partition large systems,
to facilitate migration of running applications in case of errors or for maintenance
operations, and to enable temporary suspension of individual applications to clear
space for massive-parallel jobs. The same goals were also pursued in the Management
virtueller Maschinen in Linux High Performance Clustern project [139]. The former
project was funded by the BMBF, whereas the latter was funded by the Hessen State
Ministry of Higher Education, Research and the Arts (Hessisches Ministerium für
Wissenschaft und Kunst, HMWK) [67].

A few years after the introduction of Grid Computing a new computing paradigm
emerged: Cloud Computing. In this thesis, the term Cloud Computing is used as a
synonym for the Infrastructure as a Service (IaaS) model. It combined some of the
ideas of Grid Computing with virtualization and a new kind of business model that
features on-demand provisioning of computing resources with a pay-as-you-go pricing
model, i.e., customers pay only for their actual usage. These two properties of Cloud
Computing were critical for its success with commercial users, because it solved many
of the problems they had with the Grid.

Virtualization technology obviously plays an important role in those developments.
The success of Cloud Computing shows that virtualization has many bene�ts both
for customers and providers. However, not all problems resulting from the use of
virtualization are solved yet and even some new problems are caused by its usage.
An example of such a problem is the monitoring of virtualized infrastructures that
di�er from traditional computing environments by the existence of an additional layer
(the hypervisor) and dynamics introduced by starting, stopping, or migrating virtual
machines. The Mastering Security Anomalies in Virtualized Computing Environments
via Complex Event Processing (ACCEPT) project [2] (funded by the BMBF) aimed
to solve this problem by using a large number of sensors at every layer, Complex
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Event Processing technology to correlate the sensor data, and a �exible framework
for responding to anomalies.

This thesis addresses various aspects of virtual machine usage in Virtualized Grid
and Cloud Computing environments. First of all, the lifecycle of virtual machines in
these environments is analyzed. Based on this analysis, several issues are identi�ed
and solutions for these issues are proposed. The areas this thesis focuses on are the
storage, deployment, and execution of virtual machines.

1.1 Contributions of this Thesis

The research contributions of this thesis are:

• The concept of Lifecycle Management is proposed in the context of virtual
machines, by identifying two usage models and developing a corresponding
lifecycle for each model. The model that applies to Virtualized Grid and Cloud
Computing environments is examined in detail and its implications for the
handling of virtual machines are discussed.

• Virtual machines are traditionally stored as self-contained image �les that
contain both the operating system and applications. Especially the operating
system is very likely shared by multiple virtual machines. This thesis introduces
the concept of image composition that combines multiple layers to a composite
disk image. This allows sharing of common parts and reduces the deployment
times of virtual machines as well as their storage requirements. Furthermore,
this thesis introduces the Marvin Image Compositor as an implementation of
this concept and evaluates its e�ciency and performance.

• The traditional format used to store virtual machines are image �les. As already
stated, image �les fail to utilize similarities between virtual machines. This
is especially important if the version history of a virtual machine should be
preserved by keeping its older versions in addition to the current one. This thesis
introduces a proposal for storing virtual machines that is based on the idea of data
and metadata extraction and separate storage of these two kinds of information
in specialized storage systems. This reduces the storage requirements further
than image composition and provides novel management, maintenance and
analysis operations. Furthermore, this thesis introduces the Marvin Image
Store as an implementation of this concept and evaluates its e�ciency and
performance.

• The use of virtual machines boosts the number of systems that need continuous
maintenance to keep them secure. Unfortunately, not all virtual machines are
running continuously, so traditional maintenance approaches cannot be used
in every situation. This thesis introduces two proposals for keeping virtual
machines up-to-date. The �rst proposal deals with scanning for outdated software
in dormant virtual machines, whereas the second proposal deals with centrally
updating multiple virtual machines using image composition. Furthermore, this
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thesis further introduces the Update Checker and a set of tools to support the
centralized update process as implementations of these proposals.

• Even if a virtual machine contains the latest versions of the operating system
and applications, miscon�gurations or insecure services can still threaten its
security. In this thesis, the Online Penetration Suite – a method for automated
scanning of virtual machines using o�-the-shelf vulnerability scanners – is
presented and its performance is evaluated.

• Virtualization adds another layer to the software stack and traditional monitor-
ing tools just ignore this layer – it is transparent to them. This thesis proposes
a novel concept for security monitoring in Virtualized Grid and Cloud Comput-
ing environments that monitors all layers of the software stack and is able to
respond to incidents automatically.

• Most hypervisors support migration of virtual machines only if their virtual
disks are available to both the source and destination host of a migration. This
typically requires a shared storage system. This thesis presents a proposal for
migrating virtual machines in absence of such a shared storage system. Further-
more, it describes its implementation as part of a virtual machine management
system and evaluates its performance.

The following papers were published during the course of the work on this thesis:

1. Roland Schwarzkopf, Matthias Schmidt, Christian Strack, Simon Martin, Bernd
Freisleben. Increasing Virtual Machine Security in Cloud Environments. In
Journal of Cloud Computing: Advances, Systems and Applications, 1(1), Springer,
2012

2. Roland Schwarzkopf, Matthias Schmidt, Mathias Rüdiger, Bernd Freisleben.
E�cient Storage of Virtual Machine Images. In Proceedings of the 3rd Workshop
on Scienti�c Cloud Computing (ScienceCloud ’12), pp. 51–60, ACM, 2012

3. Lars Baumgärtner, Pablo Graubner, Matthias Leinweber, Roland Schwarzkopf,
Matthias Schmidt, Bernhard Seeger, Bernd Freisleben. Mastering Security
Anomalies in Virtualized Computing Environments via Complex Event Pro-
cessing. In Proceedings of the The 4th International Conference on Information,
Process, and Knowledge Management (eKNOW 2012), pp. 760–81, XPS, 2012

4. Roland Schwarzkopf, Matthias Schmidt, Christian Strack, Bernd Freisleben.
Checking Running and Dormant Virtual Machines for the Necessity of Security
Updates in Cloud Environments. In Proceedings of the 3rd IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 239–246,
IEEE Press, 2011

5. Matthias Schmidt, Sascha Fahl, Roland Schwarzkopf, Bernd Freisleben. Trust-
Box: A Security Architecture for Preventing Data Breaches. In Proceedings of the
19th Euromicro Conference on Parallel, Distributed and Network-based Processing
(PDP ’11), pp. 635–639, IEEE Computer Society, 2011

6. Katharina Haselhorst, Matthias Schmidt, Roland Schwarzkopf, Niels Fallenbeck,
Bernd Freisleben. E�cient Storage Synchronization for Live Migration in Cloud
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Infrastructures. In Proceedings of the 19th Euromicro Conference on Parallel,
Distributed and Network-based Processing (PDP ’11), pp. 511–518, IEEE Computer
Society, 2011

7. Niels Fallenbeck, Matthias Schmidt, Roland Schwarzkopf, Bernd Freisleben.
Inter-Site Virtual Machine Image Transfer in Grids and Clouds. In Proceedings
of the 2nd International ICST Conference on Cloud Computing (CloudComp 2010),
Springer LNICST, 2010

8. Eugen Volk, Jochen Buchholz, Stefan Wesner, Daniela Koudela, Matthias Schmi-
dt, Niels Fallenbeck, Roland Schwarzkopf, Bernd Freisleben, Götz Isenmann,
Jürgen Schwitalla, Marc Lohrer, Erich Focht, Andreas Jeutter. Towards In-
telligent Management of Very Large Computing Systems. In Proceedings of
Competence in High Performance Computing (CiHPC), pp. 191–204, Springer, 2010

9. Ernst Juhnke, Tim Dörnemann, Roland Schwarzkopf, Bernd Freisleben. Se-
curity, Fault Tolerance and Modeling of Grid Work�ows in BPEL4Grid. In
Proceedings of Software Engineering 2010, Grid Work�ow Workshop (GWW 2010),
Lecture Notes in Informatics (LNI), Vol. P-160, pp. 193–200, Gesellschaft für
Informatik (GI), 2010

10. Markus Mathes, Christoph Stoidner, Roland Schwarzkopf, Ste�en Heinzl, Tim
Dörnemann, Helmut Dohmann, Bernd Freisleben. Time-Constrained Services:
A Framework for using Real-Time Web Services in Industrial Automation. In
Service Oriented Computing and Applications, 3(4), pp. 239–262, Springer, 2009

11. Roland Schwarzkopf, Matthias Schmidt, Niels Fallenbeck, Bernd Freisleben.
Multi-Layered Virtual Machines for Security Updates in Grid Environments.
In Proceedings of 35th Euromicro Conference on Internet Technologies, Quality of
Service and Applications (ITQSA), pp. 563–570, IEEE Press, 2009

12. Markus Mathes, Roland Schwarzkopf, Ste�en Heinzl, Tim Dörnemann, Bernd
Freisleben. Composition of Time-Constrained BPEL4WS Work�ows using the
TiCS Modeler. In Proceedings of the 13th IFAC Symposium on Information Control
Problems in Manufacturing (INCOM), pp. 892–897, Elsevier, 2009

13. Tim Dörnemann, Markus Mathes, Roland Schwarzkopf, Ernst Juhnke, Bernd
Freisleben. DAVO: A Domain-Adaptable, Visual BPEL4WS Orchestrator. In
Proceedings of the 23rd IEEE International Conference on Advanced Information
Networking and Applications (AINA), pp. 121–128, IEEE Computer Society Press,
2009, (Highly Commended Paper Award)

14. Markus Mathes, Ste�en Heinzl, Roland Schwarzkopf, Bernd Freisleben. F&L-
Grid: Eine generische Backup und Recovery Infrastruktur für das D-Grid.
In Tagungsband des 2. DFN-Forum Kommunikationstechnologien, pp. 55–68,
Gesellschaft für Informatik (GI), 2009

15. Matthias Schmidt, Niels Fallenbeck, Kay Dörnemann, Roland Schwarzkopf, To-
bias Pontz, Manfred Grauer, Bernd Freisleben. Aufbau einer virtualisierten
Cluster-Umgebung. In Grid Computing in der Finanzindustrie, Books on Demand,
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Norderstedt, pp. 119–131, Oliver Hinz, Roman Beck, Bernd Skiera, Wolfgang
König, 2009

16. Markus Mathes, Roland Schwarzkopf, Ste�en Heinzl, Tim Dörnemann, Bernd
Freisleben. Orchestration of Time-Constrained BPEL4WS Work�ows. In
Proceedings of the 13th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1–4, IEEE Computer Society Press, 2008

17. Roland Schwarzkopf, Markus Mathes, Ste�en Heinzl, Bernd Freisleben, Helmut
Dohmann. Java RMI versus .NET Remoting - Architectural Comparison and
Performance Evaluation. In Proceedings of the 7th International Conference on
Networking (ICN), pp. 398–407, IEEE Computer Society Press, 2008

1.2 Organization of this Thesis

The rest of the thesis is organized as follows:

In Chapter 2, an overview of topics that lay out the foundations for this thesis is given.
This includes Grid, Virtualized Grid, and Cloud Computing as well as virtualization.

In Chapter 3, the idea of Lifecycle Management is considered in the context of virtual
machines. Two di�erent usage models are identi�ed and a corresponding virtual
machine lifecycle is developed for each model. Finally, the implications of these
models for the handling of virtual machines are discussed.

In Chapter 4, the concept of image composition is presented as a way to improve the
deployment times of virtual machines. The design and implementation of this concept
are discussed and the implementation is evaluated.

In Chapter 5, a proposal for storing a large number of virtual machine images including
their version history is presented that delivers e�ciency both in terms of storage
requirements and access time. The design and implementation of this proposal are
discussed and the implementation is evaluated.

In Chapter 6, four proposals are made to improve the security of virtual machines
in Virtualized Grid and Cloud Computing environments. Two of the proposals are
concepts for dealing with software maintenance, i.e., keeping the software installed in
virtual machines up-to-date, the third proposal is a method for detecting vulnerabilities
in virtual machines, and the fourth proposal is a novel concept for monitoring virtual
machines during runtime. The design and implementation of these proposals are
discussed and their implementation is evaluated.

In Chapter 7, a novel method for storage migration as part of virtual machine migration
is presented. The design and implementation of this method are discussed and the
implementation is evaluated.

Finally, Chapter 8 concludes this thesis and discusses future work.
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“People think that computer science is the art of geniuses but the actual reality is
the opposite, just many people doing things that build on each other, like a wall
of mini stones.”

Donald Knuth (1938–)

2
Fundamentals

2.1 Introduction

This chapter contains an introduction to the both environments the solutions pro-
posed in this thesis are designed for – Virtualized Grid and Cloud Computing – and
the fundamental technology these environments and the solutions are based on –
Virtualization.

The �rst section gives a brief overview of Grid Computing, covering the basic concept,
the security infrastructure and the fundamental concepts of job and data management.
In the second section, two approaches for Virtualized Grid Computing, a combination
of Grid Computing with Virtualization technology, are presented. Afterwards, the
concept of Cloud Computing and the di�erent service and deployment models are
presented.

The last section of this chapter deals with Virtualization, which is the base of both
Virtualized Grid Computing and Cloud Computing. This sections covers both the fun-
damentals of Virtualization technology and the di�erent approaches for virtualization
on the x86 and x86-64 Architectures.

2.2 Grid Computing

Grid Computing has been introduced to simplify the use of remote resources, e.g.,
computational resources or storage. The name has been chosen to express one of the
aims of Grid Computing: the access of remote resources should be as easy as using
energy from the power grid. The term Grid Computing was widely used for di�erent
technologies, some of which do not qualify as Grids according to the de�nition of
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Foster, one of the pioneers of Grid Computing. He summarized earlier de�nitions in a
three point checklist [51]:

“ I suggest that the essence of the definitions above can be captured in
a simple checklist, according to which a grid is a system that:

1) . . . coordinates resources that are not subject to centralized control
. . . (A grid integrates and coordinates resources and users that live
within di�erent control domains – for example, the user’s desktop
vs. central computing; di�erent administrative units of the same
company; or di�erent companies; and addresses the issues of security,
policy, payment, membership, and so forth that arise in these se�ings.
Otherwise, we are dealing with a local management system.)

2) . . . using standard, open, general-purpose protocols and interfaces
. . . (A grid is built from multi-purpose protocols and interfaces that
address such fundamental issues as authentication, authorization,
resource discovery, and resource access. As I discuss further below, it
is important that these protocols and interfaces be standard and open.
Otherwise, we are dealing with an application- specific system.)

3) . . . to deliver nontrivial qualities of service. (A grid allows its con-
stituent resources to be used in a coordinated fashion to deliver various
qualities of service, relating for example to response time, throughput,
availability, and security, and/or co-allocation of multiple resource
types to meet complex user demands, so that the utility of the com-
bined system is significantly greater than that of the sum of its parts.)

Foster [51], pp. 2–3 ”Distributed computing paradigms existing at the time Grid Computing was introduced
did not meet all of the criteria mentioned in this checklist. For example, many of the
solutions available at that time were restricted to resources within a single adminis-
trative domain. Grid computing got rid of this restriction. A number of protocols and
tools have been developed by researchers to implement Grid systems according to
this de�nition. The results of these e�orts are Grid middlewares such as the Globus
Toolkit [52], gLite [83], or Unicore [151].

These middlewares at least provide support for job and data management and im-
plement a security infrastructure. Job management deals with the submission and
management of compute jobs at Grid site, i.e., a computing system that is integrated
into the Grid, whereas data management deals with moving the data required by a
job to the target Grid site. Both of these tasks rely on a coherent authentication and
authorization system to be in place at any Grid site. A short overview of these three
pillars of Grid middlewares is given in the next two sections.

The fundamental concept of Grid Computing is coordinated resource sharing with
the goal of solving problems in dynamic, virtual organizations. A group of individuals
or institutions consisting of resource providers and consumers are called virtual
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organization. The sharing process is controlled, i.e., rules exists stating which resources
are shared with whom under what conditions. In this context, resources refer to
compute resources, software, data and other resources [55].

2.2.1 Grid Security Infrastructure

The Grid Security Infrastructure (GSI), formerly known as Globus Security Infrastruc-
ture, solves the fundamental needs for authentication, authorization and con�dentiality
in the Grid. A brief description of how these needs where satis�ed is given below.

Authentication — The authentication in the Grid is based solely on X.509 certi�-
cates and thus each user of the Grid has to possess a valid certi�cate that is
signed by the authorized certi�cate authority. These certi�cates – more pre-
cisely, the corresponding private key – are password protected to prevent their
abuse by unauthorized users. However, this protection measure prevents the
delegation of a user’s identity that is often required in Grid Computing, e.g., a
job running on a remote Grid site might need to transfer �les on behalf of the
user. The user cannot authenticate himself interactively in such a case, because
his job might be scheduled at an arbitrary time.
This problem is solved in the GSI using so-called proxy certi�cates, i.e., tempo-
rary certi�cates that can be used to authenticate as a user. A proxy certi�cate is
signed using the user’s long-term private key, i.e., the private key belonging to
the user’s certi�cate. Thereby, it proves that a speci�cally generated key pair
belongs to the user. The private key of this key pair, the proxy certi�cate, and
the actual certi�cate of the user – but not his long-term private key – are passed
to any identity that needs to impersonate as the user. The lifetime of this proxy
certi�cate is very short, typically a few hours, to prevent abuse in case it falls
into the wrong hands.

Authorization — Authorization of users is implemented using di�erent technolo-
gies. The simplest one is the Gridmap �le, a plain text database that maps
the distinguished name contained in a user’s certi�cate to a local user account
for a single Grid site. The authorization is then delegated to the operating
system. Additionally, there are more advanced techniques for authorization,
e.g., the Community Authorization Service (CAS) or the Virtual Organization
Membership Service (VOMS) [25].

Con�dentiality — Con�dentiality is provided using Transport Layer Security (TLS)
for the entire communication between middleware components and di�erent
Grid sites. The existing certi�cate infrastructure used for authentication is also
used for the encryption of network communication.

2.2.2 Grid Job and Data Management

The data management facility of a Grid middleware deals with moving data to and from
remote Grid sites to facilitate the execution of jobs at these sites. Di�erent techniques
for data management are provided by the di�erent middlewares. For example, the
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Globus Toolkit provides both GridFTP, an extension of the File Transfer Protocol (FTP)
that is integrated with the Grid Security Infrastructure to provide authentication and
con�dentiality, and the Reliable File Transfer (RFT) service, a service that enables
reliable background transfers based on GridFTP [93].

Job management deals with the creation, management and deletion of jobs at remote
Grid sites. This bridges the gap between the Grid middleware with its Grid-wide view
and local batch schedulers that are responsible for managing the unattended execution
of jobs at individual Grid sites (batch processing). The job management facility of a
Grid middleware is not a scheduler itself, but an interface for di�erent local batch
schedulers. Typically, it is tightly coupled with the data management facilities of the
middleware to automatically handle the transfer of job input data and results to and
from the remote Grid site before and after the execution of the job, respectively.

2.3 Virtualized Grid Computing

While Grid Computing solves many of the issues that existed in older distributed
computing paradigms, it leaves a few open problems. Two of the major problems of
Grid Computing are security and isolation. Traditionally, the security of the grid is
based on a trust relationship. The users have to trust the resource provider not to
provide malicious resources and the provider has to trust the users not to perform
malicious actions [46]. Furthermore, the operating system’s security mechanisms are
the only safeguards for the users’ data against a malicious users.

Two other problems are related to provisioning the required execution environment
(applications and libraries) and utilization of physical resources. Di�erent virtual
organizations often have di�erent software requirements. These requirements cannot
always be combined easily and sometimes even create con�icts [53], thus some virtual
organizations can only use resources of speci�c Grid sites. This situation can be
considered as a static partitioning of Grid sites with regard to virtual organizations
being able to use their resources. A potential consequence of such a partitioning is
low utilization on some Grid sites and overload on others, depending on the demand
of the di�erent virtual organizations. Furthermore, such a �xed partitioning cannot
cope with demand surges in individual virtual organizations.

The use of virtualization can solve these problems. By running jobs inside virtual
machines, they are isolated from jobs of other user running concurrently, and their data
is securely stored inside the virtual machine. A malicious user must break two levels of
security to compromise the provider’s system and thus be able to access another user’s
data. Furthermore, the software requirements are always satis�ed. Virtual machines
can be easily transferred to any Grid site and thus resolve the dependency of virtual
organizations on speci�c Grid sites. Finally, the isolation provided by virtualization
prevents con�icts between the requirements of multiple virtual organizations using
the resources of a single Grid site concurrently. This facilitates better resource sharing
and thus higher utilization of physical resources.

Two approaches have been developed to combine virtualization with Grid Computing.
They are brie�y described in the following sections.
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2.3.1 Virtual Clusters

This approach provisions entire virtual clusters consisting of a virtual head node
and a set of virtual worker nodes. Each virtual head node contains both the Grid
middleware that is used to submit jobs to remote Grid sites and a batch scheduler that
schedules jobs to the corresponding virtual worker nodes. In this respect, a virtual
cluster exhibits the same behavior and interfaces as a physical cluster, enabling the
use of the same client tools for both types of clusters. This approach is depicted in
Figure 2.1.

Execution Hosts

Host Host HostHost HostHost

Pool of
VM

Images

User

WWW W H W H WHH

User

Virtual 
Cluster 

Managment

Figure 2.1 Job Execution using Virtual Clusters. This figure shows a set of
Executions hosts that are used to provide three virtual clusters concurrently. The head
and the worker nodes of each virtual cluster are marked with H and W, respectively.
The first user (green) submits a job to his virtual cluster, whereas the second user
(blue) increases the size of his virtual cluster before he submits his job.

Typically, a virtual cluster is a subset of a physical cluster and thus multiple virtual
clusters can coexist on a physical cluster concurrently. The size of these clusters can
be adopted dynamically to respond to demand changes, e.g., if there is a peak load
in one of the virtual clusters. Consequently, virtual clusters can be considered as a
way to dynamically partition a physical cluster into smaller entities. These entities
are assigned to virtual organizations to provide a speci�cally equipped and scalable
environment.

This approach is implemented in virtual clusters based on Virtual Workspaces [53] or
Cluster-on-Demand (CoD) [26].

2.3.2 Dedicated Virtual Machines

Contrary to the virtual cluster approach, only a single head node running the Grid
middleware and the batch scheduler is required in this approach. By integrating
the management of virtual machines into the batch scheduler, the entire process of
creating the virtual environment for jobs is transparent to the user. Whenever a
scheduled job is going to be executed, the modi�ed scheduler starts a copy of the
virtual machine corresponding to this job on all selected nodes. Then, it executes the
job inside these virtual machines. The only notable di�erence to a standard batch
scheduler is a slight delay before the job is started. After the job is �nished, the virtual
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machines are shut down again. This process is depicted in Figure 2.2 using the Xen
Grid Engine (XGE) [147, 138] as an example of such an integration.

Execution Hosts

Host Host HostHost HostHost

Head Node

Batch 
Scheduler

VM 
Manager

XGE Grid 
Middleware

Pool of
VM

Images

User

Figure 2.2 Job Execution in Dedicated Virtual Machines. This figure shows
a cluster using the XGE as scheduler. A user submits his job through the Grid
middleware as usual. Before the job is executed by the batch scheduling part of the
XGE, it starts three copies of the corresponding virtual machine on the Execution
hosts to run the job in. These virtual machines are shut down a�er the job is finished.

2.4 Cloud Computing

Cloud Computing is one of the biggest trends in IT today. It draws from experiences
made with its ancestor Grid Computing and solves many of the remaining problems
of the Grid that a�ect mostly commercial users. One of the advantages of Cloud
Computing over the Grid is the lower barrier for using it: A user only needs a credit
card to get started in the Cloud, whereas a Grid certi�cate and a membership in one
of the virtual organizations is required in the Grid.

In the years since the term Cloud Computing �rst appeared, many di�erent de�nitions
were published. The National Institute of Standards and Technology (NIST) has
published the following de�nition for Cloud Computing in 20111:

“ Cloud Computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal
management e�ort or service provider interaction.

NIST [49], p. 2 ”The NIST de�nition also lists �ve essential characteristics that can help to further dis-
tinguish Cloud Computing from the Grid: The Cloud provides on-demand self-service,
broad network access, resource pooling, and rapid elasticity and is a measured service.
Depending on the type of resources, the Grid does not have all these characteristics,
e.g., for compute resources, there is neither on-demand self-service nor rapid elasticity,
because these resources are assigned using a scheduler.
1 The �rst version of this de�nition was already published in 2009.
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2.4.1 Service Models

The NIST de�nition of Cloud Computing [49] comprises three di�erent services models
that provide di�erent levels of abstraction. These models are described below starting
with the highest level of abstraction and working through to the lowest level that is
the focus of this thesis. With the increasing level of abstraction, the level of control
over the resources, i.e., the amount of control over the complete infrastructure, is
reduced. Furthermore, these service models are sometimes also called Cloud layers,
because they additionally describe an architecture for Cloud systems in terms of layers
building upon each other. The models are shown in Figure 2.3.

Software as a Service (SaaS) — This service model deals with applications or ser-
vices running within the Cloud that are accessed by their users using either a
browser or a specialized application. This model is thus addressed to applica-
tion end users. The provider takes care of any management, deployment, or
maintenance tasks regarding the application and the underlying infrastructure.
Examples of the Software as a Service o�ers are Google Docs, Microsoft O�ce
Online, and Dropbox.

Platform as a Service (PaaS) — This service model deals with the provision of run-
time environments for applications in the Cloud. The runtime environment
comprises programming languages, libraries, services, and tools. This model
is thus addressed to application developers. Consequently, the user of such
a runtime environment is only responsible for management and deployment
of his SaaS applications, whereas the provider takes care of any management,
deployment, or maintenance tasks regarding the runtime environments and
the underlying infrastructure. Examples of Platform as a Service o�ers are the
Google App Engine and Microsoft Azure.

Infrastructure as a Service (IaaS) — This service model deals with the provision
of physical or virtual resources, e.g., physical or virtual machines, storage, or
virtual network infrastructure. With respect to the topic of this thesis, only
virtual machines are considered. It is up to the user to install an operating
system and the desired applications in his virtual machines. This model is thus
addressed to Cloud architects. Consequently, the user of such virtual machines
is responsible for the management and deployment of the entire software stack
consisting of operating system, runtime environment and application, whereas
the provider is only taking care of the physical hardware the virtual machine is
executed on. Examples of Infrastructure as a Service o�ers are Amazon Elastic
Compute Cloud (EC2) and Rackspace Cloud Servers.

2.4.2 Deployment Models

The NIST de�nition further distinguishes between four di�erent deployment models
depending on the scope of published Cloud services [49]. A Private Cloud is provisioned
exclusively for customers of a single organization, whereas a Community Cloud is
provisioned for a community of customers from organizations with shared concerns
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Figure 2.3 Cloud Computing Service Models. This upper part of this figure
(above the solid line) shows the three di�erent service models defined for Cloud
Computing (yellow box). On the le� side of the models, the level of abstraction of
the particular service model is shown. On the right side of the models, the entities
under control of the user in the particular service model are shown. The lower part
of the figure (below the solid line) shows the physical layer, i.e., the actual hardware
that is controlled solely by the provider of IaaS services.

(comparable to a Virtual Organization in the Grid). On the other hand, a Public Cloud
is provided for use by the general public. When more than one of these models
are combined, the result is called a Hybrid Cloud. Note that these models make no
assumptions about the physical location and owner of the corresponding infrastructure,
e.g., even a Private Cloud can be operated by a third party.

2.5 Virtualization

In general, virtualization is a term that denotes an abstraction of a physical resource
in order to create a virtual version of that resource. The resource can be anything
from network and storage devices, operating systems, to entire computer systems.
Thus, virtualization facilitates running applications or operating system in a virtual
environment that is independent of the speci�c physical computer system. This facili-
tates moving the virtual environment between di�erent computer systems to respond
to planned or unplanned hardware outages or overload situations. Virtualization
technology can be applied at many di�erent levels. Three examples are listed below:

Application Virtualization — This type of virtualization denotes the concept of
compiling applications not for a speci�c hardware and operating system, but into
a machine independent byte code. This byte code is then executed by a special
virtual machine that provides an environment for the application. Examples of
virtualization system of this type are the Java Programming Language and the
.NET Framework.

Operation System Virtualization — This type of virtualization denotes the con-
cept of running multiple logically distinct environments on a single kernel.
Using di�erent technologies, the access of the environments to the �le system,
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hardware, and status information is restricted. The amount of such environ-
ments that can be active concurrently is much higher compared to the number
of concurrently active virtual machines using machine virtualization. Examples
of virtualization systems of this type are chroot jails and Linux VServer.

Machine Virtualization — This type of virtualization denotes the concept of pro-
viding virtual versions of entire computer systems (virtual machines) that run
of-the-shelf operating systems (with a few exceptions described below). This
technology facilitates running di�erent operating systems concurrently on a
single computer system and provides strong isolation between them. Examples
of virtualization systems of this type are given below.

The focus of this thesis is machine virtualization, i.e., the virtualization of entire
computer systems that is used in both Virtualized Grid and Cloud Computing (IaaS).
In the following sections, a formal de�nition of virtualization is presented in the
context of machine virtualization, and di�erent virtualization approaches for virtual
machines on the x86 architecture are described.

2.5.1 Formal Definitions

Popek and Goldberg have de�ned formal requirements for virtualizable architectures in
1974 [117]. They proposed the idea of a Virtual Machine Monitor (VMM) or hypervisor:

“ A virtual machine is taken to be an e�icient, isolated duplicate of the
real machine. We explain these notions through the idea of a virtual
machine monitor (VMM). [...] As a piece of so�ware a VMM has three
essential characteristics. First, the VMM provides an environment
for programs which is essentially identical with the original machine;
second, programs run in this environment show at worst only minor
decreases in speed; and last, the VMM is in complete control of system
resources.

Popek and Goldberg [117], p. 413 ”The meaning of these three characteristics of a hypervisor is described below [117]:

Equivalence — The �rst characteristic (denoted by the term “essentially identical”
in the quote) means that a program running under the VMM should exhibit a
behavior that is essentially identical to the behavior of the same program when
running on the original machine. The constraint expressed by “essentially”
refers to di�erences caused by timing dependencies and the availability of
system resources.

E�ciency — The second characteristic means that a statistically dominant subset
of machine instructions must be executed directly on the processor, without
the VMM intervening.

Resource Control — The last characteristic means that the VMM is in complete
control of the resources, e.g., memory or peripherals. A program running under
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the VMM may not access resources that are not allocated to it by the VMM.
Furthermore, the VMM might revoke allocations under certain circumstances.

Based on the de�nition of the Virtual Machine Monitor above, Popek and Goldberg
de�ne the term Virtual Machine as follows:

“ A virtual machine is the environment created by the virtual machine
monitor.

Popek and Goldberg [117], p. 413 ”To determine whether a computer architecture is virtualizable, Popek and Goldberg
classify its instructions. Their work is based on a third generation computer, i.e.,
computers based on integrated circuits2 that were built roughly in the second half
of the 1960s. One particular feature that distinguished a third generation computer
from it predecessors was virtual memory in the form of segmentation with or without
paging [35]. Virtual memory provides memory protection, i.e., a process can only
access information in its own address space, but not in the address space of other
programs or the operating system. This is enforced using a hardware assisted mapping
mechanism.

A related feature is the distinction between two modes of operation: the supervisor
mode and user mode. Memory protection can only be enforced in combination with
these modes of operation: the data structures controlling the memory mapping, e.g.,
base (or relocation) and bounds registers, may only be modi�ed in the supervisor
mode. Without this distinction, a process could overwrite the data structures and
consequently access any memory location.

For this kind of computer, Popek and Goldberg came up with the following classi�ca-
tion [117]:

Privileged Instructions — A privileged instruction is an instruction that traps
when it is executed in user mode, whereas it is executed in supervisor mode.
An instruction is said to trap if the processor executes a speci�ed routine (of
the operating system) instead of the instruction. This is called a privileged
instruction trap. Note that an instruction that is merely skipped in user mode,
but does not trap, is not a privileged instruction with regard to this de�nition.

Sensitive Instructions — This class of instructions that is of particular importance
for virtualizable architectures can be further subdivided:

Control Sensitive Instructions — A control sensitive instruction is an in-
struction that modi�es either the mode of operation the processor runs in,
both from user to supervisor or vice versa, or the memory mapping – and
thus the amount of available resources.

Behavior Sensitive Instructions — A behavior sensitive instruction is an
instruction that has di�erent e�ects on the state of the processor depending

2 In contrast to transistor or vacuum tube based computers from the second and �rst generation,
respectively [35].
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on the mode of operation the instruction is executed in – supervisor or
user mode – or depending on the location of the instruction.

Innocuous Instructions — An innocuous instruction is an instruction that is not
sensitive.

Based on this classi�cation, Popek and Goldberg establish the following theorem:

“ For any conventional third generation computer, a virtual machine
monitor may be constructed if the set of sensitive instructions for that
computer is a subset of the set of privileged instructions.

Popek and Goldberg [117], p. 417 ”This theorem ensures that only the hypervisor (running in supervisor mode) is able
to allocate resources to virtual machines (running in user mode) and that there is no
way for a virtual machine to increase their privileges, i.e., switch to supervisor mode.
Both would require a sensitive instruction that is by de�nition privileged and causes a
trap to the hypervisor when executed by a virtual machine running in user mode. The
hypervisor can then emulate the functionality of the sensitive instruction and return
control to the virtual machine (skipping the sensitive instruction). This is called trap
and emulate and the fundamental concept of virtualization, because it enables the
hypervisor to stay in control of the system, to isolate virtual machines from each other,
and to maintain the virtual machine’s illusion of full control over the computer for
the virtual machine. On the other hand, innocuous instructions are executed directly
on the processor, because they have no e�ect on either the hypervisor or other virtual
machines.

In his thesis, Goldberg also classi�es virtual machine monitors into two di�erent
types [60]. These types are depicted in Figure 2.4.

Type I VMM — A Type I VMM runs directly on the hardware. It is also called native
or bare-metal hypervisor.

Type II VMM — A Type II VMM runs under a host operating system. It is also called
a hosted hypervisor.

In order to distinguish the operating system a Type II hypervisor runs on from the
operating system that runs in a virtual machine created by that hypervisor, the oper-
ating systems are called host operating system and guest operating system, respectively.
The term guest operating system is also used with Type I hypervisors, although there
is host operating system to distinguish it from when a Type I hypervisor is used.

Each of those types of hypervisors has its own advantages and disadvantages. Type I
hypervisors are said to o�er better performance because they operate directly on the
hardware without relying on an operating system, but there are no reliable sources
to support this assumption. On the other hand, a Type I hypervisor needs to fully to
support the hardware it runs on, i.e., it needs drivers developed for this hypervisor.
Typically, this leads to a limited set of supported hardware in comparison to a Type II
VMM that uses the host operation systems and its drivers to access the hardware.
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Figure 2.4 Types of Hypervisors. This figure depicts the di�erences between
Type I and Type II hypervisors as defined by Goldberg.

2.5.2 Virtualization Approaches for the x86 and x86-64 Architectures

Up to the middle of the last decade, the processors of the x86 and the newly introduced
x86-64 Architectures did not satisfy the criteria for virtualizable architectures de�ned
by Popek and Goldberg [117]. Robin and Irvine [129] evaluated the Intel Pentium
architecture with regard to its ability to support a virtual machine monitor in 2000.
They �rst veri�ed that the architecture still meets the assumptions about the design of
a computer that Popek and Goldberg based their work on, e.g., two modes of operation
and memory protection. Then, they reviewed the instruction set, found 17 critical
instructions and concluded:

“ The Intel architecture uses interrupts and traps to redirect program
execution and allow interrupt and exception handlers to execute when
a privileged instruction is executed by an unprivileged task. How-
ever, the Pentium instruction set contains sensitive, unprivileged
instructions. The processor will execute unprivileged, sensitive in-
structions without generating an interrupt or exception. Thus, a VMM
will never have the opportunity to simulate the e�ect of the instruction.

Robin and Irvine [129], p. 5 ”Consequently, the �rst virtualization products that appeared for the x86 Architecture
in 1999 had to use binary translation to deal with nonvirtualizable instructions [160].
Starting in the years 2005 and 2006, Intel and AMD sold the �rst x86-64 processors
that satis�ed the aforementioned criteria with the Intel VT-x and AMD-V extensions,
respectively. The �rst generation of these processor extensions did only cover the
CPU itself, which resulted in poorer performance compared to the existing binary
translation in many circumstances [3].

Newer processors released in 2008 and 2007 include the Intel Extended Page Tables
and AMD Rapid Virtualization Indexing extensions, respectively. These extensions
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provide support for second level address translation or memory virtualization and
improve the performance of virtualization when the processor extensions are used.
Since then, the hardware support for virtualization has been further extended. Current
hardware also supports virtualizing the interrupt controller, external devices, and
graphics processors.

As a result of the missing support for virtualization in earlier processors, two di�er-
ent virtualization approaches are used on the x86 and x86-64 architectures that are
described in the next two sections.

2.5.2.1 Full Virtualization

The full virtualization approach virtualizes a system in a way that is transparent to the
guest operating system. The advantage of this approach is that the guest operating
system does not need to be modi�ed in order to run as virtual machine created by a
hypervisor using this approach. To reach this goal, a complete computer system needs
to be emulated, e.g., hard disks, network devices, and video cards, but also low-level
device like a system chipset or a virtual BIOS [160]. With the increasing hardware
support for virtualization, the amount of devices that need to be emulated will likely
be reduced in the future.

As stated in the last section, a hypervisor has to trap and emulate sensitive instructions,
whereas innocuous instructions can be executed directly on the processor without
intervention of the hypervisor. The are two techniques to implement full virtualiza-
tion on the x86 architecture depending on the availability of hardware support for
virtualization, or more speci�cally the trapping of all sensitive instructions.

Full Virtualization with Binary Translation — The binary translation approach
was developed by VMware that introduced virtualization to the x86 architecture
in 1999. Kernel code is translated by the hypervisor to replace nonvirtualizable,
i.e., sensitive, instructions with new sequences of instructions that have the
intended e�ect on the virtual hardware. The translation of kernel instructions
is done on the �y and the result of the translation is cached for future use. User
level code, on the other hand, is executed directly on the processor and runs at
native speed [160].

This type of full virtualization can be found for example in VMware ESXi or
Workstation [159] or VirtualBox [114].

Hardware Assisted Full Virtualization — With the introduction of hardware sup-
port for virtualization in the x86 architecture by Intel and AMD, it is no longer
necessary to use binary translation to deal with sensitive instructions. The
hypervisor runs in a new privilege level and all sensitive instructions trap to
it if they are not executed in the new privileged level. Moreover, the hypervi-
sor can even in�uence which instructions cause traps using a special control
structure that is used by the processor to store the state of a virtual machine.
Using the hardware extensions, a classical trap and emulate hypervisor can be
implemented on the x86 architecture.
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The type of full virtualization can be found in all virtualization solutions men-
tioned above and additionally in KVM [79] and Xen when using Xen Hardware
Virtual Machine (HVM) guests [174].

2.5.2.2 Paravirtualization

The paravirtualization approach virtualizes a system in a way that is not only visible
to the guest operating system, but also requires the guest operating system to be
modi�ed. This approach supports virtualization even on nonvirtualizable processor
architectures. Every nonvirtualizable instruction in the guest operating system’s
kernel needs to be replaced with a so-called hypercall, i.e., a software trap to the
hypervisor3 [13]. In contrast to the full virtualization approach, the guest operating
system has to cooperate with the hypervisor for the paravirtualization approach to
work.

The major advantage of this approach is the low overhead resulting in the use of
e�cient hypercalls instead of expensive instruction trapping. The major drawback, on
the other hand, is the need to modify the kernel of each operating system that will be
run in a virtual machine created using this virtualization approach. This prevents the
use of proprietary and legacy operating system. Another drawback is the awareness
of the guest operating system about running in a virtual machine.

The most prominent hypervisor implementing the paravirtualization approach is
Xen when using Xen Paravirtualization (PV) guests [174]. Its architecture is depicted
in Figure 2.5). Other implementations of this approach were the Denali Isolation
Kernel [168] and the VMware Virtual Machine Interface (VMI) [9].
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Figure 2.5 The Xen Hypervisor Architecture. This figure shown the architec-
ture of the Xen hypervisor and emphasizes the key role played by the dom0 both for
accessing the actual hardware and for providing virtual disks and network interfaces
for the unprivileged domains.

A particular feature of the Xen hypervisor is the use of a privileged virtual machine
or domain in the Xen nomenclature. This privileged virtual machine is called dom0
(domain zero), because it is the �rst domain that is started directly after the hypervisor.
It is responsible for running the Xen daemon and administrative software to control
3 The name hypercall is a pun on syscall that is a software trap to the operating system.
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the hypervisor. Furthermore, it has access to the hardware, contains the corresponding
drivers and provides virtual network interface controllers (NICs) and block devices
for the other virtual machines running on the hypervisor. These virtual machines are
called domU (unprivileged domain) to distinguish them from the privileged one.

Device drivers are another use case for the paravirtualization approach. Hypervisors
implementing the full virtualization approach typically provide paravirtual drivers
for the emulated devices, especially for hard disks, network devices, and video cards.
These drivers signi�cantly improve the performance of virtual machines, because
they bypass the emulation logic required for accessing these devices with regular
drivers [101].

2.6 Summary

In this chapter, Virtualized Grid and Cloud Computing were presented. These are the
environments the solutions proposed in this thesis are designed for. Additionally, the
basic concepts of Grid Computing, the predecessor of Virtualized Grid Computing,
were introduced. Finally, virtualization in general and virtualization approaches for the
x86 architecture that is prevalent in both desktop and server systems were described.
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“There is no harm in repeating a good thing.”

Plato (ca. 427–347 B.C.)

3
Lifecycle Management

3.1 Introduction

The appearance of virtualization technology on the Intel x86 architecture in the late
1990s caused an increasing trend of virtual machine usage. Starting with virtualization
products for workstations that were used for easing operating system migrations and
provisioning of testbed systems for developers, virtualization technology made its way
to servers. At the beginning, the objective was primarily server consolidation: physical
servers are replaced by virtual servers and these virtual servers are consolidated to
run on fewer physical machines. Later on, other objectives came into focus. Virtual
machines made the isolation of di�erent applications for security reasons possible
without relying on additional hardware. Migration techniques enabled administrators
to react to overload situations by moving virtual machines to other execution hosts.
Virtual Appliances, the bundling of software and its execution environment into a
virtual machine, emerged as a new distribution mechanism for software.

Besides the technological innovations described above, virtualization technology also
prompted improvements in other areas like usability. Grid Computing was introduced
to make compute and storage resources of computing centers available for external
users. It tried to overcome the usability problems of heterogeneous compute clusters
by introducing an overarching, certi�cate-based authentication scheme for users
and uni�ed interfaces for interacting with di�erent scheduling and storage systems.
Virtualized Grid Computing solved one of the remaining problems of Grid Computing:
the availability of required software at remote computing centers. It applied the
concept of Virtual Appliances to Grid Computing. Users no longer only submitted
a description of a job including the required data to a computing center, but also a
virtual machine containing the required programs.

At this stage, most of the technical problems were solved. Cloud Computing builds
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upon all of those developments, combined them with a business model, and changed
the focus to service orientation. It enables users all over the planet to self-provision
virtual infrastructures on-demand using customized virtual machines1. One on the
main advantages of a virtual infrastructure over physical hardware is the virtual
infrastructure’s adaptability, i.e., the possibility to scale the infrastructure up or down
with almost no delay. This �exibility makes Cloud Computing an ideal approach
for each application with hugely varying workloads or as a fallback for overload
situations.

Some of the features of virtualization technology itself, but especially the way virtual
machines are used in Virtualized Grid and Cloud Computing, radically change the
lifecycle of virtual machines compared to physical machines. In the remainder of this
chapter, the lifecycle of virtual machines and its implications for the management of
virtual machines are examined.

3.2 Related Work

3.2.1 Lifecycle of Virtual Machines

Most publications that mention the term lifecycle in the context of virtual machines use
it to refer to the entire lifetime of a virtual machine, without going into details about
what happens during that period. The only publication that deals with the lifecycle
of virtual machines is a description of security challenges in virtual environments
by Gar�nkel and Rosenblum [59]. They observed that the state of a machine, which
is typically visualized as a straight line, is comparable to a tree in case of a virtual
machine. The reason is the snapshot feature of many hypervisors allowing users to
capture the state of their virtual machines at any point in time. In principle, taking
snapshots has no in�uence on the lifecycle of a virtual machine. However, snapshots
are typically used to roll virtual machines back to earlier states in order to recover
from errors. Furthermore, snapshots facilitate cloning of virtual machines and thereby
creating new branches in the state tree. Gar�nkel and Rosenblum describe the e�ects
of this change of the state model with regard to the security of the virtual machines
and the communication with them. In contrast to this thesis, Gar�nkel and Rosenblum
limit the term lifecycle to changes of a virtual machine’s state, which is characterized
by con�guration changes, installation or updating of software, and the execution of
software. This thesis takes a broader view on the lifecycle of virtual machines and
also examines phases in which the virtual machine is not running at all.

3.2.2 Virtual Machine Management Systems

According to the de�nition of Popek and Goldberg, a hypervisor is responsible for
creating an environment for running a guest operating system. Therefore, it is a
central component for virtualization, although it is typically not enough to manage
virtualized infrastructures. A virtual machine management system is the interface
1 Cloud Computing is used as a synonym for the Infrastructure as a Service model.
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to a hypervisor that allows users to deal with virtual machines, e.g., to start, stop, or
monitor virtual machines or to manage virtual machine images.

Many commercial virtualization products targeted at the desktop, e.g., VMware Work-
station [159] or VirtualBox [114], already include a virtual machine management
system in addition to the plain hypervisor. These management systems are obviously
limited to the features provided by the desktop class hypervisors. Apart from the
basic operations on virtual machines, i.e., starting, stopping, pausing, or resuming
virtual machines, they typically facilitate the creation of snapshots, cloning of virtual
machines, as well as importing and exporting of virtual machines from and to the
Open Virtualization Format (OVF) [36], respectively, to enable exchanging of virtual
machines between di�erent hypervisors.

Server class hypervisors, e.g., KVM [79], Xen [174], or VMware ESXi [159], typically
provide more advanced features, e.g., live migration2. or high availability. Many
of these hypervisors are Type I hypervisors and thus they typically do not have
an integrated management system, but are administrated via network. Multiple
virtual machine management systems are available and many of these are based
on libvirt [21], a library that provides a uni�ed interface to control many di�erent
hypervisors. Examples of such systems are virt-manager [158], oVirt [115], and the
proprietary VMware vCenter 3 [159].

In addition, the management Dashboards and APIs of Infrastructure as a Service
Clouds are virtual machine management systems. This applies both to commercial
o�ers like Amazon Elastic Compute Cloud (EC2) and to Open Source Cloud systems
like OpenStack [111], Eucalyptus [107], and Nimbus4 [53].

We have previously developed the Image Creation Station (ICS) [43] and Xen Grid Engine
(XGE) [147, 43] in our e�ort to promote Virtualized Grid Computing. Together, they
also form a virtual machine management system. Additionally, we have previously
developed tools forGridWork�ows that encourage hosting services in virtual machines:
an automatic failover system that responds to infrastructural failures, e.g., network
timeouts and server outages, by switching to a backup service or by deploying a
virtual machine containing the service into the Cloud [76] and an extensible work�ow
editor for creating such work�ows [38].

3.3 Lifecycle of Virtual Machines

Virtual machines can be easily created on-demand and destroyed when not needed
any longer. Using a virtual machine management system, a new virtual machine is
literally just a click away, in contrast to the typically much longer acquisition and
deployment times required before a new physical machine can be used.

When not used, virtual machines can be stopped or suspended, leaving nothing more
2 VirtualBox also supports live migration, although it is not a typical server class hypervisor.
3 VMware vCenter is restricted to controlling VMware products and thus not based on libvirt.
4 Nimbus emerged from Virtual Workspaces, an implementation of Virtualized Grid Computing. It has

been extended to provide a complete IaaS Cloud system.
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than a disk image and, in the latter case, state information. Thus, non-running virtual
machines – also called dormant virtual machines [167] – induce almost no cost, except
for storage. This enables new usage models that are not possible without virtualization:
a virtual machine can be created, prepared for usage and then shut down, staying
dormant until it is needed. At this point, it is started again and executed until it is
eventually shut down again, and the process is repeated. This approach to dynamically
adapt the number of running virtual machines to the workload is called on-demand
provisioning [69], and it is one of the key selling points of Cloud Computing.

As a consequence, there is no uniform virtual machine lifecycle, but di�erent lifecycles
depending on the individual usage model. The usage models can be categorized based
on the mode of execution of the virtual machines as follows:

Continuous Execution Model — Virtual machines are executed as long as they
are needed, even in periods without active usage. This usage model is similar to
the typical usage model of physical machines.

On-demand Execution Model — Virtual machines are started on-demand and ex-
ecuted as long as they are actively used. During periods without active usage,
they are dormant. There is no corresponding usage model of physical machines,
since the cost of a dormant physical machine (unused hardware) is much higher
compared to that of a dormant virtual machine (storage of a disk image and
state information).

These models, the resulting virtual machine lifecycles and their implications will be
described in more detail in the two following sections.

3.3.1 Continuous Execution Model

This execution model is often found when virtualization is used to consolidate multiple
physical machines, by converting them to virtual machines and executing them on
shared resources to reduce the amount of hardware required. Applications calling for
the continuous execution model are typically individual servers that are the point of
contact for client requests5. Examples of such servers are web, email and �le servers
that are expected to be available at all times.

The goals of this model are reducing the costs for hardware, energy, and cooling and
improving manageability. The former is accomplished by reducing the number of
physical machines and optimizing resource utilization. The latter is accomplished
by features provided by advanced virtualization techniques, i.e., migration of virtual
machines to distribute the load more evenly between physical machines. Scalability,
on the other hand, is not a goal that can be accomplished with this execution model6.
Like with physical machines, virtual machines have to be provisioned for the predicted
peak load (peak load provisioning) [44] when this execution model is used. When
scalability is an issue, a more dynamic approach is required to adjust the provided

5 In contrast to servers that are "hidden" from the client by load balancers or similar systems.
6 Except from migrating virtual machines to faster or less used physical machines to improve their

performance.
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computing power to match the request volume: an on-demand execution model,
described in Section 3.3.2, can achieve this �exibility.

3.3.1.1 Lifecycle

The lifecycle of a continuously executed virtual machine, shown in Figure 3.1, obviously
is not a cycle, but a sequence of 5 phases, starting with the creation of the machine
and ending with its deletion. Nevertheless, the term lifecycle is used in the remainder
of this section. The phases are described in detail below.

Deployment ExecutionCreation DeletionUndeployment

Figure 3.1 Lifecycle of a Virtual Machine in the Continuous Execution
Model. In this model, a virtual machine has a lifecycle consisting of 5 sequential
phases: Creation and Deployment, the actual Execution (including maintenance) as
well as Undeployment and Deletion.

Creation Phase — In the creation phase, the virtual machine is created using a
suitable management tool. This phase typically involves creating an empty disk
image as well as installing and con�guring the operating system and applications.
The process of installing the operating system can either be automated or
performed manually, i.e., requiring interaction with the user creating the virtual
machine. Installing and con�guring the required applications is obviously a
manual task.

A template can be used to speed up the creation of virtual machines instead
of creating every new virtual machine from scratch. Depending on the man-
agement tool, these templates are named di�erently: Amazon Machine Image
(AMI) in case of Amazon Elastic Compute Cloud [8] or golden image in case of
the Image Creation Station [43]. It contains a pre-con�gured operating system
installation, but no applications except for common tools. The golden image is
cloned and its copy is used as a disk image for the new virtual machine.

Deployment Phase — In the deployment phase, the virtual machine is prepared
for execution. This mainly involves copying its disk image to the execution
host, unless the disk image is stored on a network �le system, and starting it.
Additional pre-execution tasks can also be part of this phase, i.e., adopting the
con�guration of the virtual machine to the environment or creating temporary
disk images used as scratch space.

Execution Phase — The execution phase, the most prevalent of the 5 phases, is
the productive part of the virtual machine’s lifecycle. In this phase, the virtual
machine is doing whatever is necessary to satisfy its intended purpose, e.g.,
serving �les, emails or web content. The virtual machine stays in this phase
even in periods without utilization, until it is no longer needed and therefore
retired.
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An important task during the execution of the virtual machine is software
maintenance, i.e., checking for available updates and installing updates if neces-
sary. As with physical machines, continuous software maintenance is required
throughout the execution phase, to keep the virtual machine, the applications
as well as the data used by the virtual machine safe. The same holds true for
security monitoring of the running virtual machine, to detect anomalies and
respond to attacks.

Undeployment Phase — This phase is the preparation of the retirement of the
virtual machine. It is shut down and any temporary disk images belonging to
the virtual machine are deleted from the execution host. The disk image of the
virtual machine is also deleted from the execution host, unless it is stored on a
network �le system.

After this phase, the virtual machine could theoretically be deployed to an
execution host again, and the lifecycle would continue in the deployment phase.
But in this case, the on-demand execution model describes the lifecycle of the
virtual machine better, so redeployment is out of scope for the continuous
execution model.

Deletion Phase — In this last phase, the virtual machine itself and its disk image
are ultimately deleted using a management tool.

The lifecycle of a continuously running virtual machine with its 5 phases is very
similar to that of a physical machine. Instead of being created, physical machines are
acquired, but otherwise the �rst phase is identical. The deployment phase consists of
physically moving the machine to its operating site, instead of moving disk images
to an execution host. The same applies to the undeployment phase. Finally, physical
machines are either sold or disposed instead of deleted. The last two phases are
sometimes combined to a single phase called retirement phase.

3.3.1.2 Implications

The last section highlighted the similarities between the lifecycle of virtual machines
in the continuous execution model and the lifecycle of physical machines. These
similarities are not surprising, since the goal of this model is to replace physical
with virtual machines. As a result, the same maintenance methods and tools used
for physical machines during the execution phase can also be used for their virtual
counterparts. For security monitoring, however, novel tools that are aware of the
virtualization are required. Using this knowledge, such monitoring tools can provide
more meaningful insights into what is happening in a virtualized system. For the
other phases, only basic tooling for virtual machine management is required, which
supports the fundamental operations with virtual machines, i.e., creation, deployment,
starting, stopping, undeployment, and deletion of a virtual machine.
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3.3.2 On-demand Execution Model

In the following, two types of applications are presented that bene�t from another,
more dynamic execution model. The �rst type consists of modern web applications,
such as websites or online shops. One of the problems web applications face today
are heavy �uctuations in the amount of concurrent visitors. Such �uctuations can
be triggered by di�erent events, i.e., coverage on popular news sites in case of a web
site [4, 40] and the holiday season or special shopping events like Cyber Monday in
case of an online shop7. In both cases, signi�cantly more visitors are attracted by a
site and the workload on the servers increases.

Independently of being run in a virtualized environment, modern web applications
typically use load balancers that distribute the workload equally between a number
of web servers. These load balancers decouple the point of contact from the actual
machine that serves a request and thus enable the use of dynamically provisioned
resources. Using the on-demand execution model, new virtual machines can be
created on the �y (scale up) if the workload cannot be handled by the existing virtual
machines. If the workload reduces at a later time, some of the virtual machines can be
shut down (scale down). This is called elastic scaling [44] and is one of the key features
of modern Cloud architectures. The on-demand execution model can thus handle
workload �uctuations better than any static approach, i.e., physical machines or virtual
machines in the continuous execution model that relies on peak load provisioning to
cope with �uctuating workloads.

The second type of applications bene�ting from the on-demand execution model
consists of scienti�c applications that require large-scale computing systems. In many
scienti�c �elds, computing is widely used as a tool, typically in the form of programs
executed on compute clusters in the universities’ computing centers. The need for this
kind of computing also exists in the commercial world, as experiences from the PT-
Grid, FinGRID, and Biz2Grid projects have shown. Virtualization and the on-demand
execution model can be applied to this usage scenario in di�erent ways.

Virtualized Grid Computing tries to improve the usability of compute clusters in the
face of rapidly changing software requirements. It allows users to not only submit a
job using the scheduling system of a cluster, but also provide a virtual machine that
contains the required software in a working environment. Users are thus no longer
depending on administrators to install the software they need on the compute cluster.
This also allows the execution of jobs on remote compute clusters without checking
for the existence of the required software beforehand. The latter was one goal of the
Grid initiatives worldwide: allow the remote use of universities’ compute clusters,
either when a local cluster was not available, not powerful enough or in use by others.

The use of virtual machines is a foundation of Cloud Computing, thus the usability
problem of compute clusters solved by Virtualized Grid Computing is solved per

7 Amazon’s CTO wrote on his blog that they invented Dynamo, Amazon’s custom key-value storage
system, because of-the-shelf storage and database solutions could not keep up with the load during
the 2004 holiday shopping season (apparently, they could during the remaining time of the year). This
caused several outages [161].
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Figure 3.2 Lifecycle of a Virtual Machine in the On-demand Execution
Model. In this model, a virtual machine has a lifecycle consisting primarily of 4
phases: Storage, Deployment, Execution, and Undeployment. Two additional phases
mark the start and the end of the virtual machine’s life: Creation and Deletion.

se. Using Cloud Computing, a complete computing environment can be provided
on-demand, i.e., a virtual compute cluster consisting of a group of virtual machines
that exists only for the duration of a program’s execution (days, weeks or sometimes
even months) [77]. Another feasible approach is to combine existing resources like a
compute cluster with virtual machines in the Cloud, started on-demand to temporary
increase the computing power to satisfy computation requirements [37]. Again, the
on-demand execution model can solve the scalability problem.

3.3.2.1 Lifecycle

The lifecycle of a virtual machine in the on-demand execution model is shown in
Figure 3.2. In contrast to the lifecycle of virtual machines in the continuous execution
model, presented in Section 3.3.1, it is a real cycle with an entry as well as an exit
phase, namely the creation and deletion of the machine. The phases are described in
detail below.

Creation Phase — In the creation phase, the virtual machine is created using a
suitable management tool. This phase is identical to its counterpart in the
continuous execution model. A detailed description of this phase can be found
in Section 3.3.1.1.
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Storage Phase — In the storage phase, the virtual machine is being kept in dormant
state in an appropriate storage system. Although ultimately depending on the
individual use case, this is likely the most prevalent phase in the lifecycle.

Deployment Phase — In the deployment phase, the virtual machine is prepared for
execution, i.e., copied from the storage system to the execution host, if required,
and started. A detailed description of this phase can be found in Section 3.3.1.1.

Execution Phase — The execution phase is the productive part of the virtual ma-
chine’s lifecycle. In this phase, it is executed on the execution host and serving
its intended purpose, e.g., serving �les, emails or web content, solving scienti�c
problems or doing simulations. Unlike in the continuous execution model pre-
sented in Section 3.3.1.1, the virtual machine stays in this phase only in periods
of active usage, and is shut down immediately if it is no longer needed. Thus,
the execution phase is not necessarily the most prevalent phase in the lifecycle
of a virtual machine anymore. However, the need for continuous security moni-
toring of virtual machines during the execution phase is not lessened by the
on-demand execution model.

Undeployment Phase — After the execution phase, the virtual machine is shut
down and any temporary disk image belonging to the virtual machine is deleted.
Depending on the individual case, it is necessary to copy the disk image of the
virtual machine back to the storage system to make changes made during the
execution phase persistent.

Deletion Phase — In this phase, the virtual machine that is no longer running, but
only kept in dormant state in the storage system, is deleted.

Cloning of Virtual Machines

The concept of cloning virtual machines is used very often in the on-demand execution
model. When a number of virtual machines are provisioned, a single virtual machine
is deployed to all of the selected execution hosts, i.e., multiple copies or clones of the
corresponding disk image are created. This approach is used when multiple identical
virtual machines are required as worker nodes, e.g., when preparing the execution
environment for a job in Virtualized Grid Computing or when provisioning additional
web servers in the Cloud to scale up a web application.

These cloned virtual machines are typically considered as temporary virtual machines
and thus deleted immediately after usage. In terms of the lifecycle presented in
Figure 3.2, they are not written back to the storage system during the undeployment
phase, and the original virtual machine is not deleted from the storage system during
the deletion phase.

An important implication of virtual machine cloning is related to the location of data.
Obviously, data cannot be stored in a virtual machine, because any change would be
lost after the cloned virtual machine is deleted. Thus, external systems need to be
used to store the data required by the application. This requirement is not related to
the use of virtual machines, but a�ects distributed applications in general.
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Maintenance of Virtual Machines

The main di�erences that distinguish the on-demand execution model from the con-
tinuous execution model are the repeated deployment – execution – undeployment
cycles and the frequent, potentially longer-term storage phases, during which the
virtual machine is dormant and kept in the storage system. Especially the storage
phases restrict the possibilities to do required software maintenance tasks. Contrary
to the continuous execution model, the execution phase is no longer the ideal phase
for software maintenance, since a virtual machine might not be in the execution phase
when software maintenance is required, i.e., a security update needs to be installed,
but instead be dormant and kept in the storage system. After the next deployment
phase, this virtual machine might not be up-to-date.

One potential solution to this problem is to schedule software maintenance at the
end of the deployment phase, after the virtual machine has been started. While this
approach guarantees that the virtual machine is up-to-date at the beginning of the
execution phase, it prolongs the time required to scale up, because the just started
virtual machine cannot be used immediately, but only after all maintenance tasks are
�nished. This is unfortunate both for modern web applications, as it delays the e�ect
of the scale up and thus the performance improvement, and scienti�c applications, as
it reduces the amount of time available for solving the actual problem.

Another potential solution is software maintenance at the beginning of the undeploy-
ment phase, before the virtual machine is shut down. This approach does instead
prolong the time to scale down, which is less critical if enough execution hosts are
available, e.g., in the Cloud. In the case of Virtualized Grid Computing, it delays the
execution of the next job. Even worse, it is a questionable approach, because there is
no guarantee that the virtual machine is still up-to-date when it is started the next
time.

Since the execution phase is not suited for software maintenance in the on-demand
execution model, the prevalent storage phase seems to be a better opportunity for
software maintenance. A well-maintained virtual machine is always up-to-date after
deployment and can be used immediately. Software maintenance of dormant virtual
machines also aligns perfectly with the concept of cloning, i.e., starting multiple virtual
machines using the same disk image. All clones are up-to-date if the maintenance is
done during the storage phase, contrary to the approach of scheduling the software
maintenance at the end of the deployment phase described above. The latter would
require each clone to be maintained individually. An updated version of the lifecycle
including maintenance is shown in Figure 3.3 and a description of the newly added
maintenance phase is given below.

Continuous Maintenance Phase — In the continuous maintenance phase, a dor-
mant virtual machine is continuously monitored by a specialized management
system. The monitoring does not only include the important task of checking
for the availability of updated software, which is automated in most operating
systems but obviously not working for dormant virtual machines. Additional
scans using established vulnerability scanners should be performed to detect
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Figure 3.3 Revised Lifecycle of a Virtual Machine in the On-demand
Execution Model. In this model, a virtual machine has a lifecycle consisting
primarily of 4 phases: Storage, Deployment, Execution, and Undeployment. Two
additional phases mark the start and the end of the virtual machine’s life: Creation
and Deletion. During the Storage phase, each virtual machine is subject to Continuous
Maintenance to guarantee it is up-to-date at boot time.

vulnerabilities created by con�guration errors and vulnerable software, for
which no update has yet been published. Available updates should be installed
automatically, if they do not break they system, which is the case for most
security updates.

Note that software maintenance in the storage phase does not supersede maintenance
in the execution phase in all cases. Especially for web applications, software main-
tenance even during the execution phase is of vital importance if vulnerabilities are
found. Fortunately, the load balancer hides the individual virtual machines that handle
the workload of the application, so an outdated virtual machine can be replaced with
an up-to-date one without any outages.

3.3.2.2 Implications

The on-demand execution model has some implications for the handling of virtual
machines and virtual machine images. These implications can be categorized into the
following phases in the lifecycle shown in Figure 3.3:

Deployment Phase — In contrast to the continuous execution model, the deploy-
ment of a virtual machine is a frequent process. Furthermore, the time required
to scale up is dominated by the time required to deploy a virtual machine to
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an execution host. Optimizations of the deployment process thus improve the
elasticity of the overall system, which is a performance indicator directly per-
ceivable by customers and one of the main reasons to use Cloud infrastructures
in the �rst place.

An additional requirement results from cloning virtual machines to deploy mul-
tiple virtual machines. While it is technically possible to launch multiple virtual
machine using a single, unmodi�ed disk image, it requires careful preparation
of the virtual machine and external services to con�gure the individual cloned
virtual machine correctly. Mechanisms for con�guring the virtual machine
during deployment would simplify the usage of the virtual machine cloning
approach.

For the stated reasons, it is important for Virtualized Grid and Cloud Computing
providers to optimize the deployment time of their infrastructure. Solutions that
improve the deployment time and provide a con�guration facility are described
in Chapters 4 and 5.

Storage Phase — In contrast to the continuous execution model, virtual machines
in the on-demand execution model can be dormant for arbitrary periods of time
and thus need to be stored in a storage system. A dormant virtual machine
typically consists of nothing more than a disk image that contains the operating
system and installed applications. Such disk images are traditionally stored as
plain �les on standard �le systems. Unfortunately, this kind of storage does
not scale well for large numbers of virtual machines [128] that are the result of
a widespread adoption of Virtualized Grid and Cloud Computing approaches.
An e�cient storage system for virtual machines is required to keep pace with
the trend of increasing numbers of virtual machines. To lay the foundation for
large virtual machine archives, it might be necessary to retire full disk images
as the storage format for virtual machines and explore new techniques like
decomposition, compression or deduplication for storing virtual machines.

Improved storage formats and systems for virtual machine images are described
in Chapters 4 and 5. They do not only solve the storage related problems of
large numbers of virtual machines, but also improve the deployment process.

Continuous Maintenance Phase — Regular maintenance of both physical and vir-
tual machines is an uncontroversial necessity to protect them against attacks
and problems related to bugs. In contrast to the continuous execution model,
virtual machines in the on-demand execution model are not running at all times
but instead they appear and disappear. Thus, they cannot be maintained using
the standard tools that are designated for physical machines that are continu-
ously running (and thus also for virtual machines in the continuous execution
model). Instead, new approaches for maintaining virtual machines even during
phases of dormancy are required.

Solutions that enable continuous maintenance for virtual machines are described
in Chapter 6.

Execution Phase — The need for security monitoring during the execution phase
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in a virtual machine’s lifecycle that has already been identi�ed in the analysis
of the continuous execution model also applies to the on-demand execution
model. The need for novel, virtualization-aware monitoring tools exists also for
this execution model.

Furthermore, the dynamics introduced into a system by allowing on-demand
provisioning force the operators of Cloud infrastructure to closely monitor the
workload on all execution hosts and quickly react to overload situations. This is
of particular importance in the face of Service Level Agreements (SLAs) that
guarantee speci�c properties of the virtual infrastructure to customers.

One of the most commonly used approaches to manage the workload of the
execution hosts is the migration of virtual machines to other execution hosts
with a lower workload. Since the migration process of a virtual machine contains
a period of time during which the virtual machine is suspended and thus not
reachable, it needs to perform the migration very quickly. This is of particular
importance if the migration of a virtual disk is part of this process.

A concept for virtualization-aware security monitoring of virtualized environ-
ments is presented in Chapter 6 and a solution that enables e�cient migration
of virtual machines including virtual disks is described in Chapter 7.

3.4 Summary

This chapter has examined the lifecycle of virtual machines in the following usage
models:

• Continuous Execution Model

• On-demand Execution Model

The continuous execution model is mostly used in scenarios that deal with consolida-
tion of physical machines. Virtual machines behave very much like physical machines
in this usage model, thus existing tools can be reused to manage them. The continu-
ous execution model is not the prevalent usage model in Virtualized Grid or Cloud
Computing, and thus not the focus of this thesis.

The on-demand execution model, the prevalent usage model in both Virtualized Grid
and Cloud Computing, has a great impact on the management of virtual machines.
The dynamic nature of this model is challenging for both the storage system, to be able
to store a large number of dormant virtual machines in a suitable way, and the physical
infrastructure as a whole, to allow e�cient deployment and fast migration of virtual
machines. Furthermore, existing tools cannot be used to maintain dormant virtual
machines, increasing the risk of running virtual machines with outdated software.
This model is the focus of this thesis. The thesis proposes seven novel approaches to
deal with the requirements of virtual machines in the on-demand execution model.
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“Good composition is like a suspension bridge -
each line adds strength and takes none away.”

Robert Henri (1865–1929)

4
Virtual Machine Image Composition

4.1 Introduction

In the prevalent usage model of virtual machines in Virtualized Grid and Cloud Com-
puting and the corresponding virtual machine lifecycle, as described in Section 3.3.2,
the deployment of a virtual machine is a very frequent operation. Furthermore,
the time required to provision a virtual machine is dominated by the time need for
deploying the corresponding virtual machine image to the selected execution host.
Optimizations of the deployment process thus improve the elasticity of the overall sys-
tem. Especially for Cloud Computing, elasticity is a key performance indicator directly
perceivable by customers and one of the main reasons to use Cloud infrastructures in
the �rst place.

Depending on the architecture of the storage system for virtual machines, the deploy-
ment process might involve copying of disk images to one or more execution hosts.
This time-consuming task can be bypassed if the virtual machine images are accessible
via a network �le system. When a suitable network �le system is not available, the disk
image of a virtual machine needs to be copied to a local hard disk of the execution host
before the virtual machine can be started. Both approaches have pros and cons that are
beyond the scope of this thesis, and use cases for both approaches exist. The remainder
of this chapter focuses on use cases without a suitable network storage for virtual
machine images. Therefore, copying of virtual machine images to execution hosts
is required, and this accounts for a majority of the deployment time. Any technique
that reduces the time required to copy disk images will thus optimize the deployment
phase as well.

There are three obvious approaches that can be used to reduce the time required to
copy disk images to an execution host:
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1. Usage of e�cient transfer mechanisms for distributing virtual machine images
to execution hosts.

2. Reduction of the size of virtual machine images.

3. Caching of virtual machine images at execution hosts.

The �rst two approaches directly reduce the time required to copy the disk images to
the execution host. The last approach, on the other hand, tries to facilitate reuse of
images that have already be copied to the execution host during an earlier deployment
phase. The caching approach sounds promising, because it can supersede the copy
process altogether in some cases, but it introduces new two new problems: keeping
the cached images in a pristine state so they can be reused and providing enough
space for a number of potentially huge virtual machine images. The virtual machine
image composition proposed in this chapter is aimed at reducing the size of virtual
machine image. A side bene�t of the image composition technique is the elimination
of the caching-related problems described above.

Traditionally, virtual machines in Virtualized Grid and Cloud Computing environments
are based on self-contained disk images stored as �les, each disk image representing a
virtual hard disk or a virtual partition in the case of Xen PV virtual machines. There are
parts of virtual machine images that are likely shared by many virtual machines, e.g.,
the operating system or commonly used shared libraries. Since these parts are stored
repeatedly in each virtual machine image, the shared parts have to be transferred
to the execution host over and over again, whenever a virtual machine is deployed.
Taking advantage of the similarities between di�erent virtual machine images can
not only prevent continuous retransmission of the same parts of virtual machine disk
images, but also reduces the storage requirements for the virtual machines. Especially
with respect to the frequency of virtual machine deployment operations, such an
approach seems promising.

In this chapter, a novel approach for providing disk images for Linux-based virtual
machines is presented: the Marvin Image Compositor (also referred to as Image Com-
positor). It is based on the idea of composition: a disk image containing a base
installation of an operating system is dynamically combined with another disk image
containing the actual application yielding a composite disk image. The composition is
non-invasive, i.e., the disk images – also called layers – involved are not modi�ed and
can thus be reused in other compositions.

The reusability of disk images makes the creation of an image cache at the execution
host feasible. This cache facilitates keeping a set of commonly required layers at every
host and to have them immediately available. Even if a virtual machine based on a
composite disk image has never been deployed on a speci�ed execution host, at least
one of the layers building the composite disk image is likely stored in the image cache:
the layer containing the operating system. If this virtual machine is to be deployed to
this execution host, only the (usually smaller) disk image containing the application
needs to be transferred. This does not only improve the deployment time, but also
reduces the load on the network and thus alleviates the problem of virtual machine
distribution in Virtualized Grid and Cloud Computing.
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Furthermore, the size of the virtual machine images kept in the storage system can be
signi�cantly reduced by this approach. Virtual machine image composition e�ectively
applies high-level deduplication by storing only once those parts of a virtual machine
image that are likely shared by many virtual machines, e.g., the operating system and
commonly used shared libraries.

While the primary focus of virtual machine image composition is the improvement
of deployment e�ciency, the use of composite disk images also a�ects the creation,
storage, and execution phases in the lifecycle of a virtual machine in di�erent ways.
Since the composition is done at runtime, the execution phase is obviously a�ected
by the use of composite disk images. Storage e�ciency is optimized by the use of
a shared base layer that the creation of a new virtual machine can build upon. The
phases in the lifecycle of a virtual machine that are related to image composition are
shown in Figure 4.1.

Undeployment

Continuous
Maintenance

Deployment

Execution

Creation

Deletion

Storage

Figure 4.1 Related Virtual Machine Lifecycle Phases. The primary focus
of virtual machine image composition regarding the lifecycle of a virtual machine is
the deployment phase. The creation, storage and execution phases are a�ected as
well.

Parts of this chapter have been published in [141, 142, 43].

4.2 Related Work

4.2.1 Distribution of Virtual Machine Images

We have previously worked on di�erent virtual machine distribution methods to
improve the deployment time of virtual machines in Virtual Grid and Cloud Computing
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environments. Thereby, we implemented a custom binary tree transfer method, a
peer-to-peer approach based on the BitTorrent protocol, and a multicast transfer
mechanism [43, 138]. These methods are targeted at scenarios in which a virtual
machine’s image �le is transferred completely to an execution host before it is started.

An alternative are streaming approaches that do not transfer the entire image �le to
an execution host, but rather stream required chunks of the image �le to the execution
host on demand, i.e., when the virtual machine tries to read these chunks, and cache
these chunks locally [27, 1, 127, 152]. Using these approaches, virtual machines can
be started immediately at the cost of I/O performance when reading from disk if the
corresponding chunk is not cached.

Nicolae et al. [106] have proposed a distributed repository for virtual machine images.
The authors advocate aggregating a part of the execution hosts’ local disks to build a
large distributed storage system. Like in the other streaming approaches listed above,
chunks are fetched on demand and cached locally to facilitate starting virtual machines
immediately. A prefetching mechanism is used to fetch and cache chunks before they
are actually accessed based on so-called prefetching hints that are generated while
the system learns the access pattern. This improves the I/O performance especially
during boot time that typically has deterministic access patterns.

Al-Kiswany et al. [6] have proposed VMFlock, an approach for e�cient deployment of
groups of virtual machine images, e.g., a multi-tier application. They use deduplication
to reduce the amount of data that needs to be transferred to the execution hosts, both
within the group of virtual machine images and between the group and images already
available at the execution hosts. VMFlock also enables starting the virtual machines
with only partial images available at execution hosts. Like the proposal of Nicolae et
al., VMFlock uses previously observed access patterns to prioritize important parts
when transferring the remainder of the images.

4.2.2 Reduction of the Size of Virtual Machine Image

VirtuaLinux [7] uses the Enterprise Volume Management System (EVMS) [42] as its
storage. It relies on EVMS snapshots, i.e., persistent views of a virtual machine’s disks
at a speci�c point in time, in order to e�ciently store derived versions of a virtual
machine. EVMS provides no easy way to extract the di�erences between a snapshot
and the current state of a virtual machine image, thus an e�cient transfer of virtual
machine images is not possible.

Parallax [166, 99] uses a custom mechanism for storing virtual machine images and
creating snapshots. Template images are used to build new virtual machine images
that share common blocks. The paper gives no details about the transfer of individual
images, because the authors propose the use of a central storage system instead of
local storage.

To reach the goal of fast migration of virtual machines, Sapuntzakis et al. [132] propose
a similar concept. Virtual machine images are built from a hierarchy of disks that are
combined using block-oriented COW techniques at runtime. Transfer of individual
disks is obviously possible, because it is a requirement for migration.
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A completely di�erent approach is used in Ventana [116]. Instead of virtual machine
images as a virtual counterpart to physical discs, views of a virtual �le system are used.
A view is a combination of one or more branches that are trees of �les and directories.
Additionally, Ventana provides a version history for each �le as well as Access Control
Lists (ACLs) at the �le or branch level. A component outside the virtual machine
called Host Manager is used to provide the view as NFS share, while the actual data is
stored on on external metadata and object servers and accessed using a specialized
protocol. This solution allows the reuse of common parts of a virtual machine image,
but relies on fast networks to be usable.

XenoServer [80] uses Network File System (NFS) to access the root �le system in
the virtual machine, which is provided by another virtual machine called Stacking
COW server running at the same host. The �le system consists of a local template
and one or more virtual machine speci�c layers called overlays. These overlays are
stored remotely and accessed via the Andrew File System (AFS). No details are given
on how the actual �le system is built or on the overlays itself. While the idea is
generally comparable to Image Composition, the additional virtual machine needed to
provide the �le system over NFS causes a performance degradation, because every I/O
operation not only involves a context switch to the Virtual Machine Monitor, but also
to another virtual machine that may in turn start a new I/O operation to get the data
via AFS. The authors mention another mode of operation of XenoServer, where no
Stacking COW server is required, but the �le system is built inside the virtual machine.
Unfortunately, no details are given about this approach, except that the overlay is
fetched from some network server.

A proposal for virtual machines for distributed workstations that can be used as Condor
nodes or virtual cluster has been made by Wolinski et al. [170]. Apart from features
like automatic network con�guration, IP over P2P, etc. the paper proposes a stacked
�le system based on UnionFS. Although there are similarities to the Marvin Image
Compositor, their proposal is less �exible: it is limited to two or three layers, whereby
two of these layers are reserved for speci�c parts of the �le system, it does not o�er the
option to include a RAM disk as layer, and lacks dynamic con�guration mechanisms
like preseeding and composition scripts.

Ha et al. [64] have proposed VM overlays to reduce the size of virtual machine images.
Their aim is to improve the provisioning time of cloudlets, i.e., trusted small-scale
Cloud data centers at the edge of the Internet that provide services to mobile devices
nearby [133]. The approach uses a base virtual machine that is already available at
the cloudlets and creates a VM overlay by computing the di�erences between the
base virtual machine and the actual virtual machine. When the virtual machine is
started at any cloudlet, only the di�erences need to be transferred. They are applied at
the base virtual machine to reconstruct the actual virtual machine. VM overlays bear
resemblance to layers used for image composition, but the former are not restricted to
virtual hard disks, but also include memory snapshots.

Additional techniques to further reduce the storage requirements of virtual machines
are described in Section 5.2.
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4.2.3 Caching of Virtual Machine Images

Sotomayor et al. [150] propose virtual machine image templates for Virtualized Grid
Computer. Image templates are generic reusable virtual machine images containing
both an operating system and a set of tools targeted at a speci�c user group. At
runtime, an image is created from the template and missing parts are added to that
image. The template is not modi�ed in this process and can thus be used again.
Contrary to regular image �les, virtual machine image templates can be cached at
execution hosts.

Jeswani et al. [73] propose Di�Cache, a technique for di�erential template caching
to reduce the size of the template cache. Contrary to Sotomayor et al., they use the
term template to denote ready-to-use virtual machine images in a cache. To facilitate
their reusability, templates are copied into image �les whenever an instance of a
corresponding virtual machine is started. Like the Image Composition approach,
Di�Cache is based on the fact that di�erent templates often have a high amount of
similarities. These similarities are exploited by storing only a few base templates and
a set of patches, i.e., �les capturing the di�erences between a base template and the
target template. A patch can be used to transform a base template into the target
template.

A similar approach is proposed by Zhou et al. [178]. They partition the templates
to be cached into clusters using k-means clustering. Each cluster contains a base
template and enough information to reconstruct all other templates of this cluster by
transforming base template.

Razavi and Kielmann [125] also advocate caching of virtual machines, but in contrast
to the previous two approaches they propose caching of chunks of image �les instead
of entire images �les to reduce the size of the image cache.

4.3 Design

Virtual machines are traditionally based on disk images comprising operating system,
shared libraries, and applications. Some parts of those disk images, e.g., the operating
system and some of the shared libraries, are typically shared by multiple virtual
machines. Nevertheless, a copy of those shared parts is contained in every virtual
machine image. These images are thus self-contained. A traditional virtual machine is
depicted in Figure 4.2.

Virtual machine image composition is based on the idea of separating disk images
into multiple layers that encapsulate the di�erent parts of the disk image: a part
containing the operating system and commonly used shared libraries likely shared
by many virtual machines, and a part containing the virtual machine speci�c part,
i.e., applications and their dependencies. A composite disk image is built from those
layers at runtime, providing a complete and consistent view to users and applications.
The process of building the composite disk image is called image composition, the tool
implementing the composition is called Image Compositor.
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Disk Image

Figure 4.2 Traditional Virtual Machine. A traditional virtual machine is based
on a self-contained disk image comprising both common and virtual machine specific
parts (depicted by the green and orange areas of the disk image, respectively). It is
important to note that there is no clear distinction between those parts (depicted by
the use of a gradient).

The layers can be seen as virtual machine building blocks that can be composed to build
di�erent virtual machine images. In the remainder of this thesis, virtual machines
based on a composite disk image are called layered virtual machines.

Three usage scenarios for the image composition technique are shown in Figure 4.3.
All disk images are based on a common base layer that contains a generic installation
of an operating system and commonly used shared libraries. In the �rst scenario, a
two-layer image is composed of the base layer and an user layer that contains software
installed by a user. This scenario is the equivalent to a regular virtual machine that is
created by a user without image composition. Similarly, in the second scenario, the
image is composed of the base layer and a vendor layer that contains one or more
preinstalled software products of a vendor. Providing a vendor layer with preinstalled,
directly usable software eases the burden of installation and con�guration on the user
and is a potential selling point. In the last scenario, a three-layer image is composed of
the base layer, a vendor layer and a user layer on top of it. This scenario combines the
former two scenarios to build an image containing both preinstalled software as well
as further extensions or software installed by the user. These are the most common
scenarios, although the image composition technique does not restrict the user to any
of these scenarios.

Base Layer

User Layer

Scenario 1

Base Layer

Vendor Layer

Scenario 2

Base Layer

Vendor Layer

User Layer

Scenario 3

Figure 4.3 Usage Scenarios for a Layered Virtual Machine. In scenarios 1
and 2, the virtual machines are based on a composite disk image consisting of two
layers: a common base layer and a user- or vendor-created layer, respectively. Scenario
3 combines the first two scenarios by including both the user- and vendor-created
layer in the composite disk image.

To facilitate reuse of layers, e.g., the base layer in all 3 scenarios above or the vendor
layer in the second scenario, the composition mechanism has to be non-invasive and

43



Chapter 4. Virtual Machine Image Composition

thus guarantee that the involved layers are not modi�ed. This can be achieved by
including a temporary layer into the composite disk image, so that all write operations
to the composite disk image are conducted on the temporary layer. The term temporary
layer implies that this kind of layer is discarded after the virtual machine using the
corresponding composite disk image is shut down. All non-temporary layers are
called persistent layers, because they can and should be reused. Figure 4.4 again shows
the three scenarios described above when a temporary layer is used. Such a temporary
layer can be based on a temporary virtual hard disk or a RAM disk, depending on
the amount of write operations that are expected during the execution of the virtual
machine.

Base Layer

User Layer

Temporary 
Layer

Scenario 1

Base Layer

Vendor Layer

Temporary 
Layer

Scenario 2

Vendor Layer

Base Layer

User Layer

Temporary 
Layer

Scenario 3

Figure 4.4 Composite Disk Image with Integrity Guarantee. This figure
shows the three scenarios from Figure 4.3 with a temporary layer. Only the temporary
layer is writable (the write barrier is shown as a dashed, red line), whereas all other
layers are write-protected. This setup protects the involved layers from changes.

If the modi�cation of a layer is intentional, for example, to create a new layer or to
update an existing one, no temporary layer is used, so that all write operations are
conducted on the highest layer in the composite disk image. Figure 4.5 again shows
the three scenarios described above when no temporary layer is used.

Base Layer

User Layer
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Base Layer

Vendor Layer
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Base Layer

Vendor Layer

User Layer

Scenario 3

Figure 4.5 Modification of a Layer in a Composite Disk Image. This
figure shows the three scenarios from Figure 4.3 without a temporary layer. Only the
highest layers are writable (the write barrier is shown as a dashed, red line), whereas
all other layers are write-protected. This setup facilitates the modification of the
highest layers.

By decomposing the virtual machine image into layers and basing virtual machines
on a shared base layer, the size of the individual layers is reduced in comparison to a

44



4.3. Design

regular virtual machine image. In combination with image caches at the execution
host and the reusability of layers enabled by the use of temporary layers, this can
reduce the deployment time of virtual machines as well as the network load during
deployment, if the base layer is already available at the execution host.

Another important bene�t of the image composition technique is the possibility to
use a single disk image concurrently in multiple virtual machines. Without image
composition, each virtual machine requires its own copy of the disk image. This
applies even to cloned virtual machines (see Section 3.3.2) that are based on a single
disk image. An example with two cloned virtual machines is depicted in Figure 4.6.
Before the �rst virtual machine can be started, the disk image has to be copied into
the local storage of the execution host (Figure 4.6a). Note that the image cache on
the execution host is optional in this case. Without an image cache, the disk image is
copied from the storage system. For a second virtual machine, another copy of the
disk image is required (Figure 4.6b).

Local Storage Image Cache

Disk Image

1

1

Virtual Machine View

Storage View

a) One Running Virtual Machine

Local Storage Image Cache

Disk Image

1

1

Virtual Machine View

Storage View

Disk Image

2

2

b) Two Running Virtual Machines

Figure 4.6 Cloning of Traditional Virtual Machines. Contents of the local
storage of an execution host when two cloned virtual machines are started consecu-
tively. Individual copies of the disk image will be created for each of the two virtual
machines. Note that the image cache is optional.

The same scenario of two cloned virtual machines is depicted in Figure 4.7 for layered
virtual machines. The two layers required for the composite disk image are copied to
the image cache of the execution host and are used directly, i.e., no further copying of
those layers is required. A temporary layer is created either in the local storage of
the execution host (Figure 4.7a) or in its RAM (not depicted). For the second virtual
machine, only a new temporary layer needs to be created. The other two layers are
used as-is (Figure 4.7b).

The remainder of this section is structured as follows. In Section 4.3.1, a list of
requirements for image composition is de�ned. Sections 4.3.2 and 4.3.3 describe two
concepts that are essential for the design of an image composition system: the actual
composition technology and the Linux boot process. Based on these concepts and the
requirements, Section 4.3.4 illustrates the design of the Image Compositor.
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Figure 4.7 Cloning of Layered Virtual Machines. Contents of the local stor-
age and image cache of an execution host when two cloned virtual machines are
started consecutively. Both virtual machines share the layers in the image cache. No
additional copying of those layers is required. Only an individual temporary layer
must be created for both virtual machines.

4.3.1 Requirements

An Image Compositor needs to satisfy all requirements listed in this section to provide
the desired functionality. The requirements are divided into two parts: fundamental
requirements that are absolutely necessary to implement image composition and
speci�c requirements for Virtualized Grid Computing environments.

4.3.1.1 Fundamental Requirements

The following list contains the fundamental requirements on an Image Compositor:

R4.1 Create composite disk images that are composed of arbitrary layers.

R4.2 Create composite disk images that are built from an arbitrary number of
layers.

R4.3 Create composite disk images that contain read-only layers and are
writable nevertheless.

R4.4 Create composite disk images that use RAM disks as temporary layer.

R4.5 Create composite disk images that are based on a configuration provided
at composition time.

R4.6 Create composite disk images that are transparent to application so�ware.

Requirement R4.1 ensures the �exibility of the Image Compositor that is required to
support the usage scenarios for layered virtual machines de�ned above (see Figure 4.3).
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While there are obviously dependencies between layers, i.e., a composite disk image
built from a base layer and a user layer de�nes a working disk image, while a composite
disk image built only from a vendor layer and a user layer does not, there should be
no restrictions whatsoever imposed by the Image Compositor that prevent composing
arbitrary layers. Therefore, a user or vendor layer can be combined with a base layer
other than the one it was build with.

That �exibility comes at the price of potentially introducing compatibility problems
between layers that are combined in a composite disk images. For example, if the base
layer is replaced with another layer that does not contain all the packages available in
the original base layer, software installed in the upper layer might not work anymore.
Thus, logical compatibility of layers has to be guaranteed by the virtual machine
management system that has to store the composition of layers for each virtual
machine. A compatibility checker for di�erent layers is presented in Section 6.3.2. It
is intended to ensure the compatibility of a user or vendor layer with an updated base
layer, but can also be used to verify layer compatibility in general.

Since the usage scenarios for layered virtual machines de�ned in Figure 4.3 are only
examples, other use cases with more complex compositions of layers are possible
and should be supported. Requirement R4.2 ensures that the Image Compositor is
not limited to �xed compositions of layers like the ones de�ned in the scenarios and
supports other use cases as well.

Reusability of layers is the basis for reducing the deployment time of virtual machines.
Since reusability is only guaranteed if the layers are not changed, they have to be
included in the composite disk image in a read-only fashion. Requirement R4.3 ensures
that the Image Compositor supports this mode of usage and provides the necessary
means to redirect write operations to a temporary layer.

In some use cases, the creation of a virtual hard disk based temporary layer is either
not necessary or not possible. Examples of such use cases are virtual machines running
software that barely writes to disk or execution hosts without local storage for the
virtual hard disk. For those cases, Requirement R4.4 ensures that the Image Compositor
supports the use of RAM disks as temporary layer.

Requirement R4.5 ensures that the �exibility provided by Requirements R4.1 to R4.4
can be utilized. Instead of a �xed layer composition that is de�ned at the creation time
of the virtual machine and stored in the highest layer, each time the virtual machine
is started a speci�c composition is selected and the corresponding con�guration is
passed to the Image Compositor that combines the layers accordingly. This facilitates
the recombination of layers to build new composite disk images without modifying
the involved layers. Such a modi�cation does not only violate Requirement R4.3, but
also compromises the reusability of the layer. Furthermore, this dynamic con�gura-
tion at composition time also is the key enabler of switching between the read-only
composition (see Figure 4.4) that protects all involved layers from changes and the
writable composition (see Figure 4.5) that enables modifying the highest layer.

Finally, Requirement R4.6 ensures that the use of a composite disk image as virtual
machine image is transparent to application software running inside the virtual ma-
chine. The composition may not a�ect or break application software in any way. This
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transparency requirement does not include system software, i.e., the operating system
or software for system maintenance that may or even has to be able to detect the
presence of a composite disk image depending on the implementation technique used.

4.3.1.2 Grid-specific Requirements

As Foster stated in his three point checklist [51], the �rst characteristic of a Grid is that
it coordinates resources from di�erent Grid sites, i.e., di�erent administrative domains
without centralized control. To put it simply, Grid Computing is about executing jobs
spanning either a single or multiple Grid sites. In Virtualized Grid Computing, jobs
are executed inside virtual machines that are prepared by the user, typically at his
local Grid site. Applying the �rst characteristic of Grid Computing to Virtualized Grid
Computing implicates that these virtual machines have to be exchanged between and
executed on di�erent Grid sites.

Although virtual machines are self-contained, some dependencies to the execution
environment remain. Such dependencies include, but are not restricted to: network
infrastructure, Grid head node and job scheduler, as well as home directories that are
usually provided via Network File System (NFS) [146] or comparable distributed �le
systems. These services are provided by the Grid site and are very likely heteroge-
neous because of the architecture of the Grid. A speci�c con�guration of the virtual
machine is thus required to be able to execute it on a Grid site other than the one it
was built for. While the network con�guration can be automated via the Dynamic
Host Con�guration Protocol (DHCP) [39], the con�guration of the other required
services has to be done manually inside the virtual machine to make it fully usable.
Unfortunately, the Grid site that is used to execute a job, and therefore the speci�c
execution environment, is not known in advance, but selected by the scheduler based
on the workload of the di�erent sites and other parameters. Thus, con�guration
information for all Grid sites has to be embedded into the virtual machines together
with a tool that automatically selects and applies the right con�guration at boot time.

Another way to solve this con�guration problem is to employ image composition and
use a site layer that contains the speci�c con�guration of a Grid site. The site layer
is added to the composite disk image at boot time. While this is a feasible approach,
it increases the complexity of the composite disk image by adding a complete layer,
when actually only a few con�guration �les have to be added or replaced. It is more
e�cient to do the necessary con�guration changes in the virtual machine without
adding another layer to the composite disk image.

This leads to the following two speci�c requirements that have to be satis�ed by an
Image Compositor that is applicable in Virtualized Grid Computing:

R4.7 Create composite disk images that contain additional files provided
externally via an injection mechanism at boot time.

R4.8 Create composite disk images that can be modified by scripts, both stored
inside the layers and injected, during the composition of the layers.
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Requirement R4.7 ensures that �les in a composite disk image can be easily replaced or
new �les can be added without adding a complete layer to the composite disk image.
Files from an external source are injected into the composite disk image by preseeding
the temporary layer, i.e., copying the �les to the temporary layer before the composite
disk image is build. Preseeding should be limited to temporary layers, to keep the
persistent layers in a pristine state and ensure their reusability. This mechanism
is intended for adding con�guration �les to a virtual machine to adopt it to a new
execution environment, so this restriction does not limit the usability of the overall
system.

In some cases, adding or replacing �les might not be enough to adopt the con�guration
of a virtual machine to the execution environment. Arbitrary con�guration changes
can be done using scripts that are executed inside the virtual machine at composition
time. Requirement R4.8 ensures that the Image Compositor provides an option to
execute such composition scripts. The scripts can either be provided as part of one
of the layers that is used to build the composite disk image or injected using the
preseeding mechanism described above.

4.3.2 Composition Techniques

The actual composition of layers can be achieved at two di�erent levels: at the level
of block devices and at the level of �le systems. The former approach implies that the
Image Compositor has to provide a virtual block device containing a single, combined
�le system with the contents of all layers. The latter approach implies that the
Image Compositor uses multiple, independent block devices containing individual
�le systems that are combined at the virtual �le system (VFS) abstraction layer in
the kernel. In this section, both approaches are compared and their advantages and
disadvantages are assessed in the context of virtual machine image composition.

At the block device level, a promising technology to implement the composition
of layers is redirect-on-write. It is widely used in the snapshot feature of modern
virtualization products that enables users to roll back any changes to a virtual machine
by returning to an older state of a virtual hard disk. The latest version of Linux Logical
Volume Manager (LVM) [98] also enables the creation of writable snapshots that are
based on redirect-on-write. At the �le system level, union mounts are the suitable
technology to implement composition of layers. For Linux, the most prominent
implementations are aufs [108] and UnionFS [173, 122, 157]. Other implementations
exist, but they are less widely used. Support for one or both of these two tools is
available in almost all Linux distributions.

4.3.2.1 Block Device Level: Redirect-on-write

Redirect-on-write technology applied at the block device level (referred to as block-
level in the following) is illustrated in Figure 4.8. In this example, a composite disk
image consisting of a read-only layer that contains the two �les file1 and file2 in
the directories dirA and dirB, respectively, and a writable layer. Initially, the writable
layer is empty (Figure 4.8a). When file1 is modi�ed, the new blocks are written –
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or redirected – to the writable layer (Figure 4.8b). While the unmodi�ed blocks of
file1 are accessible through the writable layer, the modi�ed blocks are hidden by
the blocks in the writable layer. Adding the new �le file3 to dirA is easier: all its
blocks are written to the writable layer (Figure 4.8c). They hide the empty blocks in
the read-only layer.

/dirB/file2/dirA/file1

a) Initial State

/dirB/file2/dirA/file1

/dirA/file1 /dirB/file2

b) File Modified

/dirB/file2

/dirA/file3

/dirA/file1

/dirB/file2/dirA/file1

c) File Added

Figure 4.8 Redirect-on-write Example. A composite disk image consisting of
a read-only layer and a writable layer, combined with block-level redirect-on-write
technology. The contents of the layers are shown in the initial state a), a�er file1 is
modified b), and a�er file3 is added c). The outlines of both file1 and file2 are
illustrated in the writable layer to show the 1:1 correlation between block numbers in
both layers.

There is a 1:1 correlation between block numbers in both layers that are combined
with block-level redirect-on-write technology. For instance, to modify block 1234
of the read-only layer, the modi�ed block needs to be stored at block 1234 of the
writable layer1. Thus, this technology induces a tight coupling between the layers of
a composite disk image. Therefore, the underlying layer in a composite disk image
implemented using this technology must not be changed, because those changes will
very likely result in broken �le system structures or worse errors.

The redirect-on-write approach is related to the copy-on-write approach that was used
for read-only snapshots in the �rst version of LVM. Often, the term copy-on-write
is synonymously used for both technologies, although their goals are completely
di�erent. Regarding the example in Figure 4.8, redirect-on-write ensures that the
underlying layer is kept in pristine state and all write accesses are redirected to the
upper layer. On the other hand, copy-on-write would copy the unmodi�ed blocks from
the underlying to the upper layer before writing modi�ed blocks to the underlying layer.
The fundamental di�erence is that after throwing away the upper layer, the underlying
layer would contain the pristine state using redirect-on-write and the state after the
last write access using copy-on-write. Thus, the copy-on-write technology cannot be
used to implement an Image Compositor without breaking Requirement R4.3.

An assessment of block-level redirect-on-write technology regarding the requirements
of composite disk images is given in Table 4.1.

1 Most implementations of redirect-on-write approaches use some kind of mapping to enable arbitrary
placement of blocks. Thus, the writable layer, or to be precise the underlying �le, can be much smaller
than the read-only layer it has been combined with, depending on the number of changes.
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Table 4.1 Assessment of Redirect-on-write Technology. An assessment of
the suitability of block-level redirect-on-write technology for providing composite
disk images.

Requirement Assessment of Redirect-on-write Technology

Fundamental Requirements

R4.1 × Because of the tight coupling between layers it is not possible
to combine arbitrary layers to a composite disk image.

R4.2 X There is no layer limit for the number of layers that can be com-
bined to a composite disk image using the block-level redirect-
on-write technology.

R4.3 X This requirement is satisfied when the redirect-on-write tech-
nology is used together with a writable temporary layer.

R4.4 X The redirect-on-write approach is independent on the storage
location of the writable layer.

R4.5 X Because the composition of the disk image is done outside the
virtual machine (see R4.6), configuration at composition time is
not an issue.

R4.6 X A composite disk image built using block-level redirect-on-write
technology is exposed as a file or block device that can be used
as disk image for a virtual machine. The composition is done
outside the virtual machine and thus completely transparent to
both application and system so�ware.

Grid-specific Requirements

R4.7 X Because the composition of the disk image is done outside the
virtual machine (see R4.6), additional files can be easily added
to the composite disk image during the composition process.

R4.8 (X) Because the composition of the disk image is done outside the
virtual machine (see R4.6), the execution of scripts during the
composition is a potential security risk, at least for scripts in-
cluded in the layers, because they might be malicious.

X: requirement satisfied,×: requirement not satisfied, (X) : requirement partly satisfied

4.3.2.2 File System Level: Union Mounts

The union mount technology applied at the �le system level is illustrated in Figure 4.9.
The example corresponds to the block-level redirect-on-write example in Figure 4.8.
Again, there is a read-only layer containing two �les and an initially empty, writable
layer (Figure 4.9a), except that in this case a �le system level view is given. When
file1 is modi�ed, it is �rst copied to the writable layer. After a copy of file1 exists
in the writable layer, all read and write accesses to file1 are redirected to the writable
layer. The old version of file1 in the read-only layer is hidden by the new version
in the writable layer (Figure 4.9b). The newly added �le file3 is directly written to
the writable layer (Figure 4.9c).

To emphasize the di�erences between the redirect-on-write approach at the block-
level and union mounts at the �le system level, a block-level view of the layers from
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Figure 4.9 Union Mount Example (File System Level View). A composite
disk image consisting of a read-only layer and a writable layer, combined with a
union mount. The contents of the layers are shown in the initial state a), a�er file1
is modified b), and a�er file3 is added c).

Figure 4.9 is given in Figure 4.10. When file1 is modi�ed (Figure 4.10b), the complete
�le is copied to the writable layer. Then the modi�cations are written to the copy,
depicted by the emphasized blocks 2 and 4 of the �le in the writable layer. In contrast
to the block-level redirect-on-write approach, the unmodi�ed blocks are part of the
writable layer too. The original �le in the read-only layer is hidden at the �le system
level, not at the block-level. This fact is emphasized by Figure 4.10c, where file3
apparently overlays file2, without actually hiding it. Thus, the coupling between
the two layers is loose.

/dirB/file2/dirA/file1

a) Initial State

/dirB/file2/dirA/file1

/dirA/file1

b) File Modified

/dirB/file2/dirA/file1

/dirA/file3/dirA/file1

c) File Added

Figure 4.10 Union Mount Example (Block-level View). The corresponding
block-level view of the composite disk image that is combined with a union mount
(see Figure 4.9). The contents of the layers are shown in the initial state a), a�er
file1 is modified b), and a�er file3 is added c).

In contrast to the block-level approach, the result of composition using the �le system
level approach is not exposed as a disk image, but as �le system. Unfortunately, a �le
system cannot be used as virtual hard disk for a virtual machine, because virtual hard
disks need to be either a block device or an image �le. Thus, the composition has to
be done inside the virtual machine. The �le system level approach is thus a bit less
transparent compared to the block-level approach. Technically, both the block-level
and the �le system level approach are redirect-on-write technologies, although union
mounts rely on a copy-up process that copies �les to be modi�ed completely to the
writable layer before the modi�ed data is written.
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An assessment of union mounts regarding the requirements of composite disk images
is given in Table 4.1.

Table 4.2 Assessment of Union Mounts. An assessment of the suitability of
union mounts for providing composite disk images.

Requirement Assessment of Union Mounts

Fundamental Requirements

R4.1 X Because of the loose coupling between layers arbitrary layers
can be combined to a composite disk image.

R4.2 X There is no layer limit for the number of layers that can be
combined in a composite disk image using a union mount.

R4.3 X This requirement is satisfied when the union mount includes a
writable temporary layer.

R4.4 X The union mount approach is independent of the storage loca-
tion of the writable layer.

R4.5 (X) Because the composition of the disk image is done inside the
virtual machine (see R4.6), the configuration has to be passed
into the virtual machine to the Image Compositor. Di�erent
options to solve this problem are described in Section 4.3.4.

R4.6 (X) A composite disk image built using union mount technology is
exposed as file system and cannot be used as disk image for a
virtual machine. Thus, the composition has to be done inside the
virtual machine. This kind of composition is visible to system
so�ware, but typically transparent to application so�ware.

Grid-specific Requirements

R4.7 (X) Because the composition of the disk image is done inside the
virtual machine (see R4.6), additional files have to be passed into
the virtual machine to the Image Compositor. Di�erent options
to solve this problem are described in Section 4.3.4.

R4.8 X Because the composition of the disk image is done inside the
virtual machine (see R4.6), the execution of scripts during the
composition is secure even for potentially malicious scripts in-
cluded in the layers, because their impact is limited to the virtual
machine.

X: requirement satisfied, (X) : requirement partly satisfied

4.3.2.3 Discussion

A summary of the suitability assessments of the redirect-on-write and union mount
approaches for implementing composite disk images is given in Table 4.3 by summing
up the satis�ed, partly satis�ed and unsatis�ed requirements. Since neither of the
approaches does completely satisfy all requirements, the partly satis�ed and unsatis�ed
requirements are examined below before a decision between the approaches is taken.

Union mounts do not completely satisfy Requirement R4.6, because the composition
has to be done inside the virtual machine. The existence of the layers is thus visible to

53



Chapter 4. Virtual Machine Image Composition

Table 4.3 Summary: Assessment of Composition Techniques. Compari-
son of the numbers of satisfied, partly satisfied and non-satisfied requirements for
each of the two composition techniques.

Satisfied

Approach Fully Partly Not at All

Redirect-on-write 6 1 1

Union Mounts 5 3 0

the software inside the virtual machine, at least to the operating system, but potentially
also to application software. Details about these violations of Requirement R4.6 as
well as about limiting the visibility of and preventing the access to the raw layers
are given in Section 4.3.4. Additionally, union mounts do not completely satisfy
Requirements R4.5 and R4.7, because depending on the virtualization technology used,
there is no direct way to hand over the con�guration of the composite disk image or
additional �les for injection into the composite disk image to the Image Compositor
running inside the virtual machine. For these cases, solutions will also be presented
in Section 4.3.4 that help to fully satisfy the stated requirements with this approach.

The redirect-on-write approach does not completely satisfy Requirement R4.8 because
of a security concern regarding the execution of potentially malicious scripts outside
of the virtual machine during the composition process. It is likely possible to work
around this issue by splitting the composition process into a composition phase,
running outside the virtual machine, and a post-composition phase, running inside
the virtual machine. In this case, the scripts are executed in the post-composition
phase to limit their access to the virtual machine. On the contrary, Requirement R4.1
is not satis�ed at all by the redirect-on-write approach and there is no way to work
around that limitation.

The detailed examination of partially satis�ed and unsatis�ed requirements shows
that union mounts are the appropriate technology for the Image Compositor. For all
partially satis�ed requirements workarounds are available that constitute acceptable
solutions to satisfy the requirements of image composition. The redirect-on-write
approach on the other hand fails to satisfy Requirement R4.1, one of the primary
requirements to make image composition �exible enough to support all of the desired
scenarios. Thus, the union mount approach is selected for the implementation of the
Image Compositor.

4.3.3 Integration into the Boot Process

With the decision in favor of union mounts instead of redirect-on-write technology, the
Image Compositor has to be integrated into the Linux boot process. This integration
is necessary, because the image composition has to be done inside the virtual machine,
as a union mount cannot be used as virtual hard disk. Finding the right position in
the boot process is important to satisfy all requirements regarding image composition.
In this section, an overview of the Linux boot process is given that highlights the
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in�uence of di�erent virtualization techniques, and potential positions in the boot
process are determined and assessed.

4.3.3.1 Linux Boot Process on Physical Machines

Based on the description of Jones [75], a dissection of the Linux boot process into six
phases is presented in Figure 4.11. The �rst two phases are generic and can boot any
operating system, while the last four phases are Linux speci�c. The individual phases
are detailed below.
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Figure 4.11 Boot Process of Linux. There are six phases in the boot process of
Linux, each controlled by another component. The first two components are generic
and can boot any operating system, while the la�er four phases are specific to Linux.

Phase 1 - Firmware — This phase of the boot process is controlled by the �rmware,
a very much hardware dependent piece of software embedded into every com-
puter system. On x86-based computers the Basic Input/Output System (BIOS) is
the prevalent �rmware interface, with its competitor Uni�ed Extensible Firmware
Interface (UEFI) – the successor of the Extensible Firmware Interface (EFI)– rapidly
catching up in newer systems. UEFI aims to overcome limitations of the BIOS
that date back to the �rst IBM PC.

The main tasks of both BIOS and UEFI are the detection and initialization of
devices, e.g., CPU, RAM, video card, and disk drives. After the hardware is
ready, control is transferred to the stage 1 boot loader.

Phase 2 - Stage 1 Boot Loader — This phase of the boot process is controlled by
the stage 1 boot loader. In the BIOS case, it is loaded by the �rmware from the
Master Boot Record in the �rst sector of the boot disk. It consists of the actual
boot loader and the partition table. The boot loader scans the partition table for
the active partition, loads the stage 2 boot loader from the Volume Boot Record
of that partition and transfers control to it.
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In the UEFI case, the stage 1 boot loader is integrated into the �rmware. It is able
to read the EFI System Partition, a special partition on the boot disk containing
among others the stage 2 boot loaders of all installed operating systems. If
multiple operating systems are installed, the EFI Boot Manager selects the boot
loader to use either by consulting its con�guration or by letting the user choose
the boot loader from a menu. Then, it loads the selected stage 2 boot loader and
transfers control to it.

Phase 3 - Stage 2 Boot Loader — This phase of the boot process – the �rst that is
speci�c for Linux – is controlled by the stage 2 boot loader. It is responsible for
loading the Linux kernel and the initial RAM �le system (initramfs), an archive
of �les required for booting the system (see Linux Kernel). Both the kernel
and the initramfs are regular �les in either the /boot partition. After loading
both �les, the memory address of the initramfs and the kernel command line –
containing additional parameters for the kernel, e.g., the root device, the mount
option for the root device, and whether to boot into single user mode or not –
are passed to the kernel through the kernel header structure and the kernel is
started.

The most prevalent boot loader for Linux nowadays is the Grand Uni�ed Boot-
loader (GRUB) [63]. It typically uses a con�guration �le on the /boot partition
to store the parameters mentioned above, but also facilitates interactive usage
for troubleshooting.

Phase 4 - Linux Kernel — In this phase of the boot process, the kernel takes over
control of the system. The Linux kernel is typically stored as a compressed
image, so it �rst decompresses itself. Then, it initializes all important subsystems
and extracts the contents of the initramfs into the rootfs, an in-memory root
�le system that is always present in Linux 2.6 and later systems [82]. It is used
as temporary root �le system and enables the kernel to �nish booting without
mounting any physical device [75].

At this point, the actual root �le system is not yet mounted, although the kernel
has �nished booting. Most likely, the kernel does not even include support for
the root �le system or its underlying block device, but relies on additional kernel
modules. The kernel transfers the control of the boot process to the initramfs,
more precisely to the init script inside the initramfs.

Before the initramfs was introduced, the Linux kernel used to mount the root
�le system itself. This functionality is still included in modern Linux kernels,
although most distributions switched to using initramfs because of the improved
�exibility and modularization of the kernel. This way of booting requires that all
necessary drivers as well as support for the root �le system is compiled into the
kernel, as no modules are available before the root �le system is mounted. The
root �le system is speci�ed using the kernel command line. After initialization,
the kernel mounts the root �le system and transfers control directly to the init
system. This is depicted in Figure 4.11 with the dotted arrow.

Phase 5 - Initial RAM File System — This phase of the boot process is controlled
by the init script contained in the initial RAM �le system that is responsible for
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mounting the actual root �le system. It determines the root �le system based
on the kernel command line and mounts it. If the kernel has no built-in support
for the root �le system, the init script loads the required kernel modules from
the initramfs beforehand.

The last and most important step in the init script is to switch the system’s
root directory from the initramfs to the actual root �le system (chroot) and to
transfer control to the actual init system. This is done by replacing the shell
process executing the init script with the main binary of the init system (execve).
Before this last step, it moves the special �le systems /proc, /dev, and /sys
into the actual root �le system and deletes all �les from the initramfs to free the
memory occupied by them.

Phase 6 - Init System — The �nal phase in the boot process is controlled by the
init system that takes care of completing the system startup by starting the
required services. Depending on the Linux distribution, either a System V style
init system, e.g., in Debian, Upstart , e.g., in Ubuntu, or systemd , e.g., in Fedora
or openSUSE, can be used. The following description focuses on a System V
style init system.

The main purpose of the init system is to launch all con�gured services during
the system boot process and to stop them during the system shutdown. This is
typically realized using a set of so-called init scripts that contain instructions on
how to launch and deactivate a service and dependency information allowing to
derive the service launch order. Advanced implementations provide additional
features like service monitoring and automated restarts or crash reports.

4.3.3.2 Linux Boot Process in Virtual Machines

The description of the Linux boot process above focuses on physical machines. De-
pending on the type of virtualization used, the boot process of a virtual machine di�ers
slightly from the one described above.

Full Virtualization

The full virtualization technology emulates a complete computer system to support
running unmodi�ed operating systems in virtual machines. The emulation includes
not only the typical devices that the user of this virtualization technology deals with,
i.e., hard disks and network adapters, but also low-level devices like the system chipset
and a virtual �rmware [160]. Because of this comprehensive emulation of hardware,
the boot process of a virtual machine running Linux is identical to that of a physical
machine. Both stages of the boot loader, the Linux kernel and the initramfs are part
of the virtual hard disk of the virtual machine, so the virtual �rmware can load and
execute the stage 1 boot loader that continues the boot process as described above.

There is an exception to the statement above. Although KVM and Xen HVM are
based on hardware-assisted full virtualization, and thus typically use the same boot
process as a physical machine, both support the direct kernel boot mode. In this mode,
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which is compatible to the default boot process for Xen PV described below, the kernel,
initramfs, and kernel command line can be manually speci�ed when starting a virtual
machine. The hypervisor then loads both the kernel and initramfs directly without
relying on a boot loader. Nevertheless, the virtual hardware needs to be initialized, so
the virtual �rmware is still required. The boot process in this case thus starts with
Phase 1, then the hypervisor loads the kernel and initramfs directly into the virtual
machine’s memory (replacing Phases 2 and 3), and �nally the boot process continues
as usual with Phase 4.

Paravirtualization

The paravirtualization technology can only run modi�ed operating systems in virtual
machines. On the other hand, there is no need to emulate a complete computer system,
because a modi�ed operating system does not rely on emulated hardware. Conse-
quently, there is neither a �rmware nor a boot loader that can load the Linux kernel.
Since Xen is the prevalent hypervisor based on paravirtualization, this description is
focusing on Xen PV virtual machines.

Traditionally, neither the Linux kernel nor the initramfs are part of a Xen virtual
machine image, but instead both are kept on the �le system of the dom0. Both the
kernel and initramfs of a virtual machine are set in the virtual machine con�guration
�le, together with the kernel command line. The �rst three phases of the Linux
boot process described above do not exist in the case of paravirtualization. Instead,
the hypervisor itself loads the chosen Linux kernel, initramfs and kernel command
line directly into the memory of the virtual machine (replacing the Phases 1 to 3).
Afterwards, it passes the memory address of the initramfs and kernel command line
to the kernel through the corresponding header structures and starts the kernel. The
boot process then continues as usual with Phase 4. The complete Linux boot process
of a Xen virtual machine is depicted in Figure 4.12.
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Figure 4.12 Boot Process of Linux in a Xen Virtual PV Machine. There
are four phases in the boot process of Linux in a Xen virtual machine. The first
component is the hypervisor that replaces the firmware and boot loaders used by
physical machines and virtual machines using full virtualization. The remaining three
phases are identical to the boot process as shown in Figure 4.11, except that both the
Linux kernel and the initial RAM disk are provided externally.
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More recently, two tools where developed that allow to store the Linux kernel, the
kernel command line and the initramfs inside the virtual machine image: pyGrub [175]
and PV-GRUB [176]. The former is a python script that parses a GRUB con�guration
�le stored in the virtual machine image, extracts both the chosen Linux kernel and
initramfs from the virtual machine image and copies them to a temporary directory
in the �le system of the dom0. From that point on, the actual boot process is identical
to the traditional process described above. The pyGrub approach enables users to add
additional options to the kernel command line via the virtual machine con�guration
�le.

PV-GRUB, on the other hand, is a version of GRUB based on Xen Mini-OS [118].
Instead of �rmware routines, it uses functions of Mini-OS for hardware access, e.g.,
reading the Linux kernel from the virtual hard disk. This approach is considered
as more secure compared to pyGrub, since the parsing of the GRUB con�guration
is done inside the domU and noting is copied from the domU to the dom0. The
hypervisor loads the PV-GRUB binary, consisting of both Mini-OS and PV-GRUB, into
the memory of the virtual machine and starts it like a normal Linux kernel (replacing
Phases 1 and 2). Then boot process then continues with Phase 3.

4.3.3.3 Potential Boot Process Phases for Integration

In this section, the di�erent phases of the boot process are assessed with regard to
hosting the image composition process. Of the six phases of the boot process identi�ed
in Section 4.3.3.1, the �rst three phases are speci�c to the boot process of either physical
machines or virtual machines using hardware-assisted or full virtualization. The same
holds true for the �rst phase identi�ed in Section 4.3.3.2 that is speci�c to virtual
machines using paravirtualization. Thus, all of these phases can be excluded from
further assessment. The latter three phases, which are identical in both cases, are
further assessed below.

The Image Compositor can be placed in any of the three remaining phases of the
Linux boot process. Depending on the phase, di�erent techniques have to be used
to implement the Image Compositor and there are speci�c obstacles to overcome to
make image composition working. The implementation techniques and obstacles are
discussed below.

Linux Kernel — To be integrated directly into the Linux kernel, the Image Composi-
tor has to be implemented as a Linux kernel module. This approach imposes the
same restriction as the boot process without an initramfs: everything needed for
the image composition, e.g., all required drivers and �le system implementations,
needs to be compiled into the kernel, otherwise the system cannot boot from
the composite disk image.

The basic image composition functionality can be easily implemented in the
kernel. On the other hand, complex parts of the Image Compositor that are
needed to satisfy Requirements R4.5, R4.7 and R4.8, might be more cumbersome
to implement in the kernel space. Some advanced features are even impossible
to implement, because the kernel does not contain the required functionality.
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One example is the injection of tar archives that are automatically extracted
in the composite disk image, because the kernel cannot read tar archives. A
workaround to support archives nevertheless is to use the less widely known
cpio archive format that is included in the kernel because it is used to store the
contents of the initramfs. Requirement R4.8 cannot be implemented at all using
this approach, unless a scripting engine is added to the kernel, which is very
likely a bad idea from a security standpoint.

So, the only way to satisfy all requirements is to rely on applications that
are contained in the base layer of the composite disk image. This approach
does not only facilitate the implementation of features like the injection of
tar archives, but it is also the only reasonable way to implement the scripting
support for modi�cations of the composite disk image during the composition
(Requirement R4.8). Unfortunately, this approach imposes some requirements
on the base layer used for the image composition, i.e., speci�c tools need to be
installed in speci�c locations, and thus contradicts Requirement R4.1.

Initial RAM File System — The initramfs contains a minimal system and an init
script that mounts the root �le system. Typically, this is not a monolithic script,
but a controlling script that delegates control to di�erent scripts for speci�c
use cases, e.g., local and network root �le system. The Image Compositor can
be placed in this phase by adding such a script to the initramfs that initiates
the image composition, and requesting the control script to invoke it. When
the Image Compositor is integrated in this way, the resulting initramfs remains
generic, i.e., it can boot any virtual machine, whether it uses a composite disk
image or not. Alternatively, an initramfs dedicated to image composition can
be created that only contains the Image Compositor, at the cost of loosing the
�exibility the former approach provides.

Since it is supposed to be �exible, all required kernel modules are very likely al-
ready part of the initramfs. Additionally, the minimal system obviously contains
a shell for executing the included scripts and a set of useful tools that can be
leveraged by the Image Compositor. Additional kernel modules and tools can be
added to the initramfs, because the tools that create it are typically extensible.

The options for implementing the Image Compositor are restricted to a native
binary or a shell script, unless an execution environment for another language
like python is added to the initramfs. But since the initramfs should be as small
as possible to prevent a negative impact on boot time, using such a language
should be carefully considered.

Init System — As stated in the description of the Linux boot process in Section 4.3.3.1,
after the root �le system is mounted, the system’s root directory is switched
to the root �le system2 and the init system takes over control. The image
composition must obviously be �nished at this point of time, so the init system
can begin to start all the con�gured services that make up the system.

2 Unless the kernel mounted the root �le system itself, without relying on an initramfs. In this case, the
system’s root directory is already set correctly.
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One way to place the Image Compositor in the last phase of the boot process is
to schedule it for early execution by the init system, before any other service
is started, and to switch the system’s root directory again. Unfortunately, it is
non-trivial to switch the system’s root directory as soon as a running process
exists that depends on that root directory. The init system, or more speci�cally
its PID 1 process, the �rst process started by the Linux kernel3 and the last to
exit during a shut down, is such a process. Moreover, it is a process that cannot
be terminated, since it performs essential function for a Linux system. The
procedure to nevertheless switch the system’s root directory in this kind of
situation is described in Section 4.4.6.2.

Another way to place the Image Compositor in this phase is to move the main
binary of the init system and replace it with the Image Compositor itself. After
the composition is �nished, the Image Compositor must switch the system’s
root directory and transfer control to the actual init system, like the init script
of the initramfs does.

Independent of the way selected to integrate the Image Compositor, any tool
or language that is available in the base layer of the composite disk image
can be used for implementing the Image Compositor. As already stated in the
assessment of the Linux kernel integration, relying on applications available
in the base layer imposes some requirements on this layer, which contradicts
Requirement R4.1. But even if the Image Compositor is implemented as a native
binary without any dependencies, the binary itself needs to be part of the base
layer, so Requirement R4.1 is not satis�ed anyway.

4.3.3.4 Discussion

The assessment results of the three last phases in the Linux boot process with regard
Image Compositor placement are summarized in Table 4.4. Clearly, Requirement R4.1
is a critical requirement for the selection of the right phase to integrate the Image
Compositor.

Detailed examination of the assessment results shows that the integration into the
initramfs is the most promising approach, because it fully satis�es Requirement R4.1
and imposes almost no restrictions regarding the implementation of the Image Com-
positor. The integration into one of the other two phases either complicates the
implementation excessively or introduces dependencies on the base layer that contra-
dict Requirement R4.1. Furthermore, there is no advantage over the integration into
the initramfs in the other two approaches that can compensate their drawbacks.

4.3.4 Proposed Solution

In this section a novel approach to image composition is proposed that satis�es all
requirements imposed on an Image Compositor in Section 4.3.1.
3 If an initramfs is used, it is technically not the �rst process that is started, but it is still executed by the

process with the PID 1.
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Table 4.4 Summary: Assessment of the Phases for Integration. Summary
of the implementation options, obstacles and unsatisfied requirements depending
on the phase in the Linux boot process the Image Compositor is integrated into: the
Linux kernel (a), the initramfs (b), or the init system (c).

• Implementation options range from a kernel module (a), over native binaries, to
shell scripts and even other scripting languages (b, c).

• Requirement R4.1 is di�icult to satisfy depending on external tools (a, c) and
language used to implement the Image Compositor (c).

• Requirements R4.5, R4.7 and R4.8 might require to use external tools, which
contradicts with Requirement R4.1 depending on the phase chosen for the image
composition (a).

• Placement in some of the phases generates additional obstacles for the implemen-
tation of the Image Compositor (c).

The goal of virtual machine image composition is to build composite disk images for
virtual machines using multiple, independent layers. To provide maximum �exibility,
union mounts have been chosen as implementation option for the image composition
over a block-level redirect-on-write approach. As a result, the image composition has
to be done inside the virtual machine itself during the Linux boot process. Potential
options for the integration of the Image Compositor have been evaluated in the last
section. The integration into the initial RAM �le system has been determined as the
most suitable approach.

The evaluation has shown that three of the requirements (Requirements R4.5 to R4.7)
are only partially satis�ed by this approach. The issues caused by using union mounts
for image composition are described below together with suggestions to solve those
issues.

Requirements R4.5 and R4.7 both deal with passing information from outside the
virtual machine to the Image Compositor. This can either be the con�guration for the
Image Compositor or additional �les for injection into the writable layer. There are
multiple ways to pass this information and satisfy the corresponding requirements:

Kernel Command Line — Con�guration information (Requirement R4.5) can be
passed to the Image Compositor using the kernel command line, as long as it
can be expressed using the key=value syntax.

Con�guration Volume — Both con�guration information and preseeding archives
can be passed to the Image Compositor using a con�guration volume, i.e., an
additional virtual hard disk containing the information to be passed stored at a
speci�c location. Details are given in Section 4.4.3.

Con�guration Server — Both con�guration information and preseeding archives
can be downloaded from a con�guration server using the Trivial File Transfer
Protocol (TFTP) [149]. Network support is typically available in the initial
RAM �le system to be able to mount network volumes. Details are given in
Section 4.4.3.
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Requirement R4.6 demands a transparent composition mechanism, both to ensure
software compatibility and to prevent software within the virtual machine from
interfering with the image composition. As the composition is done inside the virtual
machine, the union mount cannot be hidden from any application, as it is visible via
the world-readable �le /proc/mounts. Still, access to the individual layers can be
prevented by not moving the mount points of the layers into the composite disk image.
Unfortunately, in some cases the mount point of the writable layer needs to be moved
to the composite disk image. In these cases, it is possible to directly access and even
modify the writable layer. By choosing a mount point inside the /root directory
and securing it appropriately, e.g., using modes like 0700 or 0770, direct access by
anyone except the root user can be forbidden. More details about this topic are given
in Section 4.4.5.

The following minor issues regarding requirement Requirement R4.6 cannot be solved.
They do not prevent the use of union mounts in the Image Compositor, since only the
root user can actually interfere with the image composition:

• The root user has full write access to the writable layer using the mount point
in his home directory. This is no problem, because the root user has full write
access to the whole root �le system anyway. Application software should not
be executed as root user anyway.

• The root user can mount all of the read-only layers a second time and directly
access them. Because they are mounted two times, only read access is possible.
Additionally, any hypervisor is able to mount disk images read-only, so the root
even cannot modify if he could access the original mount point.

• The union mount and all layers are visible at least in /proc/mounts. Most
application software should not even notice the layers, so this is very likely a
minor issue.

An overview of the image composition process is given in Figure 4.13. The process
is divided into three distinct stages. The �rst stage is the Con�guration Stage that is
responsible for evaluating the con�guration of the Image Compositor. This optionally
includes obtaining an external con�guration from a con�guration server. In the
Composition Stage all layers are mounted and a RAM disk is created as writable layer
if required. Then, the writable layer is preseeded using �les obtained from either a
con�guration volume or con�guration server if needed and the union mount is created.
Finally, any composition script found in a speci�c directory is executed. The Boot
Stage �nishes the image composition by switching the root directory to the composite
disk image and transferring control to the init system.

4.4 Implementation

In this section, the implementation of the Image Compositor will be presented. It is
structured as follows: Section 4.4.1 gives an overview of the functioning of the initramfs
of Debian GNU/Linux that is used as the basis of the implementation. Section 4.4.2
contains an overview of the implementation of the Image Compositor. A detailed
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Figure 4.13 Design of the Image Composition Process. An overview of the
image composition process consisting of the Configuration Stage, the Composition
Stage and the Boot Stage. Orange color denotes optional steps like loading an external
configuration file, preseeding the writable layer or running composition scripts.

description of the implementation is given in Sections 4.4.3 to 4.4.5 based on the
three phases of the image composition process. Finally, necessary modi�cations to
the system required to solve a few issues caused by the composite disk image are
presented in Section 4.4.6.

4.4.1 The Debian-style Initial RAM File System

The implementation of the Image Compositor is based on Debian GNU/Linux 6
(Squeeze), which is not the latest release, but still supported with security updates
at the time of writing. As the list of dependencies of the Image Compositor is rather
small, it is very likely compatible with newer versions of Debian GNU/Linux. A quick
examination of the initramfs of both Debian GNU/Linux 7 (Wheezy) and 8 (Jessie)
revealed no fundamental changes. Further testing showed that the Image Compositor
works out of the box with both releases4.

To be able to use the Image Compositor, the system requirements listed in Table 4.5
must be satis�ed. Even if a Linux distribution does not satisfy all of the requirements,
it might be usable with image composition. The way the Image Compositor is imple-
mented is very modular, so it should be possible to adopt it to other initramfs systems
like dracut [68] that is used by Fedora. The use of alternative union mount implemen-
tations, e.g., its predecessor UnionFS or OverlayFS that has been integrated into the
4 As long as the System V style init system is used in Jessie instead of systemd that is the new default.

64



4.4. Implementation

Linux kernel in December 2014, is possible but might require minor modi�cations to
the Image Compositor.

Table 4.5 Image Compositor - System Requirements. A Linux system must
satisfy the following requirements to be compatible with the Image Compositor.

• The Linux distribution must use a Debian-style initramfs that is described below.
This includes the tools that build the initramfs: initramfs-tools.

• The Linux distribution must support the aufs file system.

This section �rst describes the functioning of the Debian-style initramfs (Section 4.4.1.1)
and then explores the options to integrate the Image Compositor into the initramfs
(Section 4.4.1.2).

4.4.1.1 Functioning of the Initial RAM File System

In the following, the inner workings of the initramfs used by Debian GNU/Linux and
its derivatives like Ubuntu are described.

As outlined in the description of Phase 4 of the Linux boot process (Section 4.3.3.1),
after the kernel �nished booting, it executes the init script in the initramfs that is in
charge of mounting the root �le system, switches to the root �le system and starts the
real init system. An overview of the mechanism used to mount to root �le system is
given in Figure 4.14. The init script starts with mounting the special system directories
/proc and /sys that are essential for almost all of the tools involved in the mounting
process. Afterwards, it reads its default con�guration that is hard coded into the
initramfs and parses the kernel command line that contains import options, e.g., the
root device, mount options, or breakpoints.

Before continuing, the �rst set of hook scripts (top) is executed. Among others, one
of these hook scripts is starting udev , the device manager of the Linux kernel that
manages the device nodes in the /dev directory. These devise nodes are required for
mounting the root �le system later on. Then, it loads some basic kernel modules, and
executes the second set of hook scripts (premount).

Now the boot script that is responsible for actually mounting the root �le system
takes over. After the boot script has �nished, the last set of hook scripts (bottom) is
executed. These include scripts that move the /dev directory to the root �le system
and terminate udev that is restarted later on by the init system. The penultimate step
is to move the remaining system directories /proc and /sys to the root �le system
and to switch the system’s root directory to it, as outlined in the description of Phase 5
of the Linux boot process (Section 4.3.3.1). Finally, the real init system is started.

The boot script, or more precisely the mountroot() function de�ned in the boot
script, is called from within the init script to do the actual mounting. A default Debian-
style initramfs contains two di�erent boot scripts: local and nfs. The former is able
to mount local root �le systems, while the latter is able to mount root �le systems via
NFS. Their structure is similar to that of the init script, containing the same three sets
of hook scripts. The following description focuses on the local boot script.
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Figure 4.14 Inner Working of the Initial RAM File System. This flow chart
describes the process of mounting the root file system in a Debian-style initramfs. It
shows both the init script and the selected boot script as well as the hook mechanisms
used in both scripts.

After executing the �rst set of hook scripts, the boot script waits for the device node
of the device containing the root �le system to show up in /dev, unless it has already
appeared. Waiting is necessary, because device nodes are generated dynamically by
udev and /dev is empty at the time the init script is started. As soon as the device is
available, the seconds set of hook scripts are executed. Then the boot script loads the
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�le system driver kernel module for the root �le system, mounts the root device at a
prede�ned mount point, executes the last set of hook scripts, and returns to the caller.

The following snippet shows the parts of a Debian-style initramfs that have been
described in the section. Kernel modules, binaries and con�guration �les have been
omitted. The init script is in the root directory of the initramfs, whereas the boot
scripts are in the scripts directory. For each of the sets of hook scripts, a separate
directory exists under scripts, except if there are no scripts for a given hook. The
directory names are build by combining the name of the script and the name of the
set, e.g., init-top for the top set of hook scripts used by the init script.

/
init
scripts

functions
init-bottom

order
udev

init-top
all_generic_ide
blacklist
keymap
order
udev

local
local-premount

order
resume

local-top
lvm2
order

nfs

Relevant parts of a Debian-style initramfs.

4.4.1.2 Integration Options

Based on the description in the last section, there are three di�erent ways to integrate
the Image Compositor into a Debian-style initramfs:

1. The Image Compositor can be integrated as one of the boot script’s bottom
hook scripts. In that case, the boot script mounts the root �le system as usual,
but before it returns to the init script, the Image Compositor takes action. It
treats the mounted root �le system as lowest layer, mounts all other layers and
does the image composition. By relying on the boot script for mounting the �rst
layer, scenarios that combine an NFS mounted root �le system with a temporary
layer can be realized easily without explicitly supporting NFS. It is important to
ensure that the Image Compositor is the �rst bottom hook script executed, as
the other bottom hook scripts might rely on a fully mounted root �le system.

2. The Image Compositor can be integrated as a separate boot script. It takes full
control of the mounting process, i.e., it mounts all layers and does the image
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composition. Features like NFS layers must be explicitly implemented when
this option is used, but the resulting Image Compositor is more �exible, e.g., by
supporting multiple NFS layers instead of only the base layer.

3. The Image Compositor can replace the init script altogether. In that case, it has
to take care of the complete process described in the last section, including the
functionality provided by the hook scripts.

Of the three ways to integrate the Image Compositor into the Debian-style initramfs,
option 3 is the least suited one, because large parts of the init script need to be
reimplemented and the resulting initramfs would be less �exible, i.e., it could not be
used anymore to boot a virtual machine without a composite disk image. Option 1
perfectly integrates into the initramfs because it uses the existing hook mechanism,
but su�ers from the problem of execution order, because the Image Compositor is not
a regular bottom hook script, but provides functionality that is actually better placed
into the boot script itself. Thus, option 2 is the best choice.

4.4.2 The Composition Process

In this section, the composition process implemented by the Image Compositor as boot
script for a Debian-style initramfs is described in detail (Figure 4.15). This description
is based both on the design of the Image Compositor (Section 4.3.4) and the functioning
of the initramfs in Debian GNU/Linux (Section 4.4.1). For reference, the requirements
satis�ed by each of the individual steps are noted in parentheses. Requirements R4.1
and R4.6 are satis�ed implicitly by the technologies chosen in the design (Sections 4.3.2
and 4.3.3).

The Image Compositor is invoked by the init script through a call to the mountroot()
function. The �rst step in the image composition process is the evaluation of the
kernel command line, to extract the relevant parameters for the Image Compositor.
Unfortunately, the kernel command line can only for be used for controlling the Image
Compositor in a few cases: either with Xen PV virtual machines (except in combination
with PV-GRUB) or with KVM or Xen HVM virtual machines in direct kernel boot
mode. In all other cases, the kernel command line cannot be easily modi�ed when
a virtual machine is started, because it is stored in the con�guration of the boot
loader on the virtual hard disk. By using an external con�guration for the Image
Compositor (see Section 4.4.3), the parameters can be controlled from the outside
with any hypervisor. If an external con�guration exists, the Image Compositor loads
it and extracts the parameters it contains. Thereby, the parameters from an external
con�guration overwrite the current parameters (Requirement R4.5).

Afterwards, all read-only layers are mounted one by one, at dynamically created
mount points inside the initramfs (Requirements R4.2 and R4.3). If additional kernel
modules are required for mounting, either drivers or �le system support, they are
loaded automatically. The writable layer on top of the composite disk image is either
a hard disk based layer or a RAM disk, which is mounted or created, respectively,
depending on the con�guration (Requirement R4.4). If required, the writable layer can
then be preseeded, which is especially useful in combination with a RAM disk, but
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Figure 4.15 The Composition Process in Detail. This flow chart describes
the image composition process. It is a more detailed version of Figure 4.13 that depicts
the integration as boot script. The green parts of the chart are the essential steps
required for image composition: parsing the configuration, mounting the layers, and
creating the union mount. The orange parts are optional steps: loading an external
configuration, preseeding the writable layer, and running composition scripts.

also possible for hard disk based layers. Preseeding happens by loading the preseed
archive an extracting it to the writable layer (Requirement R4.7).

In the next and most important step of the image composition, the union mount
is created from the layers mounted in the last steps. The resulting root �le system
is mounted at a prede�ned mount point, so the init script can properly switch the
system’s root directory and transfer control to the init system later on. After the
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root �le system is mounted, the Image Compositor optionally executes composition
scripts that are either contained in one of the layers or were added to the root �le
system using the preseeding mechanism. Composition scripts enable the user to
make arbitrary changes to the root �le system before the actual init system is started
(Requirement R4.8).

If an unmodi�ed Debian GNU/Linux 6 system is booted in this state, some error
messages would likely be generated during the boot process. These errors are caused
by the fact that some of the scripts the init system uses to start the system are not
compatible to composite disk images. Another issue occurs during shutdown, if
the writable layer needs to be unmounted correctly. This is of special importance
during the creation or modi�cation of a layer, when it is intentionally modi�ed
(see Figure 4.5). These issues and their corresponding solutions that are based on
modifying con�guration �les and parts of the init system are described in more detail
in Section 4.4.6. The penultimate step of the image composition process is to apply
these solutions. Technically, these modi�cations can be done by a special set of
composition scripts, if these scripts are guaranteed to be executed at the end of the
composition process.

Finally, the mount points of the individual layers can be moved into the root �le
system, into a hidden folder below /root, where users except the root user cannot
access them. This step is only required for the writable layer, in case it needs to be
unmounted correctly (see Section 4.4.6.2).

4.4.3 Configuration Stage

In the con�guration stage, the Image Compositor reads its con�guration that can
be stored in the initial RAM �le system (hard-coded) or provided using either the
kernel command line or an external con�guration source. The Image Compositor
recognizes eleven parameters: six parameters that in�uence the composite disk image
and its composition process (see Table 4.6) and �ve parameters that are useful for
troubleshooting the composition process (see Table 4.7).

The kernel command line is not only used to control the boot process, but to con�gure
many di�erent subsystems of the Linux kernel. This widespread usage of the kernel
command line calls for the use of name spaces to prevent clashes between the param-
eters for di�erent subsystems. All Image Compositor parameters are pre�xed with
crfs. An exemplary kernel command line is given below.

boot=crfs crfs.rlayers=/dev/vda1,/dev/vdb1 crfs.wlayer=tmpfs '· · · crfs.tmpfssize=1024M crfs.verbose

An exemplary kernel command line for using the Image Compositor.

The �rst parameter boot=crfs is a parameter evaluated by the init script. It selects the
boot script responsible for mounting the root �le system. The remaining parameters
are parameters to the Image Compositor. In this speci�c case, a composite disk image
is built from three layers, two read-only layers based on the �rst two virtual hard disks
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Table 4.6 Image Compositor Parameters – Composite Disk Image. The
following set of parameters influences both the composition process and the resulting
composite disk image.

Parameter Description

config=<arg> The source of external configuration: a device node, the key-
word auto, or a TFTP URL. Optional parameter.
Examples: config=tftp://tftp.local/crfs/config or
config=auto

rlayers=<arg> The read-only layers that are part of the composite disk image:
a comma-separated list of one or more device nodes, starting
with the lowest layer in increasing order.
Example: rlayers=/dev/vda1,/dev/vdb1

wlayer=<arg> The writable layer of the composite disk image: a device node
or the keyword tmpfs. Optional parameter, if not set, tmpfs is
used.
Examples: wlayer=/dev/vdc1 or wlayer=tmpfs

tmpfssize=<arg> The size of the RAM disk used as writable layer: an integer
value including unit (K, M, or G). Optional parameter.
Example: tmpfssize=1024M

preseed=<arg> The source of a preseed archive: a device node, the keyword
auto, or a TFTP URL. Optional parameter.
Examples: config=tftp://tftp.local/crfs/preseed
or
config=/dev/vdc1

scripts=<arg> The layer that contains the composition scripts: a device node
or the keyword tmpfs. Optional parameter.
Examples: scripts=/dev/vdc1 or scripts=tmpfs

– more speci�cally the �rst partition of each of the �rst two virtual hard disks – and a
writable layer based on a RAM disk of 1024 MiB. Neither an external con�guration
is used, nor preseeding or composition scripts. The Image Compositor is put into
verbose mode to output more information about the composition process.

The part of the mountroot() function that is shown in Listing 4.1 corresponds to
the con�guration stage as depicted in Figure 4.15. The functions crfs_trace and
crfs_maybe_break are used for logging and breakpoints, respectively. The call
to wait_for_udev in Line 4 ensures that udev has �nished preparing the device
nodes for the devices in the system. The actual composition starts in Line 7 with
loading hard coded default values from the initramfs (not shown in Figure 4.15), if the
corresponding �le /etc/crfs exists. This facilitates the creation of an initramfs with
speci�c settings for an environment, without relying on the kernel command line.
The next step is to parse the kernel command line using the crfs_parse_cmdline
function that reads the �le pointed to by the �rst argument and parses the arguments
it contains. The Linux kernel command line is always available as /proc/cmdline,
so it is passed as argument to the function.

After the kernel command line has been parsed, the Image Compositor checks whether
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Table 4.7 Image Compositor Parameters – Troubleshooting. The follow-
ing set of parameters can be used for finding and fixing problems in the image
composition process.

Parameter Description

verbose Log detailed progress information to the console.

no_break_on_error Halt the system a�er errors instead of opening a shell for
debugging. Useful in production.

breakpoint=<arg> Break the composition process at the given breakpoint and
open a shell for debugging. Possible breakpoint values: 1 –
10.
Example: breakpoint=4

stepping Break the composition process before each step and open a
shell for debugging.

trace Log debugging information to the console.

1 mountroot () {
2 crfs_trace "mountroot"
3
4 wait_for_udev 10
5
6 # load hard-coded settings
7 [ -f /etc/crfs ] && source /etc/crfs
8
9 crfs_parse_cmdline /proc/cmdline

10
11 crfs_maybe_break 1 "loading external config"
12
13 if [ -n "$crfs_config" ]
14 then
15 local old_config=$crfs_config
16 crfs_load_external_config
17 if [ "$old_config" != "$crfs_config" ]
18 then
19 # the external config redirected to another source
20 crfs_load_external_config
21 fi
22 unset old_config
23 fi
24
25 crfs_maybe_break 2 "validating config"
26
27 crfs_check_config

Listing 4.1 Configuration Stage. The first part of the mountroot() function
that corresponds to the configuration stage as depicted in Figure 4.15. It is responsible
for loading and evaluating the configuration of the Image Compositor.

an external con�guration should be loaded (Line 13). The variable crfs_config
contains the value of the config parameter, i.e., the source that should be used to
�nd the external con�guration: either a device node, the keyword auto, or a TFTP
Uniform Resource Locator (URL). In the �rst two cases, a con�guration volume is
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mounted that must contain a �le name cmdline in the root directory. The format of
this �le has to be the same as the �le /proc/cmdline, because the same function is
used to parse the parameters. In the case of the auto keyword, the device node of the
con�guration volume is automatically determined by searching for a partition with a
speci�c Universaly Unique Identi�er (UUID).

43524653-0000-0000-0000-434f4e464947

The UUID of Image Compositor configuration volumes.

If the variable contains a TFTP URL, the �le pointed to by the URL is downloaded and
parsed exactly like a cmdline �le in a con�guration volume.

The old value of the variable is saved before an external con�guration is loaded via
crfs_load_external_config (Line 15). This facilitates chain-loading a second ex-
ternal con�guration, if the config parameter is changed by the external con�guration
(Lines 17 to 21). A con�guration process like the following is enabled by chain-loading
of external con�guration:

1. The hard coded con�guration in the initramfs contains the config=auto pa-
rameter. This instructs the Image Compositor to search for a con�guration
volume on all virtual hard disks.

2. The cmdline �le on the con�guration volume contains a TFTP URL as config
parameter. This instructs the Image Compositor to fetch the actual con�guration
from the speci�ed server.

3. The downloaded �le contains the actual con�guration of the Image Compositor.

Using this approach, a standard initramfs can be used to load the con�guration from
any server, by attaching a virtual hard disk with an appropriate con�guration volume.
This facilitates very easy adaption of the con�guration by changing the �le on the
TFTP server. Even if the TFTP server changes, only the con�guration volume needs
to be replaced, but not the initramfs of every virtual machine5.

The �nal step of the con�guration process is to call the crfs_check_config function.
It veri�es the existence of all layers referenced in the con�guration and sets default
values if required, e.g., a RAM disk as writable layer if none is de�ned or a default size
for RAM disks.

4.4.4 Composition Stage

The composition stage is the primary part of the image composition process. It consists
of mounting all layers, optionally preseeding the writable layer, creating the union
mount, and optionally running composition scripts (see Figure 4.15).

The part of the mountroot() function shown in Listing 4.2 is responsible for mount-
ing the read-only layers. It consists of a for loop that iterates over all of the read-only
5 Because the initramfs contains the kernel modules for devices and �le systems not compiled directly

into the kernel, each kernel version requires a distinct initramfs.
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layers set using the rlayers parameter. The crfs_check_config function (called
in Line 27 of Listing 4.1) took care of converting the comma-separated list into a
whitespace-separated list that can be used with the for loop.

1 crfs_maybe_break 3 "mounting readonly layers"
2
3 # in this variable the aufs dirs argument (the layer hierarchie) is built
4 local crfs_unionconfig=
5 # temporary variables for iterating through all layers
6 local layer mountpoint
7 for layer in $crfs_rolayers
8 do
9 crfs_next_mountpoint

10 mountpoint=$(crfs_mountpoint)
11 # mount writable first, to see if the hypervisor blocks write requests
12 if crfs_mount_fs "$layer" "$mountpoint" "rw"
13 then
14 if crfs_is_writable "$mountpoint"
15 then
16 crfs_warning "write access to read-only layer $layer not prevented"
17 # this can be ignored: once a device is mounted ro, it can not be
18 # mounted a second time with rw (only again with ro)
19 mount -o remount,ro "$mountpoint" || crfs_fatal "remount ro failed"
20 fi
21 if [ -z "$crfs_unionconfig" ]
22 then
23 crfs_unionconfig="$mountpoint=ro"
24 else
25 crfs_unionconfig="$mountpoint=ro:$crfs_unionconfig"
26 fi
27 else
28 crfs_error "failed to mount $layer"
29 fi
30 done

Listing 4.2 Composition Stage - Mount Read-only Layers. The second
part of the mountroot() function that starts the composition stage as depicted in
Figure 4.15. This part mounts all read-only layers that are part of the composite disk
image.

The function crfs_next_mountpoint dynamically crates a new mount point for
each layer (Line 36). These mount points are named /.crfslayerN, where N is the
number of the layer. Because shell functions cannot return values other than integers,
the name of the newly generated mount point is printed to the standard output by the
crfs_mountpoint function. Using command substitution, the mount point is saved
in the corresponding variable (Line 37).

The layer is then mounted at that mount point using the cref_mount_fs function
(Line 37). The Image Compositor �rst tries to mount each read-only layer in writable
mode, to test if the hypervisor does prohibit write access. If the layer can be mounted
writable, a warning is issued and the layer is remounted read-only (Lines 43 and 46).
Although the con�guration of a layered virtual machine should not allow write access
to read-only layers, the composition process does not need to be aborted at this point.
Since the layer is part of the union mount, there is no way to mount it writable a
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second time, so the layer cannot be modi�ed during runtime of the virtual machine.
Nevertheless, it is technically possible to modify the layer after unmounting the union
mount during the shutdown procedure (see Section 4.4.6.2), so the con�guration of
the virtual machine should be changed accordingly.

The variable crfs_unionconfig is used to build the con�guration for aufs (Lines 48
to 53). The string is used as dir option when then union mount is created. It contains
a list of mount points and access modes, separated by colons, with the topmost layer
�rst and the bottom layer last (the inverse order compared to the rlayers parameter
of the Image Compositor).

The part of the mountroot() function shown in Listing 4.3 is responsible for mount-
ing the writable layer. The writable layer is stored in the crfs_rwlayer variable
that corresponds to the wlayer parameter. Possible values for the writable layer are a
device node or the keyword tmpfs for a virtual hard disk or a RAM disk based writable
layer, respectively. In both cases, the crfs_mount_fs function is used to mount the
layer (Line 69). In case of a RAM disk, its size is stored in the options variable before-
hand (Lines 64 to 67). The value of the tmpfssize parameter has been stored in the
required format in the crfs_tmpfs_options variable by the crfs_check_config
function (called in Line 27 of Listing 4.1).

31 crfs_maybe_break 4 "mounting writeable layer"
32
33 crfs_next_mountpoint
34 mountpoint=$(crfs_mountpoint)
35 layer=$crfs_rwlayer
36 local options=rw
37 if [ "$layer" = "tmpfs" ]
38 then
39 options=$crfs_tmpfs_options
40 fi
41 crfs_log "mounting $layer on $mountpoint ($options)"
42 crfs_mount_fs "$layer" "$mountpoint" "$options"
43 if [ $? -eq 0 ]
44 then
45 if crfs_is_writable "$mountpoint"
46 then
47 crfs_unionconfig="$mountpoint=rw:$crfs_unionconfig"
48 else
49 crfs_fatal "writable layer $layer can not be mounted writable"
50 fi
51 else
52 crfs_fatal "failed to mount writable layer"
53 fi

Listing 4.3 Composition Stage - Mount Writable Layer. The third part
of the mountroot() function that proceeds the composition stage as depicted in
Figure 4.15. This part either mounts the writable layer or creates a RAM disk for use
as writable layer.

It is important to check if the writable layer is in fact writable (Line 72). While a RAM
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disk is writable in any case6, a virtual hard disk based layer might not be writable
if the virtual machine con�guration is erroneous. The �nal step is to update the
crfs_unionconfig variable by inserting the mount point and access mode of the
writable layer at the beginning of the string (Line 74).

The part of the mountroot() function shown in Listing 4.4 is responsible for both
preseeding the writable layer and creating the union mount. The preseeding is done
by the crfs_preseed function (Line 85), if the variable of the same name that
corresponds to the preseed parameter contains a valid source for preseeding. Like
the external con�guration, a valid source can either be a device node, the keyword
auto, or a TFTP URL. In the �rst two cases a volume is mounted that must contain a
preseed archive in the root directory. The preseed archive has to be a tar archive that
can optionally be compressed using either gzip or bzip2. It has to be named preseed
and have the correct extension for the archive type (.tar, .tar.gz, .tgz, .tar.bz,
or .tbz). Both external con�guration and the preseed archive are supposed to be
stored in the same con�guration volume, so the same UUID is used to identify the
volume containing the preseed archive (see Section 4.4.3).

54 crfs_maybe_break 5 "preseeding a tmpfs"
55
56 if [ -n "$crfs_preseed" ]
57 then
58 crfs_preseed "$mountpoint"
59 fi
60
61 crfs_maybe_break 6 "mounting aufs"
62
63 crfs_log "mounting aufs with params '$crfs_unionconfig'"
64 crfs_load_module aufs || crfs_fatal "failed to load aufs module"
65 if ! mount -t aufs -o dirs="$crfs_unionconfig" aufs "$rootmnt"
66 then
67 crfs_fatal "failed to mount aufs"
68 fi

Listing 4.4 Composition Stage - Preseed and Create the Union Mount.
The fourth part of the mountroot() function that proceeds the composition stage
as depicted in Figure 4.15. This part preseeds the writable layer, if requested, and
creates the actual union mount.

If the variable contains a TFTP URL, the preseed archive pointed to by the URL is
downloaded. It can be arbitrarily named, but has to have the correct extension for
the archive type. Otherwise, there is no di�erence between downloading the preseed
archive or loading it from a local volume.

Creating the union mount is straightforward at this point (Lines 91 to 92). First, the
aufs kernel module has to be loaded using the crfs_load_module function. If this
fails, the composition process is aborted. Afterwards, the union mount is created
using the mount command. The dirs option is used to con�gure the union mount
aufs with the layer hierarchy and access modes.

6 Except if the RAM disk is explicitly mounted read-only.
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The part of the mountroot() function shown in Listing 4.5 is responsible for running
composition scripts. The variable crfs_scripts that corresponds to the scripts
parameter contains the layer that contains the compositions scripts to execute. For
security reasons, only the scripts in a single layer are executed. This ensures that only
scripts targeted at the speci�c environment are executed. Composition scripts in other
layers are not executed, because they are not targeted at the environment the virtual
machine is executed in and might even be malicious.

69 crfs_maybe_break 7 "executing composition scripts"
70
71 if [ -n "$crfs_scripts" ]
72 then
73 case $crfs_scripts in
74 /dev/*)
75 layer=$crfs_scripts
76 [ -b "$layer" ] || crfs_fatal "invalid source of composition scripts"
77 mountpoint=$(grep "^$layer" /proc/mounts | cut -d' ' -f2)
78 [ $? -eq 0 ] || crfs_fatal "composition script source not mounted"
79 ;;
80
81 /tmpfs)
82 if [ "$crfs_rwlayer" = "tmpfs" ]
83 then
84 [ -n "$crfs_preseed" ] || crfs_fatal "no preseeding of

composition scripts"
'

85 else
86 crfs_fatal "no tmpfs layer used"
87 fi
88 ;;
89 esac
90
91 crfs_log "executing composition scripts from $layer"
92 [ -d "$mountpoint/.crfs_scripts" ] || crfs_fatal "no composition

scripts found"
'

93 crfs_execute_scripts "$mountpoint/.crfs_scripts"
94 fi

Listing 4.5 Composition Stage - Run Composition Scripts. The fi�h part
of the mountroot() function that completes the composition stage as depicted in
Figure 4.15. This part is responsible for executing the composition scripts, if required.

Valid sources are either virtual hard disk based layers, speci�ed via their device node,
or a RAM disk that is used as writable layer, speci�ed via the keyword tmpfs. In the
former case, the mount point of the layer is determined for valid device nodes (Line 102
to 105). In the latter case, the mount point is still set correctly (Line 61 in Listing 4.3).
Obviously, using the keyword tmpfs as source only makes sense when both a RAM
disk is used as writable layer and the RAM disk was preseeded (Lines 109 to 114).

After the mount point of the source of composition scripts has been selected, the Image
Compositor checks whether a directory named .crfs_scripts does exist in the root
directory of that source (Line 119). This directory contains all composition scripts to
be executed. The scripts need to be named according to the scheme crfs_NN_NAME,
where NN is a two-digit number and NAME is an arbitrary name. The two-digit number
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determines the order of execution: scripts with lower numbers are executed �rst. If
multiple scripts with the same number exist, they are executed in the alphabetical
order of the NAME part. The execution of the composition scripts is controlled by the
function crfs_execute_scripts (Line 120). Each script is started with a single
argument: the path of the union mount.

4.4.5 Boot Stage

In the boot stage, the Image Compositor takes care of the �nal steps necessary before
the system can continue to boot using the composite disk image. These steps consist
in modifying parts of the operating system and relevant con�guration �les to ensure
a working system and moving the mount points of the layers from the rootfs7 to the
actual root �le system. The corresponding code is shown in Listing 4.6.

95 crfs_maybe_break 8 "applying necessary configuration and system changes"
96
97 crfs_log "applying necessary configuration and system changes"
98 crfs_execute_scripts /scripts/crfs.d
99

100 crfs_maybe_break 9 "moving the layer mountpoints"
101
102 # move the mountpoints
103 # only the writable layer mountpoint needs to be moved, so it can be
104 # cleanly unmounted or cleared before shutdown
105 local new_mountpoint="$rootmnt/root/.crfs_wl"
106 crfs_log "moving $mountpoint to $new_mountpoint"
107 crfs_create_dir "$new_mountpoint"
108 if ! mount -o move "$mountpoint" "$new_mountpoint"
109 then
110 crfs_fatal "moving the writable layer failed"
111 fi
112
113 crfs_maybe_break 10 "leaving $NAME"
114 }

Listing 4.6 Boot Stage. The last part of the mountroot() function that corre-
sponds to the boot stage as depicted in Figure 4.15. It is responsible for modifying
the system to make it compatible with composite disk images and moving the mount
point of the writable layer into the composite disk image.

The changes to the con�guration and the operating system are dependent on the
speci�c version of the operating system used. An exemplary set of changes is de-
scribed in Section 4.4.6. A set of scripts stored in the /scripts/crfs.d direc-
tory of the initramfs is used to implement the required changes. The function
crfs_execute_scripts that is used to execute composition scripts is also used
for these scripts. Accordingly, the same requirements regarding the naming of the
individual scripts apply here as well. Like the composition scripts, each of the scripts
is invoked with the path of the union mount as its sole argument (see Section 4.4.4).

7 The RAM �le system �lled with the contents of the initramfs that is used as temporary root �le system
during Phase 4 of the Linux boot process (see Section 4.3.3.1).
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If the mount points of the layers are not moved from the rootfs to the actual root
�le system, the layers become inaccessible after the system’s root directory has been
switched. As a consequence, it is not possible to directly access a layer’s contents or
to unmount a layer during shutdown. The union mount is fortunately not a�ected by
restriction and continues to work even when the layers are not moved. So the drawback
of inaccessible mount points is actually an advantage that prevents tampering with
the layers. As long as all virtual hard disk based layers building a composite disk
image are read-only, the mount points can be left in the rootfs as read-only mounts
do not need to be unmounted.

Unfortunately, not moving the mount points of a writable virtual hard disk based
layer prevents a clean unmount, and thus leaves the layer in a broken state. Especially
when the writable layer is deliberately modi�ed it (see Figure 4.5) a clean unmount is
desirable. Thus, at least the mount point of the writable layer needs to be moved to
the actual root �le system. This is done in Lines 132 to 138. The old mount point is still
stored in the mountpoint variable. The writable layer is moved to /root/.crfs_wl,
where it is protected from accidental modi�cation.

4.4.6 System Modifications

As already stated above, an unmodi�ed operating system might not be able to boot
using a composite disk image. The reasons are peculiarities of the union mount used
as root �le system. In this section, the necessary changes for a Debian GNU/Linux 6
system are presented both for the boot and the shutdown process.

4.4.6.1 Boot Process

There is a single init script in the boot process of Debian GNU/Linux 6 that is not
compatible with a composite disk image: the checkroot.sh script. Its task is to
check the root �le system for �le system errors that might occur if the virtual machine
is not shut down cleanly. While this a very reasonable thing to do for virtual machines
that use a standard root �le system, it is not required if a composite disk image is used.
Most layers are mounted read-only anyway, so corruption is very rare and can only
occur if a layer is modi�ed (see also Section 4.4.6.2). Moreover, if checkroot.sh
actually tries to check a composite disk image it will fail with a non-recoverable error
and restart the system.

The root �le system is checked if its pass option in the �le system table fstab that
controls the order of �le system checks during boot is set to a value other than zero.
By default, the value is set to 1, so the root �le system is the �rst to be checked.
Another problem can occur if the �le system table contains mount options that are not
compatible with aufs. One of these problematic options is errors=remount-ro that
is set by default for the root �le system in Debian GNU/Linux 6. While it does not
prevent the system from booting successfully, it should be removed from the options.
The following snippet shows the structure of the �le system table and a few exemplary
entries.
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# <file system> <mount point> <type> <options> <dump> <pass>
UUID=00b62ed8-fc(...)df / ext3 errors=remount-ro 0 1
UUID=90487b4e-25(...)9a none swap sw 0 0
proc /proc proc defaults 0 0

Exemplary entries from a file system table: a root file system, a swap partition and the proc file
system. (Indentation has been modified for easier reading.)

The script crfs_10_patch_fstab (Listing 4.7) creates a backup of the �le system
table and modi�es the entry of the root �le system appropriately. It does so using
the awk utility that is part of the initramfs as part of busybox . The corresponding
AWK program is stored in an external �le named patch_fstab.awk (Listing 4.8). It
is invoked in Line 25, reading the backup �le and outputting the patched �le system
table.

15 FSTAB=$ROOT/etc/fstab
16 BACKUP=$FSTAB.crfs
17
18 # make a backup of the old fstab, unless it already exists
19 # don't exit if it exists, instead patch it again from the original fstab
20 if [ ! -f $BACKUP ]
21 then
22 cp $FSTAB $BACKUP
23 fi
24
25 awk -f /scripts/crfs.d/patch_fstab.awk $BACKUP >$FSTAB

Listing 4.7 Script that Patches the File System Table. This script named
crfs_10_patch_fstab sets the pass option of the root file system in the file system
table to zero and removes errors=remount-ro from the options using the AWK
program shown in Listing 4.8.

The AWK program consists of two action blocks. The �rst action block (Lines 1 to 4)
is preceded by a pattern that matches both comments starting with the # character
and all entries except the root �le system. The latter are identi�able by a mount point
unequal to /. This action block outputs the corresponding lines unchanged and uses
the next statement to �nish the processing of those lines.

The second block (Lines 6 to 12) is not preceded by any pattern and is thus executed
for all remaining lines. By design, the only remaining line is the entry of the root
�le system. In Line 7 the pass option, which is the 6th �eld, is set to zero. The
call to the sub function in Line 8 removes errors=remount-ro and optionally a
subsequent comma from the options (4th �eld). If options is empty after removal the
�le system table cannot be parsed anymore, because it is not a �xed-column-aligned
but a whitespace-delimited �le. Typical parsing code would therefore interpret the
dump option as options and the pass option as dump. Consequently, options must not
be empty. In Line 9, rw is stored in options in this case. As the composite disk image
is already mounted writable this option cannot cause any problems. Finally, the tab
character is set as �eld separator and the updated line is outputted.
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1 ($1 ~ /^#/) || ($2 != "/") {
2 print $0;
3 next
4 }
5
6 {
7 $6=0;
8 sub(/errors=remount-ro,?/, "", $4);
9 sub(/^$/, "rw", $4);

10 OFS="\t";
11 print $0;
12 }

Listing 4.8 AWK Program to Patch the File System Table. This is the AWK
program named patch_fstab.awk used by the crfs_10_patch_fstab script to
modify the file system table of a Debian GNU/Linux 6 in order to make it boot from
a composite disk image.

4.4.6.2 Shutdown Process

There are two issues that need to be taken care of during the shutdown procedure.
The �rst issue appears when a RAM disk is used as temporary layer. During shutdown,
the swap is disabled as one of the last steps before the root �le system is unmounted.
All RAM disks are unmounted before this step, because RAM disks might use more
memory than physically available. Both steps are part of the umountfs script in
Debian GNU/Linux 6. If a RAM disk is part of the composite disk image, it cannot be
unmounted. Therefore it has to be cleaned before the swap is disabled.

The second issue appears when the composite disk image is con�gured without a
temporary layer. In this case, write operations are conducted on the writable layer (the
highest one) of the composite disk image (see Figure 4.5). Since these modi�cations
are intentional, the integrity of the writable layer has to be preserved during the
shutdown procedure. Thus, the composite disk image needs to be cleanly unmounted.
With temporary layers, this is not required, since all persistent layers are read-only
anyway. Unfortunately, the default umountroot script in Debian GNU/Linux 6 is not
able to cleanly unmount a composite disk image.

Figure 4.16 shows the last steps of the standard shutdown procedure in Debian
GNU/Linux 6. When a shutdown command is issued, the runlevel – a system state
associated with a speci�c combination of running services – is changed to 0 (halt) and
the /etc/init.d/rc script is invoked. Its duty is to start and stop services using init
scripts whenever the runlevel is changed. When switching to 0, it stops all services
because in runlevel 0 no services are active. Finally, it invokes a number of init scripts
in /etc/rc0.d that take care of shutting down the system correctly. The last three
of them are shown in the �gure. The script umountfs takes care of unmounting
all RAM disks, swap devices and local �le systems. Afterwards, the umountroot
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script remounts the root �le system read-only. Finally, the halt script shuts down
the machine8.

umountfs

umountroot

halt

run rc.0 scripts

rc

Figure 4.16 The Shutdown Procedure of a Linux System. This flow chart
shows the last steps in the shutdown procedure of an unmodified Debian Squeeze:
the rc script executes the last three scripts in /etc/rc0.d/ that unmount all file
systems, mount the root file system read-only and halt the system, respectively.

Contrary to its name, the umountroot script does not unmount the root �le system.
The reason is that a �le system can only be unmounted when there is no process
referencing it left running. As each process in Linux stores a reference to the root �le
system it cannot be easily unmounted. During this part of the shutdown process, at
least the init process and two shells executing the rc and umountroot scripts are
running and thus referencing the root �le system, preventing it from being unmounted.
Fortunately, remounting a �le system read-only serves the same purpose: writing
all remaining caches to disk, closing the journal and putting the �le system in an
unmodi�able state.

The shutdown procedure described in the last paragraph fails for a composite disk
image without a temporary layer. While the umountroot script does remount the
root �le system read-only, the writable layer itself is still mounted in writable mode.
So when the machine is shut down afterwards by the halt script9, some caches might
not have been �ushed and the journal is not closed. Thus, a �le system recovery is
required on the writable layer before it can be used again.

The �rst issue can be solved in two steps. The �rst step is to ensure that the umountfs
script does unmount a RAM disk used as writable layer10. This can be done by adding
the path of the writable layer to a list of mount points that are ignored by the umountfs
script. The script crfs_20_patch_umountfs shown in Listing 4.9 takes care of this.

The sed command in Line 11 �rst searches the line with the list of mount points that
starts with /|/proc. In this line, it appends the mount point /root/.crfs_wl to

8 For a reboot, the respective runlevel would be 6 and the last script to be executed would be the reboot
script.

9 Or rebooted by the reboot script.
10 Trying to unmount a RAM disk that is part of a composite disk image would fail anyway for the

reasons stated above.
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5 UMOUNTFS=$ROOT/etc/init.d/umountfs
6
7 # if already patched - do nothing
8 grep -F -qs '|/root/.crfs_wl)' $UMOUNTFS && exit 0
9

10 # patch /etc/init.d/umountfs to ignore the writable layer
11 sed -i -e '/\/|\/proc|/ s/)$/|\/root\/.crfs_wl)/' $UMOUNTFS

Listing 4.9 Script Patching the umountfs Init Script. This script named
crfs_20_patch_umountfs adds the mount point of the writable layer inside the
composite disk image (/root/.crfs_wl) to a list of mount points that are ignored
by the umountfs init script, i.e., not unmounted during shutdown.

the list of conditions of the case branch that is used to skip certain special mount
points.

The next step is to install a script that takes care of cleaning the RAM disk, to prevent
errors caused by insu�cient memory after the swap is disabled. This task is executed
by the crfs_21_install_clearcrfs script shown in Listing 4.10. First, the actual
cleaning script clearcrfs is copied to the composite disk image (Line 6). The script is
added to shutdown and reboot run levels using insserv (Line 16). To make this work,
the clearcrfs script is declared as a Boot Facility in the System Facility local_fs
(Line 12) in the con�guration �le of insserv. This ensures that the clearcrfs is
executed during a shutdown or reboot together with the other scripts that unmount
the local �le systems.

5 # copy the clearcrfs scripts to the composite root file system
6 cp /scripts/crfs.d/clearcrfs ${ROOT}/etc/init.d
7
8 # patch the insserv configuration, so clearcrfs is put in the local_fs group
9 INSSERVCONF=${ROOT}/etc/insserv.conf

10 if ! grep -qs '^$local.*clearcrfs' ${INSSERVCONF}
11 then
12 sed -i -e '/$local_fs/ s/$/ +clearcrfs/' ${INSSERVCONF}
13 fi
14
15 # register clearcrfs
16 chroot /root insserv clearcrfs

Listing 4.10 Script Installing the clearcrfs Init Script. This script named
crfs_21_install_clearcrfs installs the init script shown in Listing 4.11, by
copying it to the composite disk image and adding it to the set of init scripts that are
executed during shutdown and reboot.

The actual clearcrfs script is shown in Listing 4.11. Together with the Boot Facility
declaration, the Linux Standard Base (LSB) [89] (Lines 2 to 10) ensures that the script
is executed before the umountfs script (Line 5) and both for a shutdown and a reboot,
as indicated by the runlevels 0 and 6 (Line 7).

The script �rst determines the device node of the writable layer (Line 15) and does
nothing if the writable layer is not a RAM disk. The actual cleaning procedure takes
place in Lines 22 to 24. It consists of two steps. In the �rst steps, everything except
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1 #!/bin/sh
2 ### BEGIN INIT INFO
3 # Provides: clearcrfs
4 # Required-Start:
5 # Required-Stop: umountfs
6 # Default-Start:
7 # Default-Stop: 0 6
8 # Short-Description: Clear a tmpfs based writable crfs layer.
9 # Description:

10 ### END INIT INFO...
14 # determine the type of the writable layer
15 DEVICE=$(grep -F "/root/.crfs_wl" /proc/mounts | cut -d ' ' -f 1)
16
17 # skip the unmount for tmpfs writeable layers, directly halt the system
18 if [ "${DEVICE}" = "tmpfs" ]
19 then
20 log_action_begin_msg "Cleaning up crfs tmpfs layer"
21 # remove everything except /etc, /root (cleared below) and whiteout dirs
22 find /root/.crfs_wl -mindepth 1 -maxdepth 1 -type d ! -name etc !

-name root ! -name \.wh\* -exec rm -rf {} \;
'

23 # remove everything below the mountpoint
24 find /root/.crfs_wl/root -mindepth 1 -maxdepth 1 ! -name .crfs_wl

-exec rm -rf {} \;
'

25 log_action_end_msg $?
26 fi

Listing 4.11 Init Script Clearing a RAM Disk Based Writable Layer. This
script named clearcrfs deletes everything from a RAM disk used as writable layer
that is not required. It keeps the /etc directory (containing the script itself), the
mount point of the writable layer, and directories used internally by aufs.

the /etc and /root directories as well as some internal aufs �les and directories is
deleted from the RAM disk. The /etc directory is kept, because it contains important
con�guration �les, such as the modi�ed init scripts itself. The /root directory is
cleaned in the second step by deleting everything except the mount point of the
writable layer.

A solution for the second issue is more complicated. To prevent corruption of the
writable layer, remounting it read-only like the umountroot script does with a regular
root �le system seems natural. The umountfs script obviously cannot unmount the
writable layer, because it is still part of root �le system at the time the script is executed.
A script inserted between umountroot and halt scripts should be able to remount
the writable layer. Unfortunately, the kernel refuses to do so:

# cat /proc/mounts
(...)
/dev/vda1 /.crfslayer1 ext3 ro,relatime,errors=continue,(...)
/dev/vdb1 /root/.crfs_wl ext3 rw,relatime,errors=continue,(...)
aufs / aufs rw,relatime,si=f2f04c6a999db2 0 0
(...)
# mount -o remount,ro /dev/vdb1
mount: /root/.crfs_wl is busy
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Apparently, it is not possible to remount a layer that is part of an active composite disk
image11. To successfully remount or unmount the writable layer, a way to unmount
the root �le system needs to be found. As described above, this is only possible when
no process refers to it as its root �le system. The modi�ed shutdown procedure shown
in Figure 4.17 achieves this. The reboot sequence is almost identical, except that the
rc script executes the init scripts in /etc/rc6.d and reboot script is called as �nal
step instead of the halt script.

umountcrfs2 

Restart Init (PID 1)

Unmount Root
File System

Unmount Layers

halt

umountcrfs1

Prepare Temporary 
Root File System

Switch Root File 
System (Pivot Root)

Copy umountcrfs2 
to Temp. Root FS

umountcrfs2

umountfs

umountroot

umountcrfs1

run rc.0 scripts

rc

Root File System
Temporary Root
File System

Figure 4.17 The Modified Shutdown Procedure for a Composite Root
Image. This flow chart shows the lasts steps in the modified shutdown procedure
that handles a composite disk image correctly: the rc script executes all scripts in
/etc/rc0.d/ except halt, and a�erwards executes the umountcrfs1 script that
creates a temporary root file system, switches to it and executes umountcrfs2 from
it. The umountcrfs2 script in turn restarts init, unmounts the actual root file system
and finally halts the system.

The procedure is based on the idea of switching to a temporary root �le system that
is created dynamically and used solely to unmount the actual root �le system. The
initramfs used during the boot process (see Phase 5 in Section 4.3.3.1) would be an
ideal choice, but is not available in all scenarios, e.g., in Xen PV virtual machines with
an external initramfs. The base layer, on the other hand, is always available and can
be used as temporary root �le system. To preserve its integrity, it has to be mounted
read-only and combined with a RAM disk to create a writable temporary root �le
system.

The script crfs_22_install_umountcrfs shown in Listing 4.12 implements the
11 At least for an implementation based on aufs.
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necessary changes in the init system. It �rst copies the two unmount scripts to the
composite disk image (Line 6). Then, it disables the halt and reboot scripts (Line 9),
so the control �ow returns to the rc script. Figure 4.18a depicts the mounted �le
systems at this stage of the shutdown procedure for an exemplary composite disk
image consisting of two layers. Note that no mount point exists for the lower, read-
only layer of the composite disk image. There are only two remaining processes at
this point: the shell executing the rc script and the PID 1 process of the init system
(see Figure 4.19a). The last step is to modify the rc script to make it transfer control
to the �rst unmount script (Lines 16 to 18). It is important not to create a new process,
but to reuse the existing shell that is executing the rc script utilizing the exec built-in
command of the shell. This ensures that there will still be only the two processes
mentioned above. Any additional process will break the shutdown procedure. Thus, it
is not possible to just add a standard init script that replaces halt or reboot instead
of modifying the rc script.

5 # copy the umountcrfs scripts to the composite root file system
6 cp /scripts/crfs.d/umountcrfs? ${ROOT}/etc/init.d
7
8 # disable halt and reboot, register umountcrfs1 instead
9 chroot /root insserv -r halt, reboot

10
11 # patch /etc/init.d/rc to call umountcrfs after all init scripts are finished
12 # for the runlevels 0 and 6
13 RC=${ROOT}/etc/init.d/rc
14 if ! grep -qs 'exec /bin/bash /etc/init.d/umountcrfs1 \$runlevel$' ${RC}
15 then
16 sed -i -e '/^exit 0/ i \
17 #patched by crfs\
18 [ "$runlevel" = "0" ] || [ "$runlevel" = "6" ] && exec /bin/bash

/etc/init.d/umountcrfs1 $runlevel' ${RC}
'

19 fi

Listing 4.12 Script Patching the Shutdown Procedure. This script named
crfs_22_install_umountcrfs modifies the /etc/init.d/rc script that con-
trols the switching between runlevels. With the modification, it transfers control
to umountcrfs1 (Listings 4.13 and 4.14) during shutdown or reboot, instead of just
exiting. Furthermore it disables the halt and reboot init scripts that would halt or
reboot the system before the modified part of rc would be reached.

The �rst unmount script umountcrfs1 is shown in Listings 4.13 and 4.14. As a �rst
step, the script determines the device node of the writable layer (Line 11) and does
just halts or reboots the system if the writable layer is a RAM disk (Lines 14 to 23,
not shown). The remainder of the code shown in Listing 4.13 prepares the temporary
root �le system. In Line 26 the device node of the lowest layer is determined. This
works because all layers are still listed in /proc/mounts, although they are no longer
accessible.

The temporary root �le system consists of the lower, read-only layer and a writable
RAM disk (RAM Disk 1 in Figure 4.18) that are combined using aufs12 exactly like the
composite disk image. To prepare it, an additional RAM disk (RAMDisk 0 in Figure 4.18)
12 Or the equivalent union mount implementation.
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7 # the mountpoint of the writable layer
8 MOUNTPOINT=/root/.crfs_wl
9

10 # determine the writable layer device
11 DEVICE=$(grep -F $MOUNTPOINT /proc/mounts | cut -d ' ' -f 1)
12
13 # skip the unmount for tmpfs writable layers, directly halt the system
14 if [ "${DEVICE}" = "tmpfs" ]...
23 fi
24
25 # determine the device of the lowest layer (the base layer)
26 DEVICE=$(grep -F /.crfslayer1 /proc/mounts | cut -d' ' -f1)
27
28 echo 'umountcrfs1: creating new temporary root'
29 # container for mounts (root filesystem is ro)
30 mount -nt tmpfs tmpfs mnt
31 # create mountpoints
32 mkdir mnt/ro mnt/rw mnt/root
33 # mount rw layer (tmpfs)
34 mount -nt tmpfs tmpfs mnt/rw
35 # mount the base layer
36 mount -no ro ${DEVICE} mnt/ro
37 # create aufs
38 mount -nt aufs -o br=mnt/rw=rw:mnt/ro=ro aufs mnt/root
39 # create mountpoint for aufs root filesystem
40 mkdir /mnt/root/old

Listing 4.13 First Unmount Script for the Root File System (Part 1). This
part of the script named umountcrfs1 is preparing the temporary root file system.

needs to be mounted at an existing mount point, since the root �le system is already
remounted read-only (Line 30). The /mnt directory has been chosen, because it is
part of the Filesystem Hierarchy Standard (FHS) [47] that is mandatory for any Linux
distribution compliant to LSB. Three mount points are created below /mnt (Line 32),
the lower layer and the RAM disk (RAM Disk 1) are mounted (Lines 34 and 36), and a
union mount of the latter is created (Line 38). Figure 4.18b depicts the mounted �le
systems and Figure 4.19b depicts the running processes and their corresponding root
�le systems at this stage of the shutdown procedure. Finally, a mount point for the
root �le system is created inside the temporary root �le system (Line 40).

In the next step, the root �le system of the current process – the shell that executes
umountcrfs1 – is changed to the temporary root �le system using pivot_root
(Line 44 in Listing 4.14). Then, the remaining system directories and the mount points
of the additional RAM disk (RAM Disk 0) and the writable layer are moved to the
temporary root �le system (Lines 46 to 54). Figure 4.18c depicts the mounted �le
systems after this step13.

Finally, the second unmount script umountcrfs2 is copied to the temporary root �le
system and executed in a newly created shell (Lines 58 and 60). The desired runlevel
is passed as an argument. There are two vital requirements to this step: the newly
created shell has to be started from the temporary root �le system, so that it does not
13 Note that the positions of the two union mounts are swapped for better presentability.
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Figure 4.18 Mounted File Systems during Shutdown. An overview of the
file systems mounted at certain points of the modified shutdown procedure. Less
important mounts are depicted in gray. In this example, a two-layer configuration
consisting of a read-only base layer Layer 1 and a writable user layer Layer 2 is used.
The changes done to the user layer should be preserved.

reference the real root �le system, and no new process may be created, but the existing
one must be replaced. The former requirement is already satis�ed by changing the
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Figure 4.19 Processes and their Respective Root File Systems. An
overview of the remaining processes and their respective root file systems at certain
points of the modified shutdown procedure. The same layer configuration as in
Figure 4.18 is used.

root �le system of the current process, whereas the latter will be satis�ed by using
the exec built-in command of the shell. If done correctly, after this step there are still
only two processes, and only one of them still references the root �le system: the PID
1 process of the init system. This is depicted in Figure 4.19c.

The remaining reference to the root �le system can be cleared by restarting init using
the telinit command, and thus forcing it to reload itself from the temporary root
�le system (Line 9 in Listing 4.15). Afterwards, no process referencing the root �le
system is left (Figure 4.19d), so the root �le system can be unmounted in Lines 14
to 24. It is important to use umount.aufs for this step (Line 19), so pseudo-links, i.e.,
hard links over branches, can be persisted. This requires the root �le system to be in
writable mode, so it is remounted again (Line 18). Figure 4.18d depicts the mounted
�le systems at this stage of the shutdown procedure. The writable layer can now be
unmounted as usual to preserve its integrity (Line 26), whereas the read-only layers of
the composite disk image cannot be unmounted, because they are no longer accessible.
This is not a problem, because they are guaranteed to be in pristine state because they
where not mounted writable. The remaining mounted �le systems are depicted in
Figure 4.18e. As the only �le system that is not a RAM disk is mounted read-only, the
system can be halted or rebooted at this point (Lines 29 to 34).
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42 echo 'umountcrfs1: switching into temporary root filesystem'
43 # pivot into temporary root filesystem
44 sbin/pivot_root /mnt/root /mnt/root/old
45 # move system mounts to temporary root filesystem
46 mount --move /old/proc proc
47 mount --move /old/sys sys
48 mount --move /old/dev dev
49 mount --move /old/lib/init/rw /lib/init/rw
50 # move container for mounts to temporary root filesystem
51 mount --move /old/mnt mnt
52 # move the writable layer mountpoint to temporary root filesystem
53 mkdir ${MOUNTPOINT}
54 mount --move /old${MOUNTPOINT} ${MOUNTPOINT}
55
56 echo 'umountcrfs1: switching to second script'
57 # copy second script to temporary root filesystem
58 cp /old/etc/init.d/umountcrfs2 /etc/init.d/umountcrfs2
59 # exec the script in a new bash, loaded from the temporary root
60 exec /bin/bash /etc/init.d/umountcrfs2 ${RUNLEVEL}

Listing 4.14 First Unmount Script for the Root File System (Part 2). This
part of the script named umountcrfs1 is changing the root directory to the tempo-
rary root file system and executes umountcrfs2 (Listing 4.15) using the new root
directory.

4.5 Experimental Results

This section contains an evaluation of composite disk images both with respect to
storage e�ciency and to runtime impact. Finally, the bene�ts of using composite
disk images in Virtualized Grid Computing environments are evaluated based on a
concrete use case.

Unless stated otherwise, all measurements have been conducted on MaRC, the former
compute cluster of the University of Marburg. Each of the nodes in the cluster
contained two Dual-Core AMD Opteron 2216HE CPUs running at 2.4 GHz, 16 GiB
RAM, and a 250 GB SATA hard disk. The nodes were interconnected using a 1 Gbit
switched Ethernet network. At the time of the measurements, Debian GNU/Linux 4
(Etch) was used as operating system and Xen 3.0.2 was used as hypervisor.

4.5.1 Storage E�iciency of Composite Disk Images

To measure the storage e�ciency of composite disk images, a set of 31 Debian
GNU/Linux 6 virtual machines have been created. In the remainder of this thesis, this
set is called Set A. It will also be used in the evaluation of the Marvin Image Store (see
Section 5.5). An overview of Set A is given in Table 4.8.

The �rst virtual machine (A01) contains a base installation of Debian GNU/Linux 6
and a few additional packages. This virtual machine was cloned thirty times and each
of the clones (A02 – A31) was modi�ed by installing an additional piece of software
and all its dependencies. The Description column of Table 4.8 contains the name of the
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7 echo 'umountcrfs2: restarting init'
8 # restart init, load it from the temporary root
9 telinit u

10
11 echo 'umountcrfs2: umount composite root filesytem'
12 # unmount the composite root filesytem and the writable layer
13 # check for the existence of umount.aufs (aufs-tools)
14 if [ -x /sbin/umount.aufs ]
15 then
16 # remount old root as writable, so auplink can persist
17 # the plinks (auplink is invoked by umount.aufs)
18 mount -o remount, rw /old
19 /sbin/umount.aufs /old
20 else
21 # warn user and do a simple umount
22 echo 'umountcrfs2: WARNING: auplink (aufs-tools) not installed. can

not cleanly unmount writable layer.'
'

23 umount /old
24 fi
25 # unmount the writable layer
26 umount /root/.crfs_wl
27
28 echo 'umountcrfs2: done'
29 if [ ${RUNLEVEL} -eq 0 ]
30 then
31 /etc/init.d/halt stop
32 else
33 /etc/init.d/reboot stop
34 fi

Listing 4.15 Second Unmount Script for the Root File System. This script
named umountcrfs2 restarts init to cut the last tie to the old root directory – the
composite disk image, unmounts both the composite disk image and the writable
layer and shuts down or reboots the system.

added software. In most cases (23), all packages containing the name of the software
to install were installed using a command like the one below for Octave:

export DEBIAN_FRONTEND=noninteractive
aptitude search 'octave' | awk '{print $2}' | xargs apt-get install -y

Installation recipe for the virtual machine containing the Octave installation.

In the remaining cases, manually adjusted installation commands were used, either
to remove speci�c packages causing problems from the list returned by aptitude
search using grep, or by manually specifying the list of packages to install when
automatic list generation failed. The generation of the 31 virtual machines was auto-
mated using a Ruby program that relies on recipe �les with the mentioned installation
commands to prepare the virtual machines. This facilitates the easy creation of a
large number of virtual machines with contents ranging from web applications over
services to software development environments.

In addition to regular virtual machine images, the virtual machines A02 – A31 where
also created a second time using a composite disk image. The disk image of the �rst
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Table 4.8 Virtual Machines of Set A – Content. This table contains a descrip-
tion and some statistics about the virtual machines of Set A. All sizes are measured
from inside the virtual machines, are thus restricted to the files itself and are ignoring
the file system overhead.

Number of Files Content Size (MiB)

ID Description Regular Layered Regular Layered Savings

A01 base 17,432 — 474.7 — —
A02 ejabberd 18,843 1,485 504.0 47.3 90.6 %
A03 roundup 19,157 1,799 505.7 49.2 90.3 %
A04 afpfileserver 24,716 7,362 539.8 83.7 84.5 %
A05 mantis 19,935 2,575 555.1 98.5 82.3 %
A06 movabletype 23,948 6,595 580.6 124.3 78.6 %
A07 wordpress 20,727 3,310 583.6 129.2 77.9 %
A08 redmine 24,663 7,295 589.7 133.2 77.4 %
A09 moinmoin 23,450 6,098 597.0 140.7 76.4 %
A10 drupal 20,694 3,341 613.0 156.6 74.5 %
A11 lapp 24,113 6,761 621.9 165.8 73.3 %
A12 dokuwiki 24,913 7,561 626.4 170.6 72.8 %
A13 phpbb 26,579 9,227 647.2 190.9 70.5 %
A14 lamp 23,178 5,827 655.2 199.0 69.6 %
A15 moodle 28,213 10,863 682.5 226.2 66.9 %
A16 otrs2 24,578 7,226 693.0 236.8 65.8 %
A17 mediawiki 25,003 7,654 700.6 244.4 65.1 %
A18 openjdk 21,452 5,896 705.5 256.0 63.7 %
A19 mono 22,197 4,843 707.2 251.3 64.5 %
A20 django 29,715 12,362 722.2 266.4 63.1 %
A21 yorick 30,366 13,012 737.1 281.3 61.8 %
A22 typo3 27,746 10,395 743.6 287.8 61.3 %
A23 gallery 27,076 9,739 765.2 318.4 58.4 %
A24 tomcat 23,622 8,068 797.1 347.6 56.4 %
A25 pootle 30,328 12,977 798.5 342.7 57.1 %
A26 ruby19 43,807 26,454 933.7 477.9 48.8 %
A27 gforge 38,253 20,905 982.5 526.4 46.4 %
A28 trac 36,191 18,855 1,015.2 568.3 44.0 %
A29 r 40,508 24,958 1,200.1 750.8 37.4 %
A30 octave 47,858 30,511 1,469.5 1,013.9 31.0 %
A31 haskel 27,686 10,342 1,635.4 1,181.8 27.7 %

virtual machine (A01) was used as base layer. Table 4.8 shows the number of �les in
all virtual machine images and their total size, both for layered and regular virtual
machines. The layers are between 446.8 MiB and 456.7 MiB (454.7 MiB on the average)
smaller compared to the regular versions of the virtual machines. When considering
the size of the base layer, this means that 95.8 % of the contents of the base layer are
reused. Thus, the overall savings by using composite disk images range from 27.7 %
to 90.6 %, depending on the size of additional software installed in the layer, with an
average saving of 64.6 %.

The size of all �les in the virtual machine image is important, as there is not necessarily
a direct relation to the size of the corresponding disk image. This can be seen in
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Table 4.9 that shows the size of the disk images of all virtual machines. The discrepancy
of up to 723.5 MB between the content size and the image size (A24) is caused by the
installation procedure, during which a lot of temporary �les are written to disk and
deleted afterwards. All regular virtual machine images use 4 GiB sparse disk images,
whereas the layers are stored in 2 GiB sparse disk images. Sparse disk images only
occupy as many sectors on the host’s disk as are used. The actual size of a 2 GiB sparse
disk image can thus range between a few MiB14 and 2 GiB.

Table 4.9 Virtual Machines of Set A – Image Sizes. This table contains disk
image size information for all virtual machines of Set A: both for optimized and
non-optimized disk images the sizes of regular and layered virtual machine disk
images are compared.

Image Size (MiB) Optimized Image Size (MiB)

ID Regular Layered Savings Regular Layered Savings

A01 1,190.1 — — 668.2 — —
A02 1,214.5 161.9 86.7 % 697.3 144.1 79.3 %
A03 1,222.9 152.2 87.6 % 699.1 146.0 79.1 %
A04 1,249.3 202.2 83.8 % 733.2 180.5 75.4 %
A05 1,278.6 231.6 81.9 % 748.5 195.3 73.9 %
A06 1,301.1 279.7 78.5 % 774.0 221.1 71.4 %
A07 1,290.7 271.8 78.9 % 777.0 226.0 70.9 %
A08 1,298.0 264.3 79.6 % 783.2 230.0 70.6 %
A09 1,303.3 285.3 78.1 % 790.4 237.5 69.9 %
A10 1,313.2 316.2 75.9 % 806.4 253.4 68.6 %
A11 1,302.7 315.7 75.8 % 815.3 262.6 67.8 %
A12 1,325.3 328.3 75.2 % 819.8 267.4 67.4 %
A13 1,356.0 360.1 73.4 % 840.6 287.6 65.8 %
A14 1,341.9 359.3 73.2 % 848.6 295.7 65.1 %
A15 1,355.1 390.9 71.2 % 875.9 323.0 63.1 %
A16 1,363.1 415.8 69.5 % 886.4 333.6 62.4 %
A17 1,382.7 414.6 70.0 % 894.0 341.2 61.8 %
A18 1,423.0 468.3 67.1 % 898.9 352.8 60.8 %
A19 1,413.8 433.2 69.4 % 900.5 348.1 61.3 %
A20 1,443.3 439.6 69.5 % 915.6 363.1 60.3 %
A21 1,445.2 468.3 67.6 % 930.5 378.1 59.4 %
A22 1,423.7 498.8 65.0 % 936.9 384.6 59.0 %
A23 1,471.5 528.9 64.1 % 958.6 415.2 56.7 %
A24 1,505.0 575.6 61.8 % 990.5 444.3 55.1 %
A25 1,412.6 511.6 63.8 % 991.8 439.4 55.7 %
A26 1,634.7 717.2 56.1 % 1,127.1 574.6 49.0 %
A27 1,581.7 765.6 51.6 % 1,175.8 623.1 47.0 %
A28 1,715.7 859.4 49.9 % 1,208.5 665.0 45.0 %
A29 1,904.5 1,169.2 38.6 % 1,393.4 847.4 39.2 %
A30 2,160.7 1,448.5 33.0 % 1,662.6 1,110.5 33.2 %
A31 2,344.6 1,491.4 36.4 % 1,828.8 1,278.6 30.1 %

Simply by copying their contents to a blank disk image, the size of a disk image can
14 The minimal size depends on the �le system inside the disk image. Before a �le system is created its

size could even be 0 MiB.
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be reduced signi�cantly. The image size is reduced between 22.0 % and 43.9 % (on the
average 35.6 %) for regular images and between 4.1 % and 27.5 % (on the average 18.2 %)
for layered images. The e�ects of this optimization are questionable for regular virtual
machine images, because normal use of the virtual machine will undo the optimization.
For composite disk images on the other hand, the optimization is reasonable, because
the layers will not be modi�ed during usage.

Table 4.9 contains the sizes of both regular and layered images, with and without
optimization, as well as the savings resulting from the use of composite disk images.
In the non-optimized case, the savings range from 33.0 % to 87.6 % with an average of
67.8 %. While the savings with regard to the image size are lower for the smaller virtual
machines (A02 – A06) compared to the content size, for the other virtual machines the
savings are even higher. The reason is that the overhead of a second �le system in the
layer containing the additional software is dominant for smaller layers, but negligible
for bigger layers. Obviously, the savings are reduced by 7.0 % on the average when
optimization is used for both regular and layered virtual machines.

4.5.2 Runtime Impact of Composite Disk Images

The use of redirect-on-write technology in image composition introduces another
layer of abstraction to I/O operations. Especially virtual machines performing I/O
intensive tasks might su�er from a performance degradation caused by their use of
composite disk images. Two measurements have been conducted to evaluate the
overhead of image composition: a synthetic benchmark and a compilation of the Linux
kernel.

4.5.2.1 bonnie++ Benchmark

The bonnie++ [29] benchmark, a well-known testing suite aimed to perform a num-
ber of �le system related tests, has been used as synthetic benchmark. A Debian
GNU/Linux 4 virtual machine with a single CPU core and 128 MiB RAM was used for
this test15. The virtual machine image was used in two scenarios: as a regular virtual
machine and as a layered virtual machine, by combining its disk image with an empty,
writable layer. All disk images were allocated completely before the tests to prevent
any bias caused by delayed allocation when sparse �les are used. A total of 100 tests
was performed each of the scenarios, using a 256 MiB �le for the I/O performance
measurement. There are 6 �le I/O tests in bonnie++ that are brie�y described in
Table 4.10.

For the random seek test, bonnie++ could not calculate accurate results, because the
test completed too fast and rounding errors would probably bias the results [29].
Therefore, the evaluation focuses on the other 5 tests, whose results are shown in
Figure 4.20.

There are only small di�erences in the throughput values measured by bonnie++
between the regular and layered virtual machine. In both the write block and write
15 In Debian GNU/Linux 4 aufs was not available, instead UnionFS was used for image composition.
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Table 4.10 File I/O Tests of bonnie++. A description of the tests in bonnie++
that focus on file I/O ([29]).

Test Description

Block Write A file is wri�en using write() system call, writing the data in
blocks.

Block Read A file is read using read() system call, reading the data in blocks.

Character Write A file is wri�en using the putc() macro of the C standard library,
writing the data in individual characters.

Character Read A file is wri�en using the getc() macro of the C standard library,
reading the data in individual characters.

Rewrite This is a combined test. The data is first read from the file us-
ing read(), modified in memory, and then wri�en back using
write(). Before writing, the o�set in the file is changed using
the lseek() system call.

Random Seek Multiple processes are executing 8000 random lseek() system
calls, reading a block using read(), and in 10 % of the cases mod-
ifying and writing the block back using write().

Block Write

Block Read

Char. Write

Char. Read

Rewrite

Throughput (kbit/s)

0 100,000 200,000 300,000 400,000 500,000

Regular VM
Layered VM

Figure 4.20 Results of the bonnie++ Benchmark. The throughput measured
by bonnie++ in the first five tests described in Table 4.10, both for the regular and
layered virtual machine.

character tests, the layered virtual machine outperforms the regular virtual machine by
3.8 % and 1.8 %, respectively. In the remaining three tests, the regular virtual machine
outperforms the layered virtual machine by 0.4 % in the read block and read character
tests and 1.0 % in the rewrite test. The latter results were expected because of the
complexity added by the use of a union mount. The results in both the write block
and write character tests, on the other hand, were unexpected and the reason why
the layered virtual machine was able to outperform the regular virtual machine is not
clear. The only reasonable explanation is an odd interaction with the disk cache in
the dom0 that might be able to cache a larger amount of write accesses for the empty
layer than for the regular disk image containing the operating system. Additionally,
the disk cache is also very likely the cause of the high I/O throughput values for block
read and block write that are way beyond the capability of a single SATA hard disk,
suggesting that large portions of the read and write accesses were cached.
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4.5.2.2 Linux Kernel Compilation

The second measurement was the compilation time of the Linux kernel inside a virtual
machine. It has been chosen because it represents a balanced workload stressing
the virtual memory system, doing moderate disk I/O as well as being relatively CPU
intensive. In contrast to the other measurements in this chapter, this measurement
has been done on a workstation with an Intel Pentium 4 651 CPU running at 3.4 GHz,
1 GiB RAM and a 250 GB SATA hard disk. Debian GNU/Linux 5 (Lenny) was used as
operating system and Xen 3.2.1 was used as hypervisor.

A virtual machine with two virtual CPUs16 and 128 MiB was used for this test in three
di�erent con�gurations: as regular virtual machine and as a virtual machine with
two or three layers. For both layered virtual machines, the lowest layer was a copy
of the disk image of the regular virtual machine, i.e., a complete Debian GNU/Linux
5 installation including all required software for compiling the kernel. The kernel
sources itself were extracted in the second lowest layer. In case of the virtual machine
with three layers, the highest layer was initially empty at the start of the virtual
machine.

The default con�guration of the Debian GNU/Linux 5 kernel was used for building
the Linux 2.6.18 kernel. The command used to compile the kernel was make -j 4, to
ensure that both of the virtual CPUs are used by allowing four simultaneous jobs. In
this speci�c case, a job is any command that is executed by make to build the kernel,
e.g., the C compiler, the assembler, or the linker. Although the virtual machine has only
two virtual CPUs, a maximum number of 4 simultaneous jobs is used, because a factor
between 1.5x and 2.0x is generally recommended when calculating the maximum
number of jobs. The Linux kernel has been compiled ten times in each of the three
con�gurations.

A comparison of the elapsed (wall clock) time for the compilation is shown in Fig-
ure 4.21. The runtime overhead caused by using image composition with two or three
layers is 3.0 % or 3.6 %, respectively. This value is a little bit higher than the result of
the bonnie++ benchmark, although still acceptable.

Compilation Time (s)

0 500 1,000 1,500 2,000 2,500 3,000

Regular VM
Layered VM (2 Layers)
Layered VM (3 Layers)

Figure 4.21 Linux Kernel Compilation – Elapsed Time. This chart shows
a comparison of the elapsed (wall clock) time for compiling the Linux kernel in either
a regular virtual machine or a layered virtual machine with two or three layers,
respectively.

16 The Pentium 4 651 CPU supports Hyper-Threading, Intel’s implementation of hardware multithreading.
It consists of two logical processors that share execution resources.
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More detailed metrics gathered by GNU time can be found in Table 4.11. These values
show that the number of �le system input operations increased by 18.9 % or 28.2 % for
the layered virtual machines using two or three layers, respectively. The reason for
this increase is the need to read metadata from two or three �le systems in order to use
the union mount. This is likely the explanation of the higher overhead compared to
the bonnie++ benchmark. Another potential reason for the increase could be copy-up
operations, i.e., copying �le to the writable layer before they are modi�ed. But in this
speci�c case the number of modi�ed �les is relatively low, because it mostly consists
of reading source �les and writing object �les. The number of output operations,
on the other hand, does almost not increase at all, because all write operations are
executed on the highest layer and all other layers are read-only.

Table 4.11 Linux Kernel Compilation – Detailed Results. This table lists
average values of a few metrics reported by GNU time that can help to assess the
overhead of using image composition.

Layered VMs

Measurement Regular VM 2 Layers 3 Layers

Elapsed (Wall Clock) Time (s) 2,718.0 2,800.4 2,815.0
User Time (s) 4,869.4 4,831.9 4,836.1
System Time (s) 523.0 630.9 650.9
Major Page Faults 10,745.7 14,081.0 15,888.2
File System Inputs 1,135,396.8 1,349,304.0 1,455,352.0
File System Outputs 956,396.0 956,524.0 956,583.2

The higher overhead is also directly related to the increased system time, i.e., time spent
in the kernel. This increase is caused by the union mount that is implemented as a �le
system driver in the kernel. Strangely, the user time decreases in the layered virtual
machines. There is no obvious explanation for this e�ect. The higher amount of page
faults also hints at a memory shortage caused by the need to cache more �le system
metadata. With more memory, the overhead caused by using image composition
might be less.

4.5.2.3 Discussion

The measurements show that using a composite disk image as root �le system does
not have a big impact on the I/O throughput. Additionally, the amount of I/O on
the composite disk image should be rather limited in most use cases, because the
composite disk image intentionally o�ers no persistent storage to enable the reuse
of disk images. Most of the data read and written during the runtime of a virtual
machine using a composite disk image is likely located on an external storage system,
mounted via NFS.
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4.5.3 Virtualized Grid Computing Use Case

The last part of the evaluation is Virtualized Grid Computing scenario. Consider a user
that prepares a virtual machine and installs all software that is required to execute the
speci�c kind of job the user needs to compute in the Grid. When the scheduler grants
an execution slot to the user, the virtual machine has to be transferred to one or more
compute nodes that are located either at the local Grid site of the user or at a remote
Grid site. Each time the user submits a new job to be executed in this virtual machine,
it has to be transferred again.

In most cases, virtual machines can be reused, i.e., the same virtual machine that has
been used to execute the �rst job of a user might also be used to execute another job
of the same type17. Thus, the compute nodes might keep virtual machines images in a
local image cache after use. The drawback of this approach is the limited amount of
local storage typically available to compute nodes (250 GiB in the case of MaRC), so
the number of virtual machines that can be cached is limited. Additionally, this local
storage might also be required as scratch space for jobs to keep the load on the NFS
shares lower. A small cache combined with a large number of virtual machines, the
typical size of virtual machines, and a scheduler that does not take contents of those
caches into consideration when assigning a job to a compute node probably renders
the use of virtual machine caching useless.

If the user prepares his virtual machine using a composite disk image and a common
base layer, caching becomes useful again despite all the drawbacks described above.
The reason is the common base layer that is not only used by a single virtual machine,
but by a large number of virtual machines. So, instead of caching complete virtual
machine images, the compute nodes only cache a single base layer. Even if di�erent
virtual machines use di�erent base layers, the cache will be much more e�ective when
composite disk images are used.

The virtual machine used in this scenario contains a base installation of 162 packages
using about 468 MiB. The user installs 14 additional packages using about 58 MiB. Both
the regular virtual machine and the base layer are stored in a 4 GiB sparse disk image
using the ext3 �le system, while the user layer is stored in a 1 GiB sparse disk image.
The di�erences between the content size and the size of the image �les as shown in
Table 4.12 have already been explained in Section 4.5.1.

The transfer times of the three disk images listed in Table 4.12 have been measured in
two di�erent situations: between two compute nodes of MaRC, to simulate a local
transfer, and between MaRC and the Cluster of the University of Frankfurt via the
German Research Network (DFN), to simulate a remote transfer between two Grid
sites. Each disk image was transferred 60 times to calculate a robust mean value.
Since sparse �les are used for the disk images, only the used parts of the image need
to be transferred. Unfortunately, this rules out scp, the obvious tool for secure �le
transmission, because it cannot handle sparse �les. Therefore, tar is used over a

17 Unfortunately, there is no guarantee that an error does not render a virtual machine broken, resulting
in errors in subsequent jobs executed in the same virtual machine.
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Table 4.12 Size and Transfer Time in a Single and a Multi Site Scenario.
Transfer times of a virtual machine, both regular and layered, between compute nodes
of a cluster and between two clusters at di�erent Grid sites, optionally compressed.

Transfer Time (s)

Single Site Multi Site

Image Size (MiB) Uncompressed Uncompressed Compressed

Regular Image 691.1 40.6 660.8 460.1
Base Layer 666.4 39.1 636.9 443.5
User Layer 67.7 14.4 101.5 91.6

SSH-encrypted data channel. It is able to handle sparse �les and supports compression
that is used to speed up the copy operation in the remote transfer case using gzip.

Figure 4.22 shows the amount of data that needs to be transferred to consecutively
execute multiple jobs in the virtual machine described above. For the layered virtual
machine, four di�erent scenarios have been considered: caching restricted to the base
layer(s) and caching of all layers, both with an empty cache and a cache primed with
the particular base layer of the virtual machine.
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Figure 4.22 Data Transfer to Compute Nodes. Amount of Data that needs
to be transferred to a compute node in order to consecutively execute a regular or a
layered virtual machine multiple times. For the layered virtual machine, four di�erent
caching scenarios are evaluated: caching of base layers and caching of all layers, both
for an empty cache and a cache primed with the particular base layer.

There is a slight overhead for the �rst job if the cache is empty (6.2 %), but starting
with the second job the layered virtual machine requires signi�cantly less data to be
transferred, even when only the base layer is cached. For �ve jobs, the amount of
data that needs to be transferred reduces by 70.9 % – 98.0 % in the four scenarios. If
the job is executed in parallel on multiple compute nodes, which is very likely as the
Grid is typically used for compute intensive, parallel jobs, the di�erence between the
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necessary data transfer for regular and layered virtual machines might even grow
faster, unless special distribution techniques are used.

4.6 Summary

In this chapter, the Marvin Image Compositor, a novel approach for disk image
provisioning designed for Linux-based virtual machines was presented. It is based
on the idea of composition: a disk image containing a (shared) base installation of
an operating system is dynamically combined with another disk image containing
the actual application yielding a composite disk image with the combined contents of
both disk images (or layers). This approach does not only reduce the size of virtual
machine images, but also facilitates reuse and caching of layers because it keeps the
layers in pristine state during use.

Several experiments have shown the practicability of the approach. Layers require up
to 87 % less disk space than their regular counterparts, while generating a runtime
overhead of only 3.6 %. Depending on the use case, the overhead might be even smaller.
In Virtualized Grid Environments that might require to copy disk images to execution
hosts repeatedly, this approach can save up to 98 % of bandwidth.
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“A place for everything and everything in its place.”

Proverb dated from the 17th century

5
Virtual Machine Image Storage

5.1 Introduction

The widespread usage of virtual machines in Virtualized Grid and Cloud Computing
leads to a massive increase in the number of virtual machines. This phenomenon called
virtual machine sprawl [128] is a problem for providers both in Virtualized Grid and
Cloud Computing, because virtual machines have signi�cant storage requirements:
a single virtual machine can require between a few hundred megabytes and a few
gigabytes.

The reasons for virtual machine sprawl are manifold. First of all, virtual machines
in the Cloud are much cheaper than physical hardware in terms of up-front costs,
lessening the barrier of virtual machine creation. The sprawl is increased by the fact
that the creation of a virtual machine using one of the virtual machine management
systems described in Section 3.2 is literally just a click away. Users nowadays tend to
create virtual machines for everything, from testing software to providing isolated
environments for individual tasks or pieces of software. While this is a positive
development from a security point of view, it poses a challenge for the management
of virtual machines.

The sprawl of virtual machines increases even more if multiple versions of each
virtual machine are to be preserved. Nevertheless, keeping older versions has many
bene�ts. First and foremost, it provides a safety net for maintenance operations,
because installing updates or modifying a virtual machine in other ways can break
either the whole virtual machine or a piece of software within. Being able to undo the
changes to a virtual machine by switching back to an older, working version makes
modifying a virtual machine a less risky operation. Additionally, the possibility to
compare di�erent versions of a virtual machine can provide important input for a root
cause analysis of problems caused by updates or modi�cations.
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The preservation of older versions of a virtual machine is also a promising concept
for computational sciences as it helps to warrant the reproducibility of results that
is an important requirement in this domain. It facilitates the recreation of the exact
environment that has been used to generate speci�c results, so it can be used at any
later time – even by other scientists – to reproduce and thus verify these results.

The traditional form of virtual machine storage – plain disk images – can neither
e�ciently store large numbers of virtual machines nor many versions of individual
virtual machines. Composite disk images based on both shared and individual layers
as presented in Chapter 4 are a �rst step to deal with the storage of large numbers
of virtual machines, by applying a coarse grained form of deduplication: shared base
layers. More �ne-grained deduplication can further reduce the storage requirements of
large sets of virtual machines by taking advantage of the similarities between di�erent
virtual machine images in a way that is not possible for layers.

In this chapter, a novel approach for virtual machine image storage called Marvin
Image Store (also referred to as Image Store) is presented that e�ciently stores a
potentially large number of layered Linux virtual machine images in multiple versions
and at the same time provides e�cient means to access and update them. It combines
the e�cient deployment enabled by the use of layer based composite disk images with
the advantages of a �ner grained deduplication. Furthermore, the Image Store o�ers
advanced operations on stored virtual machines, e.g., comparing virtual machine
images, either di�erent versions of the same virtual machine or totally independent
virtual machines.

In contrast to virtual machine image composition presented in Chapter 4, which is
primarily aimed at optimizing the deployment time of virtual machines and only
improves storage e�ciency as a side e�ect, the Image Store presented in this chapter
focuses solely on the storage and maintenance phases in the lifetime of a virtual
machine. Additionally, the directly related deployment and undeployment phases are
a�ected as well. The phases in the lifecycle of a virtual machine that are related to
using the Image Store are shown in Figure 5.1.

Parts of this chapter have been published in [142].

5.2 Related Work

Meyer et al. [100] have conducted a large-scale study on deduplication using desktop
machines at Microsoft. Overall, the study consists of 857 �le systems spanning 162
terabytes. By using block-based deduplication techniques, the authors achieved storage
savings of up to 32%. Using �le-based deduplication on backup images (where a new
backup image contains a reference to a duplicate �le in an old backup), they achieved
87% of the savings of a block-based strategy. Based on their work and own experiments,
�le-based deduplication was chosen as one of the core technologies of the Marvin
Image Store.

Jayaram et al. [72] have presented a comprehensive study about the similarity of virtual
machine disk images. The authors analyzed 525 disk images used in a productive
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Figure 5.1 Related Virtual Machine Lifecycle Phases. The focus of virtual
machine image storage regarding the lifecycle of a virtual machine are the storage
and maintenance phases. The directly related deployment and undeployment phases
are a�ected as well.

Cloud computing environment, based on black-box similarity detection techniques.
Black-box means that an image is broken into blocks of �xed and variable size. Their
results showed that most images contain a signi�cant rate of duplication, and thus
quite good compression ratios can be achieved.

Nath et al. [103] have presented a method to e�ectively store virtual machine disk
images. Their approach is based on the assumption that most disk images contain
similar content, e.g., the same binaries, con�guration and device �les. Thus, they use
content-addressable storage (CAS) to actually reduce the storage requirements. An
image is split into �xed size blocks that are hashed using the SHA-1 hash function .
Based on the chosen block size and this deduplication strategy, a signi�cant amount
of storage can be saved.

A similar approach has been presented by Jin and Miller [74]. The authors further
study the e�ect of di�erent block sizes using the Rabin �ngerprint algorithm [124].
According to their results, using a variable block size does not necessarily lead to
improved storage savings. Sometimes, variable block sizes could even lead to reduced
savings. Therefore, the authors propose using �xed block sizes like. Additionally, they
propose compression of blocks, but their evaluation of this idea is only super�cial.

Both proposals are comparable to the Marvin Image Store in terms of image storage.
Nevertheless, in both approaches a block-based deduplication approach is used in
comparison to the �le-based approach used by the Marvin Image Store. Although this
approach promises higher storage e�ciency, small block sizes can vastly increase the
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manifest size. Neither Nath et al. nor Jin and Miller propose mechanisms to optimize
the import and export processes like the Marvin Image Store does.

Experiences with content-addressable storage and disks images have been presented
by Liguori and Hensbergen [86]. In contrast to the approaches mentioned above, the
authors designed their solution for direct usage of the stored image �les by virtual
machines, i.e, the disk images do not need to be copied to the execution host before
the virtual machine is started. Their implementation is based on the Venti [123] CAS
system and QEMU. Although their image analysis is very useful, the implementation
is only a simple pass-through between QEMU, the 9P �le server and Venti and thus
not suitable for a Cloud or virtualized Grid environment.

LiveDFS, a kernel-space �le system for Linux, is a similar system that has been pro-
posed by Ng et al. [105]. One of the design goals of LiveDFS was reasonable memory
consumption to facilitate its use on commodity hardware. This is achieved by keeping
only partial metadata in memory and storing the full metadata on disk. Splitting the
metadata to reduce the memory consumption has a negative impact on the perfor-
mance, because of the additional I/O requests required to access the entire metadata.
It is compensated by placing the metadata close to the data and using a structure that
can be cached e�ciently by the Linux disk cache. Like many of the proposals above,
LiveDFS uses �xed size blocks for deduplication.

Nicolae et al. [106] have proposed a distributed repository for virtual machine images.
The authors advocate aggregating a part of the execution hosts’ local disks to build a
large distributed storage system. Virtual machine images are split into equally sized
chunks and distributed among all disks. Like LiveDFS, the proposed repository is
designed for direct usage of the stored image �les. There is no indication whether the
proposed repository uses deduplication to reduce the storage requirements of virtual
machines like the Marvin Image Store does or not.

The proposals of Liguori and Hensbergen, Ng et al, and Nicolae et al. are all designed
to be used a storage systems for direct usage. They do not use compression to further
reduce the storage requirements of the virtual machine images to provide good access
e�ciency. Additionally, none of the approaches can provide a deeper insight into the
contents of the virtual machine images like the Marvin Image Store does.

Al-Kiswany et al. [6] have proposed VMFlock, an approach for e�cient deployment of
groups of virtual machine images, e.g., a multi-tier application. They use deduplication
to reduce the amount of data that needs to be transferred to the execution hosts, both
within the group of virtual machine images and between the group and images already
available at the execution hosts. VMFlock has been designed as a standalone extension
of existing virtual machine repositories, thus it does not consider the on-disk storage
requirements of virtual machines.

Both Jeswani et al. [73] and Zhou et al. [178] have proposed systems that improve
the caching of virtual machine templates by selecting a base template and storing
di�erences between this base template and other templates. Whenever a template
other than the base template is required to instantiate a virtual machine, its template
is regenerated by applying the di�erences to the base template. This approach is
comparable to the way the Marvin Image Store updates existing image �les.
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5.3 Design

An ideal storage system for virtual machines has to deal with a large number of virtual
machines, especially when it is deployed in Virtualized Grid and Cloud Computing
environments. Therefore it needs to provide high storage e�ciency, i.e., e�cient usage
of the available storage to maximize the number of stored virtual machines. This
is typically implemented by using deduplication techniques that reduce the storage
requirements of virtual machines signi�cantly.

However, storage e�ciency is only one of the major challenges faced by a storage
system for virtual machines. The other major challenge is access e�ciency, i.e., e�cient
access to stored virtual machine images and their contents. This is important because
it directly in�uences the deployment times, which are an important criterion of the
perceived performance of a Cloud environment. For some users of Cloud environments
fast deployment times are even critical, because they rely on the fast adaption of the
Cloud environment for scalability of their applications.

Besides storage and access e�ciency, version control is a desirable feature of an virtual
machine storage system. It should not only store a single disk image per virtual
machine, but a disk image for each version of the virtual machine. These disk images
have to be stored in an independent manner, so they do not have a negative impact
on the access e�ciency. The snapshot technology commonly used by hypervisors is
an example of a contrary approach: each snapshot only contains the changes with
respect to the preceding snapshot and thus depends on it (recursively). To create a
copy of the virtual machine at a speci�c snapshot the underlying disk image needs to
be copied and all snapshots up to the desired one need to be applied sequentially to
the copy. Thus, this approach is not applicable for a virtual machine storage system.

Another desirable feature of a storage system for virtual machines is content awareness,
i.e., it should be able to understand the structure and contents of the images it stores.
The knowledge of virtual machine image contents facilitates shifting some manage-
ment and maintenance operations to the storage system itself. This shift of operations
to the storage system increases access e�ciency, because the image does not need to
be fetched and transfered to another host �rst. Additionally, the knowledge facilitates
novel management, maintenance, and analysis operations that are not possible with
traditional virtual machine images.

In this chapter, a novel repository for Linux-based virtual machines is presented: the
Marvin Image Store. Its design is inspired by prior work of Wei et al. [167] and Reimer
et al. [128]: Mirage and the corresponding Mirage image format. The Marvin Image
Store enhances the design of Mirage with several novel ideas: support for layers
and thus special �les used by union �le systems, Merge and Di� operations solely
based on metadata, Direct Mounts as well as exchangeable storage back ends that
deploy various compression algorithms to further increase storage e�ciency. Those
extensions increase both storage and access e�ciency and are the foundation of novel
management, maintenance, and analysis operations.

The remainder of this section is structured as follows. In Section 5.3.1, a list of
requirements for storage of virtual machine images is de�ned. Section 5.3.2 describes
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two di�erent approaches to virtual machine storage and introduces the concept of
deduplication. In Section 5.3.3, the Mirage system is described and assessed regarding
the requirements. Based on this description and the requirements, Section 5.3.4
illustrates the design of the Image Store.

5.3.1 Requirements

The Marvin Image Store needs to satisfy all requirements listed in this section to
provide the desired functionality. They are divided in two parts: fundamental require-
ments that are absolutely necessary to build a storage system for virtual machines and
additional requirements that facilitate novel operations on stored virtual machines.

5.3.1.1 Fundamental Requirements

The following list contains the fundamental requirements on a storage system for
virtual machines:

R5.1 Provide a storage system that can store a large number of virtual machine
images both e�iciently and safely.

R5.2 Provide an e�icient version control system for stored virtual machines.

R5.3 Provide means to e�iciently update a virtual machine stored in the Image
Store.

R5.4 Provide fast access to the image of a stored virtual machine (in any
version).

R5.5 Provide an e�icient way to clone virtual machines from an existing shared
image.

R5.6 Provide an e�icient way to make minor modifications to a virtual machine
image to facilitate deployment of multiple, almost identical instances of
the same virtual machine image.

The Image Store has to be able to handle the large number of virtual machine images
used in Virtualized Grid and Cloud Computing environments without using excessive
amounts of storage space. Without this storage e�ciency, the Image Store cannot be
used as a virtual machine image repository in such environments. Furthermore, it
ensures that the images are stored in a way so they cannot be damaged during normal
use of the Image Store (Requirement R5.1).

Virtual machines have to be maintained just like physical machines. Regular main-
tenance is important even in phases without active usage of a virtual machine (see
Section 3.3.2). Consequently, virtual machine images change over time. Just overwrit-
ing a stored image with an updated one violates Requirement R5.1, because in case of
an error both versions of the virtual machine might be lost. A version control feature
(Requirement R5.2) solves this problem by generating a new version of a virtual ma-
chine when it is updated instead and preserves the old version. Furthermore, it stores
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all these versions in a storage e�cient way. Finally, it provides tools to manage the
di�erent versions of a virtual machine, e.g., a tool that analyzes the changes between
two versions.

Besides actually storing multiple versions e�ciently, the process of updating a stored
virtual machine – the creation of a new version – has to be e�cient as well. This is
ensured by Requirement R5.3. This requirement is even more general: every update
to a virtual machine image should be e�cient. This also includes updating a copy of a
virtual machine image outside of the Image Store to the latest version available in the
Image Store.

The deployment time of a virtual machine is a critical factor for the elasticity and thus
the perceived performance of a Cloud Computing environment. A Cloud Computing
environment can only provide the desired elasticity if all components in the infras-
tructure including the virtual machine image repository are optimized for maximum
e�ciency. Requirement R5.4 ensures that the Image Store provides the necessary
access e�ciency to minimize the deployment time of virtual machines. The use case
of deploying older versions of a virtual machine images is explicitly included in this
requirement, because excessive deployment times for older versions limit the usability
of the version control feature.

Sharing of virtual machine images between users is an important feature, because it
eases the process of creating new virtual machines (see Section 5.3). Consequently,
the Marvin Image Store must supports sharing of virtual machine images as well as
cloning from shared images in an e�cient manner (Requirement R5.5).

Finally, if multiple instances of a single virtual machine have to be deployed, it might
be necessary to make minor modi�cations to the con�guration of the virtual machine.
An example of such a modi�cation is the change of the hostname that is stored in the
�le /etc/hostname. Although virtual machines should be con�gured in a way that
does not rely on con�guration changes when multiple instances of a virtual machine
need to be deployed, it is not always possible to do this. The Image Store has to
provide an e�cient process for this kind of minor changes (Requirement R5.6). Note
that this requirement is di�erent from Requirement R5.3 that deals with arbitrary
and substantial changes to a virtual machine, e.g., by updating software or installing
additional software.

5.3.1.2 Additional Requirements

All the requirements de�ned above ensure that the Image Store can provide the basic
functionality to serve as virtual machine image repository. In the following, a set of
additional requirements that support advanced operations on stored virtual machine
images is listed.

R5.7 Provide support for storing layered virtual machine images.

R5.8 Provide means for analyzing the contents of stored virtual machine images
e�iciently.
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R5.9 Provide fast access to the contents of any file contained in (any version of)
a stored virtual machine.

R5.10 Provide means for filtering of sensitive or unwanted files out of virtual
machine images.

The Image Store can be combined with the image composition technology presented
in Chapter 4 to achieve better access e�ciency by reducing the sizes of virtual machine
images. Thus, it has to provide support for storing layered virtual machine images
and has to be able to deal with their characteristics (Requirement R5.7).

Being aware of the content of virtual machine images instead of viewing them as plain
�les enables novel ways to handle virtual machines. The Image Store has to provide
means for in-depth analysis of stored virtual machine images (Requirement R5.8). One
of the use cases for this kind of functionality is the detection of the di�erences between
two versions of a virtual machine images. This can be used to locate relevant changes
in case a software update or another modi�cations of a virtual machine image causes
an error. It can also be used to derive necessary steps to update a cloned image based
on the di�erence between the original image and its latest version. Another use case
for this kind of functionality is computing a list of virtual machine images containing
either a vulnerable binary or a con�guration �le that contains insecure settings. After
relevant virtual machines have been found, it is important to be able to access the
content of the corresponding �les. The Image Store has to provide fast access not only
to the images themselves, but also to their contents (Requirement R5.9).

Finally, sharing of virtual machine images may lead to the disclosure of sensitive
information, if another user clones an image containing sensitive �les. Sensitive
�les include but are not limited to Secure Shell (SSH) [70] related �les (i.e., keys,
known hosts, con�guration �les with host speci�c settings), Transport Layer Security
(TLS) [71] key pairs, or shell history �les. The creator of the virtual machine image
can easily delete these �les, but there is always the risk of forgetting this important
manual step. Thus, automation of this step is necessary, especially when a shared
virtual machine image is regularly updated. Sensitive data, however, is not the only
type of data that can and should be �ltered out. Temporary �les, caches and log �les
do not need to be stored in a virtual machine image repository. The Image Store must
be able to �lter both sensitive and unwanted �les out from a virtual machine image
either when it is stored or updated or before it is shared (Requirement R5.10).

5.3.2 Storage of Virtual Machine Images

This section starts with a short introduction into the concept of deduplication, because
it is a very important technology that can be used to reduce the storage requirements of
virtual machine images. Then it compares two contrary approaches for storing virtual
machines: the content agnostic and the content aware approach. These approaches
deal with virtual machines as black or white boxes, respectively. Both approaches
are evaluated regarding the requirements of virtual machine image storage and the
results of the assessment are discussed.
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5.3.2.1 Deduplication Technology

The goal of deduplication is to increase storage e�ciency when storing large amounts
of data. It is accomplished by splitting the data into small chunks and identifying
duplicate chunks of data. Only a single instance of each unique data chunk is stored,
i.e., duplicate chunks of data are stored only once. This can be achieved by using a
content-addressable storage system that computes location of a chunk of data from the
data itself by applying a hash function to the data. Because identical chunks of data
have the same hash value and thus the same address in the content-addressable storage
system, they are e�ectively stored only once. To be able to reconstruct the original
data from the chunks, a list of references to the data chunks is stored as well. This
obviously increases the storage requirements for unique data chunks, because both
the chunk and the reference need to be stored, but decreases the storage requirements
as soon as a data chunk appears more than once.

The actual amount of storage space that can be saved using this technique depends
on the type of data, i.e., the amount of duplicate data chunks it contains, and the
deduplication granularity, i.e., the size of the chunks. Deduplication techniques exist for
both �xed and variable sized chunks of data. This facilitates the use deduplication with
granularities ranging from �ne, e.g., small, �xed size blocks of 512 bytes, 4,096 bytes,
or 8,192 bytes, to coarse, e.g., entire �les. In the latter case, each �le’s content is stored
as a single, variable size chunk of data. The selection of a granularity is a trade-o�
between deduplication and resource requirements. Smaller chunks of data reduce the
storage requirements for the actual data, because the amount of unique chunks of
data is reduced. On the other hand, smaller chunks cause an increase in the number
of references required to reconstruct the original data. The opposite is true for larger
data chunks. Most deduplication systems use chunks of �ne granularity, because this
saves storage space even for �les that are only partially equal.

The image composition approach presented in Chapter 4 also constitutes a form
of deduplication. Because every layer is stored as a single chunk of data, it is an
example of a very coarse-grained deduplication system. Nevertheless, the image
composition approach achieved high savings. The achievable savings of more �ne-
grained deduplication methods should be even higher.

5.3.2.2 Content Agnostic Storage - A Black Box Approach

The �rst approach is called content agnostic, because it treats virtual machine images
as plain �les or black boxes. Di�erent techniques can be used to reduce the storage
requirements of virtual machine images in this approach: besides the obvious option
of deduplication, compression or di�erential storage can also be used for storing
virtual machine images e�ciently. All three techniques do not naively store image
�les, but rely on similarities within the images that can be utilized to reduce the
storage requirements. Regardless of the chosen technique this is a black box approach,
because all three techniques treat virtual machine images as simple streams of bytes
instead of analyzing their contents and utilizing similarities at the �le system level.
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Deduplication is a widely used approach to reduce the storage requirements of any
kind of data, not only virtual machine images. Various solutions for deduplication
exist that can be used to store virtual machine images in a storage e�cient way.
First of all, some commodity �le systems like ZFS [113] or Btrfs [23] natively support
deduplication. Furthermore, there are highly specialized deduplication solutions like
lessFS [84] or SDFS [145]. All of these solutions provide a �le system to their user.
The virtual machine images to store are just copied into those �le system like regular
�les and the deduplication is taken care of automatically.

Another very common approach to reduce the storage requirements of data is to
compress it using one of the many available compression algorithms. This approach
can easily be used for storing virtual machine images. If an image has to be stored, it is
compressed using the selected algorithm like any other �le. Before a virtual machine
can be started, the corresponding image has to be decompressed again.

Di�erential storage technology is often used in backup programs and can also be used
to store virtual machine images. The idea of di�erential storage for virtual machine
images is to store the �rst version of the image in its entirety and instead of the entire
image of the second version only to store the parts of the image that have changed
between the two versions. This can be carried on, e.g., instead of the third version’s
image only the changes between the second and third versions’ images are stored.
Obviously, this technique can only store multiple versions of a single virtual machine’s
image e�ciently. The bigger the di�erences between to images, the smaller the storage
savings. Fortunately, cloned images are nothing else than another version of a virtual
machine image, although there is no longer a linear version history, but a tree-like
version history.

The drawback of this approach is that in many cases images have to be reconstructed
before they can be used. If the third version of the image shall be used in this speci�c
case, the �rst version has to be copied and the changes between the �rst and second
image and between the second and third image have to be applied to the copy in this
order. There are many variations of this technology that improve the access time to
speci�c versions, e.g., storing complete images every n versions or storing the last
image in its entirety and store the di�erences to older versions. Unfortunately, not all
of these variations are suitable for tree-like version histories.

An assessment of the content agnostic approach for storing virtual machine images is
given in Table 5.1. It at best partially satis�es the fundamental requirements imposed
on a storage system for virtual machines. It fails to satisfy the additional requirements
that support advanced operations on stored virtual machine images.

5.3.2.3 Content Aware Storage - A White Box Approach

The second approach is tailored to storing virtual machine image �les (or �le system
images in general). It does not treat virtual machine images as plain �les, but analyzes
them at the �le system level and uses the gained knowledge of the contents to reduce
the storage requirements. In other words, it deals with the individual �les in the virtual
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Table 5.1 Assessment of Content Agnostic Storage. An assessment of a
black box approach to virtual machine image storage.

Requirement Assessment of Content Agnostic Storage

Fundamental Requirements

R5.1 X Large numbers of virtual machine images can be stored e�i-
ciently using either deduplication, compression or di�erential
storage. The safety of the system is subject solely to the
actual implementation.

R5.2 (X) A black box approach can provide safe storage for multiple
versions of a virtual machine (Requirement R5.1). However,
none of the advanced features of a version control system are
available.

R5.3 ×/(X) A black box approach obviously has to update images in their
entirety. The e�iciency such an update additionally varies
depending of the implementation technology.

R5.4 (X)/X E�icient access to virtual machine images in any version is
possible depending on the implementation technology. Of
the examples above, only the deduplication and compression
technology provide e�icient access.

R5.5 ×/(X) The entire disk image has to be copied to create a clone.
Depending on the actual implementation the copy process
might be more e�icient than a regular copy process.

R5.6 × Even minor modifications cannot be done in a black box ap-
proach, because the storage system knows nothing about the
content of the image.

Additional Requirements

R5.7 X Layered virtual machine images can be stored just the same
as regular virtual machine images.

R5.8 × A black box approach does not provide any means for analysis
of virtual machine’s contents.

R5.9 × A black box approach does not provide any means for directly
accessing virtual machine’s contents without accessing the
entire image.

R5.10 × A black box approach does not provide any means for filtering
of virtual machine’s contents.

X: requirement satisfied,×: requirement not satisfied, (X) : requirement partly satisfied

machine image and not the image �le as a whole. This approach is consequently called
content aware.

The content aware approach is based on the idea of discarding the image �le and the
�le system it contains, because it is just a container and has not to be stored. Only the
�les contained in the image are stored by this approach. If the �le system is discarded,
the structure of the �les, i.e., the hierarchy of directories, is lost. This structure has to
be captured in special �le called manifest and stored with the �les. Together, manifest
and �les form a blueprint to reconstruct the image �le on demand.
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Up to now, the storage requirements are not signi�cantly reduced1. This goal is
achieved using a content-addressable storage system that is the natural continuation
of this approach, because the individual �les need to be stored in an appropriate
manner anyway. The manifest contains a reference for each �le that can be used to
retrieve it.

To be able to analyze the contents of a virtual machine image, fast access to the
metadata of all �les contained in the image is required. The metadata comprises
among others the name of a �le, access and modi�cation timestamps, access rights
and owner information. On the other hand, the data is the actual content of the �le.
If the metadata of all �les is stored in the manifest together with the structure, the
manifest contains the entire metadata of the virtual machine image. That way, the
content-addressable storage system stores only the �les’ contents, but none of their
metadata.

At this point, the content aware approach combines a clear separation of data and
metadata as well as a deduplication of �le contents. The granularity of the deduplica-
tion can be chosen freely in the implementation of the approach. Because individual
�les are stored instead of large virtual machine images, the content-addressable stor-
age may even use a coarse granularity to reduce the overhead, i.e., an entire �le is a
chunk.

An assessment of the white box or content aware approach for storing virtual machine
images is given in Table 5.2. It can completely satisfy both the fundamental as well
as the additional requirements imposed on a storage system for virtual machines.
However, note that this is a theoretical evaluation of an approach. An implementation
of this approach can nevertheless fail to satisfy all requirements.

5.3.2.4 Discussion

A comparison of the suitability of both presented approaches for the composition of
disk images is given in Table 5.3. It is obvious that the content agnostic approach is
not suited very well for storing virtual machine images when the requirements are
not limited to plain storage of images, but cover advanced features like analysis of
images or version control. The content aware approach can in theory satisfy all of the
requirements imposed on a storage system for virtual machines. It is thus the obvious
choice for the Image Store.

5.3.3 Basic Concepts

In this section, the basic concepts the Image Store is built upon are presented. These
concepts are based on the work of Reimer et al. [128]. The novel ideas that di�erentiate
the Image Store from these basic concepts are presented in Section 5.3.4. Throughout
the description of the concepts, satis�ed requirements are indicated in parentheses.

1 Except the image �le is much larger than the contents of the image �le, which is typically the case for
�xed-size or non-sparse images.

112



5.3. Design

Table 5.2 Assessment of Content Aware Storage. An assessment of a white
box approach to virtual machine image storage.

Requirement Assessment of Content Aware Storage

Fundamental Requirements

R5.1 X Large numbers of virtual machines images can be stored e�i-
ciently because of the content-addressed storage system for file
contents that guarantees their safety at the same time. The
safety of the manifests is subject to the implementation.

R5.2 X A white box approach can provide safe storage for multiple ver-
sions of a virtual machine (Requirement R5.1). Additionally, the
content awareness is a prerequisite for providing advanced ver-
sion control system features.

R5.3 X A white box approach can be used to facilitate e�icient updates,
but this depends solely on the implementation.

R5.4 X E�icient access to virtual machine images depends on e�icient
access to both the manifest and the file contents. Both can be
achieved by an implementation.

R5.5 X Only the manifest needs to be copied to clone a virtual machine.
This is very e�icient because manifests are small compared to
virtual machine images.

R5.6 X Minor modifications to virtual machines can be done e�iciently,
because the white box approach has knowledge about the images’
contents.

Additional Requirements

R5.7 X The content aware approach can be used to support layered
virtual machines, but this depends solely on the implementation.

R5.8 X The separation of data and metadata used in the white box
approach is the ideal foundation for analyzing virtual machine
images, because it facilitates working solely on metadata that is
smaller an can be processed more e�iciently.

R5.9 X E�icient access to individual files’ content is trivial with this
approach: the user looks up a reference in the manifest and
fetches the contents from the content-addressable storage.

R5.10 X Content awareness is a precondition for filtering. However, the
filtering capability depends solely on the implementation.

X: requirement satisfied

5.3.3.1 Import and Export of Virtual Machines

The Image Store is an implementation of the content aware approach that works with
the contents of image �les instead of the image �les themselves (see Section 5.3.2.3).
Thus, a virtual machine image �le cannot be just copied into the Image Store, but it
has to be imported. During the import process (depicted in Figure 5.2), the �les are
extracted from the image �le while the image itself is discarded. Furthermore, the
Image Store separates the actual data from the metadata, i.e., it separates the content
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Table 5.3 Suitability of Storage Approaches. Comparison of the numbers
of satisfied, partly satisfied and non-satisfied requirements for each of the two
approaches to virtual machine storage.

Satisfied

Approach Fully Partly Not at All

Content Agnostic 2 (3) 2 (3) 6 (4)

Content Aware 10 0 0

of the �les in the image from �le names, access rights, timestamps, owner information,
and the �le hierarchy. The data is kept in the Data Store, a content-addressable storage
system, while the metadata of each image is written into a manifest stored in the
Metadata Store. The connection between Metadata Stored in the manifest and the
corresponding chunks of data in the Data Store is realized via references based on the
chunk’s content. A single chunk of data can be referenced by either multiple manifests
or multiple times from within a single manifest. Thus, the Data Store is a deduplication
system and enables e�cient storage of virtual machine images (Requirements R5.1
and R5.2).

The Image Store treats entire �les as chunks of data and thus applies deduplication
with a coarse granularity, although it could also be implemented with �ner grained
deduplication. When considering the typical lifecycle of virtual machines in Virtualized
Grid and Cloud Computing environments and its implications (see Section 3.3.2) the
decision in favor of this coarse granularity is nevertheless reasonable. Virtual machines
contain mostly binaries and con�guration �les, but no data. On the one hand, data
in a virtual machine would vastly increase its deployment time. On the other hand,
when a virtual machine that contains older data is deployed inconsistencies with other
instances can occur. More importantly, in Virtualized Grid and Cloud Computing
environments the disks associated with running virtual machines are ephemeral, i.e.,
their contents are lost when a virtual machine is shut down. Therefore, data should
not be stored on the system disks of virtual machines2, but on external object or block
storage systems, e.g., the Simple Storage Service (S3) and Swift or Elastic Block Store
(EBS) and Cinder in case of Amazon Web Service [8] and OpenStack [111], respectively.
As the binaries are very likely identical for many virtual machines – after all there are
only a few di�erent Linux distributions that are used in most of virtual machines –
the coarse granularity is bene�cial because less references and thus lookups in the
content-addressable storage are required to reconstruct the �les during export.

A manifest is a document that contains the metadata for each �le in a virtual machine
image and references to the content of those �les. The metadata of a �le is comprised
of the �le’s name, size, access rights, ownership information and a few additional
attributes. Except for the �le name the metadata is taken directly from the index node
(inode), i.e., the data structure that represents a �le system object in Unix-style �le
systems. The manifest itself is a tree structure that corresponds to the hierarchical

2 The system disk of a virtual machine is a copy of the image �le when the virtual machine is started,
but diverts from the image �le during the usage of the virtual machine.
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Metadata StoreData Store

Image File

Figure 5.2 Import of a Virtual Machine Image. During the import process,
the image file is split into its metadata, consolidated in a manifest in the Metadata
Store, and its files, stored in the Data Store and referenced by the manifest. The Data
Store contains both files shared between multiple virtual machines as well as virtual
machine specific files, illustrated using green and orange boxes, respectively.

tree structure of the �le system it represents. The metadata for each of the �les is
stored in a tree node together with a reference to the �le’s contents stored in the Data
Store.

The manifests of all virtual machine images stored in the Image Store are kept in the
Metadata Store. For each of the virtual machines, a single or multiple manifests are
stored. Each manifest is the blueprint for a speci�c version of a virtual machine. The
Metadata Store ensures that stored manifests are immutable. When a virtual machine
is updated and subsequently imported again, the original manifest is not modi�ed,
but a new manifest is created for the updated virtual machine. Because the metadata
accounts only for a small part of size of a virtual machine image, that approach is
acceptable. This is one of two preconditions necessary to provide version control
for virtual machines (Requirement R5.2). For better access e�ciency, the manifests
are stored in a self-contained manner. They are therefore immediately available and
do not have to be computed by applying a (potentially large) number of di�erential
manifest updates to an initial version of the manifest (Requirement R5.4).

The contents of all �les that are contained in any of the stored virtual machine images
are kept in the Data Store. For each unique �le, the entire content of the �le is
stored as a single object. The Data Store is an instance of a content-addressable
storage, i.e., the content of the �le is used to calculate the position in the Data Store
(Requirement R5.9). The position is stored in the manifest to reference the content.
Using the content-addressable storage approach serves two purposes: it provides
the deduplication of �le contents and guarantees the immutability of �le contents
stored in the Data Store. The immutability of �le contents is the second precondition
necessary to provide version control for virtual machines (Requirement R5.2). It is
guaranteed by an inherent property of a content-addressable storage: as soon as a
�le is modi�ed, i.e., its contents change, another position is calculated so the updated
�le’s content is stored somewhere else in the Data Storage leaving the original content
untouched.
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Obviously, a virtual machine image stored in the Image Store cannot be used by a
virtual machine directly, because it is not stored in the form of an image �le. It has
to be exported before usage, i.e., reconstructed from the information in the manifest
stored in the Metadata Store and the referenced �le contents in the Data Store. The
export of an image consists of two steps. First, a new image �le containing an empty
�le system is created. Then, for each node in the manifest a new �le is created in the
image, the referenced contents are copied to the image from the Data Store and �nally
the metadata from the manifest is applied, i.e., the access rights, owner information
and timestamps are set to the values stored in the manifest. The exported image
is almost identical to the one that was imported into the Image Store3. The export
process is illustrated in Figure 5.3.

Metadata StoreData Store

Image File

Figure 5.3 Export of a Virtual Machine Image. During the export process, the
image file is reconstructed using the manifest in the Metadata Store. The referenced
files are copied from the Data Store to the target file system and the metadata
contained in the manifest is applied.

5.3.3.2 Sharing and Cloning of Virtual Machines

Sharing of virtual machine images is an important concept in both Virtualized Grid
and Cloud Computing. It allows users without detailed knowledge of (virtual machine)
administration to deploy their own virtual machines in the Cloud or to execute jobs
in Virtualized Grid Computing environments by relying on existing virtual machine
images created by experts. To facilitate modi�cations of a shared image, it needs
to be cloned �rst. Depending on the size of the virtual machine image cloning is a
time-consuming process with traditional image �les. On the other hand, using the
Image Store cloning is a fast process: only the manifest needs to be copied to generate
a clone of the virtual machine. This is signi�cantly faster, because the manifest’s size
is only a fraction of image �le’s size (Requirement R5.5).

Another related use case is the process of deploying multiple instances of a virtual
machine, if some of its �les need to be slightly modi�ed before deployment to adopt
the virtual machine’s con�guration. Without any optimizations, this would require to
clone the image, export the cloned version, make the necessary changes, and �nally
updating the clone in Image Store. To speed up this process, a technique named
3 Details about the (subtle) di�erences are given in Section 5.4.3.2.
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manifest composition [128] can be used. The idea is to create an overlay manifest
containing only the modi�ed �les. The overlay manifest is then combined with
the manifest of the virtual machine to create a modi�ed version. This approach is
signi�cantly faster compared to the non-optimized approach (Requirement R5.6).

The �nal concept closely linked with sharing of virtual machines is �ltering of sensitive
information as proposed by Wang et al. [167]. One of the problems related with sharing
of virtual machine images is that they may contain sensitive content, such as SSH
keys, SSL key pairs, or shell history �les. Using a set of �lters that are executed either
at the time a virtual machine image is shared or exported, sensitive content is removed
(Requirements R5.8 and R5.10). The owner of the virtual machine image repository
provides the �lters. Users can specify additional �lters using high-level transformation
rules based on regular expressions that are applied to the content of the �les. No
user-supplied code is executed to implement a �lter for security reasons. Because of
this restriction, custom �lters are less powerful than the provided ones, although they
are important because the creators of shared images typically have more knowledge
about the sensitive content that should be removed.

5.3.3.3 Discussion

An assessment of a basic Image Store based on the concepts described above, which is
based on the work of Reimer et al. [128] and Wang et al. [167], is shown in Table 5.4. It
can be seen that there are both a fundamental and an additional requirement that are
not satis�ed by this basic implementation: e�cient updates and support for layered
virtual machines. Updates of virtual machines are possible with the Image Store
described above, but the process of updating is not very e�cient. Even if only a single
�le has been changed, the whole image needs to be imported again. Duplicate �les will
be recognized during the import process and only the modi�ed �le will be added to the
Data Store, but nevertheless every �le must be checked during the process. Layered
virtual machine images contain some special �les that are necessary to delete �les or
directories from lower, read-only layers. While these special �les can be exported just
a regular �les – notably they are regular �les with a special meaning for the union
mount implementation only – the basic Image Store is not aware of their function.
This has severe consequences for manifest composition and advanced operations.

Furthermore, there are four requirements that are only partially satis�ed. Di�erent
versions of virtual machines are stored, but there is no way to work with these di�erent
versions. Access to virtual machine images stored in the Image Store requires the
entire image to be exported, unless a single �le is fetched individually from the Data
Store. By reducing the amount of data that needs to be exported, the access time can
be further improved. The analysis capabilities of such a store are limited to �nding
speci�c content in virtual machines. Finally, the �ltering solution provides only a
rudimentary extension mechanism for security reasons.

From the assessment it can be seen that a basic Image Store is not the solution for all
challenges related to storing virtual machine images. In the next section, a revised
version of this concept is proposed. It incorporates novel ideas to satisfy the remaining
requirements.
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Table 5.4 Assessment of a Basic Image Store. An assessment of the suitability
of a basic storage system based on work of Reimer et al. [128] and Wang et al. [167]
as a virtual machine image repository.

Requirement Assessment of a Basic Image Store

Fundamental Requirements

R5.1 X Deduplication as well as immutable data and manifests guaran-
tee that images are stored both e�iciently and safely.

R5.2 (X) The storage concept automatically preserves older versions (see
Requirement R5.1), so the basic functionality of a version control
system is provided. None of the more advanced features of
commodity version control systems are provided.

R5.3 × Updating a virtual machine requires to export and reimport the
entire virtual machine irrespective of the amount of changes.

R5.4 (X) Self-contained manifests for di�erent versions enable fast access
to every version of a stored virtual machine, but images can only
be exported in their entirety except for fetching individual files
(see Requirement R5.9).

R5.5 X Cloning is very e�icient, because only the manifest needs to be
copied without ever touching actual data.

R5.6 X Overlay manifests enable very e�icient minor modifications of
virtual machines compared to full-blown updates (see Require-
ment R5.3).

Additional Requirements

R5.7 × Layers can be imported into a basic Image Store, but it is not
aware of and cannot handle the specifics of layers.

R5.8 (X) The separation of data and metadata and the use of manifests
lays the foundation for a more detailed analysis of the content
of images. Except for searching virtual machines for specific
content, no further functionality is available.

R5.9 X Individual files can be accessed without mounting the image just
by retrieving the references from the manifest (in the desired
version) and fetching the corresponding files from the Data
Store.

R5.10 (X) The filter solution is able to remove sensitive files from virtual
machine images. Only rudimentary filter extensions are possible
for the user.

X: requirement satisfied,×: requirement not satisfied, (X) : requirement partly satisfied

5.3.4 Proposed Solution

In this section, the design of the Marvin Image Store is presented. It is based on
the description of the basic concepts in Section 5.3.3 and includes novel ideas that
help satisfying the all requirements listed in Section 5.3.1. First, four novel ideas are
presented: support for layered virtual machine images at the level of semantic under-
standing of composition-related artifacts in layers, Merge and Di� operations that
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enable real version control for virtual machine images, mounting of virtual machine
images stored in the Image Store, and exchangeable storage back ends for improved
storage e�ciency. Afterwards, applications of these ideas that solve concrete problems
identi�ed in the last section are described: e�cient updates of virtual machines and an
extensible �ltering mechanism. Finally, an overview of the architecture of the Image
Store is given the proposed solution is assessed with regard to the requirements.

5.3.4.1 Layered Image Support

The idea behind the virtual machine image composition approach proposed in Chap-
ter 4 was to use a common base layer that contains the parts of a virtual machine
image that are shared by multiple virtual machine. The remaining parts are part of
one or more additional layers, i.e., a user layer, a vendor layer, or both, which are
combined with the base layer by the Image Compositor. The size of the additional
layers containing the virtual machine’s speci�c parts is signi�cantly smaller compared
to a traditional virtual machine image containing both shared and speci�c parts. Fur-
thermore, base layers are always used in read-only mode4 and can thus be cached on
the execution host. In this case, only the additional layers needs to be transferred to
the execution host during the deployment of a virtual machine.

When the virtual machine to deploy is stored in the Image Store, the export process is
part of the deployment phase. In this case, the combination of virtual machine image
composition and Image Store (Requirement R5.7) is useful as the export time of the
virtual machine is reduced if only the additional layers need to be exported instead
of the entire virtual machine image. Therefore, combining these technologies can
increase the access e�ciency of the Image Store (Requirement R5.4).

The Image Compositor uses the union mount technology to compose the root �le
system of a virtual machine using multiple layers. Two fundamental rules are applied
by union mounts: �les in a higher layer replace �les or directories in lower layers and
directories in a higher layer merge their contents with their lower layer counterpart’s
contents. Special markers, so-called whiteout �les [173, 10, 11, 108] are created in the
higher layer to mark �les or directories in lower layers as “deleted”. Another type of
marker is used to mark directories as opaque [10, 11] and prevent them from merging of
their contents with their lower layer counterpart’s contents. This facilitates replacing
a directory in a lower layer with an entirely new directory. Write access to the union
mount is possible using this rules even if the lower layers are not writable.

A special treatment of whiteout �les and opaque directory markers is not required
in order to store and reconstruct layer image �les correctly, because they are regular
�les with a special meaning for the union mount implementation only. For advanced
features like the Merge and Di� operations (see Section 5.3.4.2) and the analysis of
virtual machine images’ contents, however, special treatment of both whiteout �les
and opaque directory markers is required. They are consequently identi�ed during
the import process and stored appropriately in the manifest so they can be handled
according to their function. Furthermore, by making the Image Store aware of those
4 Except for situations when the base layer itself should be modi�ed, e.g., to install software updates.
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special �les and their meaning it is possible to generate the right �les for any available
union mount implementation during export. This even enables an easy migration
of layered virtual machines in case the Image Compositor replaces the union mount
implementation with another one.

Besides reducing the size of images to be exported, the support for layered virtual
machines is also used to implement e�cient updates and advanced content �ltering
techniques. Details are given in Sections 5.3.4.5 and 5.3.4.6.

5.3.4.2 Merge and Di� Operations

In the description of basic concepts (Section 5.3.3) the manifest composition technique
has been brie�y mentioned. It was introduced by Reimer et al. to combine overlay
manifests with the manifest of a virtual machine in order to quickly generate a clone
of a virtual machine with a few modi�ed �les. More speci�cally, it generates a new
version of the manifest that contains the modi�ed versions of the �les instead of the
original ones. It facilitates replacing the content of �les, but not to delete �les from
the manifest. The manifest composition technique therefore is a simpli�ed version of
the image composition or union mounts, respectively.

The Merge operation is a considerably enhanced version of manifest composition. Like
the latter, it combines two manifests to create a new manifest. It borrows the concept of
whiteout �les and opaque directories from union mounts (see Section 5.3.4.1) to support
the deletion of �les and directories from the resulting manifest. The semantics of the
Merge operation are identical to the semantics of union mounts, so both approaches
can be used together. The contents of a union mount of a base layer LB and a user
layer LU are thus identical to the result of a merge operation of the corresponding
manifests MB and MU . Obviously, the Merge operation cannot be commutative,
because �les in MU replace �les in MB , like �les in LU replace �les in LB when a
union mount is created.

The Di� operation can be used to determine the di�erences between two manifests
M1 and M2. This operation is especially useful if M1 and M2 are di�erent versions
of the same virtual machine, because it can be used to analyze the changes between
di�erent versions (Requirement R5.8). Notably, the result of the Di� operation is not
a plain list of changes, but a new manifest. For every �le that is changed between
M1 and M2, the resulting manifest contains the changed metadata and a reference to
the modi�ed content from M2. If a �le does only exist in one of the two manifests, it
will be included in the resulting manifest or replaced by the manifest representation
of a whiteout �le depending on whether it is existing in M2 or M1, respectively.
Consequently, like the Merge operation, the Di� operation cannot be commutative.

Basically, the resulting manifest MR is a blueprint of how to modify M1 to become
like M2. If M1 is merged with MR using the Merge operation described above, the
resulting manifest MR′ will be equal to M2.

The Merge and Di� operations can not only be used for analyzing virtual machine
images’ contents, but are also used to implement e�cient updates and advanced
content �ltering techniques. Details are given in Sections 5.3.4.5 and 5.3.4.6.
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5.3.4.3 Direct Mounts

Manifests facilitate fast and easy access to the metadata of virtual machines, e.g., to
determine which virtual machines contain a speci�c �le either by its path or content.
A potential use case is to determine quickly all virtual machines that a speci�c security
update has been installed in. In this case, the virtual machines’ manifests are searched
for a speci�c path or a �le that references a speci�c chunk of data in the Data Store,
instead of trying to interpret the package databases contained in the images. This
kind of search can be used for single virtual machines and easily be extended to a
larger set of virtual machines. The content of �les found using one of the methods
just described can then be fetched from the Data Store.

While this approach to analyzing virtual machines’ contents clearly has advantages
when the number of virtual machines to analyze is high, there is a severe drawback.
Metadata searches and fetching of individual �les is not the natural way to interact
with the contents of a virtual machine. Typically, a user would mount a virtual
machine image and use arbitrary tools to access its contents. With the Image Store
described in Section 5.3.3 this would require that the image is exported �rst. The
Marvin Image Store provides a Direct Mount feature. It is able to mount a stored virtual
machine image in read-only mode without exporting the image �rst. A user can then
use standard tools to �nd the relevant information inside the virtual machine image.
Furthermore, this approach can be used to inspect a single virtual machine and �nd
the paths or references5 for searching a larger set of virtual machines. Additional use
cases for Direct Mounts are described in Section 5.4.6.

5.3.4.4 Exchangeable Data Store Back Ends

The Data Store is responsible for safely keeping the content of �les. It does so by im-
plementing a content-addressable storage that both provides deduplication to increase
the storage e�ciency and guarantees the immutability of the �le contents. To further
improve the storage e�ciency beyond what the deduplication provides, the Data
Store supports exchangeable back ends that leverage di�erent techniques to reduce its
storage requirements (Requirements R5.1 and R5.2). By using a modular design, the
creation of new back ends is easy, so new techniques can be easily integrated. Besides
a back end that stores the content unchanged, there are a sparse back end and a set of
compression back ends.

The sparse back end tries to detect large blocks of zeros in the data to store. If the
underlying �le system supports sparse �les, it stores the data in sparse �les skipping
the blocks of zeros.

The compression back ends utilize di�erent compression algorithms to compress
the data before it is stored. This approach is superior compared to compressing
entire virtual machine images, because the metadata is immediately available in the
Metadata Store. Therefore, search or analysis operations can be executed without
5 As described in the implementation section, the references are based on the hash value of the chunk

of data they address. A user can easily calculate references manually (see Section 5.4.2.2).
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decompressing the data. Only if the data needs to be accessed, e.g., during the export of
a virtual machine, decompression is necessary and a slightly reduced access e�ciency
is expected. Compression is only required on the �rst time a chunk of data is stored,
so the import process is usually not a�ected by compression.

5.3.4.5 E�icient Virtual Machine Updates

Undoubtedly, continuous maintenance of virtual machines is very important (see
Section 3.3.2.1). Whenever software updates have to be installed in a virtual machine
stored in the Image Store described in Section 5.3.3 the three steps depicted in Figure 5.4
have to be executed. In Step 1, the image �le of the virtual machine to be updated is
exported from the Image Store to an arbitrary host. Afterwards, the virtual machine
is started, the software updates are installed in the virtual machine as usual, and the
virtual machine is shut down in Step 2. Finally, the updated image �le of the virtual
machine is imported back into the Image Store in Step 3. The resulting manifest
describes the new version of the virtual machine that likely shares many �les with
the previous version. These three steps are required whenever the virtual machine is
changed either for installing new software, updating software that is already installed,
or just changing the con�guration of the virtual machine.

Image File

Metadata Store

1

2

3

Update
Virtual

Machine

Figure 5.4 Basic Virtual Machine Image Update Process. The non-
optimized process of updating a virtual machine image stored in the Marvin Image
Store consists of three steps. In Step 1 the image file is exported. A�erwards, the
virtual machine is updated in Step 2. Finally, the updated image file is reimported
in Step 3. The do�ed arrow depicts the version control feature: it points from the
current to the preceding version of the manifest. (Data Store omi�ed.)

The import process (Step 3) is identical to the initial import process. Again, the entire
image including the content of all �les it contains has to be examined by the Image
Store, although only the content of modi�ed �les is copied to the Data Store. Obviously,
this approach for updating virtual machines stored in the Image Store is not very
e�cient, especially if the changes are small compared to the size of the virtual machine
image. If software is updated frequently, this is very likely the case.

Using either image composition – and thus layered virtual machine images – or the
Merge and Di� operations, the import process of an updated virtual machine can
be accelerated signi�cantly by reducing the amount of data the Image Store has to
examine (Requirement R5.3). The former approach uses image composition to redirect
all write accesses to a dedicated layer, which afterwards only contains the �les that
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were changed. Only this dedicated layer is then imported. The second approach splits
the import task in two phases: a metadata import phase and the data import phase that
only examine the metadata and the data of the image �le, respectively. The metadata
input phase generates a manifest that does not contain references to the �le contents
but is otherwise complete. Using the Di� operation, the �les that were changed are
determined and only those �les are imported in the data import phase.

The export process (Step 1) can also be accelerated if the exported image �le of an
older version of the virtual machine still exists and has not been changed since the
export. This can be guaranteed using image composition that prohibits write access to
image �les. The Di� operation is used to determine the di�erences between the older
and the current version of the virtual machine. Only the �les that have been changed
since the export of the virtual machine image are exported to a dedicated image �le. A
virtual machine in the current version can then be created with the Image Compositor
using the older image and the image containing the di�erences.

It is important to note that the optimized export process using the Di� operation is not
only useful when a virtual machine stored in the Image Store is updated, as described
above. On the contrary, this approach can be used to speed up every export process. It
enables e�cient virtual machine updates in both directions: from the virtual machine
image to the image store and the other way around.

5.3.4.6 Advanced Content Filtering

As already stated in Section 5.3.3.2, �ltering of the contents of virtual machine images
is important when those virtual machines are shared, because it facilitates deleting
of sensitive content from those images before it gets in the wrong hands. Unwanted
�les are another category of �les that the Image Store has to handle. There is no harm
if a virtual machine containing such �les is shared, because they are not sensitive.
Instead, unwanted �les occupy space in the Data Store and slow down import and
export processes. Examples of unwanted �les are temporary �les and log �les that
are stored in the virtual machine at the time of import. These �les are not required
for the virtual machine to function, so they can be safely removed. Additionally,
this kind of �les very likely has unique content and thus their storage requirements
cannot be reduced by the coarse grained deduplication approach implemented in the
Image Store. Other examples of unwanted �les are some of the �les common package
management solutions cache: software archives and repository databases. These
�les are less problematic, because they are shared between a high number of virtual
machines. Nevertheless, removing those �les should cause no problems, because those
�les can be downloaded again – in case of the package database, they certainly will
be downloaded again.

The Image Store deals with sensitive and unwanted �les by providing content �ltering
techniques for manifests (Requirement R5.10). It provides two di�erent types of
�lters: Metadata Filters and Live Filters. Metadata Filters work solely on the metadata
contained in the manifests of virtual machines. They facilitate selecting or rejecting
�les based on arbitrary criteria, i.e., paths, timestamps, or ownership information.
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This type of �lter is very fast, but obviously also kind of restricted, because it does
not work on the contents of the �les.

Live Filters, on the other hand, are scripts that work directly on the virtual machine
image. Using the image composition technique, the image �le is mounted together
with a dedicated layer that captures all write requests. In this way, the scripts used
to scan the image �les for sensitive or unwanted content can utilize arbitrary tools.
A dedicated virtual machine can be used to safely execute user supplied Live Filters.
Contrary to Metadata Filters, a Live Filter is not only able to delete �le, but also to
modify �les. Both the image �le and the dedicated layer are imported and combined
with the Merge operation to apply the changes the �lter made.

The Image Store can apply content �lters on various occasions: during import, before
an image is shared or before export. Filtering during import has the advantage
of preventing unwanted and sensitive content from ever being stored in the Data
Store. On the other hand, it is inconvenient if the owner wants to update his virtual
machine, because the sensitive �les are useful for him. The pros and cons are reversed
for �ltering before a virtual machine is shared. Finally, �ltering before export is a
particularly bad idea, because it increases the deployment time while it does not have
any advantages over �ltering before an image is shared. The Image Store facilitates
�ne-grained control of the execution of �lters to deliver the desired results. Removing
unwanted �le during import and sensitive �les before an image is shared seems to be
a good compromise between security and convenience.

5.3.4.7 Architecture

The architecture of the Marvin Image Store is shown in Figure 5.5. It consists of the
actual storage system, the central component of the Marvin Image Store, and a set
of tools for using it. As described in Section 5.3.3.1 the storage system is divided into
two parts: the Data Store that stores the contents of all �les of the imported virtual
machine images and the Metadata Store that stores one manifest for each version of a
virtual machine image that has been imported.

The Image Store can be accessed locally from the host it is running on (MIS Server)
using this Image Store Manager mismgr. It provides the full functionality that has been
described above, e.g., importing, exporting, updating, sharing, cloning or mounting
of virtual machines, as well as operations of manifests, e.g., merging, calculation of
di�erences, or searching for content. Additionally, mismgr contains maintenance
functionality for the Image Store itself.

For deployment on execution hosts a prototypical remote client misrcl and a dedi-
cated network daemon missrv have been developed. The functionality of misrcl is
currently limited to remotely exporting virtual machines directly on the execution
host. Without the remote client, virtual machine images have to be exported on the
MIS Server and then transferred to the execution host. The client can browse a list of
available virtual machines and their versions and retrieve manifests. With a manifest,
misrcl is able to create the image �le of the corresponding virtual machine on its
own by retrieving the content of referenced �les directly from the Data Store using a
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MIS Server

Metadata StoreData Store

mismgr missrvCommodity 
Server

Execution Host

misrcl

Execution Host

misrcl

HTTP,
FTP, NFS, …
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Figure 5.5 Architecture of the Marvin Image Store. The MIS Server with
the Data and Metadata Store is the central component of the Marvin Image Store.
User can directly interact with the Image Store locally using the mismgr tool. Remote
access to the Image Store – restricted to exporting images – is provided by the missrv
and misrcl components.

commodity network protocol and appropriate server software on the MIS server. A
commodity network protocol is used due to the prototypical nature of misrcl. The
restriction of its functionality to remote export is a conscious decision, because there
is no real access control when accessing the Data Store via such a protocol. With
this restriction read-only access to the Data Store is su�cient for the client and thus
Requirement R5.1 is not violated even with no advanced access controls. Nevertheless,
for real world use either a dedicated protocol for �le retrieval from the Data Store that
supports �ne-grained access control or the implementation of a server push approach
is required to prevent leakage of sensitive information.

5.3.4.8 Discussion

An assessment of the Marvin Image Store is shown in Table 5.5. The novel ideas
proposed to extend the basic concepts described in Section 5.3.3 ensure that all re-
quirements are satis�ed. Especially the combination of the Image Store with image
composition and the de�nition of the Merge and Di� operations improve the access
e�ciency of the Marvin Image Store by enabling faster update procedures for both
stored and exported virtual machine images and enable advanced user-de�ned content
�ltering. The Merge and Di� operations and the Metadata Filters additionally enable
novel analyses of virtual machine contents. Direct mounts are a useful to support
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users analyzing the contents of virtual machine images. Finally, the exchangeable
storage back ends further improve the storage e�ciency.

Table 5.5 Assessment of the Marvin Image Store. An assessment of the
suitability of the Marvin Image Store as a virtual machine image repository.

Requirement Assessment of the Marvin Image Store

Fundamental Requirements

R5.1 X Deduplication as well as immutable data and manifests guaran-
tee that images are stored both e�iciently and safely.

R5.2 X The storage concept automatically preserves older versions (see
Requirement R5.1). Together with the Merge and Di� operations
(see Requirement R5.8) this turns the Image Store into a full-
fledged version control system for virtual machines.

R5.3 X The optimizations of the update process facilitate e�icient up-
dating of virtual machine images even for smaller changes.

R5.4 X Self-contained manifests for di�erent versions enable fast access
to every version of a stored virtual machine. Exports of entire
images can be avoided using the optimized export process.

R5.5 X Cloning is very e�icient, because only the manifest needs to be
copied without ever touching actual data.

R5.6 X The Merge operation facilitates very e�icient minor modifica-
tions of virtual machines.

Additional Requirements

R5.7 X The Image Store fully supports layered images. It is aware of
the special markers used in layered images and handles them
appropriately.

R5.8 X Based on the separation of data and metadata and the use of
manifests, di�erent analysis operations are available: the Merge
and Di� operations, select and reject filters for manifests as well
as a search function.

R5.9 X Individual files can be accessed without mounting the image just
by retrieving the references from the manifest (in the desired
version) and fetching the corresponding files from the Data Store.

R5.10 X Content filtering is supported using two types of filters. Both
types are fully supporting user-defined filter criteria.

X: requirement satisfied

5.4 Implementation

In the following sections, selected parts of the implementation of the Image Store are
presented. It was initially implemented in the Python programming language, Version
2.6, using standard libraries as well as the lxml and llfuse libraries, Python bindings to
libxml2 and libfuse2. It is compatible to Version 2.7 of the Python language and the
latest versions of the external libraries.

The remainder of this section is structured as follows. In Section 5.4.1 the fundamental
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structure, in-memory data structure and storage formats of manifests are described.
Section 5.4.2 contains a description of the storage system consisting of Metadata Store
and Data Store. Afterwards, in Section 5.4.3 the import of virtual machines into and the
export of virtual machines out of the Image Store are described. The implementation
of three important operations on manifests is shown in Section 5.4.4. Section 5.4.5
contains a description of the Direct Mount feature of the Image Store. The section is
concluded with the description of the advanced operations the Image Store provides:
e�cient update and �ltering mechanisms (Section 5.4.6).

5.4.1 Anatomy of Manifests

This section describes the structure of manifests. It starts with a brief introduction
into �le systems in Linux with a focus on inodes and directory entries that are the
blueprint for the manifest structure. Based on this introduction the outline of a basic
manifest implementation is presented that is then extended to support layered virtual
machine images. Finally, the data structures used store manifests both in memory and
on disk as described.

5.4.1.1 File System Overview

In Linux systems, there is a �le system abstraction called Virtual File System (VFS) [130].
This abstraction constitutes the basic concepts of all Linux �le systems that are
described in the following6. The VFS is also the basis for the de�nition of manifests.

Index nodes or inodes represent �les in the Linux VFS. Each inode is identi�ed by a
unique number and contains both the metadata of a �le as well as the references to
the actual data blocks storing its contents. An overview of the Metadata Stored in an
inode of a Linux (or any other POSIX [109] compliant) system is given in Table 5.6. It
can be accessed via the stat structure returned by the function of the same name in
the libc. Most notably, the name of the �le is not stored in the inode. Nevertheless,
regular access to �les is not possible using only an inode number.

To actually access any �le, a mapping between a �le name and an inode is required.
This mapping (hard link in the Linux terminology) is created by directory entries.
Multiple directory entries are collected in directories, each entry linking a �le name
to an inode via its number. Directories itself are �les – as almost everything is a
�le in Unix systems – and thus directories can contain other directories (named
subdirectories). This allows to recursively create a directory tree containing all �les
stored in the �le system. Obviously, if a directory is a �le it is also represented by
an inode. A minimal, exemplary �le system that shows the relationships between
directories and �les on the on hand and inodes and �le contents on the other is depicted
in Figure 5.6.

The term hard link is commonly used to denote the possibility to have multiple
directory entries linking the same inode. This is the logical next step based on the way
6 File systems are allowed to deviate internally from these concepts, if their external interface is VFS

compatible.
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Table 5.6 Metadata of an Inode. This table shows the Metadata Stored in an
inode as returned in the stat structure by the stat() system call [90].

Field Description

st_dev Device ID of the device containing the inode.

st_ino Inode number.

st_mode Mode of the inode, i.e., access rights and inode file type.

st_nlink Number of hard links to the inode.

st_uid User ID of the inode’s owner.

st_gid Group ID of the group owning the inode.

st_rdev Device ID of the represented device in case of a character or block
special file.

st_size File size in bytes in case of a regular file or contained pathname’s
length in case of a symbolic link.

st_atime Time of last data access.

st_mtime Time of last data modification.

st_ctime Time of last inode status change.

st_blksize Preferred block size for file system I/O.

st_blocks Number of 512 byte blocks allocated for this inode.
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Figure 5.6 Structure of a File System. This figure shows the directory tree
(virtual view) and the inodes and data blocks (physical view). The name and corre-
sponding inode number of each directory entry are shown in the tree on the le�. Each
inode is depicted with a subset of its metadata (number, type, a timestamp, access
rights, size and number of hard links) and references to data blocks. Additionally, the
figure illustrates the functionality of hard links (/dirA/file1 and /file3) and the
fact that directories are just special files.

�le systems are built. Creating hard links instead of copying �les saves storage space
if a �le needs to be accessible from multiple parts of the �le system. Obviously, when
a �le is changed via one of those hard links, the change is visible for all other hard
links as well. When a �le is deleted, the inode is cleared only if there are no further
links (directory entries) to it. From the technical point of view, this usage of the term
hard link is wrong, because there is no such concept as a primary directory entry and
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additional hard links and all hard links to a single �le are indiscernible except for their
�le name. The only way for the �le system to know whether there are multiple hard
links to an inode is the st_nlink �eld of the inode (see Table 5.6). Nevertheless, the
term is also used throughout this chapter to denote the case of multiple hard links in
absence of a better term.

As there are at least to types of inodes – �les and directories – there has to be a way
for the �le system to di�erentiate them to be able to work with the directory tree.
Each inode has a �le type that is encoded in the st_mode �eld of the stat structure
(see Table 5.6). In total, Linux and POSIX systems support the seven �le types shown
in Table 5.7.

Table 5.7 Inode File Types. This table shows the seven file types an inode can
have, stored in the st_mode field of the stat structure [90] returned by the system
call with the same name.

Type Description

Directory A directory, i.e., a special file containing directory entries.

Regular File A regular file.

Symbolic Link A link to another file. In contrast to a hard link, the target file is
referenced via its name.

Block Device A device special file representing a block device.

Character Device A device special file representing a character device.

FIFO A file representing a named pipe, an inter process communication
technique.

Socket A file representing a local inter process communication socket,
also called Unix domain socket.

5.4.1.2 Basic Manifests

A manifest is a tree structure that mirrors the directory tree of a �le system and
contains the entire metadata of the tree and the �les linked therein. Every directory
entry contained in the directory tree of the original �le system is represented by a node
in the manifest that stores the metadata of this particular element7. The hierarchy of
classes depicted in Figure 5.7 is used to properly represent the directory tree and the
corresponding metadata.

The root of the class hierarchy is the Node class that stores a node’s name, a reference
to the node’s parent node, as well as the metadata common to all other nodes types.
Most �elds contained in the stat structure (see Table 5.6) of the directory entry’s
corresponding inode are stored as part of the common metadata. The �eld st_dev
identi�es the device the inode belongs to and the �eld st_blksize stores the preferred
block size for �le system I/O. Both values are not required to export an image correctly
and thus not stored as part of the manifest. The �eld st_rdev contains an identi�er

7 More precisely, it stores the Metadata Stored in the inode the element is linked to.
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Figure 5.7 The Node Types in a Manifest. This figure shows the di�erent
node types used to store the metadata of a file system. Node is the ancestor of all
node types. It contains fields to store the name and common metadata from the
stat structure of the corresponding inode (see Table 5.6). For each of the derived
node types additional fields are shown.

of the represented device. It is just valid for block and character device �les and thus
it is not reasonable to store this identi�er for every �le.

The remaining classes in the node hierarchy represent the di�erent �le types of the
Linux VFS. For each but two of the �le types listed in Table 5.7 corresponding node
types exist. The �rst exception is the Device node type that represents both block and
character devices. Socket �les are the second exception. They are not represented in a
manifest at all, because they cannot be manually created and thus there is no way to
restore a socket �le during export. Furthermore, handling socket �les in the Image
Store is not required, because they are generated implicitly when a Unix socket is
created with the socket() system call [90].

The most important class is Directory, because the nodes of this type form the structure
of the tree constituting the manifest. Each Directory contains a �eld Children that can
in turn contain further nodes of any type. These child nodes represent all directory
entries contained in the corresponding directory of the original �le system.

The second most important class is File. Most of the directory entries in a �le system
are usually �les and thus this is the most frequent node type in manifests. Each File
stores a reference to the content of the �le represented by this node. This reference is
central to deduplication: the Data Store returns this reference when either stores a
new �le or when it has determined that the content is already stored.

A Symbolic Link stores the path name of its target, i.e., the path to the �le it points to.
Device nodes represent both character and block device special �les. The distinction
between those two inode �le types is nevertheless possible based on information
stored in the Node class: the �eld st_mode does not only store access rights, but also a
type identi�er. Device nodes additionally store the device identi�er that is used by the
Linux kernel to identify the represented device. Finally, FIFO nodes represent named
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pipes that do not require additional metadata. An exemplary manifest representing
the �le system shown in Figure 5.6 is depicted in Figure 5.8.
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Figure 5.8 Structure of a Manifest. This figure shows the manifest representing
the file system shown in Figure 5.6 and Data Store with the content of the two files.
Each node is depicted with its type and a link to its parent directory as well as a
subset of its metadata (original inode number, one of the timestamps, access rights,
size and number of hard links). Directory and File nodes additionally have links to
their children and content, respectively.

5.4.1.3 Extended Manifests

Requirement R5.7 explicitly demands support for storing layered virtual machines
built using the Image Compositor (see Chapter 4). The composition technique used
by the Image Compositor is based on the union mount technology. As already stated
in Section 5.3.4.1, union mounts have to use special markers to “delete” �les from
lower layers if these layers are not writable. There are two types of markers: whiteout
�les and opaque directory markers. Whiteout �les [173, 10, 11, 108] are created in
the higher layer to mark the corresponding �les (or directories) in the lower layer
as deleted and e�ectively making them inaccessible. In case of aufs a whiteout �le
named .wh.sample in the higher layer marks the �le (or directory) named sample
in the same directory of any lower layer as deleted.

Opaque directory markers [10, 11] are created in the higher layer to prevent merging
of the contents of a directory in the higher layer with the contents of correspond-
ing directories in lower layers. Instead, opaque directories completely replace the
corresponding directories from lower layers. This kind of marker is required when
a directory existing in a lower layer is �rst deleted – and therefore replaced by a
whiteout �le – and afterwards a new directory with the same name is created in the
higher layer. In case of aufs an opaque directory is marked by adding a �le named
.wh..wh..opq to it.

To fully support layered virtual machines the Image Store needs to correctly represent
both whiteout �les and opaque directories in the manifest. Two additional node types
that do not exist as inode �le type in a real �le system are thus added to the class
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hierarchy: the Whiteout node and the Opaque Directory. The resulting class hierarchy
is depicted in Figure 5.9.
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Figure 5.9 The Node Types in a Manifest (Extended). This figure shows
the complete class hierarchy of nodes used to store the metadata of a file system.
Besides the nodes already included in Figure 5.7 it contains two new node types that
represent whiteout files and opaque directories used by union mounts.

A Whiteout node represents a whiteout marker, i.e., a �le from a lower layer that has
been deleted. It does not require any additional metadata, because its sole purpose
is the correct interpretation of a whiteout marker during export and for advanced
features like the Merge and Di� operations and the analysis of virtual machine images’
contents. An Opaque Directory represents an opaque directory, i.e., a directory that
replaces corresponding directories in lower layers. Note that contrary to the Whiteout
node it does not represent the marker �le itself, e.g., a .wh..wh..opq �le created by
aufs, but a directory with the speci�c property of being opaque. Thus, the Opaque
Directory is a subclass of the Directory. Similarly to Whiteout nodes no additional
metadata is required for the same reason.

5.4.1.4 Hard Links in Manifests

Contrary to a Linux �le system that has a clear separation between �le names on
the one side and �le metadata and contents on the other side, in the Image Store the
boundary is moved: the name of a �le and its metadata are combined in the manifest,
while the content is stored in the Data Store. This approach simpli�es analysis of
virtual machine images. Depending on the format used to store the manifest (see
Section 5.4.1.6), it allows even manual analysis of manifests. The drawback of this
approach is that it does not naturally support multiple hard links to a single �le.
Without support for hard links the exemplary �le system shown in Figure 5.6 will be
incorrectly exported to the �le system shown in Figure 5.10. Therefore, support for
hard links is required for exporting logically equivalent images.

There are two ways how hard links can be represented in a manifest: by introducing
a special subclass of Node that represents every hard link to a �le starting with the
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Figure 5.10 Export Without Hard Link Support. This figure shows the result
of exporting the file system shown in Figure 5.6 a�er it has been imported into the
Image Store, when no support for multiple hard links to a single file exists. In contrast
to the original file system /dirA/file1 and /file3 are no longer hard links to the
same file, but two individual files.

second or by storing an identi�er that allows to match corresponding hard links. The
former approach requires the hard link detection to be executed during the import
process, while the latter approach does the hard link detection during the export.
Both approaches have advantages and disadvantages. For easier implementation of
the analysis features, the Image Store uses the second approach. The inode number
st_ino is the natural identi�er for matching groups of corresponding hard links and
is thus stored for every node in the manifest8, although the actual number has no
meaning for the stored image.

5.4.1.5 In-memory Representation

All node types shown in Figure 5.9 are implemented as Python classes. Because the
number of nodes in a manifest is likely very large, special provisions need to be
made to reduce footprint of a manifest in memory. Classes in python are typically
implemented by dynamic dictionaries that store all �elds of a class’ instance. On the
one hand, this is a very �exible approach, because it enables extending classes with
new �elds at runtime, and thus it is very well suited for a script language. On the
other hand, using a variable length dictionary increases the memory footprint of each
instance, because not only the value, but also the name of each �eld is stored for each
single instance9. Especially for large numbers of instances, this approach is not very
e�cient. Another way to implement classes is to explicitly list the �elds using the
__slots__ class variable. This �xed list of �elds can be stored much more e�ciently
compared to the dynamic dictionary and thus signi�cantly reduces the footprint of the
whole manifest in memory. The list of �elds and constructors of the Node superclass

8 Technically it is not necessary to store it for Directory nodes, because Linux does not allow hard links
to directories. Instead of adding another intermediate superclass to the class hierarchy, the Image
Store stores the inode number directly in the Node.

9 Newer versions of Python try to solve this problem by dictionaries sharing keys.

133



Chapter 5. Virtual Machine Image Storage

and the directory nodes are shown in Listing 5.1 together with an additional class that
encapsulates the common metadata.

143 class Stats(object):
144 __slots__ = ['st_ino', 'st_mode', 'st_nlink', 'st_uid', 'st_gid',
145 'st_size', 'st_atime', 'st_mtime', 'st_ctime', 'st_blocks']
146
147 def __init__(self, stats=None):
148 for key in self.__slots__:
149 setattr(self, key, copy(getattr(stats, key, None)))...
231 class Node(object):
232 __slots__ = ['_parent', 'name', 'stats']
233
234 def __init__(self, name, stats=None):

· · ·
242 self.name = name
243 self.stats = stats
244 self._parent = None

· · ·
407 def add_to(self, directory):
408 directory._children.append(self)
409 self._parent = directory...
548 class Directory(Node):
549 __slots__ = Node.__slots__ + [ '_children' ]
550
551 def __init__(self, name, stats=None):
552 Node.__init__(self, name, stats)
553 self._children = list()...
815 class OpaqueDirectory(Directory):
816 def __init__(self, name, stats=None, directory=None):
817 Directory.__init__(self, name, stats)
818 if directory is not None:
819 for childnode in directory._children:
820 childnode.add_to(self)
821 directory._children = list()

Listing 5.1 Node Class Definitions – Part 1. The list of fields and constructors
of the Node superclass and the directory nodes as well as the fields and constructor
of a class encapsulating the common metadata.

Instances of the Stats class are used to store the metadata of each node in a manifest.
The list of �elds in the __slots__ class variable includes most �elds of the stat
structure with the exceptions described above (Lines 144 to 145). The constructor
expects the stat structure as returned by the lstat function of Python’s os module
as its only argument. Using Python’s metaprogramming techniques it copies the
values from the stat structure into its corresponding instance variables (Lines 148
to 149).

The Node class is a straightforward implementation of the root class. It stores a
pointer to its parent node, i.e., its ancestor in the tree of nodes, in the _parent �eld10.
Regarding the �le system the manifest represents, the ancestor is the directory that
contains a directory entry. Furthermore it stores the name of the directory entry in

10 The reason why the �eld name starts with an underscore letter is explained in Section 5.4.4.2.
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name and the metadata of the represented inode in a Stats instance stored in stats
(Line 232).

The constructor of the Node class only requires the name of the directory entry as
argument, whereas the Stats instance containing the corresponding inode’s metadata
is an optional argument. This approach simpli�es the code required to reconstruct
nodes from a manifest stored on disk using a generic function. The name and metadata
are then stored after some sanity checks (not shown) in Lines 242 to 244. Note that
the node’s ancestor is initialized with None, i.e., the node is not yet part of the tree of
nodes. The add_to method is used to set the parent node and register a child node
with its parent (Lines 407 to 409).

The Directory class extends the list of �elds with the _children �eld that contains
a list of child nodes. This list is initialized as an empty list (Line 553), i.e., the directory
has no child nodes just as a node has no parent after creation. Note that the add_to
method of the Node class (Lines 407 to 409) does not use a special method of the
Directory class to add a child to it, but directly appends the node to the _children
list without checking for existing entries with the same name. This approach is
suitable for manifests, because they represent existing �le systems that do not allow
two directory entries with the same name in a single directory. Consequently, no
collisions can occur in a manifest.

The OpaqueDirectory class is the only node type that is not derived directly from
Node, but from Directory (Line 815). Note that its constructor accepts an existing
Directory instance as optional argument. If another directory is pass, all of its
children are added to the newly created OpaqueDirectory instance (Lines 819 to 820).
It is important to remove the children from their original Directory instance by
assigning an empty list to its _children �eld (Line 821), because the add_to method
does not take care of removing a node from its old parent node if it is registered with
a new one.

Listing 5.2 shows the list of �elds and constructors, if any, of the classes representing
the remaining node types: �les, symbolic links, device �les, named pipes and whiteout
�les.

The SymbolicLink and Device classes both extend the list of �elds with an addi-
tional �eld: target for storing the symbolic link’s target and rdev for storing the ID
of the represented device, respectively. Both classes’ constructors accept values for
these �elds as optional arguments. The FIFO class on the other hand has no additional
�elds and thus does not need a special constructor.

The File class extends the list of �elds with the hash �eld that stores the content
reference: a hash value of the �le that is used to identify a �le in the Data Store
Section 5.4.2.2. Contrary to the SymbolicLink and Device classes, the constructor
of File does no accept an optional argument to pass the hash value, because it is
typically not known when the File instance is created, but instead initializes the �eld
with None (Line 844).

Like the FIFO class, the Whiteout class has no additional �elds and thus does not
need a special constructor.
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481 class SymbolicLink(Node):
482 __slots__ = Node.__slots__ + [ 'target' ]
483
484 def __init__(self, name, stats=None, target=None):
485 Node.__init__(self, name, stats)
486 self.target = target...
513 class Device(Node):
514 __slots__ = Node.__slots__ + ['rdev']
515
516 def __init__(self, name, stats=None, rdev=None):
517 Node.__init__(self, name, stats)
518 self.rdev = rdev...
537 class FIFO(Node):

· · ·...
839 class File(Node):
840 __slots__ = Node.__slots__ + [ 'hash' ]
841
842 def __init__(self, name, stats=None):
843 Node.__init__(self, name, stats)
844 self.hash = None...
860 class Whiteout(Node):

· · ·
Listing 5.2 Node Class Definitions – Part 2. The list of fields and constructors,
if any, of the classes representing the di�erent node types (except directories).

To create a complete manifest from a tree of nodes a class of the same name is
used (not shown). It contains a reference to the root of the node tree and metadata
about the manifest itself: an UUID and a version number to uniquely identify a
manifest, information about the original �le system, e.g., the �le system type, as well
as information about the version history of the manifest, e.g., whether it was cloned
from a speci�c manifest or is the result of a Merge operation between to speci�c
manifests.

5.4.1.6 On-disk Representation

Manifest can be stored on disk in two di�erent formats. The �rst format is an Extensible
Markup Language (XML) document. An XML document is the natural storage format
for manifests, because a manifest is basically a tree of nodes. The biggest advantage
of the XML format is that it is human-readable. This allows manual inspection of
manifests and simpli�es the development of the Image Store itself. The second format
is a serialized version of the manifest including the node tree. For e�cient serialization
of the manifest Python’s pickle library is used. The resulting �le is not human readable,
but much smaller and it can be read signi�cantly faster. The XML format can optionally
be pretty printed, i.e., outputted with indentation to improve readability, and both
formats can be compressed using zlib to reduce the storage requirements of the
manifests, which is especially important for the XML format.

An exemplary excerpt from a manifest in the pretty printed XML format is shown
below.
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<manifest uuid="6d6aab3a-53a3-4282-b423-73f63adfe297" version="1">
<root>
<node name="/" type="Directory">
<stats>(...)</stats>
<node name="lib64" type="SymbolicLink">
<stats>(...)</stats>
<target type="str">/lib</target>

</node>
<node name="lib" type="Directory">
<stats>(...)</stats>
<node name="libnss_dns.so.2" type="SymbolicLink">
<stats>

<st_ino type="int">221242</st_ino> (...)
<st_nlink type="int">1</st_nlink> (...)

</stats>
<target type="str">libnss_dns-2.11.3.so</target>

</node> (...)
<node name="libnss_dns-2.11.3.so" type="File">

<stats>
<st_ino type="int">221213</st_ino> (...)
<st_nlink type="int">1</st_nlink> (...)
<st_size type="int">22928</st_size> (...)

</stats>
<hash type="str">ef1330668abf9ca82622832a1321e93560894764</hash>

</node> (...)
</node> (...)
<node name="bin" type="Directory">
<stats>(...)</stats>
<node name="gunzip" type="File">

<stats>
<st_ino type="int">40974</st_ino> (...)
<st_nlink type="int">2</st_nlink> (...)
<st_size type="int">63</st_size> (...)

</stats>
<hash type="str">3f8ef0b538cb322fc4220edd45a21171630507c6</hash>

</node>
<node name="uncompress" type="File">
<stats>

<st_ino type="int">40974</st_ino> (...)
<st_nlink type="int">2</st_nlink> (...)
<st_size type="int">63</st_size> (...)

</stats>
<hash type="str">3f8ef0b538cb322fc4220edd45a21171630507c6</hash>

</node> (...)
</node> (...)

</node>
</root>
(...)

</manifest>

Exemplary excerpt from a manifest in the pre�y printed XML format.

The excerpt focuses on the tree of nodes and does not show most of the manifest
metadata except its UUID and version. It shows the root directory of the �le system,
the /lib directory containing the libnss_dns-2.11.3.so library and the lib-
nss_dns.so.2 symbolic link to it, the /lib64 symbolic link to lib, as well as the
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/bin directory containing the gunzip and uncompress binaries that are hard links
to the same �le.

Note that the XML format is containing a lot of redundant information, e.g., the type
attributes in the <st_...> and <hash> tags. These attributes enable the use of a
generic function to parse the XML and recreate the in-memory representation of the
manifest. This is useful for the development process, but an optimization of the format
with speci�c parsing code might improve the parsing time.

5.4.2 Storage Architecture

This section describes the architecture of the storage system used by the Image Store
that is comprised of Metadata Store and data Store.

5.4.2.1 Metadata Store

Manifests are stored as plain �les in the Metadata Store. This approach has been chosen
because it simpli�es development by allowing manual inspections of the Metadata
Store and the manifests it contains using standard tools that could not be used if
the manifests were stored in a database. The �le name of a manifest is created by
concatenating the UUID of the manifest with its version number (separated by a dot).
The exemplary manifest shown above would be stored in a �le named:

6d6aab3a-53a3-4282-b423-73f63adfe297.1

The Metadata Store ensures that the older versions of a virtual machine are preserved
simple by increasing the version number of the manifest if a virtual machine is updated.
This ensures that no manifest is ever overwritten. Note that there is no way for the
Image Store to determine that an imported image is an update of an already existing
image. This information has to be supplied by the user during the import process.
Otherwise the resulting manifest will be assigned a di�erent UUID and is treated like
a new virtual machine image. The mismgr refuses import an image without either
specifying a previous version or explicitly marking the image as new.

The correlation between the manifests of di�erent versions of a virtual machine
image is immediately visible when manifests are stored in the way described above.
Additionally, the latest version of an image can be looked up easily by searching for
the manifest with the correct UUID and the highest version number in its �le name.

To check whether a virtual machine image has been cloned or created from scratch,
the version history information in the manifest of this image’s �rst version has to be
checked. If it is a cloned image, the source image and version is recorded there. Note
that the information regarding clones is only recorded for cloned images, but not for
the source images. This is due to the requirement to never change a manifest once it
is stored in the Metadata Store. To determine all clones of a given image, the version
history information in the manifests of the �rst version of every stored image need to
be checked or an external list of clones needs to be maintained.
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5.4.2.2 Data Store

The contents of �les are stored in the Data Store. It implements a content-addressable
storage to provide deduplication on the granularity of entire �les and uses exchange-
able back ends allow to further improve the storage e�ciency. The contents are stored
as individual �les in a regular �le system.

For referencing content in the Data Store, a hash function is applied at the content
and the resulting hash value is used as address. The Image Store uses the SHA-1
cryptographic hash function [50] for calculating hash values. To reduce the possibility
of collisions the length of the �le is appended to the hash value, as described by Wang
et al. [164]. This does not only help to prevent accidental collisions, but also collision
attacks targeted at gaining access to a �le stored in the Image Store by inserting a �le
with the same SHA-1 value into an image, import the image and export it again.

To limit the number of �les generated in a single directory, the �rst two characters
of the hash value are removed from the �le name and used as directory name. This
approach is also used by the git version control system and it proved to be e�ective.
The complete path name generation process is shown in Figure 5.11.

75 bytes
stat()

SHA-1
CC84D7…E8FE53 }

path()
File

CC84D7…E8FE53:75

CC/84D7…E8FE53:75

Figure 5.11 Path Name Generation. The generation of a path name for the
Data Store. First, the size of the file is concatenated with the hash value. Then, the
first two characters are removed from the name to form the directory name

Lines 57 to 69 in Listing 5.3 show the methods of the Datastore class that implement
the path name generation. The code is split into multiple methods because di�erent
parts of the generated path are required in di�erent parts of the Data Store implemen-
tation. The generatePathAndName method separates the hash in the directory and
�le path (Line 66), whereas the generatePath method only returns the directory
part (Line 69). The getPath and getPath2 methods both return a complete path
including the path to the Data Store and the length of the �le (Line 63), although the
former just calls the latter for the actual path name generation (Line 60).

Files are stored in the Data Store using the saveData method (Lines 71 to 90). First,
the method calculates the hash value for the �le (Line 79), if it is not stored in the node
yet, and generates the �nal path for the �le’s content (Line 81). Then, it checks whether
the content is already stored there and returns immediately in this case (Lines 84
to 85). This is where the actual deduplication takes place. If the content is new, it is
copied into the Data Store using the store method of the back end (Line 90) after
creating the selected directory if necessary (Lines 87 to 88).

The Data Store is equipped with di�erent back ends. Two of them are shown in List-
ing 5.4: the default and the gzip back end. All back ends are derived from the Backend
class that implements a few fundamental methods for Data Store maintenance (not
shown).
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18 class Datastore(object):
· · ·

57 def getPath(self, node):
58 filehash = node.hash
59 filesize = str(node.stats.st_size)
60 return self.getPath2(filehash, filesize)
61
62 def getPath2(self, filehash, filesize):
63 return self.path + self.generatePathAndName(filehash) + ':' +

filesize
'

64
65 def generatePathAndName(self, filehash):
66 return filehash[0:2] + '/' + filehash[2:]
67
68 def generatePath(self, filehash):
69 return filehash[0:2]
70
71 def saveData(self, node, srcpath):

· · ·
78 if not node.hash:
79 node.hash = self.hash(srcpath)
80
81 dstdir = self.path + self.generatePath(node.hash)
82 dstpath = self.getPath(node)
83
84 if os.path.exists(dstpath):
85 return
86
87 if (not os.path.exists(dstdir)):
88 os.makedirs(dstdir)
89
90 self.backend.store(srcpath, dstpath, node.stats.st_size)
91
92 def copyData(self, exporter, node):
93 self.backend.retrieve(self.getPath(node), exporter.getPath(node),
94 node.stats.st_size)
95
96 def openData(self, node):
97 return self.backend.openForReading(self.getPath(node))

Listing 5.3 Data Store Implementation. This listing contains important parts
of the implementation of the Data Store: the generation of path names that is vital
to the deduplication and the functions to store file in the Data Store, to open stored
files, and to retrieve files from the Data Store.

Every back end must implement four methods that are used both by the Datastore
and the Backend classes. The openForReading method opens a �le stored in the
Data Store for reading and returns a File Object that can be used to read content of
the �le. The decompressObject returns an instance of the library used to compress
contents in the Data Store. This instance is used in one of the methods in the Backend
class that accesses the contents directly to decompress them. If no compression is
used, this method must return None. Finally, the retrieve and store methods copy
a �le out of and into the Data Store.

The default back end (DefaultBackend) stores the �le contents unmodi�ed. There-
fore the implementation is trivial. Files can be opened for reading and writing using
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142 class Backend(object):
· · ·...

177 class DefaultBackend(Backend):
178 def openForReading(self, src):
179 return open(src, 'rb')
180
181 def decompressObject(self, size):
182 return None
183
184 def retrieve(self, srcpath, dstpath, size):
185 self.copy(open(srcpath, 'rb'), open(dstpath,'wb'))
186
187 def store(self, srcpath, dstpath, size):
188 self.copy(open(srcpath, 'rb'), open(dstpath,'wb'))...
210 class CompressingBackend(Backend):
211 def __init__(self, level, blocksize=4096):
212 Backend.__init__(self)
213 self.level = level
214 self.blocksize = blocksize
215
216 def decompressObject(self, size):
217 return self._decompressObject()
218
219 def retrieve(self, srcpath, dstpath, size):
220 srcfile = self.openForReading(srcpath)
221 self.copy(srcfile, open(dstpath, 'wb'))
222
223 def store(self, srcpath, dstpath, size):
224 dstfile = self.openForWriting(dstpath)
225 self.copy(open(srcpath, 'rb'), dstfile)
226
227 class ZlibBackend(CompressingBackend):
228 def openForReading(self, srcpath):
229 return gzip.open(srcpath, 'rb')
230
231 def openForWriting(self, dstpath):
232 return gzip.open(dstpath, 'wb', compresslevel=self.level)
233
234 def _decompressObject(self):
235 return zlib.decompressobj(16 + zlib.MAX_WBITS)

Listing 5.4 Data Store Implementation – Back Ends. This listing contains
the implementation of the default and zlib back end.

the standard open function of python (Lines 179, 185 and 188). The implementation of
the decompressObject method just returns None to signal that no compression is
used.

The modular design of the Image Store makes it possible to quickly write new back
ends. A few additional back ends are provided that leverage di�erent techniques to
further reduce the size of the Data Store after the deduplication is applied. The �rst
back end (not shown) detects holes in the content, i.e., blocks containing only zeros,
and stores the content as sparse �le in the Data Store by skipping those holes using
the seek system call. During export, these �les are restored as regular �les, except if
they had already been sparse �les before the import.
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Further back ends exist that use di�erent compression libraries to compress the
contents before storing them. The content of every �le is individually compressed
by those back ends during the import process and decompressed during the export
process. Each of those back ends is con�gurable with regard to the compression level
that is typically a value between 0 and 9. The libraries used by the back ends are zlib,
the library used by gzip, libbzip2, the library used by bzip2, and liblzma, the library
used by xz. In the remainder of this thesis these back ends are called zlib, bzip, and
lzma for brevity. Whenever a speci�c combination of back end and compression level
should be denoted the name of the back end is concatenated with the compression
level, e.g., zlib1 for the zlib backend with compression level 1.

The class CompressingBackend is the superclass of all compressing back ends. It
already implements the decompressObject, retrieve, and store methods in a
generic way (Lines 216 to 225). The actual back ends just needs to implement two
more methods: openForWriting, which is the counterpart to openForReading,
and _decompressObject, which returns an appropriate library instance that can be
used to decompress �le contents. Additionally, the class provides a generic constructor
that is su�cient for all provided compressing back ends.

The actual back end using the zlib library is simple to implement using the generic
superclass. It solely consists of the two methods that open a �le for reading and writing
using the open function of the zlib library11 (Lines 228 and 232) and the function that
returns a decompress object (Line 235). The back ends using the libbzip2 and liblzma
libraries (not shown) are equally simple to implement.

The Data Store also provides an integrity check that is done by calculating the proper
path of every �le in the Data Store using the process show in Figure 5.11 and com-
paring it with the actual path of the �le. This requires the �le to be decompressed or
reconstructed if a compression back end or the sparse back end is used, respectively.
This operation works solely on the Data Store and does not require any information
from the Metadata Store. Using the integrity check errors in individual �les stored in
the Data store can be detected that would have remained undetected in traditional
images.

5.4.3 Import and Export of Images

The import and export of virtual machine images are central processes of the Image
Store. In this section, the implementation of both processes is described. Additionally,
an approach is shown that enables modifying �les on the �y during the export process
and can be used to make minor changes during the deployment of a virtual machine.

5.4.3.1 Import

The import process is responsible for extracting the metadata and content of all �les
from a virtual machine image, encapsulating the metadata in a manifest, and storing
11 There are two relevant libraries in Python: the gzip library provides an way to transparently work

with compressed �les, whereas the zlib library allows to explicitly compress or decompress bu�ers.
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the contents in the Data Store. The structure of manifests has already been described
in Section 5.4.1 and the Data Store has been described in Section 5.4.2.2. The missing
part is the creation of a manifest from a virtual machine image.

Listing 5.5 shows the searchFiles function that is responsible for building the tree
of nodes that constitutes the main part of the manifest. It delegates this task to the
_searchFiles function that is called recursively for each directory entry in the
virtual machine image to be imported. It expects the arguments listed in Table 5.8.

Table 5.8 Arguments to the _searchFiles Function. This table lists the
arguments of the recursive _searchFiles function and describes their meaning for
the import process.

Argument Description

datastore An instance of the Datastore class that provides access to the Data
Store. Might be None if only the manifest should be created.
Passed unmodified when the function calls itself recursively.

calcHash A Boolean variable that controls whether hash values are calculated
for files when no Data Store is used. This is used in the Di�-based
Reimport process described in Section 5.4.6.1.
Passed unmodified when the function calls itself recursively.

src The path to the mounted virtual machine image.
Passed unmodified when the function calls itself recursively.

subpath The path of the directory entry to process in the current call. This path
is relative to src.
Controls the directory entry processed in the current call.

name The name of the directory entry to process in the current call. This is
identical to os.path.basename(subpath).
Controls the directory entry processed in the current call.

The function _searchFiles starts by computing the absolute path of the directory
entry to be processed in the current call (Line 106). For the initial call in the import
process (Line 103) the computed path is src + ’’ and thus the mount point of the
virtual machine image, i.e., its root directory. Afterwards, the stats structure of the
directory entry is retrieved and the common metadata is extracted and stored in an
instance of the Stats class (Lines 107 to 108). Based on the inode �le type a node of
the corresponding type is created and returned in Lines 110 to 147.

The simplest case is a named pipe that consists of nothing more than a name (passed
as argument) and the common metadata (retrieved from the stats structure. An
instance of the FIFO class is creating with this information to represent the current
directory entry and returned to the caller (Lines 144 to 145).

Device �les and symbolic links as almost as simple to handle as named pipes. For
the former, in addition to the name and common metadata the device ID of the
represented device needs to be passed as an additional argument to the Device
constructor (Lines 141 to 142). It does not matter if the device �le represents a block or
character device, because this information is already stored in the st_mode �eld of
the Stats instance. In the case of a symbolic link the link’s target needs to be passed
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102 def searchFiles(datastore, calcHash, src):
103 return _searchFiles(datastore, calcHash, src, '', '')
104
105 def _searchFiles(datastore, calcHash, src, subpath, name):
106 path = src + subpath
107 orig_stats = os.lstat(path)
108 stats = Stats(orig_stats)
109
110 if stat.S_ISLNK(stats.st_mode):
111 return SymbolicLink(name, stats, os.readlink(path))
112
113 if stat.S_ISREG(stats.st_mode):
114 if name.startswith(".wh."):
115 return Whiteout(name[4:], stats)
116
117 node = File(name, stats)
118 if datastore is None:
119 if calcHash:
120 node.hash = fileops.hash(path)
121 else:
122 datastore.saveData(node, path)
123 return node
124
125 if stat.S_ISDIR(stats.st_mode):
126 node = Directory(name, stats)
127 for childname in os.listdir(path):
128 if (childname == '.wh..wh.orph') or (childname ==

'.wh..wh.plnk'):
'

129 node.stats.st_nlink -= 1
130 continue
131 if (childname == '.wh..wh..opq'):
132 node = OpaqueDirectory(name, stats, node)
133 continue
134
135 childpath = subpath + '/' + childname
136 child = _searchFiles(datastore, calcHash, src, childpath,

childname)
'

137 child.add_to(node)
138
139 return node
140
141 if stat.S_ISBLK(stats.st_mode) or stat.S_ISCHR(stats.st_mode):
142 return Device(name, stats, orig_stats.st_rdev)
143
144 if stat.S_ISFIFO(stats.st_mode):
145 return FIFO(name, stats)
146
147 return NullNode()

Listing 5.5 Virtual Machine Image Import. The searchFiles function
shown in this Listing is responsible for extracting the metadata from a mounted
virtual machine image, building the tree of nodes that is the central part of a manifest,
and copy the files’ contents in the Data Store.

as additional argument to the SymbolicLink constructor. The link’s target can be
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retrieved using the readlink function in the os module (Lines 110 to 112). In both
cases the resulting node is returned to the caller immediately.

Special care has to be taken when current directory entry points to regular �les
(Lines 113 to 123), because layered virtual machine images contain whiteout �les that
are on the one hand just plain �les, but on the other hand require special treatment
so that the Merge and Di� operations work as expected. The current version of the
Image Store recognizes only whiteout �les created by aufs, although it can easily
be extended to support other union mount implementations as well. Whiteout �les
are �les named “.wh.<name>” in aufs, whereby <name> is the name of the �le that
should be marked as deleted. The code in Lines 114 to 115 recognizes whiteout �les and
returns Whiteout instance with the name and common metadata to the caller. Note
that the “.wh.” part is stripped from the name to achieve a union mount independent
representation of the whiteout �le.

For regular �les that are no whiteout �les, an instance of the File class is created
using the name and common metadata (Line 117). The further steps depend on whether
a Data Store was passed to the function or not. If a Data Store was passed, the �le’s
content is stored in it (Line 122). In this process the hash value of the �le is calculated
and stored in the hash �eld of the File instance. If no Data Store was passed, it
depends on the value of the calcHash argument whether the hash value of the �le is
calculated or not (Lines 119 to 112). Finally, the resulting node is returned to the caller.

Directories are the most sophisticated �le type the _searchFiles function has to
process. First, an instance of the Directory class is created using the name and
common metadata (Line 126). Then, the function loops over all directory entries
contained in this directory, which are retrieved using the listdir function in the
os module (Line 127). The code in Lines 135 to 137 is executed for every directory
entry that is not one of the three special cases that are explained below. First, this
code computes the path of the directory entry (relative to src) by combining the
path of the directory itself (subpath) with the name of the directory entry (Line 135).
Then, the function calls itself recursively passing the �rst three unmodi�ed arguments
together with the path of the directory entry and its name (Line 136). Finally, the node
returned by this recursive call that represents the directory entry is then added to
the Directory instance (Line 137). When the loop is �nished, the directory has been
processed completely and the Directory instance is returned to the caller (Line 139).

As stated above, there are three special cases related to aufs that have to be addressed
when processing directories. The �rst two cases are two directories used by aufs
at runtime: “.wh..wh.orph” and “.wh..wh.plnk”. Their contents are meaningful
only for the union mount they were created in. Consequently, storing them in the
manifest is unreasonable. They are omitted by continuing the loop with the next
directory entry (Line 130). Note that omitting a directory changes the number of
hard links (st_nlink) of the parent directory, because one “..” hard link is missing.
Therefore, the number is decreased by one (Line 129).

Opaque directory markers are the third case. In aufs, opaque directories are marked
by adding a �le named “.wh..wh..opq” to them. This �le can appear anywhere
in the list of directory entries, so it is not possible to create an OpaqueDirectory
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instance instead of the normal Directory instance in the �rst place (Line 126) without
looping through the directory entries twice. Instead, the special functionality of
the OpaqueDirectory constructor is used by passing the Directory instance to
together with the name and common metadata. The resulting instance is the parent
of all nodes that were children of the Directory instance and replaces it (Line 132).
The loop is then continued with the next directory entry (Line 133).

At the end of the importing process, the initial call to _searchFiles returns the
complete tree of nodes for the virtual machine image to the searchFiles function
that in turn returns it to its caller. The caller then embeds the tree into an instance of
the Manifest class as described in Section 5.4.1.5. Thereby, the import process of the
virtual machine image is �nished.

5.4.3.2 Export

An virtual machine image stored in the Image Store is exported by creating an empty
disk image and recreating the �les and directories represented by the manifest’s tree
of nodes in this disk image. The basic approach is to create directories, copy the
contents of �les from the Data Store to restore �les, and use speci�c system functions
to recreate special �les. After directories, �les, or special �les have been created, it is
important to apply the metadata recorded in the manifest. If this step is omitted, all
exported �les and directories have the user and group IDs of the Image Store process
as well as the wrong access rights and timestamps, which is seriously a�ecting the
Discretionary Access Control implemented in Linux system.

As already stated in Section 5.4.1.4, a manifest cannot naturally support multiple hard
links to a single �le, i.e., regular �les, special �les, and symbolic links. Consequently,
hard link detection has to be employed in the export process to ensure that hard links
are correctly exported. The detection algorithm depicted in Figure 5.12 depends on
the values of the st_ino and st_nlink values stored in the Stats instance of each
node.

The idea of the algorithm is to maintain a list of the st_ino values of all nodes except
directories with a st_nlink value greater than one that have already been exported.
Note that the algorithm uses the values of the node’s Stats instance and not the
actual values of the exported �le. The list contains not only the st_ino values, but
also the path of the exported �le.

Whenever a node with a st_nlink value greater than one is to be exported, the
algorithm checks whether the node’s st_ino value is already in that list. In this case,
the path of the exported �le is retrieved from the list and a link to that �le is created
for the node instead of exporting it again. Otherwise, the st_ino number is added to
the list together with the path of the exported �le and the node is exported as usual.

Unfortunately, not all of the metadata recorded in the nodes’ Stats instances can
be explicitly applied to exported �les. Table 5.9 lists these �elds and describes why
they cannot be applied. With this information the resulting di�erences between the
original virtual machine image and an exported version can be considered. The critical
�elds are st_ino, st_ctime, and st_blocks. The �rst and the last �eld are less
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Figure 5.12 Hard Link Aware Exporting. This flow chart describes the process
of exporting a node that is correctly handling hard links by only exporting the first
node of a group of nodes with identical st_ino numbers that represent a single file,
symbolic link, special file, or named pipe. (orange part of the flow chart). The regular
export process for nodes with only a single hard link is depicted by the green parts of
the chart. Note that this process does not apply to directory nodes.

critical, because most applications don’t care about inode numbers or the number of
allocated blocks. However, the inode change time is an important, visible attribute of
a �le. For example, backup programs use it as a reliable �le modi�cation timestamp,
particularly because it is the only timestamp of a �le that cannot be changed by a user.

There are workarounds to modify the inode change time: GNU stroke [56] modi�es
the system time before it writes a �le. This approach is applicable for individual
�les, but not for the large numbers of inodes that have to be created during the
export of a virtual machine image12. Additionally, this method is not very precise. If
another process is scheduled between updating the system time and changing the
inode, the approach cannot guarantee that the right timestamp is written to the inode.
The only way to reliably set the inode change time is to access the raw image and
write the timestamps manually to the correct location. This approach is speci�c to
individual �le system types, requires in-depth knowledge of the respective �le system
implementation and is generally not advisable.

An exported virtual machine image is not logically equivalent to the original virtual
machine image, because of the inability to set the inode change time. Fortunately,
except for backup programs there are almost no applications that rely on correct inode
change times in exported virtual machine images. Even the Image Store itself has only
a single feature that relies on correct inode change times: the Di�-based Reimport
process described in Section 5.4.6.1. For this speci�c feature a workaround exists that
can deal with the di�erences in the inode change time between exported image and
manifest. For most applications and the particularly purpose of the Image Store the
exported image can thus be considered logically equivalent to the original image.

Listing 5.6 shows both generic export methods in the Stats and Node classes that
are used by all other node types as well as speci�c export methods for symbolic links,

12 A basic installation of Debian/GNU Linux contains more than 15,000 �les.
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Table 5.9 Non-exportable Metadata Fields in Stats. This table lists the
fields of the Stats class that cannot be explicitly applied to exported files for di�erent
reasons.

Argument Description

st_ino When a file or directory is exported, the target file system automatically
selects a free inode from it pool of free inodes. There is no way to
influence the inode selection.

st_mode The field st_mode contains two distinct parts: the access rights and
the inode file type. The la�er is set automatically during the creation
of the file or directory depending on the method used, e.g., the mkdir,
mknod, mkfifo, or symlink functions of the os module or the plain
open function. Only the access rights part can be applied to exported
files or directories. However, a�er a successful export the inode file
type should match the recorded type.

st_nlink The number of hard links to an inode is maintained by the file sys-
tem. The only way to influence is by creating or removing hard nodes.
However, a�er exporting the entire manifest the number should be
matching the one recorded in the manifest.

st_size The size of a file is automatically set a�er its content is wri�en. It should
match the size recorded in the manifest if the export was successful.

st_ctime The time of the last inode status change cannot be set manually, be-
cause it is automatically updated with the current time whenever the
in the inode is changed.

st_blocks The number of blocks allocated for a file is automatically set a�er its
content is wri�en. It should match the number of blocks recorded in
the manifest if the export was successful, but it can di�er even a�er
a successful export, e.g. when the export code tries to detect holes in
files and exports the file as a sparse file.

device �les and named pipes. Listing 5.7 shows the speci�c export methods for the
remaining node types: directories, opaque directories, �les, and whiteout �les.

The exportmethod of the Stats class is responsible for applying the stored metadata
to exported nodes. Contrary to all other export methods it expects the path of the
exported �le as argument. The method distinguishes between symbolic links on
the one hand and all other inode �le types on the other hand. Note that the Stats
instance does not store a reference to the corresponding node. Thus, the type has to
be determined using the value stored in the st_mode �eld (Line 221). For everything
except symbolic links, the metadata is applied by changing the exported �le’s user
and group IDs, setting its access rights, and updating its time of last access and last
modi�cation in Lines 225, 226 and 227, respectively.

Symbolic Links are special in multiple ways. First of all, the functions used to apply
the metadata (chown, chmod, and utime in the os module) a�ect the symbolic links
target instead of the symbolic link itself. For the chown function a counterpart named
lchown exists. No counterpart exists for utime. The function lutime called in
Line 223 is provided in a custom module implemented in the C programming language
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143 class Stats(object):
· · ·

220 def export(self, path):
221 if stat.S_ISLNK(self.st_mode):
222 os.lchown(path, self.st_uid, self.st_gid)
223 os.lutime(path, (self.st_atime, self.st_mtime))
224 else:
225 os.chown(path, self.st_uid, self.st_gid)
226 os.chmod(path, self.st_mode)
227 os.utime(path, (self.st_atime, self.st_mtime))...
231 class Node(object):

· · ·
386 def export(self, datastore, exporter):
387 fileops.remove(exporter.getPath(self))
388 if (self.stats.st_nlink > 1):
389 if (self.stats.st_ino in exporter.linkcache):
390 os.link(exporter.linkcache[self.stats.st_ino],

exporter.getPath(self))
'

391 else:
392 path = self.do_export(datastore, exporter)
393 if path is not None:
394 exporter.linkcache[self.stats.st_ino] = path
395 else:
396 self.do_export(datastore, exporter)...
481 class SymbolicLink(Node):

· · ·
501 def do_export(self, datastore, exporter):
502 path = exporter.getPath(self)
503 os.symlink(self.target, path)
504 self.stats.export(path)
505 return path...
513 class Device(Node):

· · ·
526 def do_export(self, datastore, exporter):
527 path = exporter.getPath(self)
528 os.mknod(path, self.stats.st_mode, self.rdev)
529 self.stats.export(path)
530 return path...
537 class FIFO(Node):
538 def do_export(self, datastore, exporter):
539 path = exporter.getPath(self)
540 os.mkfifo(path)
541 self.stats.export(path)
542 return path

Listing 5.6 Virtual Machine Image Export – Part 1. This listing shows the
generic export methods in the Stats and Node classes and the specific export meth-
ods for symbolic links, device files and named pipes.

and registered in the os module13. Note that symbolic links always have the access
rights rwxrwxrwx or 0777. Consequently, no lchmod function exists.

The export method of the Node class is central to the export process, because it
implements the hard link detection algorithm shown in Figure 5.12. It expects two

13 In recent versions of python all three functions are extended with a follow_symlinks keyword
argument that facilitates modifying the symbolic links instead of their targets.
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arguments: a reference to the Data Store and an instance of the Exporter class shown
in Listing 5.9 that is used to calculate absolute paths for exporting nodes, store the list
of already exported nodes for hard link detection and provide support for exporting
whiteout �les and opaque directories for speci�c union mount implementations.

Before a node can be exported, the Image Store must ensure that nothing else is stored
at the export path of that node. While this is the case in general, because the export
process uses blank image �les as target for exporting, Section 5.4.6.2 presents a use
case for exporting to existing image �les. The remove function (shown in Listing 5.8)
from the fileops module is used for this task.

The list of exported nodes used in the hard link detection algorithm shown in Fig-
ure 5.12 is implemented using a dictionary named linkcache in the Exporter in-
stance. The st_ino values are the keys and the export paths are the values. Line 396
corresponds to the green part of the algorithm: if a node has only a single hard link,
the node type’s implementation of the do_export method is called to export the
node. Lines 389 to 394 correspond to the orange part of the algorithm: if the node’s
st_ino value is already contained in the list of exported nodes, a hard link to the
exported node is created (Line 390). Otherwise, the node is exported as usual using the
do_export method (Line 392), which is required to return the path to the exported
node. The path is then stored in the list of exported nodes using the node’s st_ino
value as key (Line 394).

The do_export methods for symbolic links, device �les and named pipes are almost
identical except for the speci�c function of the os module used to export the node in
Lines 503, 528 and 540, respectively. Afterwards, the metadata is applied using the
export methods of the node’s Stats instance and the path of the exported node is
returned.

The Directory class has to overwrite the export method de�ned in its superclass
Node, because the hard links to directories work di�erently compared to hard links
to �les, i.e., they cannot be created explicitly like the export method in the Node
class does, but are automatically created in subdirectories. The �rst step in the export
method is to delete anything that is stored at the export path of the directory node
using the remove function. Contrary to the export method of the Node class, this
call does not delete a directory at the export path. The reason for this exception
is explained in Section 5.4.6.2. In general, this call does nothing because no �le or
directory exists at this path for empty images that are the default target for exports.

The remainder of the overwritten method is actually pretty straightforward: it creates
an empty directory using the mkdir function unless it already exists (Lines 723
and 724), calls the export method of all its child nodes (Lines 726 to 727), and �nally
applies the metadata to the directory. It is important that the metadata is applied
after all child nodes are exported, because the export of child nodes can modify the
metadata of the exported directory.

The OpaqueDirectory class again overwrites the export method, but it delegates
the actual exporting to the overwritten method of its superclass Directory. It calls
a hook method in the Exporter instance before and after the directory is exported.
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548 class Directory(Node):
· · ·

719 def export(self, datastore, exporter):
720 path = exporter.getPath(self)
721
722 fileops.remove(path, keep_directories=True)
723 if not os.path.exists(path):
724 os.mkdir(path)
725
726 for child in self._children:
727 child.export(datastore, exporter)
728
729 self.stats.export(path)...
815 class OpaqueDirectory(Directory):

· · ·
828 def export(self, datastore, exporter):
829 exporter.handleOpaqueDirectoryPre(self)
830 Directory.export(self, datastore, exporter)
831 exporter.handleOpaqueDirectoryPost(self)...
839 class File(Node):

· · ·
850 def do_export(self, datastore, exporter):
851 path = exporter.getPath(self)
852 datastore.copyData(exporter, self)
853 self.stats.export(path)
854 return path...
860 class Whiteout(Node):

· · ·
890 def do_export(self, datastore, exporter):
891 return exporter.handleWhiteout(self)

Listing 5.7 Virtual Machine Export – Part 2. This listing shows the specific
export methods for node types not shown in Listing 5.6: directories, opaque directories,
files, and whiteout files.

This enables the Exporter instance to export the opaque directory correctly. An
exemplary hook method is shown in Listing 5.10.

The do_export method of the File class is again straightforward. It uses the copy
method of the Data Store (Line 92 in Listing 5.3) to copy the �le’s contents to the
path determined by the node’s Exporter instance (Lines 851 to 852). Afterwards, the
metadata is applied using the export methods of the node’s Stats instance and the
path of the exported node is returned.

Whiteout �les are the �nal node type: they are exported by a call to the handle-
Whiteout method of the node’s Exporter instance. Its implementation is shown in
Listing 5.9.

Listing 5.8 shows the implementation of the remove function that will check whether
a �le, special �le, i.e., a symbolic link, device �le, or named pipe, or a directory exists
at a path passed as argument and deletes it in this case. Using the optional keyword
argument keep_directories the function can be instructed to remove only �les
and special �les, but keep directories.

Files and special �les can be removed with the remove function of Python’s osmodule
(Line 60), whereas directories are removed using the rmdir function. Unfortunately,
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55 def remove(path, keep_directories=False):
56 if path.endswith('/'):
57 path = path[:-1]
58 if os.path.lexists(path):
59 if os.path.islink(path) or not os.path.isdir(path):
60 os.remove(path)
61 else:
62 if not keep_directories:
63 shutil.rmtree(path)

Listing 5.8 Removing Files and Directories. This listing shows a helper func-
tion that checks whether a file, special file, or directory at a given path exists and
deletes it in this case.

the latter only works for empty directories. The rmtree function in the shutil
module can be used to recursively delete entire directory trees (Line 63). However,
this works only for directories, not for symbolic links to directories. The remainder
of the function deals with some of the peculiarities of Python’s standard library. In
Lines 56 to 57 a trailing slash is removed, because the lexists function used to check
if a �le or directory with a given name exists. Even if a �le exists, it returns False if
the �le name is passed with a trailing slash. This happens a �le exists at the export
path of a directory node, because the node will return its path with a trailing slash –
it is a directory after all. The next pitfall is the di�erence between the exists and
lexists functions: the former follows links and thus returns False for an existing
symbolic link with a non-existing target, whereas the latter does not follow the link
and returns True. Finally, the isdir function follows links as well and thus returns
True for symbolic links to directories. This test must thus be accompanied by a call
to islink (Line 59).

4 class Exporter(object):
5 def __init__(self, target):
6 self._target = os.path.abspath(target)
7 self.linkcache = dict()
8
9 def getPath(self, node):

10 return self._target + '/' + node.path
11
12 def handleWhiteout(self, node):
13 pass
14
15 def handleOpaqueDirectoryPre(self, node):
16 pass
17
18 def handleOpaqueDirectoryPost(self, node):
19 pass

Listing 5.9 Virtual Machine Export – Default Exporter. This listing shows
the default exporter regular virtual machine images: the Exporter class.

As already written above, the Exporter instance (see Listing 5.9) is used to calculate
absolute paths for exporting nodes, to store the list of already exported nodes for hard
link detection and to export whiteout �les and opaque directories for speci�c union
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mount implementations. The type of exporter used in�uences the result of the export
process, i.e., by controlling how whiteout �les and opaque directories are exported and
by computing the path for each exported node. The target path of the output process
is passed as argument to the exporter’s constructor and stored in the instance for use
in the getPath function. Additionally, the constructor initializes the dictionary of
already exported �les (Lines 9 to 10).

The getPath method simply concatenates the target path with the node’s path re-
turned by the property of the same name. The default implementation Exporter
exports manifest as regular virtual machine images. As such, the exported images
should contain neither whiteout �les nor opaque directories. The helper methods
used to create the special marker �les are thus empty (Lines 12 to 19).

In order to export a manifest for use as layer in a composite disk image, whiteout �les
and opaque directories are import for the correct composition. The AUFSExporter
class shown in Listing 5.10 is able to export the required marker �les for the Image
Compositor implemented using aufs. If another union mount implementation is used
for image composition, a corresponding export must be written for the Image Store.

An extended version of the getPath method is required to handle whiteout �les
correctly. As written above, the Image Store uses generic whiteout nodes to represent
whiteout �les independently of the union mount implementation used. The generic
whiteout nodes’ name does therefore not include the pre�x “.wh.” that is used by aufs.
In Lines 32 to 33 the pre�x is added if the passed node is a whiteout node.

Whiteout �les are created by the handleWhiteout method. The method creates an
empty �le by opening the �le in append mode and closing it immediately afterwards
(Line 40). Afterwards it applies the metadata and returns the path of the exported
whiteout �le. Because Whiteout instances use the inherited export method, the
hard link detection is also applied to whiteout �les. Consequently, all whiteout �les
are just hard links to a single empty �le – exactly the way aufs creates whiteout �les.

Opaque directories are regular directories that contain a special marker �le in aufs.
After the directory is exported, the post export hook handleOpaqueDirectoryPost
is called by the export method of the Whiteout class to create the marker �le named
“.wh..wh..opq”. The markers generated by aufs are hard links to the same single
empty �le that is used as whiteout �le. This �le is named “.wh..wh.aufs” and located
in the root directory of the manifest. For better comprehensibility, it is called whaufs
in the remainder of this section. Unfortunately, the default mechanism to create hard
links does not work for the opaque directory marker, because OpaqueDirectory
overwrites export. Additionally, it is not possible to blindly create a hard link to
whaufs , because the order in which the �les are exported is not guaranteed. Even if
whaufs is not exported yet, another whiteout �le might have already been exported.
This cannot be checked without the st_ino value of the marker �le in the original
image, which is not part of the manifest because the marker �le is not represented as
a node of its own.

The handleOpaqueDirectoryPost method �rst checks whether whaufs is already
exported (Line 49). If it is found, it simple creates a link to it (Line 65). Otherwise,
the method loops over the children of the manifest’s root node until it �nds the node
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28 class AUFSExporter(Exporter):
29 def getPath(self, node):
30 path = Exporter.getPath(self, node)
31 if isinstance(node, Whiteout):
32 splitted = path.rsplit('/', 1)
33 return splitted[0] + '/.wh.' + splitted[1]
34 else:
35 return path
36
37 def handleWhiteout(self, node):
38 path = self.getPath(node)
39 fileops.remove(path)
40 open(path, 'a').close()
41 node.stats.export(path)
42 return path
43
44 def handleOpaqueDirectoryPost(self, node):
45 whaufs_path = self._target + '/.wh..wh.aufs'
46 dir_path = self.getPath(node)
47 marker_path = dir_path + '/.wh..wh..opq'
48 fileops.remove(marker_path)
49 if not os.path.exists(whaufs_path):
50 whaufs_node = None
51 for child in node.root()._children:
52 if isinstance(child, Whiteout) and child.name == '.wh.aufs':
53 whaufs_node = child
54 break
55 if whaufs_node:
56 if (whaufs_node.stats.st_ino in self.linkcache):
57 os.link(self.linkcache[whaufs_node.stats.st_ino],

marker_path)
'

58 else:
59 open(marker_path, 'a').close()
60 whaufs_node.stats.export(marker_path)
61 self.linkcache[whaufs_node.stats.st_ino] = marker_path
62 else:
63 print 'failed to lookup whaufs node'
64 else:
65 os.link(whaufs_path, marker_path)
66 node.stats.export(dir_path)

Listing 5.10 Virtual Machine Export – aufs Exporter. This listing shows the
exporter for layered virtual machine images using aufs: the AUFSExporter class.

representing whaufs (Lines 50 to 54). Note that this is a whiteout node, so its name in
the manifest is actually “.wh.aufs” without the whiteout �le pre�x. After it has found
the node, the method checks whether any whiteout �le has already been exported
by searching for an entry with whaufs’ st_ino value in the dictionary of exported
�les (Line 56). In an entry is found, a link to the path stored in this entry is created
(Line 57). Otherwise, an empty �le is created as opaque directory marker, the metadata
of whaufs is applied to the marker �le, and the path of the marker �le is registered
with whaufs’ st_ino value in the dictionary of exported �les (Lines 59 to 61), so it
can be found by the export method in the Node class when a whiteout �le needs to
be exported.
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Irrespective of the way the opaque directory was created, in all three cases a �le is
added to the directory and thus its time of the last modi�cation is updated automatically.
Therefore, the metadata of the directory node needs to be applied to the directory
again (Line 66).

5.4.3.3 On the Fly Modifications during Export

In some cases it is useful to be able to make minor modi�cations during the export
of a virtual machine. Generally, such modi�cations are made by creating a clone of
the virtual machine and updating the clone using the normal means provided by the
Image Store. Using the update procedures presented in Section 5.4.6.1, updates can be
done in an e�cient manner. However, there are some modi�cations that are required
only for a speci�c instance of a virtual machine during its execution. Examples of such
modi�cations are the installation of SSH public keys to allow a user to log in remotely
and con�gurations changes to adapt a virtual machine to an execution environment,
or to con�gure installed software for active use.

The Image Store provides a very e�cient way to make such minor changes to a virtual
machine without cloning and updating a virtual machine: Patch nodes. This is a special
type of node that is added to a manifest to replace the content of a �le during export.
A Patch contains not only metadata like the other node types, but also the modi�ed
content of the �le it replaces. Note that contrary to the general idea of the Image Store,
a manifest including Patch nodes actually contains data. The modi�cations introduced
to the manifest by Patch nodes are volatile, i.e., they a�ect the current export process,
but are not persisted in anywhere (except in the exported image). The actual manifest
in the Metadata Store is never changed by the use of Patch nodes.

The generation of Patch nodes takes place before the actual export process starts. The
server component missrv executes a set of scripts when the remote client component
misrcl requests a manifest. These scripts are con�gured when the server is started.
Each script can generate new content for a single �le based the on the old content of
the �le and a set of arguments that are passed from the client. If the script returns new
content, a Patch node with the generated content is added to the manifest in place
of the original node. Otherwise, the original node is left untouched. During export,
the generated content stored in the Patch node is copied to the target virtual machine
image instead of the original content.

Consider a script that generates a custom authorized_keys �le for SSH, i.e., a �le
containing the public keys of all users that are allowed to remotely log in as the
particular user in whose .ssh directory the �le resides. That script loops over all
parameters passed by the client and checks if a speci�c parameter, e.g., SSH_PUBKEY,
exists. If that parameter exists, it returns its value to the server component that
will create a Patch node with the returned value as its content. Thus, the value of
the parameter provided by the client is exported into the authorized_keys �le in
the exported image. On the other hand, if the parameter does not exist, the script
returns an error code to the server component and the actual node representing the
authorized_keys �le in the manifest is not replaced.
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5.4.4 Manifest Operations

Operations on manifests are an import part of the Image Store. They are the basis of
the advanced operations like e�cient updates or content �ltering that are described in
detail in Section 5.4.6. This section contains a description of the manifest operations
provided by the Image Store. The description starts with basic �lter operations that
can be used to select or reject nodes based on speci�c conditions. Afterwards, the
more complex Merge and Di� operations are described.

5.4.4.1 The Filter Operations

The �lter operations enable removing nodes from a manifest using on or more di�erent
conditions. The �lter operations come in two �avors: Select and Reject 14. The Select
operation removes all nodes from the manifest that do not satisfy the conditions,
whereas the Reject operation removes all nodes from the manifest that do satisfy the
conditions. Listing 5.11 shows the implementation of these �lter operations.

The Select and Reject operations are implemented by methods of the same name in
the Directory class (Lines 796 to 800) that do nothing more than delegating the
�lter operation to the _select_reject method, which implements both operations.
Both methods require a condition as argument and optionally accept a Boolean value
to control whether the �lter operations work in recurse-�rst mode (True) or in the
default �lter-�rst mode (False). Both arguments are passed on to _select_reject
together with an additional Boolean value that controls whether the �lter works in
select or reject mode. Conditions are functions that accept a node as only argument
and return True if the node satis�es the condition and False otherwise. An easy
way to create such conditions is described below.

The _select_reject method recursively calls itself for all child nodes of the di-
rectory node type using the inner function recurse. Depending on whether the
depth-�rst mode or the �lter-�rst mode is selected, the recursion is performed before
(Line 785) or after (Line 794) the �ltering. The actual �ltering of the child nodes is
done in Lines 787 to 790 using two list comprehensions that evaluate the condition for
the each child. Note that this method works destructively, i.e., it modi�es the original
manifest in memory instead of creating a copy of the selected nodes for performance
reasons. If this is not the desired behavior, the manifest has to be clone manually
before the �lter operation is executed.

Removing child nodes from a directory node can cause a discrepancy between the
directory node and its metadata: the st_nlink �eld in its Stats instance that stores
the number of hard links to the directory. In Linux it is not possible to manually
create additional hard links to directories, as this could create cycles in the directory
hierarchy of the �le system. One might expect that the number of hard links of a
directory is a �xed value for this reason. However, the �le system creates hard links
to directories every time a subdirectory is created: every subdirectory contains an
14 The �lter operations are inspired by the two methods with the same name in the Enumerable class of

the core library of the Ruby programming language.
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23 class Manifest(object):
· · ·

126 def _remove_empty_directories(self):
127 self.root.reject(
128 lambda node: isinstance(node, Directory) and

len(node._children) == 0,
'

129 True)
130
131 def reject(self, condition):
132 self.root.reject(condition)
133 self._remove_empty_directories()
134
135 def select(self, condition):
136 self.root.select(selector.cor(condition,
137 lambda node: isinstance(node, Directory)))
138 self._remove_empty_directories()...
548 class Directory(Node):

· · ·
774 def _fix_st_nlink(self):
775 self.stats.st_nlink = 2 + len(
776 [child for child in self._children if isinstance(child,

Directory)])
'

777
778 def _select_reject(self, condition, select=True, depth_first=False):
779 def recurse():
780 for child in self._children:
781 if isinstance(child, Directory):
782 child._select_reject(condition, select, depth_first)
783
784 if depth_first:
785 recurse()
786
787 if select:
788 self._children = [child for child in self._children if

condition(child)]
'

789 else:
790 self._children = [child for child in self._children if not

condition(child)]
'

791 self._fix_st_nlink()
792
793 if not depth_first:
794 recurse()
795
796 def reject(self, condition, depth_first=False):
797 self._select_reject(condition, False, depth_first)
798
799 def select(self, condition, depth_first=False):
800 self._select_reject(condition, True, depth_first)

Listing 5.11 The Select and Reject Filter Operations. This listing shows
the methods that implement the Select and Reject filter operations for manifests.

“..” directory entry that points to the parent directory. This is actually a hard link to
the parent directory and thus increases its st_nlink value. Besides the hard links in
subdirectories, there are two more hard links for each directory: the directory entry of
the directory itself in the parent directory and the “.” directory entry in the directory
itself. At every point in time, a directory thus has a st_nlink value equal to the
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number of subdirectories plus two. The _fix_st_nlink method of the Directory
class called after �ltering updates the st_nlink value according to this rule.

In the Manifest classes wrappers for the select and reject methods exist that
call the corresponding method on the root node of the manifest. The reject method
passes the condition unmodi�ed, while the select method passes a compound con-
dition that combines the original condition with another condition that is satis�ed
for any directory using a logical or operator. The reason for this speci�c compound
condition will become apparent when a few example conditions are described below.

After the �ltering operation is �nished both methods remove empty directories using
an internal method. The removal of those empty directories is itself implemented
as an additional Reject operation that discards all directory nodes without child
nodes (Line 128). Note that this operation has to be processed in the recurse-�rst
mode, otherwise it will only remove a single level of empty leaf directory nodes.
Figure 5.13a shows an exemplary tree of nodes consisting of three directory nodes to
clarify the problem. If the operation is processed in �lter-�rst mode, the child notes of
DirectoryA will be �ltered �rst. Because DirectoryB is not empty at that point,
it will not be removed. Afterwards, the child nodes of Directory B will be �ltered.
This removes DirectoryC, because it is empty. The �lter operation is �nished at that
point and the empty DirectoryB is still part of the tree (see Figure 5.13b).

DirectoryC

DirectoryA
DirectoryB

a) Initial Directory Tree

DirectoryA
DirectoryB

b) Filter-first

DirectoryA

c) Recurse-first

Figure 5.13 Exemplary Directory Hierarchy. An exemplary directory hierar-
chy to used to demonstrate the di�erences between the recurse-first and filter-first
modes of the Reject operation for removing empty directories.

In recurse-�rst mode, the child nodes of DirectoryC are �ltered �rst. Afterwards,
the child nodes of DirectoryB will be �ltered. This removes DirectoryC just like
in the �lter-�rst mode, because it is empty. Finally, the child nodes of DirectoryA are
�ltered. This removes DirectoryB, because it is empty at this point. The resulting tree
contains only DirectoryA (see Figure 5.13c), which is correct although DirectoryA
is empty in this example, because it is the root node of the tree.

Listing 5.12 shows a set of helper functions that ease the creation of �lters. The
condition function is used to convert �le names with wildcard characters into
conditions that can be used with the �lter operations. The �le names are converted
into a valid regular expression and compiled using the helper method to_regex
(Line 8). A lambda function that tries to match the path of a passed node with the
compiled regular expression is then returned to the caller (Line 9).

In addition to the condition function, there are three compound conditions cor,
cand, and cnot that combine multiple conditions using the logical or, and, and not
operation, respectively. Both cor and cand convert a list of conditions using the
condition function in a list comprehension. This is the reason for simply returning
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4 def condition(cond):
5 if type(cond) == types.FunctionType:
6 return cond
7 elif type(cond) == str:
8 regex = to_regex(cond)
9 return lambda node: regex.search(node.path) is not None

10
11 def cor(*conditions):
12 conditions = [condition(cond) for cond in conditions]
13 def test(node):
14 for condition in conditions:
15 if condition(node): return True
16 return False
17 return test
18
19 def cand(*conditions):
20 conditions = [condition(cond) for cond in conditions]
21 def test(node):
22 retval = True
23 for condition in conditions:
24 if not condition(node):
25 retval = False
26 return retval
27 return test
28
29 def cnot(condition):
30 return lambda node: not condition(node)
31
32 def to_regex(string):
33 string = string.strip()
34 regex_src = string.replace('.', '\.').replace('?',

'[^/]').replace('**', '.+') \
'

35 .replace('*', '[^/]+')
36 regex_src = regex_src + '$'
37 if string[0] == '/':
38 regex_src = '^' + regex_src
39 return re.compile(regex_src)

Listing 5.12 Helper Functions for Definition Conditions. This listing de-
fines a set of helper functions that ease the creation of conditions for the manifest
filter operations.

conditions of the function type directly to the caller in the condition method
(Lines 5 to 6). Both functions return a test function that implements the logical or and
and operations, respectively. On the other hand, the cnot function accepts only a
single condition15 and returns a lambda function that returns the logically negated
result of the condition function.

The to_regex function is responsible to convert a string with wildcard characters into
a valid regular expression and return a compiled regular expression object. It iteratively
replaces wildcard characters with a corresponding regular expression snippet using
a chain of replace invocations. Additionally, it masks the “.” character that has
a special meaning in regular expressions (Lines 34 to 35). The regular expression is
15 That can of course in turn be another compound condition.
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unconditionally anchored at the end of the string (Line 36). This is a reasonable choice,
because the �le name is probably the most prevalent search criterion. If this behavior
is not desired, the “**” wildcard can be appended to the string to render this anchor
useless. If the string is an absolute path, i.e., it is starting with a “/” character, the
regular expression is additionally anchored at the start of the string (Line 38). The list
of supported wildcard characters, their replacement, and their meaning are shown in
Table 5.10.

Table 5.10 Supported Wildcard Characters. This table lists the supported
wildcard characters (Char), their corresponding regular expression snippet (RegEx),
and their meaning.

Char RegEx Meaning

? [^/] A single arbitrary character excluding the path separator.

* [^/]+ Any number of arbitrary characters excluding the path separator.
This wildcard only matches a single component of the part.

** .+ Any number of arbitrary characters including the path separator.
This wildcard can be used to match multiple components of the
path at once.

A few examples of wildcard use are given in Section 5.4.6.3. Note that this is just a
proof of concept implementation with a limited set of wildcard characters. Besides the
limited functionality, the implementation is probably not very e�cient, because even
static strings are matched using regular expressions, although string comparisons are
faster. Furthermore, for a large set of conditions it is perhaps ine�cient to use distinct
regular expressions. Intelligent grouping of conditions based on shared pre�xes can
possibly improve the performance of the �ltering solution by reducing the amount of
conditions that has to be checked for every node.

Listing 5.13 shows 5 exemplary �lter operations with di�erent conditions de�ned
using the helper functions described above. The �rst Select operation selects all �le
nodes that can be identi�ed as python scripts based on their �le name. Irrespective of
whether the depth-�rst mode is used or not, if this condition is passed unmodi�ed
to the select function of the root directory node, it will only return direct children
of the root directory node that satisfy the condition, i.e., python scripts in the root
directory. None of the directory child nodes of the root directory node will satisfy the
condition and thus they are not selected, although they might in turn have child nodes
that satisfy the condition. The composite condition built in the select method of
the Manifest class (Lines 136 to 137 in Listing 5.11) additionally selects all directories,
so all �le nodes in the entire manifest that satisfy the original condition are returned.
This is also the main reason for �ltering empty directories, because it the compound
condition used in the Select operation selects every directory node in the manifest
even if it does not contain a single �le matching the original condition.

It is important to note that a Select operation not only return a list of nodes, but an
entire tree of nodes. This is necessary, because the selected nodes only know their
direct parent, but not their position in the tree of nodes. By returning only the selected
nodes the entire directory structure would be lost. Additionally, the resulting tree of
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1 manifest.select(condition('*.py'))
2 manifest.select(lambda node: isinstance(node, SymbolicLink))
3 manifest.select(cand('*.py', lambda node: node.stats.st_size >= 4096))
4 manifest.reject(cor('id_rsa', '.bash_history'))
5 manifest.reject(cand(lambda node: isinstance(node, File), cor('id_rsa',

'.bash_history')))
'

Listing 5.13 Manifest Filter Operation Examples. A few examples of the
conditions that can be used with the manifest filter operations.

node is a valid manifest and can thus be combined with other manifests using the
Merge and Di� operations.

The second Select operation in Listing 5.13 selects all symbolic link types using a
lambda function. Because this is already a valid condition, the condition helper
function does not need to be used, although passing the lambda function to the
condition function would do no harm. The third Select operation uses a compound
condition that implements a logical and operator. It selects all �le nodes that can
be identi�ed as python scripts based on their �le name and additionally have a size
of more than 4,096 bytes. This time, neither the �le name pattern nor the lambda
function needs to be passed to the condition function explicitly, because the cand
function takes care of this. Note that both the cand and cor functions support and
arbitrary number of conditions as arguments.

The fourth �lter operation is a Reject operation. It is an actual example of how sensitive
content can be �ltered from a virtual machine image16. This Reject operation removes
nodes of any type that are named either “id_rsa” or “.bash_history”, i.e., an SSH
private key and a history �le of the bash shell, using a compound condition that
implements a logical or operator. The last �lter operation combines the condition
of the fourth operation with a node type check using a cand compound condition.
Consequently, this �lter operation removes only �le nodes named either “id_rsa” or
“.bash_history” instead of nodes of any type like the fourth �lter operation.

5.4.4.2 The Merge Operation

The Merge operation combines two manifests in exactly the same way as a union mount
does with two directories. The result of merging a manifest MU (the upper manifest)
onto a manifest ML (the lower manifest) is the manifest MM (the merged manifest).
It is computed by applying the following rules on every pair of corresponding nodes
from MU and ML with the same path according:

1. A directory node in MU

a) Is merged with its corresponding directory node in ML by recursively
applying this rules on their child nodes. This rule also applies to an opaque
directory node in ML. For an opaque directory node in MU see Rule 4.

16 More information about content �ltering is given in Section 5.4.6.3
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b) Is included in MM unless its corresponding node in ML is a directory or
opaque directory.

2. A �le node (regular �le, symbolic link, device �le, or named pipe) in MU is
included in MM irrespective of the type of its corresponding node in ML.

3. A whiteout node in MU is included in MM irrespective of the type of its corre-
sponding node in ML.

4. An opaque directory node in MU is included in MM irrespective of the type
of its corresponding node in ML. This rule take precedence over Rule 1 for an
opaque directory node in MU .

5. Any node in MU without a corresponding node ML is included in MM .

6. Any node in ML without a corresponding node MU is included in MM .

It is important to note that this operation is not commutative, i.e., merging manifest A
onto manifest B results in a di�erent manifest compared to merging manifest B onto
manifest A.

Listing 5.14 shows the implementation of the Merge operation in the Image Store. The
merge_onto method merges the node it is called on (upper) onto the node passed
in as the lower argument. Note that these methods make use of the possibility to
choose a custom name for the reference to the current instance in Python that is called
self just by convention. It is named upper in the merge_onto methods to clarify
it is referencing nodes from the upper manifest. The Merge operation is initiated
by calling the merge_onto method of the upper manifest’s root directory node and
passing the lower manifest’s root directory node as the lower argument. A wrapper
method exists in the Manifest class exists that takes care of this (not shown).

The most important part of the Merge operation is the merge_onto method in the
Directory class that implements Rules 1, 5, and 6. Rule 1b is implemented in Lines 598
to 599 by returning a deep copy of the upper directory node that replaces the lower node.
A deep copy is a copy of a directory node that includes all child nodes (recursively),
whereas a shallow copy of a directory node includes none of the child nodes, but only
the directory node itself. The implementation of these copy operations is shown in
Listing 5.15.

In Line 601 a shallow copy of the upper directory node is created that will be the
resulting node of this call to merge_onto. At this point, it contains only the metadata
of the upper directory node, but no children. For easier lookup of child nodes two
dictionaries are created from both directory nodes’ lists of children (Lines 603 to 604)
and a set of child names is created by computing the union of the names (keys) in those
dictionaries (Line 606). A for loop is used to iterate over all children names in the set,
retrieve the associated child nodes (Lines 609 to 610) and apply the appropriate rule:
if child nodes with the current name exist in both directory nodes, Rule 1a is applied
and the two child nodes are merged by recursively calling the merge_onto method
of the upper child node and passing the lower child node as argument (Line 613).
Contrary, if only a single child node with the current name exists either in the upper
or lower directory node, Rule 5 or 6 is applied by creating a deep copy of the child
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231 class Node(object):
· · ·

287 def merge_onto(upper, lower):
288 return copy(upper)...
548 class Directory(Node):

· · ·
597 def merge_onto(upper, lower):
598 if not isinstance(lower, Directory):
599 return deepcopy(upper)
600
601 retval = copy(upper)
602
603 u_children = upper.children_as_dict
604 l_children = lower.children_as_dict
605
606 names = set(u_children.keys() + l_children.keys())
607
608 for name in names:
609 u_child = u_children.get(name, None)
610 l_child = l_children.get(name, None)
611
612 if (u_child and l_child):
613 child = u_child.merge_onto(l_child)
614 elif (u_child):
615 child = deepcopy(u_child)
616 else:
617 child = deepcopy(l_child)
618
619 child.add_to(retval)
620
621 retval._fix_st_nlink()
622 return retval...
815 class OpaqueDirectory(Directory):

· · ·
826 def merge_onto(upper, lower):
827 return deepcopy(upper)

Listing 5.14 The Merge Operation. This listing shows the methods that imple-
ment the Merge operation for manifests.

node (Lines 615 and 617, respectively). A deep copy has to be created instead of a
shallow copy because the child node might be a directory node itself. The merged or
copied child node is then added to the resulting directory node (Line 619). After the
loop is �nished, the st_nlink value of the resulting directory node is �xed, because
it likely does not correspond to the number of its child directory nodes any more, and
the node is returned to the caller.

The Rules 2 and 3 (Lines 287 to 288) as well as 4 (Lines 826 to 827) are easy to
implement: in all three cases a copy of the upper node needs to be returned as result
of the merging. Nevertheless, there is an important di�erence: the merge_onto
implementation in OpaqueDirectory needs to return a deep copy of upper node,
whereas for the implementation in Node a shallow copy is su�cient.

The Merge operation (as well as the Di� operation described below) relies on a
mechanism to create both deep and shallow copies of nodes. Python provides a
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framework for creating such copies that relies on the implementation of __copy__
and __deepcopy__ methods as shown in Listing 5.15.

143 class Stats(object):
· · ·

161 def __copy__(self):
162 return Stats(self)
163
164 def __deepcopy__(self):
165 return self.__copy__()...
231 class Node(object):

· · ·
358 def __copy__(self):
359 retval = self.__class__(self.name)
360 for key in self.__slots__:
361 if (key[0] == '_'):
362 continue
363
364 if hasattr(self, key):
365 setattr(retval, key, copy(getattr(self,key)))
366
367 return retval
368
369 def __deepcopy__(self, memo):
370 return self.__copy__()...
548 class Directory(Node):

· · ·
628 def __deepcopy__(self, memo):
629 retval = self.__copy__()
630 memo[id(self)] = retval
631 for child in self._children:
632 deepcopy(child, memo).add_to(retval)
633 return retval

Listing 5.15 Deep and Shallow Node Copies. This listing shows the imple-
mentation of deep and shallow copies of nodes and their metadata.

For both the Stats and the Node class both copy operations are identical, because
none of the �elds copied contains objects that would require a distinction between a
shallow and a deep copy. Thus, the __deepcopy__ method just delegates the copying
to the __copy__ method. A Stats instance can be copied by creating a new instance
and passing the existing one to the constructor of the copy. This works because Python
uses duck typing and the Stats instance has the all the �elds that the constructor
tries to copy from the passed object.

The implementation of __copy__ in the Node class is a bit more complex. As a �rst
step, a new instance of the correct subclass of Node is created (Line 359). The method
then iterates of all instance variables listed in the __slots__ class variable and copies
the values to the new instance (Lines 366 to 367) if they are not None. However, there
is an exception: all �elds having a name that starts with an underscore letter are
not copied. This is used to prevent copying the _parent �eld to the new instance,
because the parent node of the instance is not also the parent node of the new instance.
Instead, the correct parent node is set when the new instance is added to the tree of
nodes using the add_to method.
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This exception also allows subclasses of Node to de�ne complex �elds containing
references to other objects. Such �elds make a distinction between a shallow and a
deep copy necessary. By skipping these �elds, a subclass can provide appropriate
methods for creating shallow and deep copies that can still use the inherited __copy__
method to copy the inherited �elds. The _children �eld of the Directory class is
an example of such a �eld. For Directory instances, the __copy__ method copies
just the directory node itself and the __deepcopy__ method also copies the child
nodes. The former does not need to be implemented, because the inherited method
is su�cient. It skips the list of children when it initializes the new instance because
of its name. The constructor of Directory ensures that it is still initialized with
a valid value – in this case an empty list. The __deepcopy__ method �rst does a
shallow copy of the directory (Line 629). Afterwards, it creates a deep copy of each
child node and adds the copy of the child node to the copy of the directory using a for
loop (Lines 631 to 632)17.

5.4.4.3 The Di� Operation

The Di� operation computes the di�erences between two manifests and generates
a new manifest that describes these di�erences. The di�erences between a manifest
MC (the current manifest) and a manifest MB (the baseline manifest) is the manifest
MD . It is computed by applying the following rules on every pair of corresponding
nodes from MC and MB with the same path. In this set of rules opaque directory
nodes are treated as directory nodes.

1. A directory node in MC

a) Is distinguished from its corresponding directory node in MB by recur-
sively applying these rules to their child nodes. The directory node in MC

is included in MD if either its metadata di�ers from the metadata of its
corresponding node in MB or any of its child nodes18 is included in MD .

b) Is included in MD if its corresponding node in MB is not a directory node.

2. A �le node (regular �le, symbolic link, device �le, or named pipe) in MC is
included in MD if it is not equal to its corresponding node in MB . Equal here
means equal type, metadata, and content (if any).

3. A whiteout node in MC is included in MD if its corresponding node in MB is
not a whiteout node.

4. Any node in MC without a corresponding node in MB is included in MD .

5. For any node in MB without a corresponding node in MC a whiteout node
with the same path is included in MD .

17 The memo variable is used to prevent recursive loops while copying complex object graphs. Such loops
can occur if recursive objects are copied, i.e., objects that reference itself directly or indirectly.

18 This includes whiteout nodes created for any of the corresponding directory node’s child nodes due to
Rule 3.
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The manifest MD generated by applying the Di� operation on the manifests MC

and MB is basically a blueprint of how to modify MB to become equal to MC . Con-
sequently, the result MM of merging MD onto MB using the Merge operation is
equal to MC . It is important to note that the Di� operation is not commutative, i.e.,
computing the di�erence between manifest A and manifest B results in a di�erent
manifest compared to computing the di�erence between manifest B and manifest A.

Listing 5.16 shows the implementation of the Di� operation in the Image Store. The
diff_to method computes the di�erence between the node it is called on (current)
and the node passed in as the baseline argument. Note that these methods (like
the merge_onto methods implementing the Merge operation) use a custom name
instead of self for referencing the instance they are called on. The reference is named
current in the diff_to methods to clarify it is referencing nodes from the current
manifest. The Di� operation is initiated by calling the diff_to method of the current
manifest’s root directory node and passing the baseline manifest’s root directory node
as the baseline argument. A wrapper method exists in the Manifest class exists
that takes care of this (not shown).

The most important part of the Di� operation is the diff_to method in the Direc-
tory class that implements Rules 1, 4, and 5. Rule 1b is implemented in Lines 682
to 683 by returning a deep copy of the current directory node that is added to the
resulting manifest by the caller. In Line 685 a shallow copy of the current directory
node is created that will be the resulting node of this call to diff_to. At this point, it
contains only the metadata of the current directory node, but no children. For easier
lookup of child nodes two dictionaries are created from both directory nodes’ lists of
children (Lines 687 to 688) and a set of child names is created by computing the union
of the names (keys) in those dictionaries (Line 690).

A for loop is used to iterate over all children names in the set, retrieve the associated
child nodes (Lines 693 to 694) and apply the appropriate rule: if corresponding child
nodes exist in both directory nodes, Rule 1a is applied and the di�erence between the
two child nodes is computed by recursively calling the diff_to method of the current
child node and passing the baseline child node as argument (Line 697). Contrary, if
only a single child node exists either in the current or baseline directory node, Rule 4
or 5 is applied depending on which directory node contains the child node by either
creating a deep copy of the current child node (Line 699) or creating a corresponding
whiteout node (Line 701), respectively. A deep copy has to be created instead of a
shallow copy in the former case because the current child node might be a directory
node itself. The content of the node variable, which is either the result of recursively
calling diff_to, a copy of the current node or a whiteout node, is then added to the
resulting directory node (Line 704) unless it is None. The node variable can only be
None as a result of calling diff_to for two equal child nodes.

After the loop is �nished, the number of child nodes in the resulting directory node
is checked. If it is zero, all child nodes are equal. The resulting manifest of a Di�
operation must not contain empty directory nodes unless the metadata of the directory
node is di�erent from baseline in current. This is ensured by the second condition
in Line 706 that causes None to be returned if the metadata of both directory nodes
is equal. Comparing the Stats instances is su�cient here, because the nodes’ types

166



5.4. Implementation

231 class Node(object):
· · ·

296 def diff_to(current, baseline):
297 if (current == baseline):
298 return None
299 else:
300 return copy(current)...
548 class Directory(Node):

· · ·
681 def diff_to(current, baseline):
682 if not isinstance(baseline, Directory):
683 return deepcopy(current)
684
685 retval = copy(current)
686
687 c_children = current.children_as_dict
688 b_children = baseline.children_as_dict
689
690 names = set(c_children.keys() + b_children.keys())
691
692 for name in names:
693 c_child = c_children.get(name, None)
694 b_child = b_children.get(name, None)
695
696 if (c_child and b_child):
697 child = c_child.diff_to(b_child)
698 elif c_child:
699 child = deepcopy(c_child)
700 else:
701 child = Whiteout(name)
702
703 if child:
704 child.add_to(retval)
705
706 if len(retval._children) == 0 and current.stats == baseline.stats:
707 return None
708
709 retval._fix_st_nlink()
710 return retval

Listing 5.16 The Di� Operation. This listing shows the methods that implement
the Di� operation for manifests.

and names are equal19. Finally, the st_nlink value of the resulting directory node is
�xed, because it very likely does not correspond to the number of its child directory
nodes any more, and the node is returned to the caller.

The Rules 2 and 3 are implemented in the diff_to method of the Node class. It
compares the current node with the baseline node and returns None if the nodes are
equal or a copy of the current node otherwise. A shallow copy is su�cient in this
case.

The implementation of the Di� operation compares needs to compare nodes (Line 297)
and instances of the Stats class storing nodes’ metadata (Line 706). This requires
19 Both nodes must be directory nodes, otherwise the method would return in Line 683, and their names

must be identical, because diff_to is only called for nodes with the same name (Line 697.
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speci�c comparison methods for the a�ected classes is invoked by Python whenever
an instance of the Node class (or its subclasses) or the Stats classes is compared
using either the == or != operator. In the former case the __eq__ method is invoked,
whereas in the latter case the __ne__ is invoked. These methods are shown in
Listing 5.17.

143 class Stats(object):
· · ·

167 _eq_slots = ['st_mode', 'st_nlink', 'st_uid', 'st_gid', 'st_size',
168 'st_atime', 'st_mtime']
169
170 def __eq__(self, stats):
171 for slot in self._eq_slots:
172 if not getattr(self, slot, None) == getattr(stats, slot, None):
173 return False
174 return True
175
176 def __ne__(self, stats):
177 return not self == stats...
231 class Node(object):

· · ·
338 def __eq__(self, node):
339 if self.__class__ != node.__class__:
340 return False
341
342 for key in self.__slots__:
343 if (key[0] == '_'):
344 continue
345
346 if not getattr(self, key, None) == getattr(node, key, None):
347 return False
348
349 return True
350
351 def __ne__(self, node):
352 return not self == node

Listing 5.17 Comparing Nodes. This listing shows the methods that implement
the comparison of nodes required for the implementation of the Di� operation.

The __eq__ method of the Stats class iterates over a subset of its �elds using the
list in _eq_slots and compares the values of each �eld in both self and stats, i.e.,
the instance the method is called on and the second instance it should be compared
with (Lines 171 to 172). It returns True if all compared �elds are equal or aborts the
comparison at the �rst �eld with di�erent values. The comparison cannot include all
�elds without loosing the ability of the Di� operation to provide meaningful results.
The skipped �elds are st_ino, st_ctime and st_blocks. As already stated in
Section 5.4.3.2, neither of the �rst two �elds can be exported at all and the value of
the st_blocks �eld for a speci�c �le might di�er between the original image and
the image exported from the Image Store.

The __eq__ method of the Node class does something very similar. First it compares
its class with the class of the passed node (Line 339). If the two nodes are instances of
di�erent classes the comparison is aborted immediately. Otherwise, it iterates of its
instance variables using the list in the __slots__ class variable. It returns True if
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all compared �elds are equal or aborts the comparison at the �rst �eld with di�erent
values. Like the __copy__ method it skips all �elds having names starting with an
underscore letter. This skips the _parent �eld that is di�erent for any invocation from
a diff_to method, but compares both the names of the nodes as well as their Stats
instances. Furthermore, the comparison includes �elds like target and rdev from
the SymbolicLink and Device classes for corresponding instances. Not only does
this approach skip the parent reference, but also �elds that are di�cult to compare,
e.g., the list of children _children from the Directory class. This list cannot be
easily compared, because the order of the child nodes is not relevant for equality and
it is at least questionable whether a comparison should be done recursively just like
diff_to.

The __ne__ methods invoked for the inequality operator != of both the Stats and
Node class are simply negating the result of the corresponding __eq__ methods
invoked for the equality operator == instead of implementing extensive checks them-
selves (Lines 177 and 352).

5.4.5 Direct Mounts

The Direct Mount feature of the Image Store is implemented by creating a virtual �le
system using the llfuse [91] library, a python binding for the Filesystem in Userspace
(FUSE) [58] library. FUSE enables implementing a virtual �le system solely in user
space, which signi�cantly eases the implementation, because it can be written in
Python just like the other parts of the Image Store and the existing code can be reused.

An llfuse �le system implementation needs to implement an Object with a set of �le
system operations (implemented as methods) that correspond to functions a “real” �le
system, i.e., a �le system implemented in the Linux kernel, provides. Examples of such
operations are open or read. An excerpt of the code implementing these operations is
shown in Listings 5.19 and 5.20. In addition to these operations, llfuse requires the
use of speci�c data structures to pass metadata of �les and request information about
the implemented �le system.

Listing 5.18 shows two data structures used to implement the Direct Mount feature of
the Image Store. The EntryAttributesMapper class creates a mapping between the
Stats instances used to store metadata in the Image Store and the EntryAttributes
data structure that is expected by llfuse whenever metadata of �les needs to be passed
to the library. The latter contains all �elds of the stat structure (see Table 5.6)
except st_dev as well as three additional �elds. All but two of the former �elds
are stored inside the Stats instances, even with the correct name. Nevertheless,
the Stats instances cannot be used as EntryAttributes directly, because of the
missing �elds20.

An EntryAttributesMapper instances stores a reference to a node – not to a
Stats instance, because it does not contain a reference to the corresponding node.
Accesses to the available �elds are just delegated to the node’s Stats instance, as
20 Other than that, there is no reason not to use the instances directly. The use of duck typing in Python

generally facilitates such an approach.
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23 class EntryAttributesMapper(object):
24 __slots__ = ['node']
25
26 def __init__(self, node):
27 self.node = node
28
29 def get_st_ino(self):
30 return self.node.stats.st_ino

· · ·
59 def get_st_rdev(self):
60 return self.node.rdev
61
62 def get_st_blksize(self):
63 return 4096

· · ·
68 st_ino = property(get_st_ino)

· · ·...
81 st_rdev = property(get_st_rdev)
82 st_blksize = property(get_st_blksize)
83
84 generation = 1
85 entry_timeout = 300
86 attr_timeout = 300...
88 class NodeEntry(object):
89 __slots__ ['node', 'attr', 'lookup_count', 'open_count', 'handle']
90
91 def __init__(self, node, inode):
92 self.attr = EntryAttributesMapper(node)
93 self.node = node
94 self.node.stats.st_ino = inode
95 self.lookup_count = 0
96 self.open_count = 0

Listing 5.18 Direct Mounts – Data Structures. This listing shows the data
structures required for mapping between the in-memory representation of a manifest
and the data structures required by the llfuse API.

shown using the example of st_ino (Line 30). For the two missing �elds st_rdev
and st_blksize appropriate implementations are provided: the st_rdev value is
retrieved directly from the node (Line 60, whereas the st_blksize value is a �xed
value in this implementation (Line 63). For all those �elds properties are generated that
allow access to the �eld values if they were regular �elds instead of access methods
(Lines 68 to 82). The three additional �elds are implemented as �xed values (Lines 84
to 86).

Like a regular �le system, llfuse identi�es �les using inode numbers. The virtual �le
system implementation must be able to look up the node, the EntryAttributesMap-
per as well as state information using an inode number. The NodeEntry class is a
container to combine this information into a single entity. It is comparable to an inode
in a real �le system. The constructor of the NodeEntry class creates an EntryAt-
tributesMapper instance for the passed node and assigns the node a new inode
number (also passes as argument), although the latter is just an optimization and not
required. The original inode numbers could be used as well.

Listing 5.19 shows the initialization of the Operations class that implements the �le
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system operations. The most important �elds of these class are in Lines 137 to 139:
entrycache stores a list of NodeEntry instances – the inodes of the virtual �le
system, hard links is used for hard link detection in the manifest, filecache
stores �le handles of open �les, and inode_open_count stores the number of times
each �le was opened. More details about the usage of the last two dictionaries can be
found below in the description of the operations.

133 class Operations(llfuse.Operations):
134 def __init__(self, manifest, datastore):
135 self.manifest = manifest
136 self.datastore = datastore
137 self.entrycache = [ None ]
138 self.hardlinks = dict()
139 self.filecache = dict()
140 self.highest_inode = 1
141
142 self.fstat = llfuse.StatvfsData()
143 self.fstat.f_bsize = 4096

· · ·
152 for node in manifest:
153 self.genEntryAndInode(node)
154
155 self.hardlinks = None

· · ·
167 def genEntryAndInode(self, node):
168 inode = self.highest_inode
169 new_entry = True
170
171 if (not isinstance(node, mis.manifest.nodes.Directory) and

node.stats.st_nlink > 1):
'

172 if(not self.hardlinks.has_key(node.stats.st_ino)):
173 self.hardlinks[node.stats.st_ino] = inode
174 else:
175 inode = self.hardlinks[node.stats.st_ino]
176 new_entry = False
177
178 if new_entry:
179 entry = NodeEntry(node, inode)
180 self.highest_inode += 1
181 self.entrycache.append(entry)
182 else:
183 node.stats.st_ino = inode

Listing 5.19 Direct Mounts – Initialization. This listing shows the initializa-
tion of the Operations class that creates all data structures required by the virtual
file system.

The fstat �eld stores another data structure required by llfuse. It stores some metrics
about the virtual �le system. Most of these values are set two zero, because they are
only relevant for write access, i.e., to quickly check if there are enough space and
inodes left on the �le system. Only the (�xed) block size of the �le system (f_bsize) is
initialized. Afterwards, the loop in Lines 152 to 153 iterates over all nodes and generates
the required data structures to include the nodes in the virtual �le system using the
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genEntryAndInode method21. When all required data structures are initialized, the
hard links dictionary is no longer required and removed to save memory (Line 155).

The genEntryAndInode method is creating a NodeEntry instance the passed node.
It includes the hard link detection algorithm already shown in Section 5.4.3.2 to ensure
only a single NodeEntry instance is generated for multiple nodes representing a
single �le. Additionally, it assigns new inode numbers to the NodeEntry instances
(Line 179) to be able to store them in a list, accessible using the inode number as index.
As inode numbers start with 1, the �rst element in the list has to be a placeholder
(Line 137).

Listing 5.20 shows a few exemplary methods implementing important operations on
the virtual �le system. The readdir method iterates of the child nodes of a directory
node. It returns the name, attributes and o�set (in the list of �les of the directory node)
of each child node. Both the child nodes attributes as well as the directory nodes itself
are accessed using the entrycache list with the inode number as index (Lines 205
and 207).

The lookup method implements an operation to look up �les and directories by name
in a given parent directory. This method must be able to correctly handle the “.”
and “..” directory entries, (Lines 212 to 216), although the current implementation
of the readdir method does not return them for simplicity. Regular �les are looked
up by name using a dictionary representation of the directory nodes’ list of children
(Line 219). The Lines 216 and 220 are the reason for storing the generated inode
number in the nodes, because in those lines the NodeEntry instance corresponding
to a node must be found.

The open method opens a �le for reading. Instead of keeping a list of used handles and
looking up a free �le handle each time a �le is opened, the inode number is misused
as �le handle. Consequently, if a �le is opened multiple times, the same �le handle is
returned every time. To keep track of how many times a �le was opened, which is
important for closing the �le after usage, the open_count of the NodeEntry class is
used as counter. If a �le is opened for the �rst time22, the condition in Line 270 is True
and the underlying �le in the Data Store is opened. The actual �le handle to access the
�le contents in the Data Store is stored in the handle �eld of the NodeEntry class.
Note that it is actually not required to store a reference to the NodeEntry instance in
the filecache dictionary (Line 272), because the inode number is equal to the �le
handle. The use of the filecache has been added in preparation for switching to
real �le handles.

The release method closes an open �le. The underlying �le in the data store is only
closed if the value of open_count is zero (Lines 278 to 279), i.e., release has been
called the same number of times as open. Otherwise, only the counter is decreased
(Line 277) and the �le is kept open.

21 Note that it is also possible to generate the required data structures on-demand instead of generating
the in advance when the virtual �le system is mounted. The latter approach has been chosen because
it is easier to implement and to debug, but there are no technical reasons preventing the lazy approach
from being implemented.

22 Alternatively, if a �le that has previously been opened was closed before the call to open.
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133 class Operations(llfuse.Operations):
· · ·

204 def readdir(self, inode, off):
205 for child in self.entrycache[inode].node._children[off:]:
206 off += 1
207 yield(child.name, self.entrycache[child.stats.st_ino].attr, off)
208
209 def lookup(self, parent_inode, name):
210 entry = None
211
212 if name == '.':
213 entry = self.entrycache[parent_inode]
214 if name == '..':
215 parent = self.entrycache[parent_inode].node.parent
216 entry = self.entrycache[parent.stats.st_ino]
217 else:
218 try:
219 node = self.entrycache[parent_inode].node

.children_as_dict[name]
'

220 entry = self.entrycache[node.stats.st_ino]
221 except KeyError:
222 raise llfuse.FUSEError(errno.ENOENT)
223
224 entry.lookup_count += 1
225 return entry.attr

· · ·
267 def open(self, inode, flags):
268 entry = self.entrycache[inode]
269 entry.open_count += 1
270 if entry.open_count == 1:
271 entry.handle = self.datastore.openData(entry.node)
272 self.filecache[inode] = entry
273 return inode
274
275 def release(self, fh):
276 entry = self.filecache[fh]
277 entry.open_count -= 1
278 if entry.open_count == 0:
279 entry.handle.close()
280 del self.filecache[fh]
281
282 def read(self, fh, offset, length):
283 if fh in self.filecache:
284 handle = self.filecache[fh].handle
285 handle.seek(offset)
286 return handle.read(length)
287 else:
288 return ''

Listing 5.20 Direct Mounts – File System Operations (Excerpt). This list-
ing shows the implementation of five important file system operations for reading
directories, accessing files by name, as well as opening, reading from and closing files.

The last method shown is read. It reads at most length bytes starting at offset from
the �le with the �le handle fh. The implementation of this method is straightforward.
First the seek method is used to set the underlying �le’s current position. Afterwards,
the read method is used to read the requested amount of data.
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The remaining 6 methods required to provide complete read-only access to the virtual
�le system, i.e., getattr, opendir, forget, readlink, statfs, and releasedir,
are not shown, because they are even easier to implement than the methods shown in
Listing 5.20.

5.4.6 Advanced Features

In this section some advanced features of the Image Store are presented: e�cient
updating of virtual machines stored in the Image Store, e�cient updating of exported
virtual machine images, and advanced content �ltering. These features are almost
completely “implemented” using the features of the Image Store that have been
described in the last sections: the import and export processes, �lter operations, and
the Direct Mount feature.

5.4.6.1 E�icient Updates

In this section four approaches are presented to accelerate the update processes for
virtual machines stored in the Image Store. As already described in Section 5.3.4.5, the
regular update process consists of three steps:

1. The virtual machine image is exported from the Image Store.

2. The virtual machine is updated, i.e.,

a) The virtual machine is started on an arbitrary host.

b) Updates are installed in the virtual machine or it is modi�ed otherwise.

c) The virtual machine is shut down.

3. The updated virtual machine image is reimported into the Image Store.

The update process is shown again in Figure 5.14 for easier comparison with the
modi�ed update procedures.

Image File

Metadata Store

1

2

3

Update
Virtual

Machine

Figure 5.14 Basic Virtual Machine Image Update Process. The non-
optimized process of updating a virtual machine image stored in the Marvin Image
Store consists of three steps. In Step 1 the image file is exported. A�erwards, the
virtual machine is updated in Step 2. Finally, the updated image file is reimported
in Step 3. The do�ed arrow depicts the version control feature: it points from the
current to the preceding version of the manifest. (Data Store omi�ed.)
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Both Step 1 and Step 3 of the update process can be optimized to allow e�cient updating
of virtual machine images stored in the Image Store. The �rst two approaches aim
to optimize the time required for reimporting the updated virtual machine (Step 3),
whereas the last two approaches aim to optimize the time required for exporting the
virtual machine image (Step 1).

Di�-based Reimport

The problem with the last step of the update process is the fact that the whole virtual
machine image has to be reimported, even though most of the time only a small
number of �les in the image were actually modi�ed. The time needed to reimport an
updated version of a virtual machine image depends on the number and the size of the
�les contained in the image, because for each �le the metadata has to be extracted and
a hash value of its contents has to be calculated. The process can thus be accelerated
if only �les that have actually (or very likely) been changed are imported. The �rst
approach that addresses this problem is the Di�-based Reimport approach.

The update process using the Di�-based Reimport approach is identical on the update
process depicted in Figure 5.14 except for the reimport step (Step 3). This reimport
step can be further subdivided into four phases. Figure 5.15 depicts those four phases
of the reimport step. The export and update steps are not shown.

Metadata StoreData Store

C

Image File

A

B

C

D

Figure 5.15 Di�-based Reimport Step. The Di�-based Reimport step consists
of four phases: A) scanning of the updated virtual machine, B) applying the Di�
operation to detect changes, C) importing modified files and recording their hash
values in the manifest, and D) applying the Merge operation to create the manifest
of the updated version of the virtual machine. Note that the manifests created in
Phases A and B do not contain references to the Data Store. The references are not
added until the modified files are imported in Phase C. Like in Figure 5.4, the do�ed
arrow in the Metadata Store points to the preceding version of the manifest.

In Phase A the entire virtual machine image is scanned. Contrary to the regular import
process that extracts metadata and stores the �les’ contents in the Data Store in a
single step, scanning the virtual machine image extracts only the metadata of the
�le system, but does neither calculate hash values of the �les’ contents nor actually
store them in the Data Store. For this reason, the scan process is signi�cantly faster
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than a regular import process. It is the �rst step in a two-step import process. In
Phase B the di�erences between the manifest created in Phase A and the manifest
of the virtual machine are determined using the Di� operation that is described in
Section 5.4.4.3. Note that this operation works solely on the metadata recorded in the
manifests. It does not even consider the hash values of �les, because these values are
not available in the manifest created in Phase A. The result of the Di� operation is the
update manifest, a manifest containing all changes in the virtual machine image.

In Phase C the update manifest is used to control the second step of the two-step
import process: the importing of �les’ contents. For every �le contained in the update
manifest the �le’s contents are stored in the Data Store and the hash value of the �le’s
contents is recorded in the update manifest. It is important to note that the number of
�le nodes in the update manifest is typically much smaller than the number of �les in
the image. Therefore, calculating hash values selectively and storing contents only
for modi�ed �les signi�cantly reduces the duration of the import process. Finally, in
Phase D the update manifest is combined with the manifest of the virtual machine
using the Merge operation that is described in detail in Section 5.4.4.2. The result of
this operation is the manifest of the updated virtual machine. Like the Di� operation
used in Phase B, the Merge operation works solely on the metadata recorded in the
manifests and thus it is very fast.

Note that it is theoretically possible that the Di�-based Reimport step might overlook a
changed �le. But this can only happen if a �le’s content is changed – without changing
the �le’s size – and its metadata is reset to the values from before the change. In
this case, the Di� operation would not be able to detect the change, because it works
solely with the metadata and the hash values of the �les’ contents are not available23.
Regular update installations or con�guration changes – the use case for this approach
– do not change the metadata in such a way that. Consequently, this problem is a
theoretical one.

Layer-based Reimport

The second approach that addresses the problem of long import times is the Layer-
based Reimport approach. It is based on the virtual machine image composition
technique presented in Chapter 4. The modi�ed update process using this approach
di�ers from the regular update process shown in Figure 5.14 in Steps 2 and 3. It is
depicted in Figure 5.16.

A layered virtual machine containing the virtual machine image to update and a
temporary layer is used to conduct the update process in Step 2, after the image
has been exported regularly in Step 1. The semantics of the union mount used to
implement layered virtual machines ensure that all changed �les are contained in the
temporary layer that is called update layer in this use case. After the virtual machine
is shut down, the Layer-based Reimport step is executed, which consists of two phases.
In Phase A the update layer is imported into the Image Store using the regular import

23 In general, the Di� operation checks the hash values of �les. The unavailability of hash values is a
limitation of this speci�c use case.
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Figure 5.16 Update Process using the Layer-based Reimport. This is an
improved version of the update process shown in Figure 5.14. Step 1 is unmodified.
In Step 2 a layered virtual machine containing the exported image file and an update
layer is started and the updates are installed. Step 3 is subdivided into two phases.
In Phase A the update layer is imported and in Phase B its manifest is merged with
the manifest of the virtual machine to create the manifest of the updated version of
the virtual machine.

process. Afterwards, the manifest of the update layer is combined with the manifest of
the virtual machine using the Merge Operation to create the manifest of the updated
virtual machine in Phase B.

The advantage the Layer-based Reimport step over Step 3 of the regular image update
procedure is that an update layer typically is smaller than the entire updated virtual
machine image, because it only contains the changed �les. This accelerates the
reimport process, although the advantage depends on the size of the virtual machine
image and the number and size of the updated �les.

Layer-based Update Process

The remaining factor in�uencing the time required to update a virtual machine image
is the export of its image �le (Step 1). The biggest advantage of the Layer-based
Reimport approach in this regard is that it can be used even if the virtual machine
image that should be updated is not writable. This facilitates a range of possibilities to
optimize the both Step 1 and 3 of the update process at the same time. Some of those
possibilities of the Layer-based Update Process are described below.

In the best case, the virtual machine is already exported and kept in the image cache
of an execution host. With the Layer-based Reimport approach this image �le can
be used for updating the virtual machine without modifying it and thus rendering it
unusable for other virtual machines that depend on that speci�c version of the image
�le. It is even possible to use the image �le in an update process if it is actively used
by another layered virtual machine as read-only layer, which is the default for image
�les in the image cache (see Section 4.3). Consequently, this does not only optimize
the export step of the update process, but allows skip it altogether.

Even if the exported image is not the latest version of the virtual machine available in
the Image Store, this update approach can be used. However, the update layer will
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likely be a bit larger and thus the reimport process will need more time compared to
an update layer created with an up-to-date version of the virtual machine image. The
image update process described in Section 5.4.6.2 can be combined with this approach
to quickly update a virtual machine image to its latest version that is betters suited
for installing updates and thus smaller update layers and faster reimports.
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Figure 5.17 Update Process using an Existing Image File. This is an im-
proved version of the update process shown in Figure 5.16. Exporting the image file
in Step 1 of the update process is skipped altogether. The do�ed line just marks that
the image file corresponds to the manifest. Steps 2 and 3 are unchanged.

In the worst case, no exported image �le of the virtual machine is available for use in
the update process. However, the Direct Mount feature (Section 5.4.5) can be used to
quickly provide a basis for installing updates as well. Together with the Layer-based
Reimport approach, this allows to directly update virtual machines without exporting
them beforehand. However, this Direct Update approach is limited to modi�cations
of a virtual machine image that do not require the virtual machine to be running,
because with the current implementation there is no way to use Direct Mounts from
inside virtual machines.

If necessary, a special environment for the update step can be set up using the chroot
system call that restricts access to a speci�ed area [120] containing the virtual machine
image and allows to execute package management utilities in the virtual machine
image without booting the virtual machine. The integrity of the host operating system
is somewhat protected using this approach, although ways exist to break out of such
a chroot jail [90]. If a higher isolation between the host and the environment for the
update step is required, Linux Containers (LXC) can provide a more advanced version
of chroot jails with increased security for the host system. However, for simple tasks
like replacing a broken con�guration �le a chroot environment is not required.

While this limits the usability of the Direct Update approach of virtual machines in
public Cloud environments, there are nevertheless use cases for the Direct Update
approach. Both in Virtualized Grid Computing and private Cloud environments the
access to physical nodes required by the Direct Update approach is available at least
for administrators. With physical access the administrators are able to update any
virtual machine in such an environment using the Direct Update approach.

The Layer-based Update Process using a Direct Mount (Direct Update) is depicted in
Figure 5.18. It is almost identical to the update process using the Layer-based Reimport
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step shown in Figure 5.16. There are two major changes: in Step 1 the virtual machine
image is not exported, but just mounted. This saves a lot of time depending on the
size of the virtual machine. Furthermore, in Step 2 the update is not installed in a
virtual machine using the image composition technique. A union mount is used to
combine the mounted virtual machine image and an update layer exactly like the
Image Compositor does. If required, a chroot jail or a Linux Container can be used as
a restricted environment for the update step. Step 3 is the usual Layer-based Reimport
step.

Image File

Update Layer

Update
Image

File Metadata Store

2

1

A B

Figure 5.18 Layer-based Update Process using a Direct Mount. This is an
improved version of the update process shown in Figure 5.16. In Step 1 the manifest
is mounted instead of exported. In Step 2 the virtual machine image is updated using
a union mount of the image and an update layer. Step 3 is unchanged.

5.4.6.2 Updating Image Files

In the last section the Merge and Di� operations have been utilize to optimize the
update process of a virtual machine stored in the Image Store. The aim was to either
optimize the export or the reimport process. In this section an approach for updating
virtual machine image �les, i.e., updating an exported image �le so it corresponds to
the latest version of the virtual machine stored in the Image Store, is described. If
an older version of the image �le is available this can signi�cantly reduce the export
time, because the amount of data that needs to be exported is reduced. Note that this
approach is not limited to updating an image �le to the latest version: an image �le
can be updated to any version of the virtual machine stored in the Image Store, even
to older versions24.

Exported images can only be updated correctly if they are still in pristine state, i.e.,
they were not modi�ed after export. Unfortunately, during normal usage of image �les
in virtual machines the images are modi�ed. Using the image composition approach
presented in Chapter 4 it is possible to use image �les as read-only layer in a composite
disk image. Consequently, the image �les are not modi�ed and can thus be updated
using the approach shown in Figure 5.19.

The �rst step of the update procedure is the use the Di� operation to compute the
24 It is even possible to “morph” a virtual machine into another virtual machine using this approach.

In this case, the advantage of this approach over a full export depends on the amount of di�erence
between the two virtual machines.
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Metadata Store

Image File

2
1

Figure 5.19 Update of an Exported Image File. An exported image can be
updated in two steps. The first step is to compute the di�erence between the exported
version and the desired version of the image using the Di� operation. In the second
step the manifest containing the changed files is then exported into the existing
image file instead of an empty image file. The do�ed line marks that the image
file corresponds to the manifest, whereas the do�ed arrow points to the preceding
version of the manifest.

di�erences between the version of the manifest that corresponds to the exported
virtual machine image and the desired version the virtual machine image should be
updated to. The result of the Di� operation is another manifest that contains only
�les, special �les, and directories that have changed in the desired manifest. This
manifest is then exported using the existing image �le as target and a special subclass
of Exporter shown in Listing 5.21 that implements handling of whiteout �les and
opaque directories speci�c for this use case.

68 class UpdateExporter(Exporter):
69 def handleWhiteout(self, node):
70 fileops.remove(self.getPath(node))
71
72 def handleOpaqueDirectoryPre(self, node):
73 fileops.remove(self.getPath(node))

Listing 5.21 Exporter for Updating Exported Image Files. This listing im-
plements a subclass of the Exporter class that handles both whiteout files and
opaque directories in a way that enables updating virtual machine images.

The Di� operation creates whiteout nodes for every node in the reference manifest
that does not have a counterpart in the current manifest. When updating an image �le,
this means the corresponding �le needs to be deleted. The handleWhiteout method
in the UpdateExporter takes care of this (Line 70). Contrary to regular directories,
the content of opaque directories is not merged with the content of an underlying
directory. The implementation of the export method in the Directory class, which
is also used to export opaque directories, implements the merge strategy for directories:
in Line 722 in Listing 5.7 the optional keep_directories keyword argument of the
remove method is set to True to prevent the deletion of an underlying directory. By
exporting its child nodes into the existing directory, it merges its contents with those
of the underlying directory. To implement an opaque directory, the exporter has to
delete an underlying directory before the export method of the Directory class is
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called. This is achieved using the handleOpaqueDirectoryPre hook (Line 73) that
is executed before the method is called.

5.4.6.3 Advanced Content Filtering

There are two di�erent approaches to search for and to remove unwanted or sensitive
�les from virtual machines: Metadata and Live Filters. The �rst approach works
solely on the manifest of the virtual machine. It searches for �les or directories that
match speci�ed patterns. This is a very fast process, since it is done completely in
memory. The second approach uses a combination of image composition and the
Merge operation to implement the �ltering. This approach has two advantages. First,
it allows the use of arbitrary tools for �ltering. Furthermore, the �ltering process is
not restricted to deleting �les, but it can also modify �les contained in the virtual
machine image. The �ltering process can be executed inside a virtual machine to
increase the security and facilitate �ltering using �lter scripts and tools provided by a
user of the Image Store.

Metadata Filters

Metadata Filters are implemented using the Reject operation described in in Sec-
tion 5.4.4.1. The �ltering is typically based on patterns describing the paths �les that
shall be removed from the virtual machine image. A few exemplary patterns are given
below:

/var/cache/apt/archives/**
/var/lib/apt/lists/**
/var/log/**
/tmp/**

/root/.ssh/
/root/.bash_history
/home/*/.ssh/
/home/*/.bash_history

A few exemplary pa�erns that can be used in Metadata Filters.

The �rst set of four patterns facilitates �ltering unwanted �les from Debian GNU/Linux
virtual machines. These patterns remove software packages and repository databases
cached by the apt package management system25, log �les as well as temporary �les
from a manifest. Note that these four patterns use the “**” wildcard, because there
may be subdirectories containing �les.

The last four patterns can be used to �lter sensitive �les, speci�cally the con�guration
directory of SSH and the history �le of the bash shell for every user of the virtual
machine. Note that the trailing “/” in the pattern describing the .ssh directory is
25 Cached software packages are generally installed and can thus be deleted. Cached repository databases

can also be deleted, because they are completely downloaded on every apt-get update to fetch the
current list of available packages.
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important. Without it, the directory will not be �ltered, because the regular expression
is anchored at the end of the string and the path of the directory node ends with a
forward slash26. These four patterns can be combined into the two following patterns
using the “**” wildcard:

**/.ssh/
**/.bash_history

Combined pa�erns to remove sensitive files.

As already stated in Section 5.3.4.6, the �ltering of unwanted and sensitive �les should
typically not be done in a single step, but separated from each other on di�erent
occasions. Unwanted �les should be removed during the import process, before the
�les are copied to the Data Store, using the two-step import process �rst described in
Section 5.4.6.1 together with the Di�-based Reimport approach. On the other hand,
sensitive �les should only be �ltered if an image is shared, keeping the sensitive �les
in the Image Store to ease later usage of the virtual machine by its owner.

Figure 5.20 shows the optimal import and �ltering process using Manifest Filters. In
the �rst step, the virtual machine image is scanned as �rst step of the two-step import
process. This extracts only the metadata of the �le system, but does neither calculate
hash values of �les’ contents nor actually store them in the Data Store. The result of
the �rst step is the un�ltered manifest depicted in red. Note that this is a temporary
manifest that is not stored in the Metadata Store. In Step 2, the un�ltered manifest will
be �ltered using a Manifest Filter (UF ) that removes unwanted �les. The result of this
step is the private manifest depicted in yellow that does not contain any unwanted
�les, but might still contain sensitive �les and thus should not be shared of the Image
Store.

Data StoreMetadata Store
U

F

S  F

2
1

4

3

3
3

Image File

Figure 5.20 Optimal Import and (Metadata) Filtering Process. This figure
shows the optimal import and filtering process using Metadata Filters: 1) the virtual
machine is scanned and the unfiltered manifest (red) is generated, 2) unwanted files
are filtered resulting in the private manifest (yellow), 3) contents of all files in the
private manifest are stored and their hashes recorded, and 4) sensitive files are filtered
resulting in the public manifest (blue).

In Step 3, the contents of all �les in the private manifest are copied to the Data Store and
the hash values of the �les’ contents are added to the private manifest. This concludes
26 Alternatively, the anchoring can be rendered useless by appending “**” instead of “/”.
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the two-step import process that prevents unwanted �les from being copied to the
Data Store. In the last step, the private manifest is �ltered using another Manifest
Filter (SF ) that removes sensitive �les. The result of Step 4 is the public manifest
depicted in blue like the original virtual machine image. It does not contain sensitive
�les anymore27 and can thus be shared with other users of the Image Store.

Live Filters

As described above, the idea of Live Filters is to use arbitrary tools – potentially even
provided by users of the Image Store – to remove unwanted or sensitive �les from
virtual machines. The �ltering process is very similar to the update process using
an existing image �le (Figure 5.17) described in Section 5.4.6.1. The Live Filter makes
changes to an image �le that are captured using a �lter layer, which is then converted
into a manifest that is combined with the manifest of the virtual machine. However,
there is a peculiarity concerning the �ltering of unwanted �les: unwanted �les stored
in the Data Store at all and thus it is not possible to import the virtual machine image
using the regular import approach and to remove the unwanted �les afterwards using
referenced the update process.

Figure 5.21 shows the optimal import and �ltering process using Live Filters – the
counterpart to the process shown in Figure 5.20. In the �rst step, the image is scanned
as �rst step of the two-step import process. The result of this step is the un�ltered
manifest depicted in red. In Step 2, the un�ltered manifest is �ltered using a Live Filter
(UF ) that removes unwanted �les. This can either be done in a virtual machine using
the Image Compositor or using a union mount of the image �le and a temporary layer,
either directly in the host system or using a chroot jail or Linux container as proposed
together with the Direct Mount update process.

Irrespective of chosen approach, in Step 3 the writable layer (UF Layer) that captured
the changes made during the �ltering process is imported using the regular import
process, which copies the contents of �les in the layer into the Data Store and records
their hashes in the manifest. The latter is combined with the un�ltered manifest in
Step 4 using the Merge operation. The result of the operation is the private manifest
depicted in yellow. Note that at this point the private manifest only contains references
to the Data Store for �les that were modi�ed during the �ltering process and imported
in Step 3.

In Step 5, the two-step import process started in Step 1 is �nished. For every �le
contained in the private manifest, the �le’s contents are stored in the Data Store and
the hash value of the �le’s contents is recorded in the private manifest. It is important
to note that image �le is su�cient for �nishing the import, although any �le that was
changed during the �ltering process is not included in the image �le. The union mount
of image �le and UF Layer used for �ltering is not required, because the contents of
any changed �les were already imported in Step 3. The method of the Data Store that
is used for storing �le contents does not calculate the hash value of a �le’s contents if
it is already recorded in the node and returns early if the content is already stored in
27 Assuming that the �lter removes all sensitive �les from the manifest.
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Figure 5.21 Optimal Import and (Live) Filtering Process. This figure shows
the optimal import and filtering process using Live Filters: 1) the virtual machine is
scanned and the unfiltered manifest (red) is generated, 2) unwanted files are filtered,
3) the filter layer is imported using the regular import process, 4) the unfiltered
manifest and the manifest from Step 3 are merged to generate the private manifest
(yellow), 5) the contents of all files in the private manifest are stored and their hashes
recorded, 6) sensitive files are filtered, 7) the filter layer is imported using the regular
import process, and 8) the private manifest and the manifest from Step 7 are merged
to generate the public manifest (blue). References from manifests to the Data Store
are not shown.

the Data Store (Lines 78 to 79 and Lines 84 to 85 in Listing 5.3). Therefore, the missing
�les are never actually accessed during the import process.

The �ltering of sensitive �les is done in the remaining three steps. In Step 6, the
private manifest is �ltered using a Live Filter (SF ) that removes sensitive �les. Like
Step 2, this can either be done in a virtual machine or using a union mount of the
image �le, the UF Layer from Step 2 and another temporary layer. Irrespective of
chosen approach, in Step 7 the writable layer (SF Layer) that captured the changes
made during the �ltering process is imported using the regular import process, which
copies the contents of �les in the layer into the Data Store and records their hashes
in the manifest. The latter is combined with the private manifest in Step 8 using the
Merge operation. The result of the operation is the public manifest depicted in blue.
The �ltering process is �nished at this point.

Neither the un�ltered manifest depicted in red nor the manifests of the UF and SF
Layers depicted in gray are stored in the Metadata Store. Instead, they are deleted after
the �ltering process is �nished. Note that there are various variants of the �ltering
approach, e.g., in Step 6 an exported image or a Direct Mount of the private manifest
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can be used instead of the image �le and the UF Layer, which is especially useful if
the �ltering of sensitive �les is not done directly after the Steps 1 to 5 and either the
original image �le or the UF Layer are not available anymore.

The Live Filter approach is much more complex, but especially for �ltering of sensitive
�les the �exibility of the approach with regard to availability of arbitrary tools for
�ltering as well as modi�cations of �les, i.e., remove credentials from a con�guration
�le instead of deleting it altogether, compensates for the additional complexity. How-
ever, for �ltering unwanted �les the use of a Manifest Filter is likely su�cient. Both
approaches can be combined that way.

5.5 Experimental Results

This section contains an evaluation of the Image Store. First, the sets of virtual
machines used in the measurements are described. Then, the results of an analysis
of the compressing back end’s e�ciency for various compression levels is presented
together with a list of back ends selected for further measurements. Afterwards, the
di�erent manifest on-disk formats are compared. In the main part of this section the
storage and access e�ciency of the Image are evaluated. The section ends with an
evaluation of the Direct Mount feature and two approaches for e�cient updating.

All measurements have been conducted on two identical machines containing two
Quad-Core AMD Opteron 2356 CPUs running at 2.3 GHz, 16 GiB RAM, and a 500 GB
SATA II hard disk. At the time of the measurements, the machines were running the
Debian GNU/Linux 6.0.5 (Squeeze) operating system.

5.5.1 Virtual Machines Used in the Evaluation

Two distinct sets of virtual machines have been used for the evaluation. Set A consist-
ing of 31 Debian GNU/Linux 6 virtual was also used in the evaluation of the Image
Compositor and is described in Section 4.5.1.

Set B consists of 198 virtual machines, subdivided into six groups. Group B1 contains
the 31 regular virtual machines from Set A. Group B2 contains variants of the 31 virtual
machines from group A that where built using the same ruby program that created
the original virtual machines, but using Debian GNU/Linux 7 (Wheezy) instead of
Debian GNU/Linux 6 (Squeeze). Groups B3, B4, and B5 consist of 33, 33, and 30 virtual
appliances from BitNami28 based on Ubuntu 10.10, Ubuntu 12.04, and OpenSuse 11.3,
respectively. The last group B6 contains 40 virtual machines from TurnKey Linux29

based on Ubuntu 10.04.

An overview of the groups can be found in Table 5.11. It lists the aggregate values
for all virtual machines in each group both for the number of �les they contain as
well as their size. The latter is considered both from the inside, i.e., the size of all
�les contained in an image, as well as the outside, i.e., the size of the image �le. This
28 BitNami is a provider of open source stacks [17].
29 TurnKey Linux is a library of virtual appliances [156].
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enables assessing the overhead of the �le system and the image �le. Note that in this
case the size of the image �le means its actual size on disk. The images are sparse
�les of up to 20 GiB apparent size. More detailed information including minimum,
maximum and average values can be found in Table A.1.

Table 5.11 Virtual Machines of Set B. This table gives an overview of the six
groups of appliances in terms of the installed Linux version, the group’s size (number
of virtual machines), the aggregate number of files contained in the group’s image
files as well as the aggregate size of the group’s contents and image files, both original
and optimized if the sizes are available.

Aggregate

Size (MiB)

Group Number Original Optimized
ID Linux Version Size of Files Content Image Files Image Files

B1 Debian Squeeze 31 836,947 23,382.9 44,968.6 29,377.3
B2 Debian Wheezy 31 891,085 25,997.0 52,704.9 31,989.7
B3 Ubuntu 10.10 33 988,486 27,318.3 – 32,556.5
B4 OpenSUSE 11.3 33 1,124,348 34,195.7 – 39,393.9
B5 Ubuntu 12.04 30 952,959 34,311.8 – 38,627.8
B6 Ubuntu 10.04 40 1,251,366 25,629.9 – 28,082.0

Note that the downloaded appliances are made available in an optimized version,
i.e., they have very likely been copied to a blank image �le after they have been
created, whereby some of the �les have been omitted, e.g., temporary �les, log �les, or
caches of the package management software. This is a reasonable decision for image
�les supposed to be downloaded. In typical Virtualized Grid and Cloud Computing
environments the image �les might not always be optimized, because this is additional
step during the preparation of a virtual machine image that has to be repeated for
every change of the virtual machine.

For the sets B1 and B2 that consist of self-made virtual machines both the original
image sizes after creation as well as the optimized image sizes are recorded in the
table. This optimization is however limited to copying the image to a blank image �le
without deleting anything. Optimization of virtual machine images is also taken into
account when the Image Store is compared to other storage technologies.

Unfortunately, layered versions of the appliances of group B3–B6 do not exist, so that
they can be only used to evaluate the storage e�ciency of the Data Store and the
implemented deduplication technique for a large set of virtual machines, but not for
other measurements.

5.5.2 Evaluation of Compression Algorithms

Before the Image Store is compared to other methods for storing virtual machine
images, both the storage e�ciency and the runtime impact of the di�erent back ends
using compression is evaluated. It is important to distinguish two di�erent metrics to
measure the size of the Data Store: the apparent size and the disk usage. The apparent
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size of the Data Store is the sum of the �le sizes (st_size) of all �les in the Data
Store, whereas the disk usage is the sum of the number allocated 512 byte blocks
(st_blocks) for all �les in the Data Store multiplied by 512. The former is the amount
of bytes that are actual content and the latter is the amount of bytes occupied in the
underlying �le system.

For this evaluation the largest regular virtual machine image in set A (A31) was chosen.
This image �le has been imported using the default back end that stores the �le
contents unmodi�ed to generate a baseline value. The relative apparent size and
disk usage of the Data Store as well as the relative import time of the image �le
for all combinations of compression levels and compressing back ends are shown in
Figure 5.22. In all measurements the Data Store was empty at the beginning of the
measurement. Note that there is only a value for lzma in the case of compression level
0, because there is no compression level 0 in bzip and the compression level 0 in zlib
does not compress the content and thus even increases the size of the Data Store. The
latter is therefore not considered anymore in the remainder of this thesis.

The apparent size of the Data Store can be reduced down to 28.0 % - 24.1 %, 22.9 % -
21.9 %, and 20.4 % - 17.7 % using the zlib, bzip, and lzma back ends with the various
compression levels, respectively. The reduction is slightly lower when the disk usage is
considered: 30.9 % - 27.2%, 25.9 % - 25.0%, and 23.6 % - 21.0 %, respectively. At the same
time, the import time rises to 125.6 % - 732.6 %, 401.2 % - 520.5 %, and 256.5 % - 5,793.0 %
of the baseline value, respectively. The import time increases almost linearly for bzip,
but there are huge increases in import time for zlib with compression levels 8 or 9 and
lzma with compression levels greater than 3. All results can be found in Table A.2 (in
the rows with No in the column 4K Thr.).

A deeper analysis of the resulting Data Stores reveals that approx. 20.5 %, 18.8 %, and
19.4 % of the �les in the Data Store have a larger apparent size than their corresponding
original �les using all compression levels of the zlib, bzip and lzma compressing back
ends, respectively. Most likely, these �les were already compressed and the Data
Stored compressed them again. Fortunately, the actual disk usage is only increased
for approx. 0.16 %, 0.75 % and 0.10 % of the �les, respectively. Detailed results of this
analysis can be found in Table A.3. The reason for the very small increase of actual
disk usage is that most �le systems allocate space in larger blocks. In the case of the
ext4 �le system used during the measurement these blocks are 4,096 bytes large. The
disk usage only increases if the �le size grows above the border of the last 4,096 bytes
block. On the contrary, the import very likely is more a�ected by this, because the
compression process takes longer for �les that have already been compressed.

Another interesting observation is that approximately 84.4 %, 82.6 % and 83.5 % of the
grown �les have an original apparent size below 4,096 bytes for the zlib, bzip, and
lzma compressing back ends, respectively. As 4,096 bytes is the block size of the �le
system, compressing such a �le cannot reduce the disk usage at all. Consequently, all
compressing back ends were modi�ed so that �les with an apparent size less than
or equal to a threshold, i.e., the block size of the �le system that contains the Data
Store, are not compressed. The Data Store can determine during export whether or
not a �le is compressed by comparing its original apparent size with the threshold
value. The original apparent size is part of every �le name used in the Data Store and
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Figure 5.22 Data Store Size and Import Time. The apparent size and disk
usage of the Data Store as well as the import time of image A31 for all combinations of
compression levels and compressing back ends relative to the baseline value measured
with the default back end.

thus this comparison can be easily done without requiring additional metadata. The
modi�cation was simpli�ed by the fact that all compressing back ends are derived
from the CompressingBackend class. Its modi�ed version is shown in Listing 5.22.
All relevant methods check the original size of the �le that is passed as argument
(Lines 217, 220 and 224). Based on whether the size is greater than the block size or not
the methods either use the functionality provided by the subclass, i.e., the openFor-
Reading, openForWriting and _decompressObject methods, or generic code for
uncompressed �les.
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210 class CompressingBackend(Backend):
211 def __init__(self, level, blocksize=4096):
212 Backend.__init__(self)
213 self.level = level
214 self.blocksize = blocksize
215
216 def decompressObject(self, size):
217 return None if size <= self.blocksize else self._decompressObject()
218
219 def retrieve(self, srcpath, dstpath, size):
220 srcfile = open(srcpath, 'rb') if size <= self.blocksize else

self.openForReading(srcpath)
'

221 self.copy(srcfile, open(dstpath, 'wb'))
222
223 def store(self, srcpath, dstpath, size):
224 dstfile = open(dstpath, 'wb') if size <= self.blocksize else

self.openForWriting(dstpath)
'

225 self.copy(open(srcpath, 'rb'), dstfile)

Listing 5.22 Implementation of the Threshold Value. Modified version of
the CompressingBackend class with a block size threshold for compression.

The relative apparent size and disk usage of the Data Store as well as the relative
import time of the image �le A31 for all combinations of compression levels and
compressing back ends with a block size threshold are shown in Figure 5.23.

The relative apparent size of the Data Store is increased by 0.4 % - 0.5% for all compres-
sion back ends with a block level threshold. At the same time, the disk usage of the
Data Store is even slightly decreased by 0.01 % - 0.04 % with the threshold. The reason
for this e�ect are already compressed �les with an original apparent size barely below
the 4,096 byte block boundary that grow to over 4,096 bytes after being compressed
again. Since the back ends with the block size threshold do not compress those �les,
the number of allocated blocks is reduced. On the whole, the addition of the threshold
does not increase the disk usage of the Data Store. All results can be found in Table A.2
(in the rows with Yes in the column 4K Thr.).

On the other hand, the threshold has a substantial e�ect on the import time of the
image. It rises to 122.4 % - 727.4 %, 392.8 % - 510.1 %, and 243.7 % - 3,711.4 % of the baseline
value for the zlib, bzip and lzma back ends, respectively. Especially the import times
for the lzma back end are signi�cantly reduced by up to 36 % with the threshold,
whereas the import times for the zlib and bzip back ends are reduced by up to 5 % and
up to 3 %, respectively. The reduction of the import times is shown in Figure 5.24.

A deeper analysis of the resulting Data Stores reveals that the implementation of the
block size threshold reduced the number of �les with a larger apparent size compared
to their corresponding original �les size down to approx. 3.2 % - 3.3 %. The number
of �les with an increased disk usage is reduced to approx. 0.03 %, 0.17 % and 0.02 %
for the zlib, bzip and lzma back ends with the threshold, respectively. This is shown
in Figure 5.25 for the zlib back end with compression level 1. Detailed results of this
analysis can be found in Table A.4.

The back ends with the block size threshold were used for all further measurements,
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Figure 5.23 Data Store Size and Import Time. The apparent size and disk
usage of the Data Store as well as the import time of image A31 for all combinations
of compression levels and compressing back ends with a block size threshold relative
to the baseline value measured with the default back end.

because they do not increase the size of the Data Store and at the same time reduce
the import time.

One goal of this subsection is to identify a few compression level and back end
combinations that are used in the remaining chapter to further evaluate the Image
Store. The selected combinations should make a compromise between Data Store size
and import time. Thus, the relative import time was restricted to 300 % of the import
time using the default back end. This restriction completely eliminates bzip that has
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Figure 5.24 Import Time Reduction Caused by the Threshold. The re-
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compressing back ends.
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Figure 5.25 Block Size Threshold and File Size Changes. Share of files
with reduced, unchanged and increased apparent size and disk usage in the Data
Store using the example of the zlib back end with compression level 1 both without
and with the block size threshold.

a relative import time of at least 401.2 %. Additionally, the �rst three levels of bzip
are performing worse than lzma both in terms of Data Store size and import time.
The �rst useful compression level of bzip is level 4 that has a relative import time of
455.9 %.

The restriction to 300 % relative import time reduces the number of combinations to
nine: zlib with levels 1 to 7 and lzma with levels 1 and 2. Considering the di�erence in
import time and Data Store size between the di�erent levels of zlib the levels 1, 3, and
5 have been selected as well as level 1 of lzma.

5.5.3 Manifest Formats

Not only the Data Store and the used back ends are important for the storage and
access e�ciency of the Image Store, but also the format the manifests are stored in.
In this sections the 6 combinations of the two formats XML and pickle, the pretty
printing option (pp) for the XML format and zlib compression option (zlib) using
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compression level 1 are assessed. This assessment uses the regular and layered virtual
machines in set A.

The combined (apparent) size of all regular and layered manifests for the images in
set A is shown in Figure 5.26. As expected the XML format results in a very high
manifest size, especially if the pretty printing option is used to improve readability. The
reason is the general verbosity of XML in combination with the high number of nodes
(between 330,000 and 900,000 nodes for the regular images in set A). On the other
hand, the average size of the 16.6 MiB and 24.3 MiB for regular and 6.6 MiB and 9.8 MiB
for layered images in the XML and the pretty printed XML format, respectively, are not
much considering the di�erence between image size and content size (see Tables 4.8
and 4.9). Additionally, the verbosity of the XML format is easily compressible down to
less than 10 % of the corresponding uncompressed format. The compressed manifests
can still be easily accessed using tools like zcat.
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Figure 5.26 Combined Manifest Size for Set A. This chart shows the com-
bined manifest size for all regular and layered virtual machines in set A for the
di�erent combinations of manifest formats and options.

The pickle format is better suited for the amounts of data a manifest needs to store.
Even without compression the pickle format reduces the combined manifest size
down to around 20 % or 30 % compared the XML and the pretty printed XML format.
Compression can further reduce the combined manifest size, although the reduction
is smaller compared to the XML format.

Figure 5.27 shows the average time required to read and write the manifests of the
virtual machines in set A. It is immediately obvious that the decision between those
two formats is not straightforward. The XML format can be written e�ciently, but
parsing the manifests in XML format is way more time consuming. Contrary, the
pickle format can be read very e�ciently, but writing the manifest takes signi�cantly
longer compared to the XML format. Note that the compression of the XML format is
cheap in terms of runtime, although it signi�cantly reduces the size of the manifests.
This is probably due to using compression level 1 and the good compressibility of the
XML format.

In the rest of this chapter, the compressed XML format without pretty printing is used
in all measurements, because it provides a good trade o� between storage and access
e�ciency. For a productive use of the Image Store the pickle format might be the
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Figure 5.27 Average Manifest Read and Write Times. Average time to read
(lower chart) and write (upper chart) the manifests of both the regular and the layered
virtual machines in set A including the standard deviation.

more reasonable choice, because read access to manifests is more likely during normal
usage and the pickle format is better suited for this use case.

5.5.4 Storage E�iciency

The storage e�ciency of the Image Store is evaluated for the selected back ends using
the two sets of virtual machines in several measurements. The �rst set of measurements
evaluates the size of individual Data Stores for virtual machines, whereas the second
and third set of measurements evaluate shared Data Store for all virtual machines in
Sets A and B.

5.5.4.1 Set A – Individual Data Stores

Figure 5.28 shows the disk usage for each of the 31 regular and layered images in set
A stored in individual Data Stores compared to traditional images, optimized images,
compressed images as well as optimized and compressed images. The compressed
images were compressed using zlib at compression level 1. The exact numbers can
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be found in Tables A.5 and A.6. An enlarged section of the chart for regular virtual
machine images is shown in Figure 5.29, because the disk usage values for the optimized
and compressed images and the compressed Data Stores are very close to each other.
All disk usage values for the Image Store are including the size of the corresponding
manifests in compressed XML format that lie between 1.0 MiB and 2.6 MiB for regular
and between 87.3 KiB and 1.6 MiB for layered virtual machine images.
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Figure 5.28 Disk Usage of Individual Images of Set A. Disk usage of the
virtual machine images in set A as image, optimized image, compressed image,
optimized and compressed image as well as stored in the Image Store with di�erent
back ends (MIS . . . ). An individual Data Store is created for each virtual machine in
the Image Store. The upper chart shows the disk usage for regular images, the lower
chart for layered images.

Even without compression the Image Store can reduce the disk usage to 38.3 % -
68.3 % and 68.1 % - 78.6 % compared to images and optimized images, respectively.
The reduction is caused solely by discarding the surrounding �le system. When a
compressing back end is used the disk usage is reduced to 18.3 % - 31.0 % and 27.2 % -
35.4 % compared to images and optimized images, respectively. The good results of
compressed images in comparison with the Image Store was expected, although it
should be noted that the default back end without compression can keep up with
compressed images that were not optimized beforehand except for the largest images.
Images that have been optimized before compression achieve disk usage reductions
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Figure 5.29 Disk Usage Storage of Individual Images of Set A. Enlarged
section of the chart for regular virtual machine images in Figure 5.28. This chart
focuses on the optimized and compressed images and the compressed data stores
that are di�icult to distinguish in the original chart.

comparable to the Image Store with the lzma 1 back end and better than all selected
zlib back ends.

However, the comparison with compressed images is not entirely fair for two reasons:
the Image Store cannot bene�t from the deduplication if only a single virtual machine
image is stored in the Data Store and compressed images are inferior to storage with
regard to manageability and access. For example, to mount an image and check its
contents, e.g., to verify if it contains speci�c �les, a compressed image needs to be
completely uncompressed �rst, whereas the Image Store allows to mount the image
directly – depending on the use case it might even be su�cient to check the manifest
only. The storage e�ciency for multiple �les within a single Data Store is below.

Furthermore, the measurement shows that the disk usage reductions determined in
Section 5.5.2 for the di�erent compressing back ends based on image A31 are not
achieved for all virtual machines in set A. Image A31 seems to contain a lot of �les that
can be compressed very successfully. For regular virtual machines in individual Data
Stores the disk usage is reduced to 47.4 %, 46.2 %, 44.8 % and 40.1 % of the disk usage
using the default back end for the zlib1, zlib3, zlib5 and lzma1 back ends, respectively.
The values for layered images are almost identical.

5.5.4.2 Set A – Common Data Store

After looking at the storage e�ciency of the Image Store for single virtual machine
images in a Data Store its e�ciency for the complete set A – both for regular and
layered images – is evaluated. The disk usage of the Data Stores created by the di�erent
back ends are compared to the same four techniques as above: images, optimized
images, compressed images, as well as optimized and compressed images. Contrary to
the measurements above, a single Data Store (per back end) is used for all 31 images
and thus the deduplication is kicking in. The results of this evaluation are shown in
Figure 5.30.
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Figure 5.30 Disk Usage of All Images of Set A. Disk usage for all virtual
machine images in set A as images, optimized images, individually compressed
images (zlib level 1), optimized and individually compressed images, as well as stored
in the Image Store with the selected back ends. A single Data Store is created for all
virtual machines in the Image Store.

The disk usage of all 31 images in set A is signi�cantly reduced when the Image Store
is used. The default back end reduces the disk usage to 11.3 % and 17.3 % compared
to the image and optimized image, respectively. With compressing back ends, the
disk usage is reduced further to 4.1 % - 4.9 % and 6.3 % - 7.6 %, respectively. Equally well
results are achieved compared to compressed images: 20.9 % and 7.6 % - 9.1 % for the
default and the compressing back ends, respectively. The relative disk usage compared
to optimized and compressed images is a little bit higher: 56.6 % and 20.5 % - 24.7 % for
the default back end and the compressing back ends, respectively.

For layered images the relative disk usage is a bit higher. Using on of the compressed
back ends, the disk usage is reduced to 11.1 % - 13.4 % and 14.2 % - 17.1 % compared to the
images and optimized images, respectively. With the default back end, the disk usage
drops to 31.1 % and 39.9 %, respectively. Compared to compressed images the disk
usage falls to 73.4 % and 26.3 % - 31.8 % for the default and the compressing back ends,
respectively. Only the optimized and compressed images can compete with the Image
Store using the default back end. The disk usage of the Data Store is 137.9 % of the disk
usage of the optimized and compressed images. However, using the compressing back
ends the disk usage of the Data Store falls to 49.5 % - 59.7 % of the images’ disk usage.

The compressing back ends reduce the disk usage of the Data Store containing all 31
regular virtual machine images of set A down to 43.6 %, 42.4 %, 40.9 %, and 35.9 % of its
size using the default back end. These values are better than the values determined for
virtual machine images in individual Data Stores above. Again, the values for layered
images are almost identical.
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5.5.4.3 Set B – Common Data Store

Finally, the disk usage for storing all virtual machines in set B is evaluated. The results
of this evaluation are shown in Figure 5.31 for images and the Image Store using the
selected back ends. As already said above, no layered images exist for the subsets
B2 -B6, so this evaluation is limited to regular images. Additionally, for the subsets
B3 -B6 only optimized versions of the images are available. The values for images in
this evaluation thus refer to the optimized versions of all images, including subsets B1
and B2 that are available both as optimized and non-optimized versions.

Disk Usage (GiB)
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Image MIS default
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MIS zlib5 MIS lzma1

Figure 5.31 Disk Usage of All Images of Set B. Comparison of disk usage for
all virtual machine images in set B as image files and stored in the Image Store using
the selected back ends.

The Image Store reduces the disk usage for all 198 images in set B to 5.1 % - 6.1 %
compared to optimized images using a compressing back end and 13.9 % using the
default back end. The disk usage reduction is even higher compared to non-optimized
images. Based on the optimization results for the subsets B1 and B2 the estimated total
disk usage for non-optimized versions of all images in set B is between 260 GiB and
380 GiB. Compared to these estimated values the Image Store reduces the disk usage
down to 3.9 % - 4.7 % and 2.7 % - 3.2 % for compressing back ends and 7.3 % - 10.7 % for
the default back end, respectively.

The compressing back ends reduce the disk usage of the Data Store containing all
198 regular virtual machine images of set B down to 43.8 %, 42.9 %, 41.5 %, and 37.0 %
of its size using the default back end. The reduction of disk usage achieved by the
compressing back ends increased just marginally compared to the values determined
above for the 31 regular virtual machine images of set A (B1).

Figure 5.32 shows the increase in total disk usage for consecutively imported subsets
of set B compared to the disk usage of the imported virtual machines’ image �les. The
Data Store is empty before subset B1 is imported. It can be seen that the disk usage of
the Image Store grows very slowly compared to image �les.

Figure 5.33 shows the additional disk usage for each of the subsets that are imported
consecutively to an initially empty Data Store using the selected back ends. Although
the total (optimized) image size per subset lies between 27.4 GiB and 38.5 GiB, the addi-
tional disk usage for this set lies only between 0.5 GiB and 3.5 GiB for the compressing
back ends and between 1.9 GiB and 7.0 GiB for the default back end.

Notably, subset B4 has by far the lowest additional storage requirements when being
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Figure 5.32 Total Disk Usage of Subsets of Set B. Disk usage for subsets of
set B that are consecutively imported into the Image Store with the selected back
ends compared to the disk usage of the corresponding image files.
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Figure 5.33 Additional Disk Usage for Subsets of Set B. Additional disk
usage for consecutively imported subsets of set B when they are imported into the
Image Store with the selected back ends.

imported into the Image Store already containing the subsets B1 -B3, although B4
is the second largest subset both in terms of content size as well as number of �les.
Additionally, subset B4 is not a derivative of Debian/GNU Linux – contrary to Ubuntu.
This shows that the Image Stores can e�ciently store virtual machine images of
di�erent distributions and versions.

5.5.4.4 Discussion

Overall, the results of these evaluations show that the Image Store provides a very
good storage e�ciency, not only compared to image �les, but also to their optimized
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and compressed counterparts. The only approach that comes close to the Image Store
with regard to storage e�ciency are optimized, compressed images. This is not only
the case for large numbers of virtual machines such as for the entire set B with almost
200 virtual machines, but even for a single virtual machine stored in the Image Store.

5.5.5 Access E�iciency

The access e�ciency of the Image Store is evaluated in several measurements. The
�rst set of measurements compares the import and export times of the Image Store
with three di�erent reference values. For these measurements the regular and layered
virtual machines in set A where used in the non-optimized versions. An individual
Data Store is used for each of virtual machine images. The reference values are the
following:

Image Copy — Image copy denotes copying the virtual machine image using stan-
dard tools, e.g., cp. This is expected to be much faster than importing, because
it just copies the image like any large �le without looking at its contents.

Content Copy — Content copy denotes a recursive copy of the image’s contents, i.e.,
mounting the image �le and copying all �les, e.g., using cp -r. This process is
more comparable to the import process and therefore is a better reference value,
because in both cases each �le in the image needs to be accessed and copied
individually. Additionally, this reference value allows to distinguish between
the overhead caused by fundamental approach of separating the data from the
metadata as well as performing deduplication on the data and the additional
overhead caused by the compressing back ends.

Compression — Compression denotes compressing the virtual machine images
with zlib using compression level 1 (like in Section 5.5.4).

5.5.5.1 Import of Virtual Machines

The import times for all 31 regular and layered virtual machine images in set A are
shown in Figure 5.34. The exact numbers can be found in Tables A.7 and A.8. The
charts clearly show the expected overhead for all Image Store import processes in
comparison with copying an image for regular images and for the last dozen layered
images. Notably, for all but the last half dozen regular and layered images the import
process using the default back end is faster or at least on par with image compression.
This also partially applies to the zlib back ends.

For easier comparison of the values, the average import times for all 31 regular and
layered virtual machine images in set A and their standard deviation are shown in
Figure 5.35.

As expected, importing regular images into the Image Store is much slower compared
to copying of image �les. The import process needs on average 318.6 %, 380.9 % -
427.2 %, and 804.7 % of the time to copy an image using the default, zlib and lzma
back ends with the selected levels, respectively. In comparison with the copying the
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Figure 5.34 Individual Import Times for Set A. Individual import times for
all regular (upper chart) and layered (lower chart) virtual machine images in set A in
comparison with the reference values.
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Figure 5.35 Average Import Times for Set A. Average import time and stan-
dard deviation both for the regular and layered virtual machine images in set A in
comparison with the reference values.
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contents of image �les the Image Store performs considerably better. The import
process needs 136.7 %, 163.4 % - 183.2 %, and 345.2 % of the time to copy the contents of
an image using the default, zlib and lzma back ends, respectively. The Image Store
import process even outperforms the compression of images with 88.1 % using the
default back end, is almost on par using the zlib back ends with 105.4 % - 118.2 % and
noticeably slower only using the lzma back end with 222.6 %.

The results for layered image �les are comparable, although there are deviations in
both directions. The import of a layered virtual machine in set A takes on average
259.9 %, 341.0 % - 404.5 %, and 768.8 % compared to the time to copy an image, 133.5 %,
175.1 % - 207.7 %, and 393.8 % compared to the time to copy the contents of an image
and 75.2 %, 98.6 % - 117.0 %, and 221.8 % compared to compressing an image for the
default, zlib and lzma back ends.

Up to now import times of virtual machine images were compared with copy and
compression operations on the same images, strictly separating between regular and
layered images. This enables assessing the di�erent back ends with regards to write
performance and overhead introduced by the Image Store in general. However, it
does not examine the synergy of combining the Image Store with image composition:
image composition allows to reduce the size of images by introducing layers and a
reduced image size lessens the time required to import an image.

Consequently, the most important comparison is between the image copy of a regular
virtual machine and the import process of the corresponding layered virtual machine.
For the average import times shown in Figure 5.35, the relevant parts of the chart are
the topmost bar in the regular images group and the �ve bars at the bottom of the
layered images group. The import process using the default back end on average is
almost on par with copying the corresponding regular image �le with 103.6 % of the
copy time and just moderately slower using the zlib back ends with 135.9 % - 161.2 %.
Only using the lzma back end the import time on average is still signi�cantly higher
compared to copying the corresponding regular image �le with 305.6 %.

For the individual import times, this comparison is depicted in Figure 5.36. It is
immediately visible that the import process for the Image Store using the default and
zlib back ends is on par with copying the image �le for the �rst half of set A30. Using
the default back end the Image Store can even compete with copying images for all
but the last half dozen images. Only when the lzma back end is used importing images
is slower than copying images for all but two images.

5.5.5.2 Export of Virtual Machines

The export times for all 31 regular and layered virtual machine images in set A are
shown in Figure 5.37. The exact numbers can be found in Tables A.9 and A.10. Like
for the import process there is a visible overhead for using the Image Store compared
to copying plain images, but it is smaller especially for the lzma back end that is on
par with the zlib back ends for decompression.
30 This consideration is deliberately ignoring the base image A01 that is naturally one of the biggest

images in set A. Regarding its size it would have to be arranged next to A29.

201



Chapter 5. Virtual Machine Image Storage

Im
p

o
rt

 T
im

e 
(s

)

0

50

100

150

200

250

Image File

A01 A03 A05 A07 A09 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29 A31

Image Copy MIS default MIS zlib1
MIS zlib3 MIS zlib5 MIS lzma1

Figure 5.36 Layered Import Time vs. Regular Copy Time. Comparison of
the time required to copy a regular image and to import the corresponding layered
image into the Image Store using the selected back ends.

The charts clearly show the expected overhead for all Image Store import processes in
comparison with copying an image for regular images and for the last dozen layered
images. Notably, for all but the last half dozen regular and layered images the import
process using the default back end is faster or at least on par with image compression.
This also partially applies to the zlib back ends.

For easier comparison of the values, the average export times for all 31 regular and
layered virtual machine images in set A and their standard deviation are shown in
Figure 5.38.

As expected, exporting regular images from the Image Store is much slower compared
to copying of image �les. The export process needs on average 257.1 %, 331.6 % - 320.9 %,
and 334.2 % of the time to copy an image using the default, zlib and lzma back ends
with the selected levels, respectively. Note that the decompression is faster for the
higher levels (this is the case for all measurements in this section). In comparison with
the copying the contents of image �les, the Image Store performs considerably better.
The export process needs only 110.3 %, 140.9 % - 136.1 %, and 148.1 % of the time to copy
the contents of an image using the default, zlib and lzma back ends, respectively. The
values are slightly worse in comparison with decompressing an image �le. The image
store on average needs 117.9 %, 152.0 % - 147.1 %, and 153.2 % of the time required for
decompression for exporting an image from a Data Store using the default, zlib and
lzma back ends, respectively.

The results for layered image �les are comparable, although there are deviations in
both directions. The export of a layered virtual machine in set A takes on average
230.4 %, 274.4 % - 264.9 %, and 288.4 % compared to the time to copy an image, 118.3 %,
140.9 % - 136.1 %, and 148.1 % compared to the time to copy the contents of an image
and 101.7 %, 121.1 % - 116.9 %, and 127.3 % compared to decompressing an image for the
default, zlib and lzma back ends.

Like for the import process, the comparison between the image copy of a regular
virtual machine and the export process of the corresponding layered virtual machine
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Figure 5.37 Individual Export Times for Set A. Individual export times for
all regular (upper chart) and layered (lower chart) virtual machine images in set A in
comparison with the reference values.
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Figure 5.38 Average Export Times for Set A. Average export time and stan-
dard deviation both for the regular and layered virtual machine images in set A in
comparison with the reference values.
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is the most important comparison. For the average export times shown in Figure 5.38
the relevant parts of the chart are the topmost bar in the regular images group and
the �ve bars at the bottom of the layered images group. The export process using the
default back end on average is faster than copying the corresponding regular image
�le with 91.8 % of the copy time and just moderately slower using the zlib and lzma
back ends with 109.4 % - 105.6 % and 115.0 %, respectively.

For the individual export times, this comparison is depicted in Figure 5.39. It is
immediately visible that the export process for the Image Store using the default and
the compressing back ends is on par with copying the image �le for all but the last
half dozen images in set A31. Contrary to the import process, the lzma back end is not
signi�cantly slower than the other compressing back ends when exporting images.
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Figure 5.39 Layered Export Time vs. Regular Copy Time. Comparison of
the time required to copy a regular image and to export the corresponding layered
image from the Image Store using the selected back ends.

5.5.5.3 Discussion

Certainly, the extraction of metadata and content from virtual machine images during
import takes longer than copying the image �le. This also applies to the recreation of
a virtual machine image from scratch. However, the comparison with plain virtual
machine images is unfair considering the storage e�ciency of both approaches. Com-
pared to optimized, compressed images – the second best approach after the Image
Store with various back ends in terms of storage e�ciency – the import and export
times are on par for a large portion of set A.

If the Image Store is combined with the Image Compositor, the results are way more
in favor of the Image Store. For all but a half dozen of the virtual machines of set
A, importing and exporting a virtual machine is faster or on par with copying the
corresponding virtual machine image. For the export, this applies to all selected back
ends, whereas for the import this applies only to the zlib back ends.

Access e�ciency is more than just importing and exporting images, but also access to
31 Again, the base image A01 is deliberately ignored in this consideration.
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metadata of virtual machines and content of individual �les. In this regard, optimized,
compressed images are out of competition, because both require a virtual machine
image to be fully decompressed �rst. Decompressing a virtual machine in set A takes
on average 47.9 seconds, even if only a small �le should is accessed or the contests of a
directory are listed. Using the Direct Mount feature, the contents of virtual machines
stored in the Image Store are immediately available.

5.5.6 Advanced Features

In this section, two of the advanced features of the Marvin Image Store have been
evaluated: mounting and e�cient updating of virtual machines.

5.5.6.1 Direct Mounts

The performance of the Direct Mount functionality is evaluated by copying the Linux
kernel sources using two di�erent origins: an exported image and an image mounted
using the Direct Mount feature of the Image Store. The Linux kernel source used in
this measurement consists of 37,264 �les with a combined size of roughly 500 MiB.

The Image Store was used with three back ends in this measurement, whereby two of
them are not among the selected ones: the sparse back end and the zlib back end with
compression level 6. The sparse back end can be considered roughly equivalent to the
default back end and the zlib6 back end can be considered as roughly equivalent to
the zlib5 back end. Figure 5.40 shows the amount of time required to copy the kernel
sources from each of the origins.

Copy Time (s)

0 20 40 60 80

Exported
MIS sparse
MIS zlib1
MIS zlib6

Figure 5.40 Time Required to Copy the Linux Sources. The time required
to copy the Linux kernel sources from an exported image and from an image stored
in the Image Store that is made available via the Direct Mount feature.

The time required to copy the entire Linux kernel sources from the stored image is
137.9 % of the time to copy from the exported image using the sparse back end. The
copy time increases to 152,8 % and 155.4 % for zlib1 and zlib6 back ends, respectively.
While this result seems to make this function unusable at �rst sight, one has to consider
that the export process can be skipped using a Direct Mount, saving up to 114 seconds
in case of the regular virtual machine image A30. Thus, a Direct Mount can still be
used for maintenance operations, e.g., the e�cient update process evaluated below.
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5.5.6.2 E�icient Updates

In the following, the update process of a virtual machine is evaluated for three di�erent
approaches. The �rst approach is the obvious one: export the image, update the virtual
machine and reimport it into the MIS. The second approach is update process using the
Layer-based Reimport described in Section 5.4.6.1. The updates are installed into an
update layer that is combined with the exported image using the image composition
technique. The typically smaller update layer is then reimported and the resulting
manifest is merged with the original one. The third approach is a variant of the second
one in which the image is not exported at all, but mounted using the Direct Mount
feature of the Image Store. Contrary to the former two approaches, the updates where
not installed in a virtual machine, but in a chroot jail due to technical limitations of
the implementation.

The virtual machine that is updated is neither contained in set A nor B. It is a De-
bian/GNU Linux 6 virtual machine with an optimized image size of 665.8 MiB. The
update includes 50 packages with a total package size of about 58.1 MiB and an installed
size of 337.3 MiB. Note that during this update more than half of the virtual machine
image is modi�ed. Figure 5.41 shows the update times for all three approaches using
the three back ends.
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Figure 5.41 Updating a Stored Virtual Machine. Updating a virtual machine
stored in the Image Store using three di�erent approaches: 1) export, update and
import. 2) export, update with update layer, import update layer, and merge. 3)
mount (not shown), update with update layer, import update layer, and merge.

Although the use of an update layer increases the time required to install the updates
because of the union mount used by the image composition, the savings during the
import of the update layer compared to the import of the entire updated virtual
machine image make the second approach preferable over the �rst one. Compared to
the �rst approach, the overall time required for the update process is reduced to 95.4 %,
88.4 %, and 82.9 % for the default, zlib1 and zlib5 back ends, respectively. Furthermore,
the second approach is getting better for bigger image sizes and smaller update sizes.
The speci�c case examined here is not very typical with regard to the update size
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in relation the image size. Regular virtual machine updates tend to generate smaller
updates and thus to increase the advantage of the Layer-based Reimport approach.

Despite the obviously much higher time required to install the update and its technical
limitations the third approach using a Direct Mount instead of exporting the is even
faster than the second approach. Compared to the �rst approach, the overall update
time is reduced to 83.6 %, 78.6 %, and 74.1 % for the default, zlib1 and zlib5 back end,
respectively.

5.6 Summary

In this chapter, the Marvin Image Store, a novel repository for storing large numbers
of Linux-based virtual machine images e�ciently, has been presented. It is based on
the idea of separating the data in the image �le (contents of �les) from the metadata
(directory hierarchy, �le names, and attributes) when a virtual machine is copied into
the Image Store (imported) and storing both in an appropriate way. Data and metadata
are stored in a content-addressable storage system with optional compression (Data
Store) and as easy accessible manifests, respectively. , i.e., in a content-addressable
storage using optional compression. Image �les are automatically recreated when a
virtual machine is copied out of the Image Store (exported). This approach does not
only increase the storage e�ciency, but also facilitates novel ways to deal with virtual
machine images by providing version control and a set of operations that work on the
metadata. Additionally, several optimizations of the import and export processes have
been proposed to further increase the access e�ciency of the Image Store.

Several measurements with up to 198 virtual machines have shown that the Image
Store is able to reduce the disk usage down to 4 % of the size of regular virtual machine
images without spending an excessing amount of time for compression of the data.
Even for a single image, the disk usage can be reduced down to 18 % of the image �le’s
size. In combination with the Image Compositor presented in Chapter 4, around 80 %
of the virtual machines32 can be imported into and exported from the virtual machines
in less than or the same amount of time compared to copying the corresponding
regular machine image.

32 Only 31 of the 198 virtual machines used in the measurements are available both as regular and layered
versions. The percentage relates to the 31 virtual machines.

207



This page is intentionally le� blank.



“Security is always going to be a cat and mouse game because there’ll be people
out there that are hunting for the zero day award, you have people that don’t
have configuration management, don’t have vulnerability management, don’t have
patch management.”

Kevin Mitnick (1963–)

6
Virtual Machine Security

6.1 Introduction

As already described in Section 5.1, there is a trend towards increasing numbers of
virtual machines. This increase is driven by various reasons: very competitive prices
for virtual machine usage, either on demand in the Cloud or on a subscription basis at
traditional providers’ computing centers, easy to use virtual machine management
systems that allow the creation of a virtual machine with a few clicks, software provi-
sioning based on virtual appliances that bundle an application with a precon�gured
operating system environment, as well as the increased isolation between processes
when they are executed in separate virtual machines. This increase of the number of
virtual machines, a phenomenon called virtual machine sprawl [128], makes the task
of keeping the software stack up-to-date even more time-consuming.

The propagation of virtual machine based computing technologies also brings along a
new type of users without experience in systems management. Nevertheless, these
users administer virtual machines used in Virtualized Grid and Cloud Computing
environments. An example of this type of users are scientists from the computational
sciences, who move to Cloud Computing from well-administered Grid Computing or
local cluster environments, to get instantaneous access to a huge number of virtual
machines when the local resources are not su�cient.

The combination of a large number of virtual machines and potentially inexperienced
users leads to an increased risk of insu�ciently maintained virtual machines. In
Virtualized Grid Computing, even a single vulnerable virtual machine might endanger
the whole Grid site, because once compromised it can be used as a springboard to
attack other systems. Unless there is a strong isolation between the networks the
virtual machines are connected to, this risk also exists for Cloud Computing. Even
when the isolation between virtual machines is perfect, vulnerable virtual machines
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pose a risk, because an attacker can create high system load and excessive I/O and
thus adversely a�ect other users of the same infrastructure.

Another challenge is created by the ability of users to clone virtual machines to create
new ones, snapshot the current state of virtual machines or even rollback virtual
machines to a previous state. While these features provide great �exibility, they also
pose an enormous security risk – both for users and providers. A virtual machine
rollback, for example, could reveal an already �xed security vulnerability, and cloning
an existing virtual machine that contains an un�xed vulnerability can spread the
vulnerability even further [59]. Especially the latter issue is very serious, because of
the way new virtual machines are typically created using virtual machine management
systems: by cloning a template image instead of creating the new virtual machine
from scratch.

Especially in Virtualized Grid and Cloud Computing environments another key issue
arises: virtual machines are likely dormant for some periods of time, depending on
the usage model (Section 3.3). These virtual machines cannot be easily kept up-to-
date during these phases, because typically this would require the virtual machines
to be started, updated and shut down again, which is not only time- and resource-
consuming, but may also be a tedious process especially if large numbers of virtual
machines have to be maintained.

Generally, computers exposed to the Internet are at constant risk of being attacked.
To protect them against security attacks, all security related incidents should be
detected by monitoring system behavior. To detect security anomalies, Intrusion
Detection Systems (IDS) or Intrusion Prevention Systems (IPS) are typically used;
their combination is known as Security Information and Event Management (SIEM).
However, most SIEM systems only monitor events on the infrastructural layer, need
human assistance in case of error recovery, raise a high number of false alarms, and
do not scale well with an increasing number of events.

Improving the security of virtual machines is an essential part of building secure envi-
ronments for Virtualized Grid and Cloud Computing. Four proposals are introduced
in this chapter that work hand in hand to improve the security of virtual machines in
all important phases of their lifecycle and thus the overall security of Virtualized Grid
and Cloud Computing environments.

The �rst two proposals are targeting the continuous maintenance phase: their goal is
to help keeping dormant virtual machines up-to-date. This is a two-step process: �rst,
outdated software in virtual machines has to be identi�ed, and second, the a�ected
virtual machines have to be updated. The �rst proposal is a solution called Update
Checker that scans virtual machines for outdated software in an e�cient manner,
which is a challenging task especially for dormant virtual machines. The second
proposal is a concept for centrally updating a�ected virtual machines using the image
composition technique presented in Chapter 4. A set of tools is provided to support
the centralized updated process.

Unfortunately, keeping the software installed in a virtual machine up-to-date is not
enough. It is also necessary to check the con�guration of the installed software in
an additional step to detect miscon�gurations or insecure services that endanger the
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security of the virtual machine. One option to do this is to use the Online Penetration
Suite that is the third proposal in this chapter. It analyzes the security of virtual
machines using multiple vulnerability scanners and is able to detect the issues just
mentioned. The �ndings of the scanners are aggregated in a combined security report.

Although continuous maintenance phase can account for a very large part of a virtual
machines lifetime in the on-demand execution model, the need for virtual machine
security is by no means limited to this phase, but also prevalent in other phases of the
lifecycle of virtual machines. The Online Penetration Suite also targets the deployment
phase in addition to the continuous maintenance phase. The last proposal in this
chapter is the concept of a security monitoring system for virtual machines that also
covers the execution phase. The system is able to detect, analyze, and handle security
anomalies including both known and yet unknown security vulnerabilities.

The phases in the lifecycle of a virtual machine that are related to the security proposals
in this chapter are shown in Figure 6.1.

Undeployment

Continuous
Maintenance

Deployment

Execution

Creation

Deletion

Storage

Figure 6.1 Concerned Virtual Machine Lifecycle Phases. The primary fo-
cus of virtual machine security regarding the lifecycle of a virtual machine is the
continuous maintenance phase. The deployment phase is a�ected as well.

Parts of this chapter have been published in [141, 143, 144, 15].
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6.2 Related Work

6.2.1 Update Checker

The Cloud Computing risk report written by ENISA [41] mentions the failure of
customer hardening procedures as one of the research problems that needs to be solved.
Customers failing to secure the computing environment may pose a vulnerability to
the Cloud infrastructure.

Automation of system administration, including system administration and updat-
ing systems is one of the relevant research topics mentioned in the Expert Group
Report [87] created by the European Commission.

An image management system, called Mirage, is presented by Wei et al. [167]. Mirage
addresses security concerns of a virtual machine image publisher, customer and
administrator. To reduce the publisher’s risk, an access control framework regulates
the sharing of virtual machines images. Image �lters remove unwanted information,
e.g., logs, sensitive information, etc., from images prior to publishing. The authors also
present a mechanism to update dormant images and apply security updates. While
Mirage o�ers a complete solution for virtual disk image maintenance, it lacks the
features presented in this paper. Mirage cannot show whether the packages in a
system are outdated and work with multiple package management systems.

Based on Mirage, Reimer et al. [128] present the Mirage image format (MIF), a new
storage format for virtual machine disk images. It solves the problem of virtual machine
image sprawl, i.e., the complexity of maintaining disk image content that changes
continuously due to cloning or snapshotting. MIF stores the disk image content in
a central repository and supports searching, installing and updating applications in
all images. By using a special storage device, disk images share common blocks and
thus take up only a fraction of the actual disk space. Using MIF it is also possible to
update packages on a system although the update procedure is quite complex. At �rst,
it is quite unclear how the system determines whether there is a need for an update.
Furthermore, the system needs a modi�ed version of dpkg, thus, it is not usable with
o�-the-shelf installations or other package management solutions. The authors state
that “the optimized dpkg does not support some of dpkg’s features”.

A system for unscheduled system updates, called AutoPod, was presented by Potter
et al. [119]. AutoPod is based on system call interposition and the chroot utility
and is able to create �le system namespaces, called pods. Every process in a pod can
be o�ine-migrated to another physical machine by using a checkpoint mechanism.
Unfortunately, AutoPod is bound to Debian GNU/Linux and cannot be used with other
package managers. Furthermore, it also updates a system automatically, which could
lead to problems in case of an incomplete update. In contrast to the presented solution,
AutoPod is based on chroot, which is known for having several major security �aws
in the past.

Sapuntzakis et al. [131] developed a utility, called the Collective, which assigns virtual
appliances to hardware dynamically and automatically. By keeping software up-to-
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date, their approach prevents security break-ins due to �xed vulnerabilities. While
their approach allow updating whole virtual machine appliances, it does not allow
the update of certain packages within the appliance. Furthermore, it is not possible to
determine whether certain packages are outdated.

Canonical, the company behind Ubuntu Linux, o�ers a commercial product called
Landscape [24]. Landscape can be used to manage Ubuntu (virtual) machines, in-
cluding package management and monitoring. While Landscape is able to detect and
update outdated applications within virtual machines, it can only handle the Debian
package format and is not able to update dormant machines. However, Landscape can
update outdated machines once they are live the next time.

6.2.2 Centralized Update Process

There are several papers addressing storage virtualization to handle the problem of
storing a large number of virtual machine images e�ciently. Typically, the use of
snapshots (persistent views of a virtual machine image at speci�c points in time) as
the base for the creation of new virtual machines is proposed. VirtuaLinux [7] uses the
Enterprise Volume Management System (EVMS) [42] as its storage. If a snapshot used
as base of some virtual machine images needs to be updated, all virtual machine images
based on it need to be recreated, making this approach unusable for the centralized
update process.

Parallax [166, 99] uses a custom mechanism for storing virtual machine images and
creating snapshots. Template images are used to build new virtual machine images
that share common blocks. Updating the templates is not intended by the authors,
although the block-oriented nature of their storage solution probably leads to the
same problems as with VirtuaLinux.

To reach the goal of fast migration of virtual machines, Sapuntzakis et al. [132] propose
a similar concept. Virtual machine images are built from a hierarchy of disks that
are combined using block-oriented COW techniques at runtime. Updating individual
disks from the hierarchy is intended, but requires recreation of all disks based thereon.
Again, this technique is not usable for the centralized update process.

A completely di�erent approach is used in Ventana [116]. Instead of virtual machine
images as a virtual counterpart to physical discs, views of a virtual �le system are used.
A view is a combination of one or more branches that are trees of �les and directories.
Applying security updates to the virtual machines is not addressed in the paper.

XenoServer [80] uses NFS to access the root �le system in the virtual machine, which is
provided by another virtual machine called Stacking COW server running at the same
host. The �le system consists of a local template and one or more virtual machine
speci�c layers called overlays that are stored remotely and accessed via the Andrew
File System (AFS). Again, updating virtual machines is not addressed at all.

A proposal of virtual machines for distributed workstations that can be used as Condor
nodes or virtual cluster has been made by Wolinski et al. [170]. Besides features like
automatic network con�guration, IP over P2P, etc. the paper also introduces a layered
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�le system based on UnionFS. While the authors mention the necessity of security
updates, they do not address the topic except stating that a layer can be exchanged
without data-loss in upper layers. However, the authors do not mention the potential
problems resulting from the exchange of a layer that are described in Section 6.3.2.1.

6.2.3 Online Penetration Suite

SAVEly, a tool to check Amazon Machine Images (AMIs) for vulnerabilities was pre-
sented by Bleikertz et al. [19]. The authors construct an attack graph based on the
security polices used in Amazon’s EC2. These policies are used to group machines
while restricting the communication between them. Based on the graph, the au-
thors use the OpenVAS scanner to check the AMI for remote vulnerabilities. Their
approach is tightly coupled to Amazon’s EC2 and cannot be used with other IaaS
implementations or in Virtualized Grid environments.

Yoon and Sim [177] present an automated network vulnerability assessment framework.
It uses a combination of a scan manager, message relay server and scanners to check
the hosts in a network for vulnerabilities. Their approach uses similar techniques as
the ones presented, but it lacks the ability to work in a Cloud Computing environment.
It is neither able to control virtual machines, nor to instrument an IaaS solution like
the XGE.

6.2.4 Security Monitoring

Teixera et al. [153] present Holmes, an implementation of a monitoring solution for
integrating a CEP engine with machine learning. The CEP engine generates alerts
using hand-crafted continuous queries to detect known abnormalities and deviations
from expected behavior. Furthermore, it normalizes the asynchronous events for
analysis with the machine learning algorithm, i.e., it joins di�erent streams to be
analyzed together and generates time series with equidistant intervals. A machine
learning algorithm detects unknown anomalies in time series, without manual rule
creation and anticipation of problem conditions and thresholds.

Holmes utilizes infrastructure level sensors and can thus only detect hard- and software
issues as well as attacks such as Distributed Denial-of-Service (DDoS) attacks. The
proposed architecture is not hierarchical, i.e., it consists of a single message bus, where
all sensors publish their information to and the central CEP engine and machine
learning modules subscribe to. This architecture does not scale well, neither for an
increasing number of events nor for an increasing number of machines to monitor.
Historical data is not used for anomaly detection, which limits the potential to detect
anomalies as well as increases the risk of false positives.

Ficco [45] presents an approach to detect and respond to attacks by using event
correlation. The approach is described using a DDoS attack as an example. Di�erent
information sources on several architectural levels, such as network, operating system
and application, are deployed in strategic points of the system. In the example, these
sources are the number of connections from a single IP, the length of the backlog
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queue of TCP and the number of application requests. Agents deployed together with
the sensors analyze, �lter, normalize and forward messages to the so-called Decision
Engine, consisting of a correlator, a diagnoser and a reaction module. Specialized
modules, called remediators, are used to remediate a speci�c attack or intrusion. An
ontology is used to map all symptoms and possible e�ects of an attack. This ontology
is used for the correlation of events and the decision about the right remediation
strategy.

Although the proposed solution uses sensors on several architectural levels, it is tar-
geted mainly at detecting di�erent types of DoS attacks. The detection is based on
the information about known attacks stored in the ontology. Detection of unknown
anomalies is not possible with this solution. Since a central decision engine is used,
scalability is also a problem of the architecture for growing network size or an increas-
ing number of events. Finally, historical data is not taken into account in the detection
process, missing another opportunity to eliminate false positives.

Gorton [61] argues that the usage of a diversity of sensors on several architectural
levels raises the chance to detect an attack, because the sensors may reinforce each
other. However, this requires managing and correlating the higher number of events
and alerts. Di�erent solutions have been developed in the area of intrusion correlation,
targeted to the reduction of alerts a security o�cer must address. The potential to
detect anomalies using these di�erent information sources, however, is not the focus
of these solutions.

6.3 Design

In this section, the design of the four proposals that aim to increase virtual machine
security is presented.

6.3.1 Update Checker

The �rst step towards increased virtual machine security is the identi�cation of
outdated or insecure software installed in virtual machines. This is a crucial step in
the process of keeping virtual machines up-to-date. While scanning for availability
of software updates is easy to perform for running virtual machines, because of the
commonly used package management systems on Linux platforms, it is hard for
dormant virtual machines. A trivial approach would be to regularly start each virtual
machine, scan for availability of software updates, install the updates, if available, and
shut the virtual machine down again. While this is technically feasible for individual
virtual machines thanks to automation, it does not scale to the numbers of virtual
machines in existence nowadays and the required scanning intervals, both in terms of
time and required resources.

The Update Checker, the �rst proposal in this chapter, is able to e�ciently scan a
potentially huge number of Linux-based virtual machines for availability of software
updates. To be able to scan running and dormant virtual machines likewise, the Update
Checker utilizes a central database as its main source of information. The database
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stores information about the installed packages as well as con�gured repositories for
each of the registered virtual machines. It enables the Update Checker to execute the
scan locally without booting any of the virtual machines at all. With this approach, the
Update Checker is currently able to scan both running an dormant virtual machines
that use either the apt/dpkg or yum/rpm as package management system and thus
all major Linux distributions1. As the result of its scan, the update checker returns
either the number of available updates or details about each of the available updates
for each registered machine.

The key idea is that the scanning process is executed continuously without requiring
any interaction of the user. The results of the scanning process are stored in the
database and made available via an API, allowing virtual machine management systems
to integrate the results into their interface. It is then up to the user to take the
appropriate actions.

This section starts with an introduction of package management system basics and
versioning schemes that are important for the functioning of the Update Checker.
Afterwards, the architecture of the Update Checker is presented. The section con-
cludes with a usage scenario for the Update Checker in a Virtualized Grid Computing
environment.

6.3.1.1 Package Management Systems

Package management systems are the foundation of most Linux systems. Their goal
is to blur the line between applications and operating system features, by integrating
applications into the tools used to maintain the operating system itself [102]. This does
not only cover the installation of applications, but also their removal, con�guration,
and updating. Especially the latter is of importance for the security of computer
systems.

They supersede the concept of speci�c setup tools for installing and removing individ-
ual applications as well as speci�c update daemons for them. This less user-friendly
concept is still used in all but the newest Windows and OS X systems, in that central-
ized software stores with automatic update facilities have been introduced. Package
management systems also solve the dependency problems that sometimes occur with
badly written setup tools that do not install all required libraries.

There are few basic concepts of package management systems that are important for
the design and implementation of the Update checker:

Package — A container for anything from an application or library through to
documentation, con�guration �les, or even source code. It consists not only
of its content, but also of some amount of metadata describing the content.
This metadata is the key enabler for package management. The metadata is
comprised of a unique name for the package, version information, dependencies
and con�icting packages, and more.

1 Support for other package management systems is possible by implementing a small compatibility
layer that enables reading of the respective package databases and repositories.
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Package Database — A database used by the package management system to keep
track of installed packages and their metadata. This overview of the complete
system allows the package management system to easily resolve dependencies,
prevent con�icts, and determine outdated software.

Repository — A collection of packages provided for a Linux distribution. It is the
primary source of software for the package management system to download
new and updated software from. Typically, repositories are hosted on servers
reachable via the Internet , but a repository can also be stored on a removable
medium like a DVD.

Repository Database — The consolidated metadata of all packages available at a
repository. It works like an index in a database, allowing the package manage-
ment system to e�ciently search the repository for speci�c software without
downloading all the individual packages.

Repository Con�guration — A set of con�guration �les on a system that selects
the repositories used by the package management system for software to install.
It typically contains information about the location of the used repositories in
terms of URLs or other descriptions.

When searching for new software or updates for software already installed, the
package management system �rst downloads the repository databases of all enabled
repositories. Depending on the task, it either searches for a package name, does a
full-text search in the package descriptions, or retrieves the version information of
speci�c packages. It then checks if all dependencies are satis�ed and no con�icts are
introduced when a new package or update is installed. If necessary, it extends the set
of packages to be installed with other required packages.

Version Identifiers

Version identi�ers are an important factor for any package management system. They
are the foundation of automatic updates, but also play an important role in the de�ni-
tion of dependencies or con�icts. To provide maximum �exibility for the developers
of software, there is no strict version number scheme enforced by the package man-
agement systems. This leads to a myriad of di�erent schemes being used at the same
time (an few examples can be found below).

The version identi�er commonly used by package management systems is a combina-
tion of the actual version number and two other components: the epoch and a build
identi�er often called release. This extension ensures that versions can be reliably
compared even when an unusual version number scheme is used. The following
version identi�er format is used in di�erent package management systems [12, 33].
Table 6.1 contains a description of the �elds that constitute the version identi�er. The
epoch is the most signi�cant component in the version identi�er, the release the least
signi�cant.
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[epoch:]version[-release]

Version Identifier Scheme Used by Package Management Systems.

Table 6.1 Fields Constituting the Version Identifier. These fields are used
compose the version identifier commonly used by package management systems.

Field Description

epoch The epoch field is an unsigned integer value that is used in cases where
the actual version number scheme cannot be parsed by the package man-
agement system or to cope with changes in the scheme. By increasing
the epoch, a newer version can be recognized, even if the actual version
number is lower than that of the previous version.
Only a minority of packages use the epoch field, and some package man-
agement systems even discourage its use entirely [12]. If the epoch is 0, it
is usually omi�ed.

version The version field contains the version number of the upstream package, i.e.,
the source package released by the so�ware author. As already said, there
are almost no restrictions concerning the format of the version number.
Note that contrary to what one might expect, the version number might
contain colons, if an epoch is present, and dashes, if a release is present. Oth-
erwise, these characters must not be used in the version number, because
it would thwart spli�ing the version identifier into its three components.

release The release field is used when a package is rebuilt, i.e., a�er a critical patch
has been applied. While the value of the version field does not change in
this case, the release field is incremented to reliably recognize the updated
version. Like the epoch field, this field can be empty and thus omi�ed.
This field was supposed to contain an unsigned integer like the epoch field,
but there are almost no restrictions to the contents of the release field and
arbitrary values are used in practice.
(The Debian Package Manager calls this field revision. The term release is
used throughout this thesis, independently of the package management
system.)

A list of exemplary packages in Ubuntu 14.04 and their version identi�ers is shown
below to illustrate the variability in version number schemes. The components have
been highlighted to simplify their mapping.

apparmor 2.8.95~2430-0ubuntu5.3
autotools-dev 20130810.1
bochs 2.4.6-6
bison 2:3.0.2.dfsg-2
flashplugin-installer 11.2.202.521ubuntu0.14.04.1
python3 3.4.0-0ubuntu2
gcc-4.8 4.8.4-2ubuntu1~14.04
fonts-opensymbol 2:102.6+LibO5.0.1~rc2-0ubuntu1~trusty1

Exemplary Version Numbers for Various Packages in Ubuntu 14.04.
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6.3.1.2 Architecture

The primary goal of the Update Checker is detecting obsolete software in (dormant)
virtual machines, thus the chapter focuses on virtual machines. Nevertheless, the
Update Checker can be used for physical machines as well.

The concept of the Update Checker is to build a central database that contains all the
information required for the task of checking for updates. This includes the list of
installed packages including the corresponding version identi�ers as well as the list
of repositories that are enabled for each virtual machine. This information has to be
imported into the central database when the virtual machine is �rst registered, and
updated after each change of the virtual machine, i.e., after new software has been
installed or software in the virtual machine has been updated.

Since the Update Checker is not targeted at a single Linux distribution (compared to,
e.g., Landscape that supports only Ubuntu [24]), at least the two prevalent package
management systems are supported: apt/dpkg, used for example by Debian and
Ubuntu, as well as yum/rpm, used for example by Red Hat and Fedora. Both systems
use a speci�c package database format as well as a speci�c repository format. While
apt/dpkg uses the same plain text �le format both for the package database and for
the repository database, yum/rpm uses a Berkeley database for the package database
and an XML �le for the repository database. Nevertheless, this has no in�uence on the
structure of the database used to store the required information, since both systems
have the concept of distinct package names and a consistent version identi�er scheme
in common.

The design of the Update Checker is shown in Figure 6.2. There are speci�c importers
for the package databases and for the repository databases of the di�erent package
management systems. This makes the Update Checker easily adaptable to other
package management systems. Information about the installed packages of a virtual
machine is stored in the Package DB. Metadata about the virtual machine, i.e., the time
stamp of the import, the enabled repositories used, etc., is stored in the Metadata DB.
Information about the packages available in the di�erent repositories is stored in the
Repository Cache. When invoked, the Update Checker takes the information from the
databases and the Repository Cache and matches installed and available packages to
detect obsolete software. The �ndings are stored in the Result Cache.

When a query for the state of one or more virtual machines is issued, the Update
Checker �rst examines the Result Cache to see if the result of that query is already
available and returns the cached result unless it is obsolete. Cached results are consid-
ered obsolete after a con�gurable amount of time, depending on factors such as the
frequency of updates or the need for security.

If current results are not available in the Result Cache, the Update Checker determines
if the package lists of all repositories enabled in the virtual machine are available in
the Repository Cache in a current version, i.e., the con�gured validity period for the
package lists has not yet expired. Missing or obsolete package lists are downloaded
from the corresponding repository, parsed and stored in the Repository Cache for
future use. Finally, the actual scan of the virtual machine is started, comparing
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Figure 6.2 Architecture of the Update Checker. The central service of the
Update Checker consists package management systems specific importers, the central
package and metadata databases, caches for repository contents and results, and the
actual scan engine. Furthermore, a Remote Importer exists that consists of package
management system specific Data Collectors as well as a client that uploads the
collected data to the central service.

the version of each installed package with the versions available in the repositories.
Information about outdated packages is then stored in the Result Cache, so that
subsequent queries regarding the same virtual machine can be answered faster.

By using the Repository Cache instead of the actual repositories, there is the risk that
the Update Checker fails to identify an outdated package. Nevertheless, the Repository
Cache is very useful for checking many virtual machines, and by using a small validity
period the risk can be minimized.

To help the user to judge whether the identi�ed outdated software poses a risk to
the virtual machine, the Update Checker infers information about the priority of an
update. Unfortunately, there is no common way to do this for multiple distributions.
As a �rst approach, the source repository of the updated packages is evaluated, since
distributions like Debian or Ubuntu use special repositories for security updates. The
source of an update can therefore be used as a hint of its priority.

The Update Checker supports queries for the number of available updates for a single
or multiple virtual machines as well as queries for details about the outdated packages
and available updates for a single virtual machine. The �rst kind of queries can be used
to get a good estimation of the state of the virtual machine: zero available updates
means that the virtual machine is up-to-date, whereas one or more available updates
means that the virtual machine contains outdated software. If priority information is
available, individual numbers for each priority as well as the sum of the numbers are
returned. This can either be used in situations where an overview over a number of
virtual machines is required, e.g., a list of virtual machines in a management tool like
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the ICS, or as a status check for a speci�c virtual machine, e.g., before it is started by
the XGE.

The availability of updates itself is su�cient to reason about the threat resulting from
the outdated packages, even when priority information is available. The second kind
of queries returns a list of outdated packages that can be used to evaluate the status of
a virtual machine in detail. The owner of the virtual machine or an administrator can
do a threat analysis based on the outdated packages and decide whether immediate
action is required or not.

Two di�erent interfaces to the Update Checker are provided: a command line interface
(CLI) and an XML-RPC [169] API. The former can be used when an administrator
manually wants to execute an update check or register a virtual machine. The latter is
designed to facilitate easy access to the status information for other tools (see also the
use case below).

The Update Checker can be con�gured to execute scans at regular intervals, e.g., daily
or weekly. This speeds up queries, because the queried information is already available
in the Result Cache. These automatic checks also include a noti�cation feature. Virtual
machine owners can be informed about obsolete software in their virtual machines via
email. Additionally, administrators can be informed about all virtual machines using
obsolete software to get an overview of the security all virtual machines running on
their infrastructure.

To ease the registration of virtual machines, the Remote Importer is provided. It
uses package management systems speci�c Data Collectors to gather the information
required for the Update Checker, sends it to the machine the Update Checker is running
on and triggers the registration process. It might seem cumbersome to manually re-
register virtual machines after every change, but with the Remote Importer it is
merely a single command. Furthermore, it can be easily automated when software for
management and maintenance of virtual machines is used.

6.3.1.3 Virtualized Grid Computing Use Case

A potential use case of the Update Checker is shown in Figure 6.3. This is a setup used
in Virtualized Grid Computing environments. The ICS is used to create and maintain
virtual machines, and to prepare them for use in the Grid. The XGE is a Scheduler
for Virtualized Grid Computing that schedules jobs for execution in virtual machines.
When a job is scheduled or about to be executed – depending on the need of security –
the XGE retrieves information about the update status of the virtual machine selected
for the execution of the job. Depending on the status, the XGE can reject the job or
prevent the virtual machine from being started, respectively.

6.3.2 Centralized Update Process

The second step towards increased virtual machine security is to install available
software updates to all virtual machines, after the Update Checker presented above
has identi�ed them. Again, the trivial approach would require starting each virtual
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Figure 6.3 Virtualized Grid Computing Use Case. This figure shows the
usage of the Update Checker in a Virtualized Grid Computing Environment. The
XGE uses the Update Checker to determine if a virtual machine is up-to-date before
it is started.

machine, installing the software updates, and shutting the virtual machine down again.
Although scanning for updates can be combined with installing available updates to
reduce the number of virtual machine start-stop cycles required for maintenance, but
the fundamental scalability problem of this approach cannot be solved in this way.

The second proposal presented in this chapter is a concept that solves the scalability
problem of update installation in a large number of virtual machines by deploying the
Virtual Machine Image Composition Technique presented in Chapter 4. Empowering
administrators to �x vulnerabilities in a large number of virtual machines by solely
installing updates in a small number of shared layers – sometimes even a single shared
layer – is the fundamental idea of this approach. When used in this way, shared layers
o�er not only a method to reduce deployment times, but also a way to centrally update
a large number of virtual machines. Any layered virtual machine that is built on one
of those centrally updated shared layers will be protected from the corresponding
vulnerabilities as soon as it is rebooted and its composite disk image is rebuilt using
the updated version of the shared layer.

The concept is accompanied by a set of tools that support the centralized update process
by taking care of the remaining tasks in the centralized update process: ensuring that
the installed updates are e�ective in the layered virtual machine and providing an
updated package database that re�ects the installation of the updates to the guest
operating system inside the virtual machine. Both steps are required because of the
semantics of the underlying composition technique, where changes in higher layers
take precedence over changes in lower layers (see Section 4.3.2.2). Additionally, a tool
is provided that supports e�cient distribution of updated base layers.

6.3.2.1 Updating So�ware

Virtual machine composition allows e�cient updating of virtual machines, because
the update only needs to be applied to the shared base layer. As a consequence, all
layered virtual machines built upon this base layer are automatically updated. This
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approach works, because all changes in the base layer are visible in the composite
disk image, unless they are hidden by corresponding �les in the user layer.

A drawback of this approach is that it leads to an inconsistent package database in the
user layer and thus in the resulting composite disk image if the package database has
ever been modi�ed in the composite disk image. Unfortunately, such modi�cations
of the package database are the rule, because the base layer only contains a set of
commonly required packages and thus the users of layered virtual machines typically
install additional software for their speci�c needs using the package management
system2.

Figure 6.4 illustrates this problem. When the user installs software in his or her
layer, the union mount used for virtual machine composition copies the package
database from the base layer into the user layer before any changes are made to
it (Figure 6.4b). Thus, any changes in the package database of the base layer, e.g.,
updating a package, are not visible in the composite disk image anymore: the package
database is inconsistent (Figure 6.4c).

A: 1.0

a) Initial State

A: 1.0
B: 2.0

A: 1.0

b) A�er Installing
Package B

A: 1.0
B: 2.0

A: 1.1

c) A�er Updating
Package A

A: 1.1
B: 2.0

A: 1.1

d) Consistent State

Figure 6.4 Package Databases in a Dual-layered Virtual Machine. For
each layer, the contents of a hypothetical package database are shown. Note that in
a composite disk image only the upper package database is visible. A and B depict
packages with their corresponding version number. The databases are shown in
di�erent states: a) a�er the creation of the base layer (consistent), b) a�er installing
package B in the user layer (consistent), c) a�er package A was updated in the base
layer (inconsistent), and d) a�er package A was updated in the base layer (consistent).

A more serious problem can arise, because the package management system is not
aware of the software installed in the user layer while the updates are installed in the
base layer. In the worst case, the updated base layer is incompatible to the user layer.
There are two kinds of incompatibilities that can occur: masking incompatibilities and
relation incompatibilities. Although very rare if the centralized update process is used
deliberately, the possibility of such incompatibilities needs to be kept in mind.

Masking incompatibilities can occur in two forms. First, a package updated or added
in the base layer is hidden by another version of the package installed in the user
layer or whiteout �les that have been created by deleting the package in the user layer.
Second, a package removed in the base layer can still be available if it is also installed
in the user layer. In both cases, the change in the base layer is not e�ective in the
composite disk image.
2 Installing a new package is not the only operation that leads to inconsistencies in the package database.

The other operations are updating or removing an installed package.
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Relation incompatibilities can also occur in two forms. First, the update in the base
layer can breaks dependencies of packages installed in the user layer either by remov-
ing a package or updating a package to an incompatible version3. Second, the update
in the base layer can constitute con�icts by adding a package that is in con�ict with a
package installed in the user layer.

In the following sections, two tools are described that deal with those problem. The
�rst tool merges the package databases in the updated base and the user layer and
creates a consistent version of the package database (Figure 6.4d). Additionally, this
tool detects masking incompatibilities. The second tool is used to detect relation
incompatibilities.

6.3.2.2 Merging the Package Database

Merging the package databases in the updated base and the user layer is a problem
related to the three-way merge that is an important foundation of revision control
systems. The general three-way merge for �les is outlined in Figure 6.5a: Two �les A
and B with a common ancestor C should be merged to yield the resulting �le D that
contains the changes from both A and B relative to C. The three-way merge algorithm
is implemented in the diff3 [78] utility ubiquitously available on Unix systems.

A

BC

D

a) Generic Variant

A: 1.0

A: 1.0
B: 2.0

A: 1.1

A: 1.1
B: 2.0A

BC

D

b) Package Database Variant

Figure 6.5 Three-way Merge. This figure shows the concept of a three-way
merge both for regular text files – the original domain of the algorithm – and for
package databases.

Figure 6.5b shows the application of the three-way merge to the package databases
shown in Figure 6.4. Unfortunately, the three-way merge algorithm cannot be bor-
rowed in its original form, because the union mount semantics. Since �les in the user
layer hide �les in the base layer, entries in the user layer’s version of the package
database have to hide corresponding entries in the base layer’s version of the package
database. Furthermore, the merge algorithm cannot blindly merge entries, but has to
observe the state of the package4.

The merge algorithm works by determining all packages that are updated, added or
removed in the updated base layer relative to the original base layer by comparing
corresponding entries in the two package databases. Then, it copies all entries that fall
into none of the three categories from the user layer’s package database to the resulting
package database. For each of the entries in the three categories, the algorithm does a
3 It is possible to de�ne dependencies with version restrictions.
4 There are around half a dozen states besides installed in Debian’s dpkg, e.g., unpacked and con�g-�les.
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series of checks to determine which entry has to be copied to the resulting package
database: the entry from the user layer’s or the updated base layer’s package database.
An additional function of the checks is the detection of masking incompatibilities. A
detailed description of the algorithm can be found in the implementation section.

6.3.2.3 Detecting Relation Incompatibilities

After the package databases of the old base, base, and user layers have been merged
successfully, the relation incompatibility detection algorithm can be applied to the
merged packaged database. The algorithm iterates over every package in the package
database and checks whether its dependencies are satis�ed, i.e., all packages it depends
on are installed, but no con�icting packages are installed. An improved version of this
algorithm is presented in the implementation.

6.3.2.4 E�icient Distribution of Updated Base Layers

A problem related to updating a shared base layer is the e�cient distribution of the
updated base layer to the execution hosts that have copies of the base layer’s older
version in their image cache. Obviously, the updated base layer could just be copied
to the execution host again, but for small updates this is not e�cient. If the base
layer is stored in the Image Store, the process to update exported image �les (see
Section 5.4.6.2) can be used.

Another approach is to borrow the concept of an update layer that is used to improve
the MIS reimport times after an update (see Section 5.4.6.1). The update is installed in
the update layer that is then copied to the execution hosts. There, the update layer is
applied onto the older version of the base layer. This approach is depicted in Figure 6.6.
Applying in this case means the following: First, �nd all whiteout �les in the update
layer and delete the corresponding �les or directories in the base layer. Second, �nd all
opaque directories5 in the update layer, recursively delete the corresponding directories
in the base layer, and create empty directories as replacement. Finally, copy all �les
contained in the update layer to the base layer, whereby existing �les in the base layer
are replaced with the �les from the update layer.

6.3.2.5 Limitations of the Approach

The centralized update process can solve the scalability problem, but introduces new
compatibility problems. In case of vital security updates, however, the bene�ts of
installing these updates may outweigh the risk of creating incompatibilities with
individual user layers. An example of such a vital update is the �x of the famous
OpenSSH Bug in Debian [32] that reduces the possible number of generated SSH
keys to 65535. This bug enables an attacker to gain root access to an a�ected (virtual)
machine typically in less than 20 minutes using precalculated keys [165]. By utilizing
the cumulative computing power of virtual machines available in the Cloud or at a
5 The meaning of whiteout �les and opaque directories is described in Section 5.3.4.1.
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Figure 6.6 E�icient Distribution of Updated Base Layers. The figure
shows the usage of an update layer to e�iciently distribute update: 1) the base
layer is updated using an update layer, 2) the update layer is copied to one or more
execution hosts, 3) the update layer is applied to the base layer in the image cache of
the execution host, and 4) any virtual machine started a�erwards uses the updated
base layer. Applying the update layer (Step 3) typically overwrites the old version,
because it is applied in place.

Grid site, the time and cost of using this exploit at a larger scale may be signi�cantly
reduced. This bug posed a threat to the entire Internet by enabling attackers to leverage
“free” resources in Virtualized Grid and Cloud Computing environments to attack
external sites.

It is important to use the centralized update process only for Linux distributions using
a non-rolling release model, because updates in a rolling release model can introduce
new functionality and thus have a higher risk of creating (potentially undetected)
relation incompatibilities. Fortunately, most Linux distributions use a non-rolling
release model, especially distributions used for servers and thus in Virtualized Grid
and Cloud Computing environments.

Another problem besides incompatibilities introduced by the update are updates that
require changes to con�guration �les. These �les have a higher probability of being
changed in the user layer compared to binary �les (packages), because changes to
con�guration �les might be necessary to adapt a virtual machine to the needs of its
owner. As of writing, no automatic solution for this problem is provided. It is partly
solvable by executing the script included in the update that implements the change in
the con�guration �le when a virtual machine is started with the updated base layer
for the �rst time. But this only works if the change can be cleanly applied, because it
is not possible to ask the user what to do at the time of executing the script.
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6.3.3 Online Penetration Suite

The last two proposals facilitate regular checks for the availability of software updates
and timely installation of identi�ed software updates. However, these proposals are not
su�cient to secure virtual infrastructures. Even if the operating system and software
installed in all virtual machines are kept up-to-date, some potential vulnerabilities
remain:

• Miscon�guration of �rewalls

• Presence of insecure or unnecessary services

• Miscon�guration of services

• Known vulnerabilities in services with no available updates

• Improperly secured shares

Virtual machines used in Cloud Computing environments are subject to external
attacks, either attacks targeted directly at a speci�c virtual machine or attacks by
worms or scripts that randomly select their targets. To further increase virtual machine
security, virtual machines have to be analyzed continuously. If vulnerabilities are
found, proactive countermeasures need to be taken if possible, but at least the owners
of the virtual machines need to be noti�ed, so they can take appropriate actions.

A system called Online Penetration Suite (OPS), the third proposal in this chapter,
performs online-checking of virtual machines for the kind of vulnerabilities described
above. The OPS is a generic vulnerability-scanning framework for virtual machines
that utilizes one or more vulnerability scanners as scan engines. Since the vulnerability
databases of di�erent scanners likely deviate regarding contained vulnerabilities, a
combination of multiple scanners presumably leads to an increased vulnerability
detection rate. The OPS generates a combined report that does not only contain the
reports of all deployed scan engines, but also a summary of all �ndings, providing
a quick overview of the vulnerabilities of a virtual machine. To facilitate further
processing of the results, the reports are provided in a machine-readable format if
required. Dormant virtual machines are automatically started before a scan and shut
down afterwards by the framework using a hypervisor-independent library. This
allows automatic testing of virtual machines to detect known security vulnerabilities.
A use case for automatic scanning of virtual machines is presented in Section 6.3.3.2.

Scans can be done in two di�erent phases of a virtual machine’s lifecycle: in the storage
phase and in the deployment phase. In the storage phase, the scans can be done either
periodically or during periods with low load as part of the continuous maintenance.
An alternative is to execute the scan during the deployment phase immediately before
a virtual machine goes live, at the cost of prolonging the deployment time. A trade-
o� between fast deployment and increased security – because of potentially newer
vulnerability databases used for the scan process – is necessary, to decide which
approach is better suited for an individual use case. Generally, the former approach is
better suited for Cloud environments, where the user can start his virtual machines
interactively and minimal deployment times are required to provide instant scalability
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for applications. In Virtualized Grid Computing, on the other hand, the latter approach
can be used, because of the characteristic non-interactive batch processing model.
Additionally, the batch scheduling system is able to forecast the deployment time of a
virtual machine and can thus schedule its scan with the OPS shortly before deployment
time, combining the advantages of both approaches.

6.3.3.1 Architecture

The OPS is divided into two parts: the front end that controls the scan process
and generates the reports and the back end that that orchestrates both the virtual
machines to scan as well as the vulnerability scanners. The architecture of the OPS is
shown in Figure 6.7 with two exemplary adapters for OpenVAS [112] and Nessus [154]
vulnerability scanners.

Online Penetration Suite

Front End Back End

Adapters

Nessus

OpenVAS

VM Controller LibVirt

OpenVAS CLI

Nessus API
XML RPC

OPS Logic

Report Generator

Summary

Combined
Report

Scan Request

Tool
Invocation

Figure 6.7 Architecture of the Online Penetration Suite. The OPS is
divided into a generic front end and a back end with adapters for di�erent vulnerability
scanners and utility libraries. The figure depicts the control flow within the OPS and
the reports in the OpenVAS (green), Nessus (orange), and OPS (blue) formats.

The OPS Logic module controls the scan processes. It con�gures the security scanners
selected by the user, boots the virtual machines to scan (if required) and starts the actual
scan processes. Since the vulnerability scanners are third-party products with distinct
characteristics and modes of operation, they are abstracted by adapters that hide
the di�erences and provide a uni�ed interface to start and monitor the vulnerability
scanners. They enable the OPS not only to start the actual scans, but also to watch
the scanners during the execution to detect any failures and react accordingly.

To scan virtual machines for vulnerabilities, the OPS needs two input parameters:
the IP addresses or unique identi�ers of the virtual machines to scan depending on
whether they have already been started or not, respectively, and the names of one
or more vulnerability scanners to use for the scan. If no scanners are provided, the
OPS enables all scanners by default. Dormant virtual machines are deployed to a
designated scanning host from the Marvin Image Store and started before scanning.

The Report Generator module collects the reports from the enabled scanners and
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generates the reports: a summary that contains the number of detected vulnerabilities
categorized by a risk factor and a combined report that contains the results from the
individual security scanners in a uni�ed format. To be able to process the reports, the
Report Generator expects the reports of the vulnerability scanners to be in the uni�ed
OPS format. Thus, the adapters have to convert the reports from the native format of
the scanner before returning them to the Report Generator.

The back end of the OPS contains the VM Controller that can start and stop virtual
machines on the dedicated scanning host using the libvirt [21] library as well as the vul-
nerability scanner adapters. Currently, the OPS supports two scanners: OpenVAS [112]
and Nessus [154], both well-known and established security-products.

The clear separation between front end and back end created by the use of adapters and
the uni�ed OPS format makes the OPS easily extensible with regard to new scanners.
No vulnerability scanner dependent code is used in the front end, therefore such an
extension solely needs to focus on the implementation of an adapter for the new
vulnerability scanner.

6.3.3.2 Virtualized Grid Computing Use Case

The Virtualized Grid Computing use case for the Update Checker presented in Sec-
tion 6.3.1.3 can also be applied to the OPS, because the Update Checker and the Online
Penetration Suite have the same task – to evaluate the security of a virtual machine –,
although they use other means to do their job. In fact, they complement each other
and they can be combined in this use case. The only di�erence is the amount of time
required: scanning for outdated software using the Update Checker is a much faster
process than scanning for vulnerabilities using the OPS. Consequently, it is more
sensible to trigger OPS scans as regular maintenance operations using the ICS than to
scan a virtual machine before it is started by the XGE.

6.3.4 Security Monitoring

To detect attacks in Virtualized Grid and Cloud Computing environments, it is useful to
be aware of as many anomalies in the behavior of the system as possible. Theoretically,
every event that occurs in one of the di�erent layers of a virtualized system can
be an indicator for an anomaly, e.g., established network connections, creation or
termination of processes or even user or process activities beyond regular working
hours.

The sensors of a monitored environment cannot make the decision about what is a
normal or unknown system behavior. Instead, a Complex Event Processing (CEP)
engine is responsible for processing all the information sent by the sensors and deciding
what can be viewed as normal system behavior based on that information. Through
dynamic deployment of further sensors, it is possible to eliminate false positives and
verify �ndings.

Therefore, the architecture of the anomaly management system consists of a secure
and trusted virtual machine called ACCEPT-VM and a set of sensors and actors. The
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ACCEPT-VM contains the main analysis components of the system: the CEP engine,
the Action Framework, as well as the Event Store. Sensors and actors are deployed
on every layer of each virtual machine: in the hypervisor or in the guest operating
system and in the application layer of every virtual machine. All of these sensors
continuously deliver a stream of information to the ACCEPT-VM, whereby each actor
is able to execute a speci�c set of actions on its corresponding layer in order to respond
to any detected problem. The overall architecture of the monitoring system is shown
in Figure 6.8.
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Figure 6.8 Overall Architecture of the Monitoring System. The figure
shows all components of the monitoring system: sensors and actors in all layers
of the monitored environment and the ACCEPT-VM that contains the CEP engine,
Action Framework and Event Store.

6.3.4.1 Sensor Framework

As stated above, sensors are deployed on all layers of the virtualized system: in the
hypervisor, in either the user or kernel space of the guest operating system and in
application containers. On the one hand, this allows the monitoring system to gather
as much information as possible about anything that happens in the system. On
the other hand, this facilitates comparison and correlation of the information from
di�erent layers. The latter is of special importance to detect malicious software that
has rootkit-like capabilities, e.g., hidden network connections that are not visible in
the user space of the guest operating system, but in the hypervisor. All sensors should
be con�gurable, e.g., in terms of amount of collected data or measurement intervals,
and minimally invasive with regard to the performance of the monitored system and
resource consumption.

There are several possibly interesting metrics to be gathered on each layer. Some of
the expected events to be gathered can be found in the following list:

Hypervisor Layer — Network tra�c, system calls from within virtual machines,
process lifecycle information.

Operating System Layer — File access, network sockets, resource utilization.
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Application Layer — Java Virtual Machine (JVM) information (heap utilization,
thread count, library calls).

Sensors can monitor traditional characteristics of resource usage, e.g., percentage
of processor usage or memory consumption, as well as metadata about all running
processes in a system, e.g., system calls, network tra�c, and read/write memory access.
This low-level information greatly improves opportunities for detection of more
sophisticated attacks, e.g., malicious polymorphic code, hidden processes, or ongoing
memory corruption exploits. On the hypervisor layer, virtual machine introspection is
used for acquiring monitoring data; on the operating system and application container
layer, the sensors are running as privileged user processes.

Sensors installed on the application layer are used to monitor application behavior.
This could be an application container such as Tomcat or JBoss or a bare Java Virtual
Machine. A number of metrics is gathered by these sensors, e.g., changes of the
memory heap, number of threads, number of loaded Java classes, or statistics of the
garbage collector.

6.3.4.2 Action Framework

Like sensors, actors are deployed on all layers of the virtualized system to facilitate
triggering appropriate countermeasures for any detected anomaly. Examples of actions
that can be triggered using actors of the appropriate layer can be found in the following
list:

Hypervisor Layer — Start, stop or pause a virtual machine. Block or shutdown
network interfaces.

Operating System Layer — Start, stop, terminate processes or network connec-
tions. Delete users or �les.

Application Layer — Launch the garbage collector, solve deadlocks. Relaunch or
terminate the application container or even remove components from the latter.

More complex actions include a migration of a compromised virtual machine from
the productive network to a separate honeypot network in order to detect possible
malware. To facilitate the execution of complex actions and enable administrators to
implement countermeasures for arbitrary incidents, the actors need to be as �exible as
possible. This is realized by specifying actions using a scripting language. Obviously,
this opens a door for abuse of the Action Framework for malicious purposes. To
mitigate this risk, all actions have to be cryptographically signed.

6.3.4.3 ACCEPT-VM

The ACCEPT-VM is the central instance of the monitoring system and thus responsible
for event processing and triggering of actions. It consists of the CEP engine, the Action
Framework, an Event Store and the Matchmaker (see Figure 6.9). Because of its central
role, it is also the main target of attackers. Consequently, it has to be hardened against
attacks to prevent attackers from evading detection by compromising the ACCEPT-VM.
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The hardening consists of several measures, e.g., reducing the number of services to
the minimum, implementing Mandatory Access Control and enable integrity checks
on the �le system. Because of this hardening, the ACCEPT-VM is considered a trusted
virtual machine contrary to all other virtual machines in the system.

ACCEPT-VM

Matchmaker

Event 
Store

CEP Engine

EPA

EPA

EPA

Action Framework

Action

Action

Action

Figure 6.9 Architecture of the ACCEPT-VM. This figure shows the central
components of the monitoring system: the CEP engine that analyzes the stream
of events from the sensors, the Action Framework that executes actions triggered
by the CEP engine on various layers of the virtualized system, the Event Store that
stores events for later o�line analysis, and the Matchmaker that Architecture of the
ACCEPT-VM. (Source: [16])

The capability of performing analysis on a large amount of data on the input stream
coming from the sensors is ensured by two main approaches: First, the Event Pro-
cessing Agents (EPA) running in the CEP engine are assisted by pattern matching
techniques. Second, the inherent control- and data-parallelism of EPAs are used to
increase the number of events that can be processed.

Incoming events have to be stored for a certain period of time to facilitate o�ine
analysis of the data gathered from the sensors. This is an important addition to the
real-time analysis of events that is conducted in the CEP engine. The Event Store is a
storage system that is able to cope with large amounts of stream data while providing
e�cient access to the stored data.

The Matchmaker is a mediator between sensors, EPAs, the Event Store and the Action
Framework. It routes incoming events to all EPAs that are interested in the corre-
sponding event type and to the Event Store that stores events for o�ine analysis.
Actions triggered by those EPAs are routed to the Action Framework that takes care
of performing the selected actions using the actors deployed in the virtualized system.

The CEP engine performs a real-time analysis on the events using a set of EPAs
that monitor the incoming sensor data using continuous queries. These queries are
speci�ed in a simple query language that enables combining information of multiple
event streams that correspond multiple sensors – potentially on di�erent layers – or
even the output of other EPAs.
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6.3.4.4 Mode of Operation and Example Scenario

The general functioning of the monitoring system is depicted in Figure 6.10. It is
characterized by the sense-detect-react-cycle depicted by the blue loop. In the �rst
step of the loop, the various sensors gather data and send corresponding events to the
CEP engine. In the second step of the loop, the active EPAs monitor the incoming data
and trigger one or more actions via the Action Framework if there speci�c conditions
are met. In the last step of the loop, the actors situated on various layers of the
virtualized system execute triggered actions. This loop repeats perpetually. Once
an intruder starts an attack on the system, traces of this attack will be delivered
to the CEP engine in the event data streams, and corresponding EPAs will trigger
appropriate actions that implement countermeasures against the attack. To illustrate
this approach in action, an exemplary anomaly detectable via double-entry accounting
of the hypervisor and operating system layers’ port lists is shown below.
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Figure 6.10 The Sense-Detect-React-Cycle. This figure shows the functioning
of the monitoring system. The a�ack initiated by the intruder is detect by an EPA in
the CEP engine (marked orange) that triggers two actions via the Action Framework
(marked dark blue), which in turn implement a countermeasure against the a�ack in
the a�ected virtual machine(s).

In the example scenario, an attacker has successfully installed a backdoor in a mon-
itored virtual machine. Its presence is hidden using a rootkit technology, i.e., a
modi�cation of the operating system and its user space interfaces. Even though the
backdoor is listening on an arbitrary TCP port, the operating system’s user space tools
will not list its process and the listening socket.

Sensors — To detect the backdoor, at least two di�erent sensors are required. The
�rst sensor is running within the virtual machine and utilizing standard tools
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such as netstat to check for any listening sockets. Since the backdoor is well
hidden, this sensor will not report the security breach.

The other sensor is inspecting the network state of the virtual machine on the
hypervisor layer. Since this sensor is running outside of virtual machine and
thus the modi�ed guest operating system, it is not a�ected by the backdoor’s
stealth features. On this layer, an event is generated for the detection of a newly
opened port in the virtual machine.

Analysis — A newly opened port is the �rst sign of a potential anomaly. Furthermore,
by comparing data from both sensors that deliver information about listening
sockets from inside and outside of the virtual machine, it can be concluded
that this really is a security related anomaly. A regular service installed in the
virtual machine would not be hidden within the virtual machine. Especially the
con�icting sensor information is a clear sign of an attack.

Action — As a result of this attack, actions should be taken to eliminate the threat as
much as possible. One such action could be to block all communication from and
to the backdoor’s port on the hypervisor layer. This prevents the attacker from
extracting information or further using the infected machine. Another step that
should be taken is to isolate and possibly terminate the processes involved in
the infection. For forensics purposes, taking a snapshot of the virtual machine
and generating a dump are suitable next steps after the immediate danger is
averted.

6.4 Implementation

In this section, the design of the four proposals that aim to increase virtual machine
security is presented.

6.4.1 Update Checker

This section describes the implementation of the Update Checker, working from the
top to the bottom of Figure 6.2. First, the Machine and Repository Importers and their
sources of information are described for both the Debian Package Manager (dpkg)
and Advanced Packaging Tool (apt) used by Debian, Ubuntu, and its derivatives and
the RPM Package Manager (rpm) and Yellowdog Updater, Modi�ed (yum) used by
RedHat and Fedora as well as related distributions like CentOS and Scienti�c Linux,
respectively. Afterwards, the internal databases and caches and the Scan Engine are
described. This section is concluded with details about the Remote Importer.

The Update Checker is implemented in the Ruby programming language (Version 2.1
or greater). For parsing the various databases, the Nokogiri and IniParse libraries are
used. Version comparison is done using the dpkg-ruby library.
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6.4.1.1 Machine Importer

The Machine Importer is responsible for importing the list of installed packages and
their versions from the package database of a virtual machine into the Package DB.
Furthermore, it imports the list of enabled repositories from the repository con�g-
uration of a virtual machine into the Metadata DB. This step includes parsing the
information retrieved from the package management systems and removing extra-
neous information before the data is stored in the internal databases of the Update
Checker (see the examples below). The formats used in the internal databases are
described in Section 6.4.1.3.

Each of the considered package management systems uses a database in a distinct
format to keep track of the versions of installed packages, dependencies between
packages, �les belonging to each package, etc. Additionally, they use one or more
con�guration �les – again in a distinct format – to store information about the reposi-
tories that are enabled for the machine. A machine importer tailored to the speci�c
format of the package management system is used to gather the required information
and store it in the Package DB and Metadata DB, respectively. In the following, the
format of the databases and con�guration �les are described and corresponding code
to parse the information is presented.

Package Databases

Debian Package Manager – dpkg The package database of dpkg is stored in
/var/lib/dpkg and consists of several plain text �les. For the Update Checker, only
a single �le named status is relevant, which contains the metadata for each package
installed on the system. The remaining �les are used for other features of dpkg such
as alternatives, a way to set a default package to use in case multiple installed packages
provide alternative versions of a given software6, and are thus not processed by the
Update Checker.

The status �le contains an entry for each installed package, and each entry consists
of around twenty key-value-pairs (the actual number of pairs may vary between
packages). Each key-value-pair may span a single or multiple lines. In the latter case,
all lines starting with the second have to be indented by a single space character to
be easily identi�able as continuation. A single blank line separates the entries of two
packages.

Only four of the key-value-pairs are relevant for the Update Checker: Package, which
contains the package name, Architecture, which contains the target architecture of the
binary �les contained in the package or all for architecture-independent packages,
i.e., packages containing no binary �les or platform-independent software, Version,
which contains the exact version of the package, and Status, which contains the
installation status of the package. The latter is important because dpkg keeps the

6 For example, Debian and its derivatives typically provide multiple versions of the Vim editor with
di�erent sets of features.
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entries of removed packages in the database if their con�guration �les were kept,
leading to the deinstall ok config-files status.

The following snippet shows an excerpt from the dpkg package management database
to illustrate the format. The relevant key-value-pairs of the openssh-server package
have been highlighted.

. . .
Homepage: http://savannah.nongnu.org/projects/acl/

Package: openssh-server
Status: install ok installed
Priority: optional
Section: net
Installed-Size: 709
Maintainer: Debian OpenSSH Maintainers <debian-ssh@lists.debian.org>
Architecture: amd64
Multi-Arch: foreign
Source: openssh
Version: 1:6.0p1-4+deb7u2
Replaces: openssh-client (<< 1:3.8.1p1-11), ssh, ssh-krb5
Provides: ssh-server
Depends: libc6 (>= 2.8), libcomerr2 (>= 1.01), libgssapi-krb5-2(...)
Recommends: xauth, ncurses-term, openssh-blacklist, openssh-blacklist(...)
Suggests: ssh-askpass, rssh, molly-guard, ufw, monkeysphere
Conflicts: rsh-client (<< 0.16.1-1), sftp, ssh (<< 1:3.8.1p1-9),(...)
Conffiles:
/etc/pam.d/sshd ee93e13ec6aa3f3120c6939a2880a5b6
(...)

Description: secure shell (SSH) server, for secure access from remote(...)
This is the portable version of OpenSSH, a free implementation of
(...)

Homepage: http://www.openssh.org

Package: libpolkit-backend-1-0
. . .

Exemplary excerpt from /var/lib/dpkg/status showing the openssh-server package.

The methods shown in Listing 6.1 are responsible for parsing the package database
of dpkg. The parse_database_file method is a wrapper that is expecting a path
to a package database �le. It reads the contents of the database into a string and
passes the string to the parse_database_content method that is responsible for
the actual parsing. This method is described below. Finally, the parse_database
method passes the path of the package database �le relative to a given root path to
the parse_database_file method.

The parsing code uses the split method to create a list of entries from the database
and calls the reduce method on that list (Line 21). The block passed to reduce converts
each entry into a dictionary with the minimum information for each package (Lines 22
to 26). The conversion in Line 26 requires a list of lists, where each inner list contains
exactly two elements: a key and a value. This list is created in Lines 23 to 25: First,
each entry is split into a list of key-value strings that are basically the individual lines
of the entry as shown in the excerpt above (Line 23). In this step, it is important to
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17 SYMS = [:package, :status, :architecture, :version]...
20 def parse_database_content(content)
21 content.split(/\n\n/).reduce([]) do |list, entry|
22 package = entry
23 .split(/\n(\S+:.*)\n?/)
24 .map { |s| k, v = s.split(': '); [k.downcase.to_sym, v] }
25 .select { |k,v| SYMS.include? k }
26 .to_h
27 case package.delete(:status)
28 when "install ok installed", nil then list << package
29 else list
30 end
31 end
32 end
33
34 def parse_database_file(database)
35 parse_database_content(File.read(database))
36 end
37
38 def parse_database(root='')
39 status_file = File.join(root, 'var', 'lib', 'dpkg', 'status')
40 parse_database_file(status_file)
41 end

Listing 6.1 dpkg – Package Database Parsing Code. These methods are
used to parse the package database of dpkg.

consider the �elds consisting of multiple lines, e.g., Conffiles and Description.
In the next step, the lines are replaced with key-value lists by splitting them again,
whereby the key is replaced by a lower case Symbol7. The format of the resulting list
already matches the required format for converting the list to a dictionary. In the �nal
step (Line 25), the list is cleaned up so that only the four �elds listed in SYMS (Line 17)
remain.

The dictionary describing the package is added to the resulting list of packages (re-
turned by the reduce method) only if its status stored in the �eld of the same name
is either install ok installed – the status of a correctly installed package – or
it has no status �eld at all, i.e., the call to delete returns nil (Line 28). Otherwise,
the dictionary is discarded (Line 29). Note that the status �eld is removed from the
dictionary in any case by the delete method, because it is not required anymore
after this comparison. The reasoning behind the second condition – no status �eld at
all – is explained in Section 6.4.1.2.

The openssh-server package shown in the excerpt of the package database above
is shown below in the intermediate format8 generated by the repository importer. The
�nal format of the Package DB is described in Section 6.4.1.3.

7 The Ruby language uses Symbols to represent names that are used as constants in a memory e�cient
way.

8 The representation of the intermediate format is generated using the inspect method.
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[(...),
{:package=>"openssh-server", :architecture=>"amd64", '· · · :version=>"1:6.0p1-4+deb7u2"},
(...)]

Excerpt from the package database in the intermediate format generated by the Machine Importer
showing the openssh-server package.

RPM Package Manager – rpm The package database of rpm is stored in /var/
lib/rpm and consists of several database �les in the Berkeley database format. Since
this is a binary format, two theoretical approaches exist to extract the required data:
open the database directly using the Berkeley database library to extract the required
information or rely on rpm itself to extract the data and convert it into a suitable
format. The former approach fails because no public documentation of database
structure used by rpm is available. Thus, the latter approach was implemented in the
machine importer for rpm databases.

To extract the information from the database, the rpm binary was used. It provides the
--query --all options (short: -qa) to output a list of all installed packages and their
version identi�er. Again, there are two possible approaches: extract the data in situ,
i.e., in the running virtual machine, or access the package database �les from outside
of the dormant virtual machine and extract the data using the --dbpath option of
rpm. On the one hand, the in situ approach requires the virtual machine to be running
when the package database should be imported, i.e., for the initial import and after
every update of the virtual machine. On the other hand, the approach is guaranteed
to work in any case without being susceptible to problems related to di�erent Linux
distributions and rpm versions in the virtual machine and the host extracting the
data. Using the latter approach, dormant virtual machines can be imported directly
by mounting the root directory. Thus, the latter approach is much faster for large
numbers of virtual machines. The Update Checker supports both approaches.

The output of rpm -qa is a list of installed packages, each package with its full name
according to the RPM File Naming Convention [12] (excluding the .rpm extension):

name-version-release.architecture

This convention allows the package names to be easily split into the name, architecture,
and the version identi�er of the package that consists of the version and release �elds.
Unfortunately, version and release are not the complete version identi�er: the epoch
�eld is missing. A custom format string has to be set with the --queryformat (short:
--qf) option to make rpm output the right format. There is already a precon�gured
template that is containing all information the Update Checker needs: nevra, an
abbreviation for name, epoch, version, release, and architecture. As this option expects
a format string, a record separator has to be set as well, resulting in the complete
format string ’%{nevra}\n’. The resulting output has the following format:

name-[epoch:]version-release.architecture
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The epoch is only outputted if it is not 0, which is the case only for a minority of
packages, as the rpm documentation discourages the use of the epoch in version
numbers. The following snippet shows an exemplary excerpt of the output of the rpm
-qa --qf ’%{nevra}\n’ command, showing both packages with and without an
epoch visible in the output. The package openssh-server, epoch 0, version 6.4p1, release
5.fc20 for the x86_64 architecture is highlighted in bold.

. . .
openssh-clients-6.4p1-5.fc20.x86_64
openssh-server-6.4p1-5.fc20.x86_64
openssl-1:1.0.1e-39.fc20.x86_64
. . .

Exemplary excerpt from the package list generated by rpm -qa --qf ’%{nevra}\n’ showing
the openssh-server package.

The methods shown in Listing 6.2 are responsible for parsing the package list gen-
erated by rpm. The structure of the methods is identical to the methods for parsing
a dpkg package database (Listing 6.1), except that these methods are part of another
class9. The method parse_database_file is a wrapper that expects the path of
a package list. It reads the �le and passes the string with the �le’s content to the
parse_database_content method that is responsible for the actual parsing (see be-
low for details). Finally, the parse_database method automatically builds a default
path10 relative to the given root path and passes it to the parse_database_file
method.

The parsing of the package list is done using the reduce method that is applied to
each line (Line 24). A regular expression de�ned in Line 20 is applied to each line to
split the complete package name in the format described above into three components:
the package name, the version identi�er, and the architecture (Line 25). Note that
the version identi�er is not split further into its three subcomponents epoch, version,
and release. Then, a dictionary containing the package’s name, version identi�er,
and architecture is created and stored in the resulting list of packages, if splitting the
complete name was successful (Line 26). When yum is used in combination with rpm,
the package database contains a few special entries for signing keys. These entries do
not follow the naming scheme and thus the regular expression does not match them.
The error handling (Lines 28 to 31) silently ignores these entries11.

A regular expression is required, because there are almost no restrictions on the
allowed characters in the individual components. For example, consider the openssh-
server and openssl packages shown in the excerpt from the package list above. It
is not possible to extract the name of the package by splitting at the �rst dash, because
the former contains a dash in its package name. Furthermore, it is also not possible to
split at the �rst colon to extract the package name and the epoch and then split on the
last dash to extract the package name, because the former package has no epoch. The
9 The class de�nition is not shown because the additional indent would add more line breaks inside

statements.
10 The package list is not part of the regular package database and thus no default path exists. The path
/var/lib/rpm/packages.list has been chosen arbitrarily.

11 The exception in Line 29 should never be thrown for valid input data.

239



Chapter 6. Virtual Machine Security

20 LIST_REGEX = /^(.*)\-((?:\d+:)?[^-]*\-[^-]*)\.([^.]*)$/...
23 def parse_database_content(content)
24 content.each_line.reduce([]) do |packages, line|
25 unless (match = LIST_REGEX.match(line.strip)).nil?
26 packages << { package: match[1], version: match[2], architecture:

match[3] }
'

27 else
28 unless line.start_with? 'gpg-pubkey'
29 raise "content contains malformed entry, parsing failed: #{line}"
30 end
31 packages
32 end
33 end
34 end
35
36 def parse_database_file(database)
37 parse_database_content(File.read(database))
38 end
39
40 def parse_database(root='')
41 parse_database_file(File.join(root, 'var', 'lib', 'rpm', 'packages.list'))
42 end

Listing 6.2 rpm – Package List Parsing Code. These methods are used to
parse the list of installed packages generated by rpm -qa --qf ’%{nevra}\n’.

openssh-server package shown in the excerpt of the package list above is shown
below in the intermediate format generated by the repository importer.

[(...),
{:package=>"openssh-server", :version=>"6.4p1-5.fc20", '· · · :architecture=>"x86_64"},
(...)]

Excerpt from the package database in the intermediate format generated by the Machine importer
showing the openssh-server package.

Repository Configurations

Advanced Packaging Tool – apt The repositories used by apt are con�gured in
the �le /etc/apt/sources.list. This �le contains multiple repository de�nitions,
one per line. Instead of a single sources.list �le, the repository de�nitions may
also be spread over multiple �les in the /etc/apt/sources.list.d directory. The
format of each de�nition is as follows:

type root archive component [component ...]

The type �eld can have the values deb or deb-src representing repositories containing
binary packages and repositories containing source packages, respectively. Only
repositories of the former type are relevant to the Update Checker, because source
packages are not managed by dpkg at all in terms of bookkeeping of installed source
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packages. The meaning of the other �elds is explained in Section 6.4.1.2. They are
required to build the URL of the actual repository that is used to load the list of
available packages. An excerpt from a sources.list �le from a Debian GNU/Linux
virtual machine is shown in the following snippet, whereby relevant de�nitions
are highlighted. The methods shown in Listing 6.3 are responsible for parsing the
repository con�guration.

. . .
deb http://ftp.de.debian.org/debian/ wheezy main
deb-src http://ftp.de.debian.org/debian/ wheezy main

deb http://security.debian.org/ wheezy/updates main
deb-src http://security.debian.org/ wheezy/updates main
. . .

Exemplary excerpt from /etc/apt/sources.list.

18 SOURCES_REGEX = /^deb\s+([^\s]+)\s+([^\s]+)\s+(.*)$/...
43 def parse_config_content(content)
44 content.scan(SOURCES_REGEX).map do |root, arch, comps|
45 comps.split(/\s+/).map do |comp|
46 { :root => root, :archive => arch, :components => comp }
47 end
48 end.flatten
49 end
50
51 def parse_config_file(config_file)
52 parse_config_content(File.read(config_file))
53 end
54
55 def parse_config(root='')
56 base = File.join(root, 'etc', 'apt')
57 result = []
58 result << parse_config_file(File.join(base, 'sources.list'))
59 Dir.glob(File.join(base, 'sources.list.d', '*.list')) do |sources_file|
60 result << parse_config_file(sources_file)
61 end
62 result.reject { |list| list.empty? }.flatten
63 end

Listing 6.3 apt – Repository Configuration Parsing Code. These methods
are used to parse the repository configuration of apt.

The method parse_config_file is a wrapper that expects the path of a single
con�guration �le. It opens this �le and passes the string with the �le’s content to the
parse_config_contentmethod that is responsible for the actual parsing. The latter
method uses the regular expression de�ned in Line 18 to identify all binary repositories
and to split their entries into the corresponding root and archive �elds as well as the
remainder of the line containing a list of component �elds (Line 44). Then, it splits
this remainder into individual component �elds and creates a dictionary with the root,
archive, and component �elds for each component (Lines 45 to 46). Consequently, the
inner block creates a list containing multiple dictionaries if a line in the con�guration
�le contains multiple components. The flatten method is called at the end of the
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method to convert the list of lists of dictionaries returned by the outer call to map into
a �at list of dictionaries (Line 48).

The parse_config method picks all con�guration �les relative to a given root path,
passes them to parse_config_file and adds the resulting lists of dictionaries to
the result list (Lines 57 to 61). In a �nal step, it removes empty lists that are generated
if a con�guration �le contains no valid repositories from the result list and �attens it,
i.e., it adds all dictionaries contained in inner lists to the result list itself and removes
the inner lists (Line 62).

There is another piece of information that is important for the Update Checker: the
architecture of the system, which is required to look up the right repository (see
Section 6.4.1.2). This is a piece of information that is built-in to the installed dpkg
package [34]. It can be retrieved while the virtual machine is running by executing the
command dpkg --print-architecture. If the virtual machine is not running, the
architecture of the dpkg package itself, which matches the system architecture, can
be looked up in the package database. Alternatively, the architecture can be manually
indicated when importing the virtual machine.

Multiarch setups that enable the installation of library packages from multiple ar-
chitectures on the same machine are supported by dpkg. The most common use
case is installing both 64 and 32-bit software in the same virtual machine and having
dependencies correctly resolved automatically. In general, libraries for more than
one architecture can be installed together and applications from one architecture
or another can be installed as alternatives [34]. One popular example of software
that requires Multiarch to be enabled in amd64 variant of Debian GNU/Linux is the
Android SDK, which is only available in a 32-bit version.

If a Multiarch setup is used by a virtual machine, additional enabled architectures can
be queried using the dpkg --print-foreign-architectures command while
the virtual machine is running. Additionally, there is a �le /var/lib/dpkg/arch
that contains both the base architecture of the system as well as additional enabled
architecture. An exemplary arch �le from a Debian/GNU Linux virtual machine is
shown in the following snippet:

amd64
i386

Exemplary content of /var/lib/dpkg/arch for a Multiarch setup.

Yellowdog Updater, Modified – yum The repositories used by yum are con�g-
ured in multiple .repo �les in the /etc/yum.repos.d directory. The format of
those .repo �les is the INI format, which is commonly used for con�guration �les.
It consists of one or more sections, which in turn contain multiple key-value-pairs
called properties. Each .repo �le can contain multiple repository de�nitions, each
de�ned in its section and consisting of almost a dozen properties. There are three
properties relevant to the Update Checker: baseurl, which de�nes the URL of the
actual repository, metalink, which de�nes the URL of a service that returns a list of
repository mirrors, and enabled, which de�nes whether the repository is enabled. The
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following snippet shows an excerpt from one of the .repo �les of a Fedora virtual
machine with the relevant properties highlighted. Note that the baseurl property is
disabled in favor of the more �exible metalink approach.

[fedora]
name=Fedora $releasever - $basearch
failovermethod=priority
#baseurl=http://download.fedoraproject.org/pub/fedora/linux/releases/ '· · · $releasever/Everything/$basearch/os/
metalink=https://mirrors.fedoraproject.org/metalink?repo= '· · · fedora-$releasever&arch=$basearch
enabled=1
metadata_expire=7d
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$releasever-$basearch
skip_if_unavailable=False

[fedora-debuginfo]
. . .

Exemplary excerpt from /etc/yum.repos.d/fedora.repo.

Before the individual .repo �les have been introduced, all repositories were con-
�gured in the central /etc/yum.conf �le that contains the central con�guration
of yum. Using the sections provided by the INI format, the repository de�nitions
are clearly separated from the central con�guration options. This approach is still
supported.

The methods shown in Listing 6.4 are responsible for parsing the repository con�g-
uration. The method parse_config_file is a wrapper that expects the path of a
single con�guration �le. It opens this �le and passes the string with the �le’s content
to the parse_config_content method that is responsible for the actual parsing.
The latter uses the IniParse library to parse the INI format used in the con�guration
�les. It iterates over every section of the �le (Line 46) and determines whether the
section describes a repository using a few tests (Lines 47 to 48). These tests verify that
the section contains an enabled property and one of the baseurl or metalink properties.
If these properties exist, the section very likely describes a repository. The �nal step
is to check whether the enabled property is set to 1. If these tests are satis�ed, the
method creates a dictionary with the baseurl and metalink values and adds it to the
resulting list of repositories (Lines 49 to 52).

The parse_config method picks all con�guration �les relative to a given root path,
passes them to parse_config_file and adds the resulting lists of dictionaries to
the result list (Lines 63 to 67). In a �nal step, it removes empty lists that are generated
if a con�guration �le contains no valid repositories from the result list and �attens it
(Line 68).

A few variables can be used to make the URLs �exible enough to cover di�erent
architectures and releases of a distribution. Table 6.2 lists the available variables
and their meanings [126]. It is important to consider the distinction between the
base architecture and CPU architecture represented by the $basearch and $arch
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21 CONFIG_FIELDS = %w(baseurl metalink)...
44 def parse_config_content(config)
45 repos = []
46 IniParse.parse(config).each do |section|
47 next unless section.has_option?('enabled') && section['enabled'] == 1
48 next unless section.has_option?('baseurl') ||

section.has_option?('metalink')
'

49 repos << CONFIG_FIELDS.reduce({}) do |repo, field|
50 repo[field.to_sym] = section[field]
51 repo
52 end
53 end
54 repos
55 end
56
57 def parse_config_file(config_file)
58 parse_config_content(File.read(config_file))
59 end
60
61 def parse_config(root='')
62 base = File.join(root, 'etc')
63 result = []
64 result << parse_config_file(File.join(base, 'yum.conf'))
65 Dir.glob(File.join(base, 'yum.repos.d', '*.repo')) do |config_file|
66 result << parse_config_file(config_file)
67 end
68 result.reject { |list| list.empty? }.flatten
69 end

Listing 6.4 yum – Repository Configuration Parsing Code. These meth-
ods are used to parse the repository configuration of yum.

variables, respectively. The base architecture is typically used in the URLs of repository
de�nitions, because it describes the architecture of the complete system.

Table 6.2 List of Variables for the Repository Database URL. These vari-
ables can be used in the URL of the repository or the metalink service used by
yum [126]. The first two variables are the most commonly used ones. (The example
values are specific for Fedora.)

Variable Description

$releasever The release number of the installed distribution.
Example values: 20, 19, 18, 17, . . .

$basearch The base architecture of the system.
Example values: i386, x86_64, armhfp, . . .

$arch The architecture of the CPU.
Example values: i586, i686, x86_64, . . .

$YUM0 - $YUM9 Variables that represent the values of environment variables of the
same name.

The CPU architecture was used to di�erentiate between binaries optimized for speci�c
processor generations, but support for processors older than the Pentium Pro (i686) has
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been dropped in most contemporary distributions, making this distinction obsolete. In
the 32-bit editions of Fedora, the base architecture is always i386, because it represents
the 32-bit architecture in general12, while the CPU architecture is typically i686. On
the contrary, there is no such di�erence between the variables in the 64-bit edition.

There are di�erent ways to determine the speci�c values used by yum in a virtual
machine. If the virtual machine is running, the command yum version nogroups
can be used to determine both release number and base architecture. Exemplary
output of this command from a Fedora virtual machine is shown in the following
snippet. The highlighted part contains the required information: release number
20 and base architecture x86_64. It can be parsed with a simple regular expression:
/^Installed:\s+(\d+)\/(\w+)/.

Loaded plugins: langpacks, refresh-packagekit
Installed: 20/x86_64 (...) 1238:6b6f949f5a39cafd01c6a8a3ffcb387076a88077
version

Exemplary output from yum version nogroups.

For dormant virtual machines, the release number can be found in the �le /etc/os-
release that uses the INI format and contains a variety of information. The release
number is stored in the VERSION_ID property and can be easily extracted using the
IniParse library. Unfortunately, the base architecture of the system is not stored
in an easily accessible �le. One way to determine it nevertheless is to rely on the
architecture of the rpm package itself. However, the architecture of a package is the
CPU architecture ($arch) and not the base architecture ($basearch) that is required
to build the correct URLs for the repository. The method infer_basearch shown in
Listing 6.5 determines the base architecture using a simple heuristic.

71 def infer_basearch(database)
72 rpm_arch = find_unique_package(database, 'rpm')[:architecture]
73 case rpm_arch
74 when /i.86/ then 'i386'
75 when /x86_64/ then 'x86_64'
76 end
77 end
78
79 def find_unique_package(database, package)
80 result = if database.is_a? Array
81 rpms = database.select { |pkg| pkg[:package] == package }
82 else

· · ·
91 end
92 raise 'package not found / not unique' if result.length != 1
93 result[0]
94 end

Listing 6.5 yum – Inferring the Base Architecture. The first method infers
the base architecture of a system from the architecture of the rpm package. The
second method is a helper method to look up a package in a package database that
is unique, i.e., existing only in a single architecture.

12 The Intel 80386 was the �rst 32-bit processor in the x86 processor family.
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A helper method is used to retrieves the rpm package from the package database.
For databases in the intermediate format this can easily be done using the select
method (Line 81). The omitted part contains to code to �nd the package if the database
has already been converted to the �nal format (see Section 6.4.1.3). The method
ensures that only a single package is found and raises an exception otherwise (Line 92).
Alternatively, the base architecture and release number can be manually set when the
virtual machine is imported.

Another approach that works for running virtual machines is to ask yum for the
complete URLs of the repositories using yum repoinfo. In this case yum takes care
of replacing the variables before printing the URLs, sparing the Update Checker from
determining the values manually. The following snippet shows an exemplary excerpt
from the output of this command on a 64-bit virtual machine running Fedora 20. It
shows information regarding the base repository of Fedora, with the important parts
highlighted, and the �rst lines of the information regarding the repository used for
updates.

Loaded plugins: langpacks, refresh-packagekit
Repo-id : fedora/20/x86_64
Repo-name : Fedora 20 - x86_64
(...)
Repo-size : 38 G
Repo-metalink: https://mirrors.fedoraproject.org/metalink? '· · · repo=fedora-20&arch=x86_64
Updated : Fri Dec 13 09:55:41 2013

Repo-baseurl : http://mirror2.atrpms.net/fedora/linux/releases/20/ '· · · Everything/x86_64/os/ (92 more)
Repo-expire : 604.800 second(s) (last: Mon Oct 13 10:27:43 2014)
Repo-filename: /etc/yum.repos.d/fedora.repo

Repo-id : updates/20/x86_64
Repo-name : Fedora 20 - x86_64 - Updates
. . .

Exemplary excerpt from the output of yum repoinfo.

For each repository, the output contains a few lines with di�erent information in a
key-value format. A blank line separates multiple repositories. The methods shown in
Listing 6.6 parse the output and extract the metalink and baseurl properties. The �rst
method does the actual parsing. First, it splits the output into separate blocks for every
repository and uses the reduce method on the resulting list of blocks (Line 97). For
each block, it extracts (a part of) the name and the value of the two desired properties,
whereby it has to omit the text in parentheses after the URL in the baseurl property
(Line 98). In the next step, it creates a dictionary with these properties using symbols
corresponding to the partial names of the properties as keys and adds the dictionary
to the resulting list of repositories unless it is empty, i.e., the block contained no
repository13 (Line 100). The second method again is only a wrapper that reads a �le at
a given path and passes the �le’s contents to parse_repoinfo_content.
13 The �nal block (not shown in the excerpt) contains the number of packages available in all repositories,

but no repository.
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96 def parse_repoinfo_content(repoinfo)
97 repoinfo.split(/\n\n/).reduce([]) do |list, repo|
98 data = repo.scan /Repo-(metalink|baseurl)\s*:\s+([^ \n]+)/
99 unless data.empty?

100 list << data.map { |key, value| [key.to_sym, value] }.to_h
101 else
102 list
103 end
104 end
105 end
106
107 def parse_repoinfo(repoinfo_file)
108 parse_repoinfo_content(File.read(repoinfo_file))
109 end

Listing 6.6 yum – Repository Configuration Parsing Code. These meth-
ods are used to parse the repository configuration of yum.

Multiarch setups are implemented in a much simpler way in yum/rpm compared to
apt/dpkg. For the most common scenarios like 32-bit software on x86_64 machines
the libraries for the secondary architecture are included in the repository for the base
architecture. For example, the standard x86_64 of Fedora 20 contains 15.054 x86_64
packages, 17.341 noarch packages, and 6.112 i686 packages. Libraries for the secondary
architecture can be installed without any changes to the repository con�guration
by simply appending the architecture to the package name like in yum install
glibc.i686, which installs the 32-bit version of the GNU C library.

6.4.1.2 Repository Importer

The repository importer is responsible for importing the list of packages available in
a repository into the Repository Cache. Like the machine importer, the repository
importer has to parse the information retrieved from the repository and remove
extraneous information before the data is stored in the Repository Cache. The format
used by the Repository Cache is described in Section 6.4.1.3.

Each of the considered package management systems uses a database in a distinct
format to keep track of the versions of packages available at a repository. A repository
importer tailored to the speci�c format of the package management system is used
to gather the required information and store it in the Repository Cache. In the
following, the format of the databases is described and corresponding code to parse
the information is presented.

Advanced Packaging Tool – apt The repository database of an apt repository can
be found using the following URL. The �elds used to build the URL are described in
Table 6.3. The values for all �elds are taken from the repository con�guration.

root/dists/archive/component/binary-architecture/Packages.type
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Table 6.3 Parts of the repository database URL. These fields are used to
build the URL of the package database used by apt. (The example values are specific
for Debian GNU/Linux. The archive and component names used in Debian derivatives
may vary.)

Field Description

root The root URL of the repository or mirror.

archive Used to divide a repository for di�erent releases.
Example values: stable, stable-updates, testing, . . .

component Used to subdivide a repository by license type and level of support.
Example values: main, contrib, nonFree, . . .

architecture Used to further subdivide a repository in sections for di�erent archi-
tectures.
Example values: i386, amd64, armhf, mips, sparc, s390, all, . . .

type The compression format of the package list.
Example values: gz, bz2

An exemplary URL of an apt repository is shown below. The values for the �elds
are taken from the con�guration shown above, except for the format that has been
randomly chosen.

http://ftp.de.debian.org/debian/dists/wheezy/main/binary-amd64/Packages.bz2

For Multiarch setups, the repositories for all enabled architectures have to be imported
separately. The Scan Engine (see Section 6.4.1.4) uses the architecture stored with each
package to determine the right package list to use for version comparisons. It should
be noted that there is no distinct repository for architecture-independent packages,
but those packages are available in every repository.

The repository database available at the aforementioned URL uses the same format
as the package database of dpkg, except that packages in the repository database do
not have a status �eld. The database can nevertheless be parsed using the method
that is used for parsing the package database (see Section 6.4.1.1), because that method
has been implemented with this peculiarity in mind. The second condition in Line 28
ensures that all packages in the repository database are added to the list of packages.

Yellowdog Updater, Modified – yum Looking up the repository database of a
yum repository is a two-step process:

1. Determine the URL of a speci�c repository using a service available at the URL
pointed to by the metalink property of the repository de�nition. This step was
introduced in recent versions of yum to determine the nearest repository based
on the requested release number, base architecture, and the geolocation of the
client. Earlier versions of yum used the baseurl property of the repository
de�nition to store the speci�c URL of the repository and thus required no
additional lookup step. If the baseurl is already known, e.g., from parsing the
output of yum repoinfo, this step can be omitted.
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2. Determine the URL of the repository database for a speci�c repository by
extracting its path from a �le containing the metadata of all databases available
at the repository. In contrast to apt, yum provides several database �les on
each repository. The package database itself is available in multiple formats and
there are databases to store additional data like changelog information that is
not relevant to the Update Checker.

The metalink URL used in Step 1 points to an XML document containing a list of
mirrors together with a preference rating to select the most suitable mirror depending
on the geolocation of the client. The next snippet shows an excerpt from that XML
document returned for release number 20 and base architecture x86_64 for the base
repository of Fedora. The preferred HTTP mirror is highlighted.

<?xml version="1.0" encoding="utf-8"?>
<metalink version="3.0" xmlns="http://www.metalinker.org/" (...)>

<files>
<file name="repomd.xml">

<mm0:timestamp>1386924941</mm0:timestamp>
<size>3847</size>
<verification>

(...)
<hash type="sha512">d6850133(...)66085b2e</hash>

</verification>
<resources maxconnections="1">
<resources maxconnections="1">
<url protocol="ftp" (...)>ftp://(...)</url>
<url protocol="rsync" (...)>rsync://(...)</url>
<url protocol="http" type="http" location="CZ" preference="100"> '· · · http://mirror.karneval.cz/pub/linux/fedora/linux/releases/20/ '· · · Everything/x86_64/os/repodata/repomd.xml</url>
<url protocol="http" (...)>http://(...)</url>
(...)

</resources>
</file>

</files>
</metalink>

Exemplary excerpt from the XML document returned when accessing the metalink URL.

The method parse_metalink shown in Listing 6.7 parses the contents of the XML
document retrieved using the metalink URL. First, it uses an XML Path Language
(XPath) [171] expression to extract all url nodes from the document. Additionally, the
protocol is restricted to HTTP (Line 115)14. Although it would be possible to extract
the URLs directly by appending /text() to the expression, this approach is preferred
because it allows to extract the attribute values as well. Then, it sorts the mirrors
by preference an reverses the list, because the highest priority repository should be
the �rst element (Line 116)15. Finally, it uses the map method to replace the nodes
with their corresponding URLs for easier access by the caller (Line 117) and returns
the result to the caller. A list of mirrors is returned instead of a single mirror, so

14 Additional restrictions can be added, e.g., to only select mirrors with a preference above 90.
15 The list of repositories is very likely already sorted, thus the manual sorting is just a precaution.
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that the Update Checker can switch to another repository if the one with the highest
preference fails.

112 def parse_metalink(metalink_url)
113 open(metalink_url) do |metalink|
114 Nokogiri::XML(metalink)
115 .xpath('/xmlns:metalink/xmlns:files/xmlns:file/xmlns:resources/'\

'xmlns:url[@protocol="http"]')
'

116 .sort_by { |mirror| mirror['preference'].to_i }.reverse
117 .map { |mirror| mirror.text }
118 end
119 end

Listing 6.7 yum – Parsing the metalink Document. This codes parses the
XML document containing a list of mirrors for a given repository, release and archi-
tecture.

The URLs in the mirror list directly point to the document containing the metadata
of the di�erent database. Because the name of this document is known (see the
snippet below), the baseurl can be extracted from that URL by removing the trailing
repodata/repomd.xml. In the same way, the URL of the document can be con-
structed if the metalink property is not set and the older approach is used. In this case,
repodata/repomd.xml has to be appended to the baseurl.

baseurl/repodata/repomd.xml

In Step 2, the XML document with the repository metadata named repomd.xml is
retrieved using the URL that has been either extracted from the mirror list or con-
structed using the baseurl property. It contains several <data> tags that contain
the URL, checksums, and metadata of the diverse databases available at the reposi-
tory. The repository database required by the Update Checker is marked with the
type="primary" attribute. This entry contains a child tag <location> that in turn
contains the path of the actual database relative to the baseurl. The following snippet
shows the contents from that XML document returned for release number 20 and
base architecture x86_64 by the base repository of Fedora. The important part, i.e., the
location of the repository database, has been highlighted.

<?xml version="1.0" encoding="UTF-8"?>
<repomd xmlns="http://linux.duke.edu/metadata/repo" (...)>
<revision>1386924430</revision>
<tags>(...)</tags>
<data type="group">(...)</data>
<data type="filelists">(...)</data>
<data type="group_gz">(...)</data>
<data type="primary">

<checksum type="sha256">d7777ea6(...)c4e82094</checksum>
<open-checksum type="sha256">18f77a31(...)292edb3c</open-checksum>
<location href="repodata/d7777ea6(...)c4e82094-primary.xml.gz"/>
<timestamp>1386924704</timestamp>
<size>10148965</size>
<open-size>87121294</open-size>

</data>
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<data type="primary_db">(...)</data>
<data type="other_db">(...)</data>
<data type="other">(...)</data>
<data type="filelists_db">(...)</data>

</repomd>

Exemplary content from the repomd.xml document.

The method that parses this document is shown in Listing 6.8. It extracts the relative
path of the repository database using an XPath expression.

121 def parse_repo_metadata(repomd_url)
122 open(repomd_url) do |repomd|
123 Nokogiri::XML(repomd)
124 .xpath('string(/xmlns:repomd/xmlns:data[@type="primary"]/'\

'xmlns:location/@href)')
'

125 end
126 end

Listing 6.8 yum – Parsing the Metadata Document. This method extracts
the relative path of the repository database from the XML document containing
metadata about the di�erent databases of a repository.

The URL of the package database is then build be built by concatenating the extracted
relative path determined and the baseurl. Using the values from the last snippets, this
leads to the following URL:

http://mirror.karneval.cz/pub/linux/fedora/linux/releases/20/Everything/ '· · · x86_64/os/repodata/d7777ea6(...)c4e82094-primary.xml.gz

After the URL of the repository database has been determined, it can be retrieved
and parsed. The database is an XML �le that contains a <package> tag for each
available package, which in turn contains the <name>, <arch> and <version> tags
providing the information required by the Update Checker. The following snippet
shows an excerpt from the repository database of the Fedora base repository for release
number 20 and base architecture x86_6416. The parts used by the Update Checker are
highlighted.

. . .
</package>
<package type="rpm">

<name>openssh-server</name>
<arch>x86_64</arch>
<version epoch="0" ver="6.3p1" rel="5.fc20"/>
<checksum type="sha256" pkgid="YES">eec94c2a(...)1e6ab769</checksum>
<summary>An open source SSH server daemon</summary>
<description>OpenSSH is a free version of SSH(...)</description>
<packager>Fedora Project</packager>
<url>http://www.openssh.com/portable.html</url>

16 Note that the version of the openssh-server package available at the repository is older than the
installed version shown in previous snippets, because the base repository contains the initial version
of the package at the time of the release and the virtual machine has been updated before importing it
into the Update Checker.
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<time file="1383328660" build="1383323983"/>
<size package="375688" installed="756218" archive="758628"/>
<location href="Packages/o/openssh-server-6.3p1-5.fc20.x86_64.rpm"/>
<format>(...)</format>

</package>
<package type="rpm">

<name>openssh-server-sysvinit</name>
. . .

Exemplary excerpt from the repository database.

The method shown in Listing 6.9 parses the repository database �le.

128 def parse_repo_database(repodb_url, compression=:none)
129 open(repodb_url) do |repodb|
130 repodb = case compression
131 when :gzip then Zlib::GzipReader.new(repodb)
132 when :none then repodb
133 end
134 xml = Nokogiri::XML::Reader(repodb.read)
135
136 database = []
137 package = nil
138 capture = false
139 text = nil
140
141 xml.each do |node|
142 case node.node_type
143 when Nokogiri::XML::Reader::TYPE_ELEMENT
144 case node.name
145 when 'package' then package = {}
146 when 'name', 'arch' then capture = true
147 when 'version'
148 attr = node.attributes
149 package[:version] =
150 (attr['epoch'] != '0' ? attr['epoch'] + ':' : '') +
151 attr['ver'] + '-' + attr['rel']
152 end
153 when Nokogiri::XML::Reader::TYPE_TEXT
154 text = node.value if capture
155 when Nokogiri::XML::Reader::TYPE_END_ELEMENT
156 case node.name
157 when 'name' then package[:package] = text
158 when 'arch' then package[:architecture] = text
159 when 'package' then database << package
160 end
161 capture = false
162 end
163 end
164 database
165 end
166 end

Listing 6.9 yum – Repository Database Parser. This method extracts the
version information of all available packages from the repository database and returns
a list of packages in the intermediate format that is also used by Machine Importers.

252



6.4. Implementation

All approaches to parse this database using an approach based on the Document Object
Model (DOM) [172], thus also the XPath approach used to extract URLs in the �rst two
steps, are inappropriate. The database that is shown in excerpts above has a size of
about 85 MiB at 38,500 entries and requires almost 950 MiB of memory when opened
using Nokogiri’s DOM parser. Typically, a parser based on the Simple API for XML
(SAX) de facto standard [135] is used for larger documents like this. The advantage
over a DOM parser is that it parses the XML document sequentially and thus it never
has to reside in memory completely. This simultaneously is the biggest drawback of
this kind of parsers: the document is delivered to the parsing code in smallest possible
pieces, e.g., opening and closing XML tags or text nodes. If any kind of state is required
for parsing the document, it has to be kept manually, because SAX does not allow
rewinding the document or generating a callback a second time.

The Nokogiri library additionally provides a middle course using the Reader class. It
does not generate di�erent callbacks for di�erent types of nodes, but instead loops
over all elements of the XML document. This class is used to parse the repository
database in the parse_repo_database method shown in Listing 6.9. It is able to
open both uncompressed and gzip compressed repository databases (Lines 130 to 133),
although support for other compression formats can be added easily.

The main parsing is done in the loop in Lines 141 to 163. An outer case construct
is used to distinguish nodes by their type, whereas inner case constructs are used
in case of XML tags to further distinguish them by their name. An opening package
tag, i.e., a node of the TYPE_ELEMENT type with the corresponding name, marks the
start of the next package. A new dictionary is thus created in this case (Line 145). The
name and arch tags set a �ag that captures the content of text nodes (Line 146). The
version tag contains three attributes with the components of the version identi�er. The
method generates a version identi�er in the format described in Section 6.3.1 that is
used throughout the Update Checker and stores it in the dictionary (Lines 148 to 151).
The content of text nodes is stored in a temporary variable if the capture �ag is set.

A closing name or arch tag ends the package or architecture name, respectively. The
text captured in the temporary variable is stored in the dictionary. Finally, the closing
package tag ends the description of the package. At this point, the dictionary is
added to the database. The result of this method is a list of dictionaries describing
packages: the intermediate format that is also generated by Machine Importers (see
Section 6.4.1.1).

Surprisingly, the SAX approach is about 125 % slower than the approach presented
above in benchmarks that have been done during the implementation of the parser,
whereas the DOM approach is 25 % faster. However, the improved performance of the
latter does not compensate for the huge memory requirements.

6.4.1.3 Internal Databases and Caches

The Update Checker uses four di�erent databases and caches to store information
about machines and repositories as well as its �ndings (see Figure 6.2). The techniques
and formats used to store this information are described in detail in this section.
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The biggest amount of information is the list of installed packages for each of the
registered virtual machines in the Package DB and the list of available packages at
each of the repositories in the Repository Cache. In both cases, for each package, the
name, version and architecture have to be stored. The need to store the architecture
for each package individually is a result of the support for Multiarch installations:
the Scan Engine needs to know which repository to check for updated versions of
any given package. Therefore, each installed or available package is represented by a
name-version-architecture triple.

Initially, it was planned to store this information in a database together with the other
data the Update Checker requires. Unfortunately, importing a virtual machine or
updating the list of available packages of a repository is very slow using a database.
Whether this is caused by the database itself (SQLite3) or the Object-Relational Map-
ping (ORM) library used (DataMapper) has not been examined in detail.

Instead, the Update Checker stores both the Package DB and the Repository Cache by
serializing the internal data structures in the JavaScript Object Notation (JSON) [30].
An individual �le is used per virtual machine or repository. In a test conducted during
the implementation of the Update Checker, the JSON approach was faster by a factor
of more than 23 compared to the database approach17.

Both Machine Importers and Repository Importers return the imported databases in
an intermediate format: as a list of dictionaries describing individual packages. Each
dictionary includes a package’s name, version identi�er, and architecture. While this
format is su�cient for the Package DB, because the Scan Engine just iterates over all
installed packages of a virtual machine sequentially to check for outdated software, it
is inadequate with respect to the Repository Cache, because the Scan Engine has to
look up packages by their name and architecture. A two-level dictionary as shown
below is the optimal data structure for the Repository Cache. It maps from a package’s
architecture to an inner dictionary that in turn maps from the package’s name to its
version. It is important to note that a single-level dictionary mapping from a package’s
name to (a dictionary or list storing its) version and architecture does not work with
Multiarch setups, because package names are not unique in yum package databases.

{"amd64"=>{(...), "openssh-server"=>"1:6.0p1-4+deb7u2", '· · · "openssl"=>"1.0.1e-2+deb7u12", (...)},
"all"=>{(...), "openssh-blacklist"=>"0.4.1+nmu1", (...)}}

Optimal data structure for the Repository Cache.

This data structure is also used for the Package DB, because it saves storage space
for the package databases when stored as JSON �les. For an exemplary package
database of 1.140 packages, this format saves 60 % of space, because the keys, i.e.,
:package, :version, and :architecture, are stored implicitly and the architec-
ture, e.g., amd64 or all, are not stored repeatedly for every package. It is created
from the intermediate format using the function shown in Listing 6.10.

17 The time required for importing two Debian repository databases was compared. The import took
2.16 seconds using the JSON serialization compared to 50.02 seconds using the database.
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13 def two_level_database(database)
14 database
15 .group_by { |pkg| pkg[:architecture] }
16 .map do |arch, list|
17 [arch, list.map { |pkg| [pkg[:package], pkg[:version]] }.to_h]
18 end
19 .to_h
20 end

Listing 6.10 Data Structure Conversion. This function converts from the in-
termediate format generated by both Machine Importers and Repository Importers
to the data structure used by the Package DB and Repository Cache.

It uses the group_by method to create a dictionary that maps from the architecture to
a list of dictionaries representing all packages having this architecture (Line 15). The
format of the dictionaries is not modi�ed in this step compared to the intermediate
format. The inner block in Line 17 converts this list of dictionaries into a dictionary
mapping from a package’s name to its version using a combination of the map and
to_h methods. An outer call to the map method is used to apply the conversion in the
block to the lists of all architectures (Line 16). In the last step, the list of lists returned
by map is converted into a dictionary again (Line 19). This �nal conversion is the
reason why the inner block does not only return the desired dictionary, but a list of
the architecture and the corresponding dictionary.

Information about outdated packages and available updates is stored in the Result
Cache to improve the response time for subsequent requests. For each outdated
package the following information is stored in a dictionary: the name of the package,
its architecture, the installed version, the latest version, the repository providing the
latest version, and the priority of the update. A list of outdated packages is stored
for every registered virtual machine after it has been scanned for the �rst time. Like
the Package DB and Repository cached, the information stored in the Result Cache
is serialized using JSON and stored in an individual �le per virtual machine. An
exemplary excerpt of such a list is shown below 18.

[(...),
{:package=>"openssl", :architecture=>"amd64", '· · · :installed=>"1.0.1e-2+deb7u12", :latest=>"1.0.1e-2+deb7u17", '· · · :repository=>"54b16a91-ec30-4c8b-abe0-cbd870c768ea", :priority=>1},
(...)]

Excerpt from a list of results in the Result Cache showing the openssl package.

The Metadata DB is the most important database of the Update Checker, because it is
the link between the individual JSON �les described above. Internally, each registered
virtual machine and repository is assigned an internal identi�er. This identi�er is used
as the �le name for the JSON �les that build the Package DB, Repository Cache, and
Result chance, and thus it associates the �les with the represented entity. Additionally,
the Metadata DB also stores a list of enabled repositories for each virtual machine
18 No update was available for the openssh-server package used as an example throughout this section.

The openssl package (already included in the last snippet) is shown instead.

255



Chapter 6. Virtual Machine Security

and metadata further describing it, e.g., its architecture and release (the repository
con�guration), information about the owner to facilitate automatic noti�cations via
email about important �ndings, and timestamps of virtual machine imports, repository
cache updates, or scans for available updates that are important for expiring cached
information and thereby the for ensuring the currentness of the stored data. Contrary
to the other databases and caches above, the Metadata DB is implemented using a
SQLite3 database instead of JSON �les.

6.4.1.4 Scan Engine

The scan engine is the central component that scans a virtual machine for outdated
packages. This section describes the implementation of the actual scan process, the
interpretation of scan results, and the version comparison logic.

Scan Process

The scan method shown in Listing 6.11 is implementing the scan process. It is only
invoked when results are not available in the Result Cache19. This method consists of
three nested “loops” that are implemented using the map and reduce methods.

18 def scan(vm)
19 vm.packages.map do |arch, package_version|
20 package_version.map do |package, version|
21 repos = vm.repositories.reduce([]) do |result, repository|
22 if repository.packages.include? arch
23 repository_version = repository.packages[arch][package]
24 unless repository_version.nil? || repository_version == version
25 if Version.new(repository_version) > Version.new(version)
26 result << repository
27 end
28 end
29 end
30 result
31 end
32 repos.empty? ? nil : finding(package, arch, version, repos)
33 end
34 end.flatten.compact
35 end

Listing 6.11 Scan Engine: Scan Process. This method implements the scanning
process that determines outdated packages in virtual machines and the available
updated versions available in one or more of the repositories.

The innermost “loop” (Lines 21 to 31) returns a list of repositories that contain newer
version for a single package passed in the block parameters arch, package, and
version of the surrounding “loops” in Lines 19 and 20, respectively. It iterates over
all repositories of the virtual machine and checks whether the repository contains
packages of the desired architecture. This is necessary because not every repository
19 The corresponding logic that also has to ensure the Repository Cache is up-to-date before it calls scan

is not shown.
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contains packages for every architecture – dpkg uses separate repositories for each
architecture. If the repository contains any package of the desired architecture, the
method tries to retrieve the version of the desired package.

Only if the package is found and its version identi�er is not equal to the version
identi�er of the installed package – tested using a simple string comparison (Line 24),
the method uses a library for version comparison (see below) to determine if the
repository contains a newer version of the package (Line 25) and adds the repository
to the resulting list. Note that the package available in the repository might also be
older, so the string equality test is not su�cient.

The middle “loop” (Lines 20 to 33) iterates over all key-value pairs of a dictionary
mapping from the packages of a single architecture to their corresponding versions20

Both the architecture and the dictionary are passed in the block parameters of the
surrounding “loop” in Line 19. For each element, the innermost “loop” is executed. If
it returns one or more repositories, the result of calling the finding method (shown
below) is added to the resulting list of �ndings. The package’s name, architecture,
installed version and a list of repositories with newer package versions are passed as
arguments to that method.

Finally, the outer “loop” (Lines 19 to 34) iterates over the set of architectures of all
packages installed in the virtual machine and executes the middle “loop” for this
architecture. The resulting list of lists (a list of lists of �ndings) is �attened and all
nil values are removed (Line 34) before it is returned to the caller.

The findingmethod shown in Listing 6.12 creates a dictionary in the format described
in the last section (Lines 50 to 52). This dictionary contains information about a single
outdated package and is added to the result list of the scan process. It uses the package’s
name, architecture and installed version that are passed as arguments for the �rst
three �elds of the dictionary. For the remaining three �elds, it has to determine the
repository that contains the latest version of a package and has the highest priority
(smaller priority value). This is trivial for a single repository containing a newer
version of the package (Line 40), whereas it is a multi-step process for more than one
repository.

First, the latest available version of the package is determined using the sort_by
method with the library for version comparison. After sorting, the last repository
in the list contains the latest version of the package (Lines 42 to 44). What is left
is to determine the priority of the update. In the current version, this is done by
assigning each repository a priority using a rudimentary heuristic: packages provided
by repositories containing the word “security” in their URL are considered as high
priority updates, whereas packages from other repositories are considered as low
priority updates. The priority is expressed using the integer values 1 and 2, respectively.
Unfortunately, the priority is not considered by the sort_by method.

In the next step, all repositories providing the latest version of the package are de-
termined using a simple string comparison (Line 46). The list of repositories is then
20 The format of the package database is shown in the second last snippet showing the “Optimal data

structure for the Repository Cache”.
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37 def finding(package, arch, version, repos)
38 repo =
39 case repos.length
40 when 1 then repos.first
41 else
42 latest_version = repos
43 .sort_by { |repo| Version.new(repo.packages[arch][package]) }
44 .last.packages[arch][package]
45 repos
46 .select { |repo| repo.packages[arch][package] == latest_version }
47 .sort { |repo_a, repo_b| repo_a.priority <=> repo_b.priority }
48 .first
49 end
50 { package: package, architecture: arch, installed: version,
51 latest: repo.packages[arch][package], repository: repo.id,
52 priority: repo.priority }
53 end

Listing 6.12 Scan Engine: Creation of Result List Entries. This method is
responsible for creating dictionaries in the correct format for the result list of the
scan process.

sorted by their priority (Line 45) and the repository with the highest priority – the
lowest value and thus the �rst element – is selected (Lines 47 and 48). The latest
version of the package and the selected repository’s internal identi�er and priority
are then added to the dictionary.

Interpretation of Results

The raw list of outdated packages contains detailed information about the outdated
packages. However, for a quick examination this list contains too much information.
It can be easily condensed into meaningful numbers or simple lists. For example,
the number of outdated packages can be determined using vm.findings.length,
whereas a list of outdated packages can be retrieved using vm.findings.map {
|finding| finding[:package] }.

More meaningful than the total number of outdated packages or their names might
be the number of outdated packages grouped by priority. This information can be
retrieved using the update_count method shown in Listing 6.13. First, the list of
outdated packages is grouped by the priority assigned to the update. Then, the number
of updates is determined for each priority and a hash.

Version Comparison

One particular problem discovered during the implementation of the Update Checker
is the format of the version numbers used by the di�erent package management
systems and distributions, respectively. While most of the distributions use versions
composed of the �elds epoch, version and release, there are subtle di�erences between
the distributions, e.g., separators, format of the release �eld, etc. Even the versionomy
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55 def update_count(vm)
56 vm.findings
57 .group_by { |finding| finding[:priority] }
58 .map { |priority, list| [priority, list.length] }
59 .to_h
60 end

Listing 6.13 Scan Engine: Number of Updates grouped by Priority. This
method groups the available updates by priority and calculates the number of updates
for each priority.

gem, a Ruby library especially designed for version comparisons, failed to correctly
compare Debian version numbers.

The most obvious method is to use the dpkg binary itself to perform the version
comparison. Its command line interface provides an option for this speci�c use case:
--compare-versions. The drawback of this approach is the creation of a new
process for each comparison. This method can therefore not be used in the Update
Checker when the potentially high number of comparisons for checking even a single
virtual machine is considered.

The Update Checker uses a Ruby library named dpkg-ruby 21 that provides a native
extension for comparing versions. There even exists an older version of the library that
implements the comparison algorithm directly in the Ruby language without relying
on the native extension. Both versions of the library can be used with the Update
Checker. The Ruby-only version has the advantage of keeping the set of dependencies
smaller and is thus preferred, although it might be slightly slower compared to the
version using the native extension22. To compensate the potential loss of performance,
a simple string comparison is performed before the actual version comparison is
done (see Listing 6.11, Line 24). Only if the string comparison �nds di�erences, the
actual version comparison algorithm is used. The preceding string comparison thus
reduces the number of times the full-blown version comparison algorithm is invoked.
Additionally, the string comparison is much more e�cient than the version comparison
algorithm, which splits the version into its individual components (epoch, version,
and release) and compares those individually, whereby it considers the peculiarities
of some versioning schemes. The savings for packages that are not outdated should
outweigh the additional comparison for outdated packages, because in most cases
only a fraction of the packages are outdated. The library was slightly modi�ed to
make it compatible to all version numbers encountered in Debian and Fedora during
the implementation of the Update Checker.

6.4.1.5 Remote Importer

The Remote Importer that has been developed for easy registration of virtual machines
and updating of the information about these virtual machines. It gathers the required
21 Newer versions are called ruby-debian. This library seems to be developed by people from Debian, but

there is no real homepage for this library, except for an entry in Debian’s package database.
22 No performance evaluation was done to con�rm this guess.
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information for the import or update process directly in the respective virtual machine
using a Data Collector, compresses the information and transfers it to the Update
Checker. Finally, it initiates the registration of the virtual machine or the update of
the stored data regarding the virtual machine, respectively. The information gathered
by the Remote Importer includes package databases and repository con�guration �les.
Depending on the package management system, this information might also be the
output of package management tools that is captured in �les. The Data Collectors
provide an abstraction of the package management system, so the Remote Importer
can be used on with di�erent existing package management systems and easily adapted
to new ones. Implementations for the apt/dpkg and yum/rpm package management
systems are provided.

To interact with the update checker, the Remote Importer uses the XML-RPC API
provided by the Update Checker. This API provides the same set of features as the
command line interface that is provided for local usage. Both the command line
interface and the API can be used to query the number of available updates for a single
or multiple virtual machines or the list of outdated packages of a single virtual machine.
Furthermore, registering new virtual machines or updating the stored information of
virtual machines already registered is possible using both interfaces. The XML-RPC
API also facilitates the easy integration of the Update Checker with existing virtual
machine management systems, e.g., the ICS and the XGE.

6.4.2 Centralized Update Process

The tools for merging of the package database and detection of relation incompat-
ibilities between the updated base layer and a user layer are implemented in the
Python programming language. The implementation is tailored to the Debian Package
Manager dpkg, which is also used by other distributions based on Debian23. The
description starts with the determination of the relevant parts of the package database.
Afterwards, the merge algorithm for package databases is described. The section ends
with a description of the algorithm that detects relation incompatibilities.

6.4.2.1 Relevant Parts of the Package Database

The package database of dpkg is stored in /var/lib/dpkg and consists of several
parts. For the task at hand, the most relevant part is the status �le that is the central
part of the package database and contains the metadata for each package installed on
the system. Its format is described in the context of the Update Checker’s Machine
Importer (Section 6.4.1.1). The merge process of the status �le is described in the
next section.

Additional parts of the package database that are relevant for the centralized update
process are the info directory contains �le lists, checksums, lists of con�guration
�les, and installation/removal scripts for every package as well as the diversions

23 Support for other package management systems is possible by implementing a small compatibility
layer that enables reading and writing of the respective package databases.
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�le that contains records about �les from one package that have been replaced by �les
from another package. This enables preserving the changed �les when the original
package is updated.

The info directory contains a set of �les for each package that stores the information
listed above. This part of the package database must not be merged, because it always
represents the actual packages visible to the system. Because of the union mount
semantics, an older package installed in the user layer always hides the corresponding
package in the base layer, even if it is newer. In this case, the information in the
info directory is nevertheless correct, although this is an instance of a masking
incompatibility that will be detected by the merge process.

The diversions �le contains information about �les replaced by di�erent packages.
For each replaced �le, it stores the name of the package that replaced the �le, the
original name and the name of the backup �le. While the replacement of �les from
another package is a rare event during an update, it might occur when new packages
need to be installed within the scope of an update. This �le has to be merged using a
simple algorithm that is driven by the semantics of the union mounts. The merged
version of the �le is a copy of the version in the user layer with all entries from the
base layer’s version added that have no counterpart in the user layer’s version, i.e., in
case of con�icting entries the entry from the user layer is chosen. This corresponds
to the situation in the �le system: the replacement �le in the user layer hides the
replacement �le in the base layer.

6.4.2.2 Merging the Package Database

In the following, the term package database is used to refer to the status �le and the
term entry refers to the entire metadata of a single package that consists of a set of
�elds as described in Section 6.4.1.1.

The inputs of the merge algorithm are package databases from the old base layer, the
(updated) base layer, and the user layer. It works by determining all packages that
are updated, added or removed in the base layer. These packages are identi�ed by
comparing corresponding entries in the package databases of the base layer and the
old base layer. Then, it copies all entries that fall into none of the three categories
from the user layer’s package database to the resulting package database.

For each of the entries in the three categories, the algorithm does a series of checks to
determine which entry has to be copied to the resulting package database: the entry
from the user layer’s or the base layer’s package database. Additionally, these checks
described below discover masking incompatibilities.

Figure 6.11 shows the �ow chart for packages updated in the base layer. The �rst
step is to determine whether the entry in the user layer’s package database has been
modi�ed compared to the one in the old base layer. If the entries are equal, the �les of
that package exist only in the base layer and thus are visible in the composite disk
image. In this case, the base layer is compatible and the entry from the base layer’s
package database is copied to the resulting package database.
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Figure 6.11 Required Checks for Updated Packages. This flow chart shows
a number of tests that have to be performed for updated packages.

However, there are two rare cases in which the updated �les are not visible: If the user
uninstalled the package, the �les are hidden by corresponding whiteout �les in the
user layer. Furthermore, the user might have reinstalled the package afterwards using
the same version as the one installed in the old base layer. Both cases are instances
of a masking incompatibility. In order to detect this incompatibility, the existence
of either real �les belonging to the package or corresponding whiteout �les in the
user layer has to be veri�ed. The most simple approach is to check if a �le list of that
package exists in the /var/lib/dpkg/info directory of the user layer. If this �le
exists, the package is installed and the base layer is incompatible.

In case of a modi�ed entry, the package has either been updated, downgraded or
removed. In all three cases, the updated �les in the base layer are hidden in the
composite disk image, either by real �les belonging to the package or corresponding
whiteout �les. The entry from the user layer’s package database is copied to the
resulting package database. If the package was removed, the base layer is de�nitely
incompatible, whereas the installed versions need to be compared otherwise to deter-
mine the compatibility of the base layer. This comparison is described in a separate
�ow chart below.

Figure 6.12 shows the �ow chart for version comparison. The versions of the packages
installed in the base layer and the user layer are compared using the dpkg binary
with the --compare-versions option. If the version installed in the base layer is
greater than the version installed in the user layer, the base layer is incompatible,
because the modi�ed �les are hidden by their respective older versions in the user
layer. Otherwise, the base layer is compatible irrespective of the hidden �les, because
the version in the user layer is has at least the same version as the one in the base
layer.
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Figure 6.12 Version Comparison Check. This flow chart shows the test re-
quired to determine if an update is compatible, if the respective package is installed
in both the base and the user layers.

Figure 6.13 shows the �ow chart for packages added in the base layer. The �rst step
is to determine if a corresponding entry exists in the user layer’s package database.
If such an entry does not exist, the base layer is compatible and the entry from the
base layer’s package database is copied to the resulting package database. Even in the
rare case of the user having both installed the package and removed it afterwards,
a masking incompatibility is impossible. In this case, the package would have been
installed in the user layer, where it can be deleted. Consequently, no whiteout �les
would have been created that could hide the added package’s �les.
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Added
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Copy Base 
Layer Entry

Version 
Comparison

yes

Copy User 
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Figure 6.13 Required Checks for Added Packages. This flow chart shows
a number of tests that have to be performed for added packages.

If such an entry exists in the user layer’s package database, the added package is
already installed in the user layer. In this case, the �les added in the base layer are
hidden by the ones in the user layer. Thus, the entry from the usage layer’s package
database is copied to the resulting package database and the version comparison
described above is necessary to determine if the base layer is compatible.

Figure 6.14 shows the �ow chart for packages removed in the base layer. The �rst
step is to determine whether the entry in the user layer’s package database has been
modi�ed compared to the one in the old base layer. If the entries are equal, the package
was likely installed only in the base layer and thus can be removed. Therefore, the
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base layer is compatible and the entry from the base layer’s package database is copied
to the resulting package database.

However, one of the two rare cases described for updated packages can also cause
a masking incompatibility for removed packages: the removal and subsequent rein-
stallation of the package by the user. In this case, the removed package would still
be available in the composite disk image and the base layer would be incompatible.
Thus, the existence of �les belonging to this package needs to be checked in the same
way as for updated packages.

Entry Modified
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Copy User 
Layer Entry
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✔
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Copy Base 
Layer Entry

✗
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Figure 6.14 Required Checks for Removed Packages. This flow chart
shows a number of tests that have to be performed for removed packages.

In case of a modi�ed entry, the package has either been updated, downgraded or
removed. In all three cases, the entry from the user layer’s package database is copied
to the resulting package database. If the package was removed, the removal in the
base layer succeeded irrespective of the whiteout �les created when the user removed
the package. In this case the base layer is compatible. Otherwise the package is still
available in the composite disk image and the base image is not compatible.

6.4.2.3 Detecting Relation Incompatibilities

The easiest way to detect relation incompatibilities is to do a full constraint check,
i.e., check every package for unsatis�ed dependencies and emerging con�icts. This
can be a time consuming task for large package databases. Especially if only a few
packages were modi�ed this approach is not ideal. The current implementation uses
the dpkg binary for the version comparisons required to check constraints that specify
versions. A specialized Python library for version comparisons might help to improve
the performance of the full constraint check. Furthermore, during the development
of these tools some package databases with strange quirks were encountered, e.g.,
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packages con�icting with themselves. The full constraint check necessarily notices
these quirks and generates corresponding warnings that are typically false positives.

A more e�cient approach to check for relation incompatibilities is presented below. It
leverages the knowledge about all three involved package databases gained during
merging. This approach consists of two steps. In the �rst step, only the packages
that were added or updated are considered. For each of those packages, the algorithm
ensures that the dependencies are satis�ed and that no con�icting package is installed.

The second step considers the packages that where not changed during the update. For
each of those packages, the algorithm checks whether the lists of dependencies and
con�icting packages contain the names of changed packages, i.e., added, updated, or
removed packages. Only the constraints that concern changed packages are veri�ed,
whereas the remaining constraints are considered as satis�ed. By reducing the amount
of constraints that are checked, this approach in particular reduces the number of
time-consuming version comparisons.

6.4.3 Online Penetration Suite

The Online Penetration Suite is implemented in the Java programming language.
Virtual machines are controlled using the Java binding of the libvirt library, whereas
the Nessus vulnerability scanner is invoked using the Apache XML-RPC library and
the reports of the vulnerability scanners are processed and converted using the Java
API for XML Processing (JAXP).

6.4.3.1 Controlling the Vulnerability Scanners

Both OpenVAS and Nessus use a server component that is responsible for the actual
scan process, storage of scan results, etc. Before a virtual machine can be scanned,
these server components need to be started unless they are already running. When
the server component is running, the OPS just needs to initiate and monitor the actual
scan processes24.

The adapters use di�erent techniques to control and monitor the actual vulnerability
scanners. OpenVAS provides a command line interface that expects a test con�gura-
tion in the form of an XML �le. The corresponding adapter creates an appropriate
con�guration �le for the requested vulnerability scan and passes its name as an ar-
gument to the omp binary. Monitoring of OpenVAS is implemented by reading and
analyzing the output of the client. Nessus, on the other hand, provides an XML-RPC
API that is used to start and monitor the actual scan process. Both adapters contain
code to convert the proprietary report formats into the uni�ed OPS format that is
shown in the next section.

The adapters take care of selecting sensible default values for the myriad of options
both vulnerability scanners provide to adapt the scanning process. These options range
from options that in�uence a single test to options that enable or disable entire test
24 Optionally, the virtual machine itself needs to be started beforehand using the libvirt library.
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sets. This is done to guarantee a seamless scan process that is important because the
OPS is intended as an automated tool and scan processes must not fail or return false
results because of missing options. The preset values the adapters use are con�gurable
in speci�c con�guration �les.

6.4.3.2 Structure of the Reports

The summary report contains a summary of all detected vulnerabilities. An exemplary
report for a virtual machine with the hostname pentestvm0.local25that has been
scanned with both OpenVAS and Nessus is shown below. The virtual machine has two
vulnerabilities that have been assigned a high risk factor, three vulnerabilities with a
medium risk factor, and two vulnerabilities with a low risk factor. The remaining 31
vulnerabilities without an assigned risk factor are of less importance.

1 <summary>
2 <host>
3 <name>pentestvm0.local</name>
4 <scanners>
5 <scanner>OpenVAS</scanner>
6 <scanner>Nessus</scanner>
7 </scanners>
8 <findings>
9 <vulnerabilities>

10 <risk_factor>NONE</risk_factor>
11 <count>31</count>
12 </vulnerabilities>
13 <vulnerabilities>
14 <risk_factor>LOW</risk_factor>
15 <count>2</count>
16 </vulnerabilities>
17 <vulnerabilities>
18 <risk_factor>MEDIUM</risk_factor>
19 <count>3</count>
20 </vulnerabilities>
21 <vulnerabilities>
22 <risk_factor>HIGH</risk_factor>
23 <count>2</count>
24 </vulnerabilities>
25 </findings>
26 </host>
27 </summary>

Summary Report Created by the OPS for an Exemplary Virtual Machine.

The combined report contains the reports of all enabled vulnerability scanners in the
uni�ed OPS format. One of the vulnerabilities with a high risk factor is shown in
more detail in the excerpt of the combined report shown below. The report includes
important information that can be used to �x the vulnerability. The structure of the
combined report can also be seen in the excerpt: it is a collection of individual reports
generated for a speci�c virtual machine using a speci�c vulnerability scanner. In this
25 This machine has been started automatically by the OPS and is thus assigned a generated hostname.
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example, there is one virtual machine and two scanners, therefore two reports are
included in the combined report.

1 <reports>
2 <report>
3 <host>pentestvm0.local</host>
4 <scanner>OpenVAS</scanner>
5 <vulnerabilities>

(...)
6 <vulnerability>
7 <title>Microsoft Outlook SMB Attachment Remote Code Execution

Vulnerability (978212)</title>
'

8 <port>general/tcp</port>
9 <risk_factor>HIGH</risk_factor>

10 <description>
11 Overview: This host has critical security update missing

according to Microsoft Bulletin MS10-045.
'

(...)
12 CVE : CVE-2010-0266
13 BID : 41446
14 </description>
15 </vulnerability>

(...)
16 </vulnerabilities>
17 </report>
18 <report>
19 <host>pentestvm0.local</host>
20 <scanner>Nessus</scanner>
21 <vulnerabilities>

(...)
22 </vulnerabilities>
23 </report>
24 </reports>

Excerpt from the Combined Report Created by the OPS for an Exemplary Virtual Machine.

6.4.4 Security Monitoring

The various parts of the Security Monitoring System are implemented using various
programming languages and libraries that optimally �t the corresponding require-
ments. An overview of the implementation is given below. Further details can be
found in [16].

Java Applications are monitored with a set of sensors written in Java using the Java
Management Extensions of the JVM. Additional information about this kind of ap-
plications is gathered using btrace. System behavior is monitored both using user
space and kernel space sensors. The former are implemented in the Python language,
whereas the latter are implemented in C. The hypervisor is monitored using both
libvirt and libvmi [85], two generic libraries for interacting with the hypervisor, as
well as the QEMU Machine Protocol that is speci�c to the QEMU/KVM hypervisor.

The communication between the sensors and the Accept VM is abstracted by a set
of libraries provided for the C/C++, Python, and Java languages. For performance
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reasons, plain TCP connections are used instead of a message queuing system. The
events are encoded using the MessagePack [57] library.

The Action Framework is implemented in the Python language. If required, integration
options for interacting with the Action Framework from C/C++ or Java code exist.
Actions themselves are implemented using signed Python scripts. The signatures are
used to prevent attackers from abusing the Action Framework.

The ACCEPT-VM is secured using a combination of available security mechanisms:
Grsecurity [110], AppArmor [14], and AIDE [5] are used to implement PaX address
space protection, role-based access control, �le system integrity checks, kernel auditing
and executable protection. The Snort intrusion detection system is used to detect
network attacks against the ACCEPT-VM. If the QEMU/KVM hypervisor is used,
the processes of the virtual machines are protected using SELinux [104] in the host
operating system.

6.5 Experimental Results

In this section, the four proposals that aim to increase virtual machine security are
evaluated.

6.5.1 Update Checker

Two measurements have been conducted to evaluate the Update Checker. The �rst
measurement is a local measurement that evaluates the performance of the three major
components of the Update Checker: Machine Importers, Repository Importers and
Scan Engine. The second measurement tests the performance of the Remote Importer.

In the �rst measurement, three Debian GNU/Linux 6 and three Fedora 15 virtual
machines were used to evaluate the three components individually. The virtual
machines have di�erent numbers of installed packages to test how the components
deal with increasing package database sizes. The number of installed packages, enabled
repositories, and the average import and scan times out of 20 measurements are shown
in Table 6.4.

Table 6.4 Individual Component Benchmark. The table shows the result of
the evaluation of all Update Checker components using six di�erent virtual machines.

Average Execution Time (s)

Number of Number of Machine Repository Scan
ID Distribution Packages Repositories Importer Importer Engine

D1 Debian 563 2 0.04 2.39 0.44
D2 Debian 867 2 0.06 2.80 0.44
D3 Debian 1,493 2 0.07 2.68 0.78
F1 Fedora 591 2 0.03 13.59 0.38
F2 Fedora 1063 3 0.04 14.84 1.00
F3 Fedora 2,283 4 0.05 15.38 2.10
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In the �rst part of this measurement, the di�erent machine importers were tested. All
required �les, i.e., the package database and the repository con�guration, are copied
to the host the Update Checker is running on prior to the evaluation, thus network
communication is not part of the measurement. In the case of Fedora and rpm, the
rpm --query --all --queryformat ’%{nevra}\n’ command is executed on
the source machine to extract the list of installed packages including version identi�ers
from the package database and the list is copied to the host instead of the package
database itself. This workaround is required to deal with software incompatibilities26.
Since the list contains only the information the Update Checker requires, this approach
gives the rpm Machine Importer an advantage over the dpkg Machine Importer that
has to process the entire package database including unneeded information for the
Debian virtual machines. The results con�rm this assumption.

The second part of the measurement evaluates the time required to download and
parse the repository databases of all repositories enabled for the virtual machine
without using the repository cache. The times measured are thus arti�cial and are
only of little relevance for actual usage of the Update Checker, but can be used for
evaluating the Repository Importers. The time required for importing the Debian
repositories machines is quite stable. For the Fedora repositories, however, the import
time increases, certainly because of the increased number of enabled repositories. The
very bad performance of the Fedora Repository Importer in general is caused by the
use of an XML format for storing the repository database.

In the last part of the measurement, the algorithm that actually checks for updates is
evaluated. Again, the growing number of packages causes the increase of the execution
times. The reason for the worse results for Fedora are probably the longer and more
complex version numbers that can be found in Fedora, making the comparison harder
and more time-consuming.

Except for the time required by the Repository Importer for Fedora machines, the
measured values are promising. The relatively long time required for importing yum
repositories is compensated by the repository cache. It ensures that every repository
is downloaded and parsed only once during the its con�gurable validity period. In all
measurements above, each virtual machine was evaluated individually, i.e., all caches
were cleaned after every measurement. To evaluate the in�uence of the repository
cache, another measurement has been conducted that represents a more realistic
scenario. The same six machines used in the last measurement were scanned at once,
whereby the repository cache was active. The experiment was repeated 20 times and
the average times are shown in Figure 6.15a. The results show that the repository
cache is very e�ective in cutting down the time required to scan multiple virtual
machines for updates.

To evaluate the scalability of the Update Checker (and applicability for physical
machines), 115 physical nodes that are part of the MaRC cluster were imported into the
Update Checker. All machines were scanned at once using the repository cache. The
experiment was repeated 20 times and the time required to scan all virtual machines
was calculated. The results shown in Figure 6.15b provide evidence for the scalability
26 The version of rpm in Debian GNU/Linux 6 was not able to read the package database of Fedora 15.
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Figure 6.15 Benchmark of Complete Scan Processes. Chart a) shows the
time required to scan each of the six virtual machines D1 - D3 and F1 - F3 (see
Table 6.4) for updates with the Repository Cache enabled. The virtual machines are
already imported at the beginning of the measurement, but the repository cache
is empty. Chart b) shows the combined time required for scanning a set of 115
Debian GNU/Linux 5 machines for updates with the Repository Cache enabled. The
virtual machines are already imported at the beginning of the measurement and the
Repository Cache is primed.

of the Update Checker. The average scan time was 34.53 seconds for all 115 machines
or 0.30 seconds per machine.

The second measurement was conducted to measure the import time of the virtual
machines using the Remote Importer. This involves gathering all required �les, exe-
cuting rpm --query --all --queryformat ’%{nevra}\n’ in the case of rpm
based distributions, sending either the package database or the extracted package
list together with the repository con�guration to the Update Checker and the actual
import process. Each virtual machine was imported 10 imported 10 times. The results
are shown in Figure 6.16.

As expected, the duration of the import process grows with the number of installed
packages. Generally, the import process is faster for dpkg-based virtual machines than
for rpm-based virtual machines. The reason is certainly the use of the rpm binary to
extract the information from the package database. This step was not considered in
the �rst measurement.

6.5.2 Centralized Update Process

To evaluate the centralized update process the Virtualized Grid Computing use case
is revisited (see Section 4.5.3). The update of the base layer is comprised of three
updated and one added packages with a total disk usage of about 12 MiB27. Additionally,
the update layer contains about 40 MiB of dpkg metadata, e.g., package lists, the
compressed packages and the updated package database. Table 6.5 lists image �le sizes
27 In fact, this is actually the update that �xes the OpenSSH bug already mentioned in Section 6.3.2.4.
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Figure 6.16 Benchmark of the Remote Importer. This figure shows the time
required to import the six virtual machines D1 - D3 and F1 - F3 using the Remote
Importer.

and transfer times for the regular and layered virtual machine as well as the update
layer. It is a reproduction of Table 4.12 that is extended with the numbers for the
update layer (highlighted). The meaning of the di�erent transfer times is explained in
the description of the use case.

Table 6.5 Size and Transfer Time in a Single and a Multi Site Scenario.
Transfer times of virtual machine, both regular and layered, and an update layer
between compute nodes of a cluster and between two clusters at di�erent Grid
sites, optionally compressed. Extended reproduction of Table 4.12, the added line is
highlighted.

Transfer Time (s)

Single Site Multi Site

Image Size (MiB) Uncompressed Uncompressed Compressed

Regular Image 691.1 40.6 660.8 460.1
Base Layer 666.4 39.1 636.9 443.5
User Layer 67.7 14.4 101.5 91.6
Update Layer 72.3 15.1 106.2 100.1

Without update layers, every time the user updates his virtual machine and submits
a job to the Grid, the entire disk image of the virtual machine or the updated base
layer has to be copied to the particular execution hosts, because updating a virtual
machine invalidates all copies of the old version in images caches of execution hosts.
In this example, around 690 MiB or 666.4 MiB need to be copied to the execution
hosts28. With update layers, this is reduced to 72.3 MiB. The transfer time is reduced
from 660.8 seconds or 636.9 seconds to 106.2 seconds in the worst case. Applying the
changes in the update layer to the base layer takes additional 4.05 seconds for this
28 Perhaps even a little bit more, because of the additional package. The updated regular virtual machine

image and the updated base layer were unfortunately not included in the transfer measurements.
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update. Nevertheless, this is still much faster compared to copying the entire image
�les.

When the layered virtual machine is started with the updated base layer for the �rst
time, the package databases needs to be merged and the check for incompatibilities
needs to be done. For this virtual machine, both steps took 0.36 seconds in total. To
evaluate the scalability of the merge algorithm, a second measurement was conducted
with a user layer containing 1231 packages instead of 14 and the same base layer
and update layer. The time needed to merge the package database and check for
incompatibilities grew to 1.01 seconds in this case (all values are the means of 60
measurements).

6.5.3 Online Penetration Suite

The following section presents measurements related to the OPS. All tested systems
are Xen domU virtual machines running Debian GNU/Linux 6 (Squeeze) executed
on Intel Pentium 550 machines running at 3.4 GHz with 1 GiB of memory. The OPS
node is an Intel Xeon E5520 machine running at 2.26 GHz with 1 GiB of memory. All
systems are interconnected with switched fast Ethernet.

The �rst measurement evaluates the total runtime of the OPS depending on the number
of scanned virtual machines. The results of the measurement are shown in Figure 6.17.
The OPS used both vulnerability scanners in parallel while the number of scanned
virtual machines was increased with every run. To get a robust mean, 100 trials were
performed. Scanning took 684 seconds, 859 seconds, 1,056 seconds, and 1,279 seconds
on average for one, two, three, and four scanned virtual machines. The scan time can
probably be reduced by adapting the con�guration of the vulnerability scanners to
the scanned virtual machines, i.e., disable scanning for Windows vulnerabilities in
Linux virtual machines.

The runtime obviously increases linearly with the number of tested systems and it is
more e�cient to scan multiple virtual machines in parallel instead of scanning them
sequentially. This results con�rms the conclusion that scanning virtual machines
as part of continuous maintenance operations is more sensible than scanning them
shortly before deployment, because the former approach allows to scan them in
batches of multiple virtual machines.

In order to evaluate the e�ectiveness of the OPS, multiple scans of virtual machines
running di�erent versions of Debian GNU/Linux were conducted. The unpatched
release versions of Debian GNU/Linux 4 (Etch, released April 2007), 5 (Lenny, released
February 2009), 6 (Squeeze, released February 2011) and 7 (Wheezy, released May 2013)
were used for this test. The results are shown in Table 6.6.

The OPS successfully revealed a number of security vulnerabilities in all tested ver-
sions, including two high-risk vulnerabilities that are present in all versions. After a
detailed examination of the results, the high-risk vulnerabilities are false-positives29.
29 A Windows vulnerability and a skipped check that detects a vulnerability in the network switch a

host is connected two.

272



6.5. Experimental Results

S
ca

n
 T

im
e 

(M
)

5

10

15

20

25

Trials

0 10 20 30 40 50 60 70 80 90 100

1 VM 2 VMs 3 VMs 4 VMs

Figure 6.17 OPS Scan Times. This figure shows the time the OPS needs for
scanning one to four virtual machines for vulnerabilities.

Table 6.6 OPS Scan Results for Various Debian Versions. Number of secu-
rity vulnerabilities the OPS detected in di�erent versions of Debian GNU/Linux.

Risk Level

Operating System Version None Low Medium High

Debian GNU/Linux 4 (Etch) 14 2 0 2
Debian GNU/Linux 5 (Lenny) 43 2 3 2
Debian GNU/Linux 6 (Squeeze) 44 2 3 2
Debian GNU/Linux 7 (Wheezy) 43 2 3 2

The medium-risk vulnerabilities are an activated Zeroconf daemon (avahi) and two
problems in the TCP stack: implementation of TCP timestamps30 and a possible pre-
dictability of TCP/IP Initial Sequence Numbers. The oldest release is not a�ected by
these vulnerabilities because the avahi daemon was not activated by default and an
older kernel version is used. The low-risk vulnerabilities are the answering of ICMP
timestamp requests31 and support for password authentication for SSH connections.

6.5.4 Security Monitoring

In this section, a performance evaluation for the entire monitoring system is presented:
a measurement of the round trip time, i.e., the time between the generation of an event
by a sensor and the execution of a resulting action. Further measurements, e.g., sensor
overhead, performance of the CEP engine and Event Store, can be found in [16].

To demonstrate that the proposed monitoring system can be used in a real world
setting, the di�erence between the creation time of an event created by a sensor and

30 This might allow an attacker to compute the uptime of the system under some circumstances. Using
this information, he might be able to draw conclusions about the patch level of the system.

31 This enables an attacker to learn the system time that may help him to defeat time-based authentication
protocols.
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the execution time of an action triggered by that event is calculated. This is regarded
as round trip time through the entire monitoring system.

A sensor explicitly designed for this benchmark sends an event consisting of an in-
creasing numeric identi�er and the current time of the guest machine. The experiment
is based on a simple select-all EPA to redirect this event to the Action Framework.
An action that compares the current time to the creation time stored in the event is
selected by the Action Framework and sent to a user space actor for execution. There,
the time values are then compared and the resulting round trip time is calculated. The
actor is placed in the same virtual machine as the sensor to avoid inaccuracies caused
by imperfect clock synchronization.

Figure 6.18 shows the round trip time measured if the sensor’s event generation rate
is limited to a single event per second. In this idle load situation, the system has an
average reaction time of 0.007 seconds.
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Figure 6.18 Round-Trip Time (Limited Event Rate). This chart shows the
round trip time through the entire monitoring system under idle load. (Source: [16])

Figure 6.19 shows the round trip time measured if the sensor’s event generation
rate is unlimited. This results in about 23,700 actions triggered per second. Since
this experiment investigates the monitoring system at the boundaries of the virtual
hardware with a triggering rate of over 23,000 actions per second, a mean value of 1.82
seconds for the round trip time is still within an acceptable timeframe and indicates
how well the monitoring system operates under heavy load.

6.6 Summary

In this chapter, four proposals have been introduced that work hand in hand to improve
the security of virtual machines in the continuous maintenance, deployment, and
execution phases of their lifecycle. These phases are the most important ones when
with regard to security and thus the proposals help to increase the overall security of
Virtualized Grid and Cloud Computing environments.

The �rst proposal is the Update Checker that is able to scans virtual machines for
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Figure 6.19 Round-Trip Time (Unlimited Event Rate). This chart shows the
round trip time through the entire monitoring system under heavy load. (Source: [16])

outdated software in an e�cient manner, which is a challenging task especially for
dormant virtual machines. It relies on a central database containing the information
from the package databases of the individual virtual machines. Using this database, it
is able to perform its scan even for dormant virtual machines.

The second proposal is a concept for centrally updating virtual machines using the
image composition technique presented in Chapter 4. This proposal solves the scala-
bility problem of installing updates for large numbers of virtual machines by limiting
the installation to a single or a few base layers. Although this proposal has some
limitations, the concept and the accompanying tools are a valuable addition to an
administrator’s toolset for cases where a large number of virtual machines need to be
updated in a very short timeframe.

The third proposal is the Online Penetration Suite that integrates vulnerability scanners
into the lifecycle of virtual machines either as part of the continuous maintenance
or as interim stage in the deployment process. With the help of the vulnerability
scanners, miscon�gurations or insecure services can be detected in virtual machines
before an attacker is able to exploit them.

The last proposal in this chapter is the concept of a security monitoring system for
virtual machines that also covers the execution phase. The system is able to detect,
analyze, and handle security anomalies including both known and yet unknown
security vulnerabilities by using a system of sensors at the hypervisor, guest OS, and
application level, CEP technology for detecting anomalies, and a �exible framework
for responding to those anomalies.

All four proposals have demonstrated satisfying performance in a variety of measure-
ments.
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“All fixed set pa�erns are incapable of adaptability or pliability.
The truth is outside of all fixed pa�erns.”

Bruce Lee (1940–1973)

7
Virtual Machine Migration

7.1 Introduction

Migration of virtual machines is an enabling technology in Virtualized Grid and
Cloud Computing environments. Its main purpose is load balancing to optimize
resource usage with regard to either performance of the virtual machines or energy
conservation. Virtual machine performance is degraded if either the number of virtual
machines on a single execution host is too high or the combined CPU, memory and
I/O utilization is close to the capacity of the execution host. In such a case, some of
the virtual machines can be moved to a less loaded execution host. Contrary, it is
possible to conserve energy by consolidating virtual machines from multiple slightly
loaded execution hosts on a smaller number of (higher loaded) executions hosts and
turning of unused execution hosts [62].

The migration of virtual machines is also useful for planned maintenance of execution
hosts in the presence of long-running virtual machines that cannot be shut down.
Additionally, the migration of virtual machines is advantageous in case of hardware
problems. In both cases, it allows to migrate the virtual machine to another execution
host and carry out the maintenance or repair operations on the original execution
host.

The challenge with virtual machine migration is the desire to do live migrations,
i.e., migrating a virtual machine while it is running without any downtimes visible
to the users. This is achieved by keeping the network connections open during
the migration process. The live migration is a completely transparent process from
the user’s perspective. Live migration poses additional challenges when the virtual
machines use local storage for their associated virtual disks instead of shared storage:
the complete disk state needs to be transferred to the destination host to prevent
residual dependencies on the source host. This is complicated by the fact that the

277



Chapter 7. Virtual Machine Migration

virtual machines keep running and are hence altering the disk state during the transfer
process. In the remainder of this chapter, the local storage case is studied.

In the targeted Virtualized Grid and Cloud Computing environments, each virtual
machine is equipped with an ephemeral disk that loses its content after shutdown.
Important data is therefore not stored inside the virtual machine, but on external
storage systems. This peculiarity facilitates using a composite disk image as virtual
disk: a composition of the actual virtual machine image and a temporary layer. The
use of a composite disk image guarantees that the virtual machine image is never
modi�ed during the runtime of the virtual machine, because all modi�cations to the
virtual disk are redirected to the temporary layer. With regard to live migration, this is
a signi�cant advantage: the migration process only needs to take care of transferring
the temporary layer. The actual virtual machine image can be transferred to the
destination host in advance1.

In this chapter, a concept for e�cient synchronization of virtual disks during live
migrations is presented. The �rst technology this concept is based upon is the image
composition proposed in Chapter 4. Three di�erent con�gurations for composite
disk images are presented and assessed with regard to e�cient live migration: a
memory-only, a disk-based, and a hybrid con�guration.

Most hypervisors are not implemented with local storage of disk images in mind
when it comes to live migration. Consequently, they do not take care of transferring
the virtual machines’ disks between execution hosts, but instead rely on a shared
storage solution that is accessible by both execution hosts. The second technology the
proposed concept is based on is a disk synchronization mechanism originally designed
for high availability clusters. It ensures seamless and transparent synchronization of
disk images prior to and during the migration of a virtual machine.

The presented concept is implemented in the XGE [147, 138] that provides a basic
infrastructure for managing a cluster of virtual machines: machines can be started and
stopped per job, and user speci�c disk images can be deployed to the corresponding
execution hosts before the machines are started. The XGE o�ers a live migration
facility to migrate virtual machines between execution hosts during runtime. The
novel concept of virtual machine image synchronization introduced in this chapter
enhances the current migration mechanism and allows cheaper and faster virtual
machine migrations to ease load balancing.

The live migration of a virtual machine obviously deals with running virtual ma-
chines, and thus is focusing the execution phase in the lifecycle of a virtual machine.
Furthermore, the live migration of a virtual machine can be seen as the deployment
of a running virtual machine on another host, whereby virtual machines are nor-
mally deployed when they are not running. This particularly applies to the migration
concept based on image composition: the virtual machine image does not have to
be transferred to the target host from the source host of the migration, but can be
deployed using the regular means of image deployment. Thus, the concept proposed
in this chapter also a�ects the deployment phase in the lifecycle. The phases in the
1 Actually, it might not even be required to transfer the virtual machine at all, if it is already cached in

an Image Cache at the destination host.
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lifecycle of a virtual machine that are related to using the proposed migration concept
are shown in Figure 7.1.

Undeployment

Continuous
Maintenance

Deployment

Execution

Creation

Deletion

Storage

Figure 7.1 Related Virtual Machine Lifecycle Phases. The primary focus
of virtual machine migration regarding the lifecycle of a virtual machine is obviously
the execution phase. Since the proposed migration approach can use the regular
deployment mechanism to transfer read-only parts to the destination node, the
deployment phase is a�ected as well.

Parts of this chapter have been published in [65, 162].

7.2 Related Work

7.2.1 Virtual Machine Migration

One of the �rst works considering migration of virtual machines has been published
by Kozuch et al. [81]. The basic motivation of the proposal is mobility of users: a
virtual machine is suspended on the source hardware and resumed on the destination
host. Local state, memory pages and persistent storage are copied using distributed
�le systems like NFS or Coda [134]. While this approach targets users who want to
continue their work on di�erent locations without the need for carrying the physical
hardware, e.g., a laptop, with them, it does not �t into a high-performance computing
environment where the migration should have a minimal impact on the migrated
virtual machine. Nevertheless, a slightly modi�ed version of the approach that copies
the persistent storage directly to the target machine instead of using shared storage
would be a very simple and e�cient solution for scenarios tolerating longer downtimes
of virtual machines, e.g., batch jobs running in virtual machines.
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7.2.2 Live Migration in Local Networks

Fundamental research on virtual machine live migration was done by Clark et al. [28].
Their approach is based on the observation that write accesses to main memory are
concentrated to a small number of pages (the ‘writable working set’) for a certain
time period. Hence, they pre-copy the memory pages to the destination host while
the virtual machine keeps running on the source host. Dirty memory pages are
re-transferred in several iterations until the remaining set of dirty pages is small
enough or a maximum number of iterations is reached. Then, the virtual machine is
suspended, all dirty pages and the internal state are copied, and the virtual machine is
resumed on the target host. This solution has been designed for live migration in local
networks assuming shared storage between the virtual machines. Xen has adopted
this approach.

An alternative approach is taken by Hines et al. [66]: instead of pre-copying the
memory pages before migration, only the internal state is transmitted, and the virtual
machine is resumed immediately at the destination. Memory pages are copied on
demand as well as by prepaging techniques, reducing the number of costly page faults
over the network. The authors showed that the post-copy approach can improve some
metrics, such as the total number of transferred pages, the total migration time and
the network overhead compared to the pre-copy approach. An interesting mechanism
is the ‘dynamic self-ballooning’ method introduced in their work: unused memory
pages can be reclaimed from the virtual machine, which reduces the total number of
pages that must be copied during a migration process and thus yielding a migration
speed up.

Voorsluys et al. [163] have extensively analyzed and evaluated the cost of virtual
machine live migration in a Cloud environment. A number of case studies with
representative workloads were executed to measure the performance impact on the
applications running inside a virtual machine during live migration. The results
show that the impact of live migration on a heavy loaded virtual machine cannot be
neglected especially when service level agreements need to be met. Live migration
of virtual machines with a slightly reduced load is relatively uncritical, and the most
stringent service level agreements (99th percentile) can still be met.

7.2.3 Storage Migration

Bradford et al. [22] and Luo et al. [92] propose mechanisms for entire system migration
including local persistent state. Both use special disk drivers intercepting disk writes
and reads to make the transfer of the local state possible during live migration.

Bradford et al. [22] use a two-phase transfer: �rst, the complete disk image is copied
from source to destination while all new write operations are recorded and sent as
‘deltas’ to the destination in parallel. The second phase consists of migrating the main
memory and the CPU state via the Xen migration mechanism and to apply all deltas to
the disk image on the destination. The virtual machine is resumed once Xen migration
has �nished, but all I/O operations must be blocked until the application of the deltas
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is complete. The authors showed that in the majority of cases the application of deltas
is �nished before the Xen migration and hence no additional downtime is observed.
Nevertheless, there are workloads (especially write intensive workloads) that can
cause a signi�cant increase of downtime. In addition, write intensive workloads need
to be throttled during migration if the write rate exceeds the network bandwidth,
which would otherwise prevent the migration process from progressing.

Luo et al. [92] propose a three-phase migration approach. In the pre-copy phase, the
disk image is copied incrementally to the destination host (similar to the mechanism
used for transferring the memory pages during Xen live migration). Dirty blocks are
tracked using a block bitmap and retransferred in subsequent iterations. In the next
phase, the virtual machine is suspended, the block bitmap is copied to the destination
and the virtual machine is resumed immediately without transferring the remaining
dirty blocks. In the third phase - the post-copy phase - a special disk driver intercepts
all disk accesses and copies the missing blocks from the source host on demand. The
main drawback of this solution is its dependence on the source host. If the source
host (or the network connection between source and destination) crashes before all
remaining dirty blocks are transferred, the virtual machine cannot continue to run
since the disk image is not consistent. Such a situation cannot occur in Bradford et
al.’s approach [22].

Sapuntzakis et al. [132] present a whole-machine migration process including local
storage. They use so-called ‘capsules’ that encapsulate a machine’s state and can be
moved between di�erent machines. The main memory and CPU state is transferred
o�ine (the machine is suspended, the state is copied to the destination and the machine
is resumed), which takes several minutes even over a fast link and thus renders this
approach useless for live migration scenarios in Cloud environments. Disk images are
copied only on demand, reducing the total migration time at the price of a possibly
in�nite dependence on the source host.

7.2.4 Image Deployment

Most research on disk image deployment was conducted in the context of virtual
machine migration. During the migration process, the deployment usually consists
of a one-to-one relation: the disk images need to be transferred from the source to
the destination. However, this area represents only a small fraction of use cases for
image deployment. Schmidt et al. [138] analyzed and compared di�erent approaches
for distributing images to a large number of destinations in a Cloud environment.

7.3 Design

Both Virtualized Grid and Cloud Computing environments are very dynamic: virtual
machines are constantly started on execution hosts and stopped again. In such an
environment, the possibility of migrating virtual machine between di�ered execution
hosts is an essential feature: it enables dynamic load balancing, energy e�cient
machine utilization, and ease of maintenance. An important property of the employed

281



Chapter 7. Virtual Machine Migration

migration mechanism is transparency: neither should the user notice that his virtual
machine is being migrated, nor should the virtual machine’s operation be interrupted
during the migration process.

Most live migration implementations, e.g., the Xen migration facility, do not handle
the transfer of virtual disks between the source and target host of the migration.
Consequently, virtual disks are assumed to be located on a shared medium that can be
accessed from both the source and the destination host involved in a live migration.
This approach leads to several problems, especially in Virtualized Grid and Cloud
Computing environments:

• Accessing virtual disks via network always introduces a performance penalty
compared to accessing virtual disks stored locally.

• Each virtual machine depends on the shared storage facility and a operational
network connection to work properly.

• Each instance of a virtual machine needs its own working copy of an image
�le due to local modi�cations, although in a Cloud environment many virtual
machines might share the same image �le.

A solution that is better suited to the requirements of a Virtualized Grid or Cloud
Computing environment should allow a virtual machine to access its virtual disks
locally during normal operation. With regard to the live migration, this implies the
need for storage migration in addition to the migration of main memory and CPU
state provided by the hypervisor. The storage migration has to be implemented in
a manner that it only a�ects the virtual machine’s performance during a migration
process in a negligible way.

7.3.1 Virtual Machine Image Composition

As already stated, all data written to the ephemeral disk of a virtual machine in a
Virtualized Grid or Cloud Computing environment is lost after the virtual machine
is shut down. Thus, the virtual disk can divided into two parts: the actual virtual
machine image that contains the operating system and applications and the writable
part that contains all data written during the virtual machine’s runtime. If the virtual
machine image is never modi�ed, only the writable part is subject to the storage
migration, whereas the virtual machine image can be copied to the target host of a
live migration using regular means.

The virtual machine image composition approach proposed in Chapter 4 facilitates
dividing a virtual disk in exactly the way described above. A virtual machine image is
used as read-only layer in the composition, whereas a writable temporary layer is used
to capture all modi�cations to the virtual disk. There are three potential con�gurations
for composite disk images that are reasonable with regard to the live migration:

Memory-only Con�guration — In the �rst con�guration shown in Figure 7.2a,
the virtual disk is composed of the virtual machine image and a RAM disk used
as writable layer. The main advantage of this con�guration is that the setup is
transparent to live migration: since all modi�cations to the virtual disk reside
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in main memory, they are transferred to the target host by the normal memory
copy process without requiring any special measures. A positive side e�ect
from the virtual machine’s point of view is the increased I/O performance for
disk accesses. For this setup to work properly, a su�ciently large amount of
RAM needs to be allocated to the virtual machine. However, there are two
kinds of workloads that are not well suited for this approach: memory intensive
workloads that do not leave memory for the writable layer of the virtual disk
and workloads writing much data to the virtual disk.

Disk-based Con�guration — In the second con�guration shown in Figure 7.2b,
the virtual disk is composed of the virtual machine image and a temporary disk
image used as writable layer. It is better suited to workloads that write lots of
data to the virtual disk. Using this con�guration, the disk writes do not clutter
up the main memory.

Hybrid Con�guration — In the last con�guration shown in Figure 7.2c, the virtual
disk is again composed of the virtual machine image and a RAM disk used as
writable layer. Contrary to the memory-only con�guration, the RAM disk is
much bigger and a swap partition residing in a temporary disk image is used as
backing memory. This has the advantage of supporting memory intensive as
well as disk write intensive workloads. All data written to the writable layer
and not accessed again for some time will be swapped out to the temporary
disk image and thus the main memory does not get �lled up with unused �le
system content.

The challenge with the last two con�gurations is that they are not transparent to live
migration. Most hypervisor implementations do not support live migration of virtual
machines with local persistent storage, but instead rely on a shared storage system,
e.g., Network File System (NFS), internet Small Computer System Interface (iSCSI) or
ATA over Ethernet (AoE). A virtual disk must be accessible from both the source and
target host to be able to migrate a virtual machine. However, for performance reasons
it is desirable that a virtual machine has local access to its disk images. Consequently,
a mechanism is needed for seamlessly transferring the disk images to a new host.

7.3.2 Disk Image Synchronization

Using local persistent storage poses some challenges when performing live migration
of virtual machines. The main problem is to transfer a consistent state of the virtual
disk to the destination host while the virtual machine keeps running and thus is
altering the virtual disk’s state. Therefore, the task is divided into two parts: copying
the data and tracking changes to the data already copied (and somehow send them to
the destination host).

The synchronization mechanism proposed in this paper works as follows: at the
beginning of the migration process, the source host starts to copy the disk image to
the destination. In parallel, all subsequent disk writes from the virtual machine to be
migrated are trapped and issued synchronously to the local and the remote disk image.
Synchronously means that the acknowledgment of the disk write is delayed until the
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Figure 7.2 Composite Disk Image Configurations. This figure shows three
di�erent configurations for the composition of virtual disks that are reasonable with
regard to live migration of virtual machines.

remote host has con�rmed it. Once the background copy operation is �nished, the
normal live migration process is started, and during the entire live migration process,
the two disk images operate in the synchronized mode. After the virtual machine is
resumed on the destination host, the disk images are decoupled, and no dependence
on the source host remains.

To perform the actual synchronization, the DRBD [88] kernel module is used; it is
integrated into the mainline Linux kernel since release 2.6.33. DRBD is designed for
high availability clusters mirroring a disk from the primary host to a secondary backup
host and thus acting as a network based RAID-1. Figure 7.3 shows the design of the
module. It presents itself to the kernel as a disk driver and thus allows a maximum
of �exibility: it does neither pose restrictions on the �le system used above nor the
underlying disk driver managing the actual disk accesses. And it is transparent to
the kernel block device facilities, which means that bu�ering and disk scheduling
are left to the kernel as usual. The module can operate in two modes: standalone
and synchronized. In standalone mode, all disk accesses are simply passed to the
underlying disk driver. In synchronized mode, disk writes are both passed to the
underlying disk driver and sent to the backup machine via a TCP connection. Disk
reads are served locally.

Although designed for a high availability setup where disks are mirrored across the
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Figure 7.3 DRBD Module Overview. This figure shows an overview of the
DRBD module in synchronized mode. All writes operations on the disk of the primary
server (le�) are send to the secondary server (right) and executed on its disk as well.
(Source: [88])

network during normal operation, the DRBD module can be integrated into the live
migration process for migrating local persistent storage. The source host takes the
role of the primary server, and the destination host takes the role of the secondary
server. During normal operation, the source host runs in standalone mode and thus
writes are performed only on its local disk without any dependence on other hosts.
During live migration, the DRBD driver is put into synchronized mode, which causes
all disk writes to be performed synchronously on both hosts while the entire disk
is synchronized in the background. Once the migration is �nished and the virtual
machine is resumed on the destination host, the DRBD driver on the destination
host is put into standalone mode, and the source host is disconnected, removing all
dependencies between the two execution hosts.

This concept has several advantages. First, there is nearly no performance overhead
during normal operation of a virtual machine, because all disk writes are performed
locally in the standalone mode of the DRBD driver. Second, the solution is reliable: if
a migration fails, the virtual machine can keep running on the source host, and due
to the synchronous writes on both hosts, the virtual machine has a consistent disk
state on the destination host after a successful migration. Furthermore, there are no
residual dependencies: once the virtual machine is resumed on the destination host,
no dependency on the source hosts remains. In particular, no disk writes are ever
issued on an inconsistent disk (such as, for example, in the approach of Luo et al. [92]).
Finally, the synchronization of virtual disks is completely transparent to the running
virtual machine and the mechanism is hypervisor-independent and can thus be used
with any hypervisor that supports live migration.

The total migration time is increased compared to a memory-only migration, whereby
the additional time grows linearly with the size of the disk image that needs to be
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transferred to the destination host. Fortunately, the use of virtual machine image
composition reduces the amount of data to be synchronized by separating read-only
from writable parts of the virtual disk. The virtual machine image – the read-only
part – can be fetched from a separate image pool in parallel or might even be already
cached at the destination host so that no extra copy process is needed. Furthermore,
DRBD allows for checksum-based synchronization, i.e., only blocks that di�er between
source and destination are transferred. If sparse image �les are used on both sides, all
unused blocks are implicitly zero-�lled and are thus identical on both sides, reducing
the total amount of data to copy.

Background disk synchronization and the transfer of the main memory are performed
sequentially, so that they do not a�ect each other in a counterproductive way: since
both tasks generate network tra�c, the memory dirtying rate would exceed the
transfer rate (due to the parallel disk synchronization) much faster, resulting in the
abort of the iterative copy phase and thus a longer downtime of the virtual machine.
Furthermore, disk synchronization usually takes much longer than the memory copy
process and thus an exact timing would be di�cult.

The amount of bandwidth consumed by background synchronization can be dynam-
ically con�gured in the DRBD driver. This enables the administrator to �nd an
appropriate trade-o� between total migration time and performance degradation of
the virtual machine due to high network consumption. Write intensive workloads
are implicitly throttled by the synchronous nature of the disk writes, such that the
disk write rate never exceeds the network transfer rate, which would render any
disk synchronization mechanism useless. Bradford et al. [22] employ explicit write
throttling whenever the write rate exceeds a prede�ned threshold. Luo et al. [92] stop
their pre-copy phase proactively if the disk dirty rate is higher than the transfer rate,
resulting in a much longer post-copy phase where the destination host still depends
on the source host and the virtual machine runs with decreased performance.

No additional downtime of the virtual machine is introduced, because the virtual
machine can be resumed without any further delay once the live migration process of
the hypervisor has �nished. In contrast, the approach of Bradford et al. [22] delays all
disk I/O of the virtual machine until the remaining writes are applied to the disk on the
destination host. This can cause an additional delay for write-intensive workloads.

7.4 Implementation

The synchronization mechanism using DRBD devices has been implemented in the
XGE, an open source Virtual Machine Manager. The XGE is written in the Python
programming language, and thus the controller that handles the synchronization
mechanism has also been written in Python. The current implementation works with
Xen as the back end hypervisor, although most of the code is not depending on Xen.
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7.4.1 DRBD Device Configuration

A two-node setup consists of a pair of DRBD devices that are identi�ed by their
path in the �le system. Additionally, the DRBD endpoints communicate via two
separate TCP connections, and thus they have to agree on port numbers for both
sides. Consequently, a hostname, port number and path identify a DRBD endpoint.
To reduce the global con�guration overhead, the nodes manage their resources locally
(see next section). The actual device names are abstracted by symbolic links.

In this context, DRBD devices work in di�erent modes throughout their lifetime:
usually, a DRBD device runs in standalone mode as a pure bypass to the backing block
device. In this mode, disk I/O performs nearly with native speed. In the pre-migration
phase, the DRBD device on the source host is connected to the endpoint on the
destination host, and the pair of devices runs in primary/secondary mode during the
initial synchronization, whereby only the source node is allowed to write to the device.
Just before the actual migration starts, the devices are put into primary/primary mode.
This is necessary because Xen checks for write access on all associated block devices
before initiating a live migration. From the devices’ point of view, this mode allows
both ends to issue write requests simultaneously. However, this will never happen
due to the nature of a virtual machine migration: a virtual machine is always running
on a single host and thus will always access the device only through one endpoint at
a time.

7.4.2 Node Setup

Apart from kernel and initial RAM �le system, a virtual machine has one or more
associated virtual disks: the actual virtual machine image, a temporary disk image
used as writable disk layer – unless a RAM disk is used as writable layer – and possibly
a separate temporary disk image used as swap partition. All of these virtual disks may
be partitions on physical devices, LVM logical volumes, or images �les – the choice is
left to the XGE con�guration.

The virtual machine image is never altered by the virtual machine because it is only
used as a read-only layer in a composite image. Consequently, all instances on one
execution host using the same virtual machine image can share a single copy (see
Section 4.3). When needed for the �rst time, the virtual machine image is downloaded
once, e.g., via BitTorrent, and cached in a local image pool. All writable virtual disks
are attached to DRBD devices so that all I/O is intercepted by the DRBD driver. Each
virtual machine has a folder that contains (symbolic links to) all its virtual disks. Due
to the symbolic links, the virtual disks’ names can easily be kept consistent within
the cluster, which is important for live migration, without the need for all involved
nodes to use the same actual device names, which would impose a large administrative
overhead. On virtual machine start, the writable virtual disks are empty.

Each execution host in the XGE cluster runs an image daemon (imaged). The image
daemon is responsible for downloading and caching the virtual machine images that
are used as read-only layers and for managing the DRBD devices.
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7.4.3 Migration Process

To initiate the live migration of a virtual machine from a source to a destination host,
the XGE running on the head node performs the following steps. It contacts the image
daemons on both hosts and instructs them to prepare the migration. The source hosts
responds with the port numbers used by the DRBD devices of the corresponding
virtual disks. The destination host allocates DRBD devices, attaches LVM logical
volumes or disk images, chooses free ports to use for the synchronization, and sends
them back to the head node as well.

The head node then communicates the con�guration information to both hosts so that
they can update their DRBD con�guration accordingly and connect the corresponding
DRBD endpoints. When the endpoints are connected, the synchronization starts in
primary/secondary mode. Finally, once the synchronization is �nished, the DRBD
devices on the destination host are put into primary mode.

At this point the regular Xen live migration process is started. When the live migration
is completed successfully, the XGE instructs the source host to disconnect the DRBD
devices corresponding to the migrated virtual machine. This ensures that the DRBD
devices on the destination host run in standalone mode and thus with nearly native
I/O speed. Additionally, the source host frees all remaining resources of the migrated
virtual machine, i.e., devices, ports, and disk images, after being noti�ed about the
successful migration by the XGE.

In case of an error, the virtual machine continues to run on the source host. The
XGE instructs the source host to put the DRBD device back into standalone mode
for optimal performance. Furthermore, the destination host is instructed to free all
resources that correspond to the failed migration attempt, i.e., devices, ports, and disk
images. Afterwards, a new attempt to migrate the virtual machine can be made.

Although the Xen hypervisor provides DRBD speci�c hooks that manage the mode
transitions (primary/secondary to primary/primary and back) of DRBD based virtual
disks automatically during a live migration, these hooks are not used in the implemen-
tation. There are two reasons for this decision. First, the implementation should be
independent of the hypervisor and should thus not rely on Xen speci�c features. Sec-
ond, the association between the source and the target of a migration is dynamically
established for the live migration. Consequently, several con�guration tasks have to
be executed before actually being able to set the devices into primary/primary mode,
which require a much �ner grained control over the devices. The mode transitions
are simply integrated into the implementation as a �nal step before migration.

7.5 Experimental Results

In this section, the impact of disk synchronization on the total migration time and
on the performance of the migrated virtual machine is evaluated in three di�erent
measurements: the synchronization of an idle disk image, a live migration of a virtual
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machine using local storage while it compiles a Linux kernel, and the evaluation of
the overhead induced by the DRBD driver in standalone mode.

All measurements have been conducted on a set of cluster nodes on MaRC. Each of the
nodes in the cluster contained two Dual-Core AMD Opteron 2216HE CPUs running at
2.4 GHz, 16 GiB RAM, and a 250 GB SATA hard disk. The nodes were interconnected
using a 1 Gbit switched Ethernet network. At the time of the measurements, Debian
GNU/Linux 4 (Etch) was used as operating system and Xen 3.0.2 was used as hypervisor.

7.5.1 Idle Synchronization

The �rst measurement is the synchronization time of an idle disk image for several
disk image sizes using the DRBD driver. The synchronization times are compared
for disk images that are �lled with random content from /dev/urandom and empty
sparse disk images that are observed as zero �lled images by the synchronization
driver. The results of this measurement are shown in Figure 7.4. It is evident that the
synchronization time grows linearly with the disk size. The results also show that
the synchronization time can be reduced by up to 15.6 % when working with sparse
images where only a small fraction of the size is actually in use.
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Figure 7.4 Synchronization of Idle Disk Images. This chart shows the syn-
chronization times for disk images in various sizes. For each image size, both a disk
image filled with random content and a sparse disk image that appears as zero filled
image are compared.

7.5.2 Live Synchronization

The main measurement was the compilation time of a recent Linux kernel with the
default con�guration. The test was chosen because it represents a balanced workload
stressing the virtual memory system, doing moderate disk I/O as well as being relatively
CPU intensive. The kernel compilation was done inside a virtual machine that is live
migrated to another host at the same time. In Table 7.1 the six slightly di�erent setups
that were used for this measurement are listed.
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Table 7.1 Measurement Setups. This table lists the six setups used for the kernel
compilation measurements.

RAM (GiB)

Setup VM Host Writable Layer

1 0.25 1 2 GiB disk image a�ached to the DRBD driver
2 0.25 13 2 GiB disk image a�ached to the DRBD driver
3 3 1 2 GiB disk image a�ached to the DRBD driver
4 3 13 2 GiB disk image a�ached to the DRBD driver
5 3 1 RAM disk
6 3 13 RAM disk

The di�erent RAM sizes in both the virtual machine and the execution host were chosen
to evaluate the relationship between RAM size, performance and synchronization
time. In setups 1 to 4, all �les generated during the compilation are written to a
disk image that is synchronized via the DRBD driver, whereas in setups 5 and 6 the
generated �les are written to a RAM disk. The metrics used in the measurement are
the kernel compilation time, the time required to synchronize the disk images and the
time required for the Xen migration. All tests were repeated 50 times to get a robust
mean. To get a reference value, the measurement of the kernel compilation time was
also done without migrating the virtual machine.

For the measurements including the live migration of the virtual machine, di�erent
transfer rates of 5, 10, 20, 40 and 80 MiB/s for the background synchronization were
used. Transfer rates of more than 80 MiB/s did not result in a further synchronization
speed improvement due to saturation of hardware resources. The hybrid con�guration
that used a large RAM disk as the writable layer and a large swap partition on a disk
image was not tested separately, because from the point of view of the synchronization
mechanism there is no di�erence between a disk image containing a regular �le system
and a disk image containing a swap partition.

The results for the setups 1 to 4 are shown in Table 7.2 and Figure 7.5, whereas Table 7.3
shows the results for setups 5 and 6.

The total performance degradation in the setups involving disk synchronization
compared to the reference values ranges from 0.7 % (in setup 4) to 9.0 % (in setup 1
with a background synchronization transfer rate of 80 Mbit/s). These values refer to a
single migration process per kernel compilation. If the values are extrapolated to one
migration per hour, the performance degradation ranges from 0.2 % to 1.9 %, which
are acceptable values.

The Xen live migration process itself has little impact on the performance of the
migrating virtual machine, as indicated when comparing the test results in setups 5
and 6 to their reference values (see Table 7.3). Thus, the disk synchronization very
likely causes most of the observed overhead in the other setups.

The migration time does not increase when a RAM disk is used as a writable layer.
Consequently, the total migration time is reduced by up to 75 % using a medium
background synchronization transfer rate of 40 Mbit/s and by up to 86 % using a lower
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Table 7.2 Live Migration Results for Setups 1 to 4. This table shows the
compilation time of the Linux kernel as well as the time required to synchronize the
disk images and actually migrate the virtual machine using the functionality provided
by the hypervisor for the setups 1 to 4 using di�erent background synchronization
transfer rates.

Time required for Task (s) at
Synchronization Speed (Mbit/s)

Setup Task Reference 5 10 20 40 80

1 Synchronization – 400.2 203.0 119.7 104.7 108.5
Migration – 8.2 8.7 8.2 8.0 7.5
Compilation 724.4 741.5 746.5 766.0 795.5 789.5

2 Synchronization – 398.2 201.7 103.0 52.7 27.0
Migration – 7.0 7.2 6.7 6.5 5.7
Compilation 725.0 736.0 736.7 735.0 735.0 735.2

3 Synchronization – 397.5 202.0 119.3 102.4 100.3
Migration – 34.3 34.4 34.1 34.0 34.3
Compilation 706.4 714.4 714.2 712.9 717.8 716.8

4 Synchronization – 401.7 202.6 102.7 52.7 27.3
Migration – 32.7 33.0 32.7 32.8 32.7
Compilation 751.0 756.5 756.4 757.1 757.2 757.5
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Figure 7.5 Impact of the Live Migration on the Compilation Time. This
chart shows the impact of the live migration on the compilation times in setups 1 to 4
for di�erent background synchronization transfer rates compared to the reference.

rate of 10 Mbit/s. Thus, the memory-only con�guration is suitable for workloads that
do not produce large amounts of data that are written to the virtual disk.

The amount of RAM allocated to the execution host dictates an upper bound to the
transfer rate for background synchronization. In the tests with only 1 GB of RAM (see
Table 7.2, setups 1 and 3), the synchronization time does not decrease signi�cantly
between 40 and 80 Mbit/s, which means that the network bandwidth is higher than
the rate at which the incoming data can be processed at the destination host. In

291



Chapter 7. Virtual Machine Migration

Table 7.3 Live Migration Results for Setups 5 and 6. This table shows the
compilation time of the Linux kernel as well as the time required to migrate the
virtual machine using the functionality provided by the hypervisor for the setups 5
and 6. Because these two setups are instances of the memory-only configuration, no
disk synchronization step is necessary.

Setup Task Reference Migration

5 Migration – 32.4
Compilation 722.0 721.0

6 Migration – 32.9
Compilation 762.9 765.1

general, the synchronization time is inversely proportional to the transfer rate in a
linear fashion.

Increasing the transfer rate for background synchronization has an observable impact
only in setup 1, where both the execution host and the virtual machine have a small
amount of RAM. This setup represents the most write intensive workload in the
sense that fewer writes can be cached in main memory by the kernel (both in the
execution host and the virtual machine). In all other cases, the overhead compared to
the non-migrating reference values is mostly caused by the synchronous disk writes.
Thus, especially for write intensive workloads, choosing the transfer rate will always
be a trade-o� between the total migration time and the performance impact on the
virtual machine.

Strangely enough, in all tests with 3 GB of RAM in the virtual machine, the kernel
compilation time increases considerably when allocating more memory to the exe-
cution host, e.g., from 714.4 s to 756.5 s in setups 3 and 4, respectively. At the time of
writing, no reasonable explanation for this phenomenon could be found, but since
these observations do not a�ect the area under test (disk synchronization), they are
simply stated as observed. This topic has to be investigated in more detail in the
future.

7.5.3 Runtime Impact of DRBD in Standalone Mode

In normal operation, all disk I/O of the virtual machine goes through the DRBD driver
running in standalone mode. The bonnie++ [29] benchmark was used to measure the
overhead of the driver. The bonnie++ test was performed both using a disk image �le
mounted through a loopback device and a LVM logical volume. Table 7.4 shows the
results of this measurement2.

The highest performance impact can be observed in the write throughput on the
disk image �le (decreased by 6.7 %) followed by the read throughput on the LVM
logical volume (decreased by 2.4 %). The other two values only di�er by around 1 % in
both directions. The bonnie++ benchmark is designed for disk performance tests and
represents an unusual workload stressing the I/O facilities to a maximum. Average
2 A description of the bonnie++ tests included in the results can be found in Table 4.10.
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Table 7.4 DRDB Overhead in Standalone Mode. This table shows the results
of two measurements to assess the overhead induced by DRBD running in standalone
mode. The results of the Character Write and Character Read tests of bonnie++ are
reproduced for an image file and a LVM logical volume both for direct access and
access through the DRBD driver.

Character

Setup Write (KiB/s) Read (KiB/s)

Image File 44,003 59,081
Image File (DRBD Standalone) 41,070 59,717
LVM Logical Volume 43,781 57,027
LVM Logical Volume (DRBD Standalone) 43,239 55,634

applications running in a virtual machine usually have a more moderate disk I/O
throughput and thus the observable overhead due to the DRBD driver is expected to
be much lower.

Especially in comparison with shared storage solutions that are required for live
migration if no external solution for storage migration is used, the results indicate
that the proposed concept is suitable for Virtualized Grid and Cloud Computing
environments like the XGE. For example, the write throughput on a shared NFS
�le system is decreased by approximately 48 % in synchronous mode and 9 % in
asynchronous mode according to [148]. Additionally, the performance of shared
storage is expected to decrease with the number of clients using it simultaneously and
with higher network utilization. The DRBD approach presented in this chapter allows
the virtual machines to do their I/O locally and thus only introduces performance
penalties during a live migration process.

7.6 Summary

In this chapter, a concept for synchronizing virtual disks between execution hosts’ local
storage has been presented that enables the live migration of virtual machines that
use locally stored virtual disks. The virtual machine image composition technology
presented in Chapter 4 is the foundation of the live migration process. It ensures
that the virtual machine image is never modi�ed and can thus be transferred to the
destination host at any point in time before the migration. Furthermore, the virtual
machine image might already be in the image cache of the destination host and thus
does not need to be transferred at all. Only the writable layer that is used as part of
the composite image has to be taken care of by the migration process.

Di�erent con�gurations for composite images are used to implement an e�cient
live migration process. The �rst con�guration uses a RAM disk as writable layer,
such that no disk image needs to be transferred during a live migration. The second
con�guration uses a temporary disk image of moderate size as writable layer. In this
case, the disk image needs to be synchronized during a live migration process. A
novel mechanism based on distributed replicated block devices (DRBD) that allows
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for synchronous writes on the source and the destination host has been presented for
this purpose. The evaluation has shown satisfactory performance of this concept.
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“Science never solves a problem without creating ten more.”

George Bernard Shaw (1856–1950)

8
Conclusion

8.1 Summary

In this thesis, the idea of lifecycle management has been applied to virtual machines
used in Virtualized Grid and Cloud Computing environments. Contrary to other
use cases of virtual machines, their on-demand execution has been identi�ed as a
key attribute of these environments. Based on this attribute, a lifecycle for virtual
machines in these environments has been developed. An analysis of this lifecycle has
led to the identi�cation of four phases that are insu�ciently supported by existing
tools and techniques with regard to the requirements of Virtualized Grid and Cloud
Computing environments.

A novel approach for disk image provisioning designed for Linux-based virtual ma-
chines was presented that is based on the idea of composition. It can be used to
decompose virtual machine images into a base layer that contains commonly used
parts of the operating system and can be shared between multiple virtual machines as
well as a virtual machine speci�c layer that contains the software unique to it.

A novel repository for Linux-based virtual machine images was presented that is
based on the idea of separating the data of the image �le, i.e., the contents of the �les
stored in the image, from its metadata, i.e., the directory hierarchy, �le names, and �le
attributes. This separation is done during an import process and facilitates both an
e�cient storage of virtual machines and novel ways to deal with virtual machines,
e.g., version control and operations working on the metadata level.

Four more proposals have been made to improve both the security of individual
virtual machines and the security of the Virtualized Grid and Cloud Computing
environments these virtual machines are used in. The �rst proposal is a novel approach
to detect available software updates for virtual machines irrespective of their current

295



Chapter 8. Conclusion

state, i.e., whether they are running or dormant. The second proposal is a novel
approach to e�ciently install software updates in a large number of virtual machines.
The third proposal is a method to detect additional types of vulnerabilities, e.g.,
miscon�gurations or insecure services, in virtual machines as part of their continuous
maintenance. The fourth proposal is a novel concept for security monitoring on every
layer of virtual environments.

Finally, a novel approach for synchronizing the virtual disks of a virtual machine while
it is migrated to another host is presented. This approach facilitates migrating virtual
machines in the absence of a shared storage system accessible by both the source and
the destination host.

Overall, this thesis has presented several solutions to improve the support for the on-
demand execution model that is prevalent in Virtualized Grid and Cloud Computing
environments in the areas of virtual machine storage, maintenance, deployment and
execution.

8.2 Future Work

There are several areas of future research in the area of lifecycle management in
Virtualized Grid and Cloud Computing environments, including extensions of the
concepts and tools presented in this thesis. These areas are discussed brie�y in the
following.

Virtual Machine Image Composition

Although the Image Compositor works on even the newest Debian GNU/Linux release,
it does lack support for recent developments in Linux. The union mount implemen-
tation supported by the Image Compositor (aufs) has never made it into the Linux
kernel and is thus depending on regular porting to newer kernels by developers of the
Linux distributions. On the other hand, OverlayFS has been integrated in the Linux
kernel in December 2014 and thus adding support for it in the Image Compositor is
bene�cial.

Furthermore, systemd proceeds to replace the classical System V style init system as
the init system in most Linux distributions. Because error free boot and shutdown
processes using composite disk images rely on a few modi�cations to these processes,
e.g., modi�cations to init scripts, the impact of the switch to systemd is not yet fore-
seeable and is thus left as an area of future research. The bene�t of a working systemd
version would be compatibility with other distributions than Debian GNU/Linux.

Finally, the current implementation of the Image Compositor requires that the mount
point of the writable layer is moved into the composite disk image to enable a clean
unmount of the root �le system. Direct access to the layer is prevented only by the
regular access control mechanisms. It may be possible to either improve the protection
of the writable layer to prevent even the root user from modifying its contents or

296



8.2. Future Work

an alternative way to cleanly unmount the root �le system that does not rely on the
writable layer being accessible from within the composite disk image.

Virtual Machine Image Storage

There two areas where the Marvin Image Store can be improved. The �rst area is the
storage back end. The current implementation stores the content of each �le as an
individual �le on a regular �le system. Because the number of �les increases rapidly
when virtual machines are imported1, the performance of the Image Store depends on
the capability of the �le system to handle large numbers of �les in a small number of
directories.

A custom storage system might be a useful extension of the Image Store: a single (or
a few) append only data �le(s) and a corresponding custom tree structure used as an
index into the data �le(s) can solve multiple problems related to the �le systems at
once. Such a storage system would not waste disk space for incompletely �lled �le
system blocks or super�uous �le system metadata.

The second area is the Direct Mount feature of the Image Store. The current imple-
mentation is restricted to read-only access, whereas the usability of the feature would
be greatly improved by write access. A few prototypical extensions have proven
that write access is possible and can be used for simple changes to virtual machines.
Another possible extension is a kernel module that implements the direct mount
feature. This would not only improve the access e�ciency, but rather be the �rst step
towards booting a virtual machine directly out of the Image Store without exporting
its disk image �rst.

Virtual Machine Security

The Update Checker currently bases its assessment of an update’s priority solely
on the repository it is available in. A better way to assess the priority would be to
automatically parse the security advisories published by most Linux distributions and
derive the priority of updates based on the information in the security advisories.
Automated process of security advisories can also be combined with the Image Store
to quickly identify a�ected virtual machines, even if they are not registered with the
Update Checker.

There are a few areas for further research related to the centralized update process.
The current implementation of the tools that support the centralized update process
are only working on the level of package databases. Thus, there might be cases where
no masking incompatibilities are detected, but individual �les of the update are hidden
anyway. The check needs to be extended to the �le level to ensure that all updated
�les are visible.

1 Table 5.11 lists the number of �les for the sets of virtual machines used in the evaluation of the Image
Store. However, the 6,045,191 �les in total (all six sets combined) are reduced to 690,804 unique �les in
the back end.

297



Chapter 8. Conclusion

Additionally, updates that change con�guration �les are problematic if the con�gura-
tion �le has also been changed in the user layer. Automatic merging of those changes
into the con�guration �les of the user layer would greatly improve the applicability
of the process. This would require detecting relevant scripts in the updated package
and executing those scripts in the context of the composite disk image.

Finally, if users take care of updating installed software themselves, an update might
be installed both in the user and the base layer. This is not an actual problem as long
as the version in the user layer is up-to-date, but it prevents later updates in the base
layer from being visible and wastes disk space. An automatic scan for and removal of
such duplicates could solve both problems.

Automatic vulnerability scans su�er from the long scanning times that make their
frequent use unlikely for large numbers of virtual machines. Using the information
about virtual machines that is available either in the databases of the Update Checker
or in the virtual machines’ manifests stored in the Image Store, it should be possible
to automatically decide for which virtual machines additional vulnerability scans are
sensible and which virtual machines can be omitted from those scans.

The proposed concept for a security monitoring system is just the foundation for
e�ective security monitoring. There are three areas where additional research and
implementation work is required to make the system usable in practice: the EPAs,
the Sensor Framework, and the Action Framework. In the �rst area, EPAs need to
be created for known, common attacks. More importantly, support for detecting
anomalies related to unknown attacks and automatically deriving EPAs from historic
data are required.

The Sensor Framework is crucial to the detection of anomalies. Novel sensors have to
be developed that generate meaningful events and thus make the detection of unknown
attacks possible. Finally, actions need to be developed as response to detected attacks
that are both e�ective and appropriate. This is of particular importance for unknown
attacks, where generic actions might be able to prevent greater damage, although they
are not tailored to a speci�c attack.

Virtual Machine Migration

The current implementation of the migration technique is tailored to the Xen hypervi-
sor. The underlying technologies, i.e., image composition and storage synchronization,
are hypervisor-independent, so porting the migration technique to other hypervisors,
e.g., KVM) is bene�cial to increase its usability.
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Appendix A. Virtual Machine Image Storage – Detailed Evaluation Results

Table A.5 Disk Usage – Regular Images. This table shows the disk usage of
each regular virtual machine in set A as plain image (Default), optimized image (Opt.),
compressed image (Comp.), optimized and compressed image (O. + C.), as well as
stored in the Image Store with the selected back ends.

Disk Usage (MiB)

Image MIS

ID Default Opt. Comp. O. + C. default zlib1 zlib3 zlib5 lzma1

A01 1,190.1 668.2 706.4 194.2 455.3 218.0 212.8 206.3 184.8
A02 1,214.5 697.3 728.6 209.8 482.8 236.5 231.2 224.3 201.9
A03 1,222.9 699.1 720.0 203.6 485.6 232.0 226.4 219.5 197.3
A04 1,249.3 733.2 721.2 215.2 512.2 248.3 242.6 235.3 211.6
A05 1,278.6 748.5 752.1 224.1 532.9 254.6 248.5 240.9 213.9
A06 1,301.1 774.0 755.7 233.7 556.3 274.5 268.4 260.7 236.8
A07 1,290.7 777.0 742.1 235.2 560.8 268.2 261.6 253.5 225.4
A08 1,298.0 783.2 747.2 230.1 566.1 275.8 269.5 261.6 235.8
A09 1,303.3 790.4 745.4 242.4 572.8 282.5 276.1 268.0 241.8
A10 1,313.2 806.4 752.4 241.5 589.6 274.0 267.5 259.3 229.3
A11 1,302.7 815.3 723.7 235.3 588.0 275.4 269.0 261.0 233.6
A12 1,325.3 819.8 748.0 249.1 598.6 294.3 287.6 279.3 251.5
A13 1,356.0 840.6 757.8 254.9 618.8 302.2 295.2 286.5 257.7
A14 1,341.9 848.6 740.3 254.2 630.1 293.5 286.5 277.7 246.9
A15 1,355.1 875.9 730.8 252.6 641.5 303.9 296.7 287.8 259.2
A16 1,363.1 886.4 729.6 265.8 663.8 307.9 300.7 291.6 260.8
A17 1,382.7 894.0 747.8 267.1 675.9 312.1 304.0 294.1 262.8
A18 1,423.0 898.9 837.1 300.8 679.5 334.2 326.5 316.5 284.1
A19 1,413.8 900.5 785.2 281.9 666.8 312.1 304.1 294.2 260.1
A20 1,443.3 915.6 802.5 273.9 686.5 331.5 323.6 313.8 283.4
A21 1,445.2 930.5 793.2 289.7 701.1 335.5 326.9 316.6 284.5
A22 1,423.7 936.9 783.3 288.0 708.4 338.3 330.4 320.8 287.2
A23 1,471.5 958.6 808.4 304.9 732.2 350.1 341.3 330.5 296.0
A24 1,505.0 990.5 829.1 323.3 767.8 361.3 352.4 341.1 304.4
A25 1,412.6 991.8 729.0 306.3 752.7 359.6 350.4 339.5 306.7
A26 1,634.7 1,127.1 840.3 343.7 879.6 440.0 430.0 417.0 377.8
A27 1,581.7 1,175.8 751.0 351.6 904.4 410.8 399.5 386.4 345.6
A28 1,715.7 1,208.5 898.4 404.6 968.4 468.6 457.4 443.7 400.3
A29 1,904.5 1,393.4 1,021.1 522.1 1,138.3 590.1 577.2 561.3 505.9
A30 2,160.7 1,662.6 1,047.2 557.8 1,421.1 653.4 636.0 613.0 527.7
A31 2,344.6 1,828.8 945.5 445.1 1,601.5 497.4 474.2 451.0 369.5
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Table A.6 Disk Usage – Layered Images. This table shows the disk usage of
each layered virtual machine in set A as plain image (Default), optimized image (Opt.),
compressed image (Comp.), optimized and compressed image (O. + C.), as well as
stored in the Image Store with the selected back ends.

Disk Usage (MiB)

Image MIS

ID Default Opt. Comp. O. + C. default zlib1 zlib3 zlib5 lzma1

A01 1,208.3 668.2 729.1 194.2 454.6 218.3 213.2 206.6 185.1
A02 161.9 144.1 47.9 31.6 45.3 26.4 26.1 25.5 22.8
A03 152.2 146.0 31.4 25.5 47.9 21.7 21.2 20.5 18.1
A04 202.2 180.5 57.1 37.1 75.4 38.9 38.2 37.2 33.2
A05 231.6 195.3 76.8 45.9 95.1 44.3 43.2 41.9 34.6
A06 279.7 221.1 101.3 55.5 116.9 62.8 61.7 60.3 56.1
A07 271.8 226.0 101.4 58.6 125.0 58.8 57.2 55.3 46.8
A08 264.3 230.0 84.3 51.9 126.5 64.0 62.8 61.1 55.1
A09 285.3 237.5 107.3 64.3 133.6 71.0 69.7 67.8 61.4
A10 316.2 253.4 115.4 63.5 151.5 63.5 62.0 60.1 49.8
A11 315.7 262.6 98.6 57.1 148.9 64.0 62.7 60.9 53.2
A12 328.3 267.4 126.3 71.0 159.1 82.6 80.9 78.9 70.9
A13 360.1 287.6 139.9 76.8 179.1 90.4 88.5 86.0 76.9
A14 359.3 295.7 133.4 76.1 191.2 82.2 80.3 77.8 66.7
A15 390.9 323.0 129.0 74.6 201.7 92.0 89.9 87.4 78.4
A16 415.8 333.6 158.6 87.8 224.4 96.2 94.1 91.3 80.2
A17 414.6 341.2 156.1 89.0 236.3 100.4 97.3 93.7 82.1
A18 468.3 352.8 228.5 123.5 245.1 127.2 124.5 120.9 108.0
A19 433.2 348.1 183.6 103.9 228.1 101.0 98.0 94.4 80.1
A20 439.6 363.1 163.1 95.2 246.5 119.7 116.8 113.2 102.5
A21 468.3 378.1 195.7 110.9 262.9 125.0 121.4 117.4 105.0
A22 498.8 384.6 206.9 110.1 269.6 126.6 123.8 120.4 106.5
A23 528.9 415.2 242.6 135.5 301.3 147.1 143.3 138.9 124.1
A24 575.6 444.3 266.9 145.9 332.6 153.6 149.7 144.8 127.6
A25 511.6 439.4 192.3 128.4 312.7 147.7 143.6 139.0 125.8
A26 717.2 574.6 300.4 165.5 439.7 229.0 224.1 217.3 197.9
A27 765.6 623.1 301.7 173.5 476.2 204.9 198.5 191.5 169.6
A28 859.4 665.0 415.1 235.2 537.1 265.9 259.7 252.3 228.5
A29 1,169.2 847.4 650.0 344.9 704.5 384.3 376.4 366.9 331.1
A30 1,448.5 1,110.5 704.0 379.7 983.1 443.9 431.7 415.0 349.4
A31 1,491.4 1,278.6 472.2 268.0 1,164.3 286.9 268.8 251.8 189.9
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Appendix A. Virtual Machine Image Storage – Detailed Evaluation Results

Table A.7 Import Time – Regular Images. For each regular virtual machine
in set A, this table shows the import time into the Image Store with the selected back
ends and the time required to copy or compress the corresponding image file or to
recursively copy its contents.

Time (s)

Copy MIS Import

ID Image Content Compress default zlib1 zlib3 zlib5 lzma1

A01 18.8 28.7 72.1 37.1 49.2 53.7 58.4 113.8
A02 21.3 32.1 74.0 44.2 56.5 58.7 63.9 123.7
A03 17.0 29.2 72.9 40.6 53.3 57.0 63.0 122.9
A04 17.9 34.9 73.7 50.0 66.1 66.7 72.5 133.1
A05 20.0 33.1 74.8 44.8 57.9 62.8 69.2 131.4
A06 20.3 43.7 76.2 58.3 70.4 73.9 75.9 144.8
A07 19.0 33.9 77.2 49.3 63.0 66.9 71.6 140.0
A08 16.7 35.5 75.9 52.3 70.6 71.7 79.0 139.9
A09 19.2 37.5 75.0 52.0 68.4 70.6 78.1 144.4
A10 23.1 39.4 76.0 55.4 66.0 69.0 75.4 140.3
A11 17.7 39.9 73.3 54.8 67.9 72.9 78.9 146.2
A12 17.9 40.2 75.4 58.1 70.0 76.7 80.8 150.4
A13 17.2 38.7 76.4 57.7 73.6 78.6 85.7 153.7
A14 21.8 41.5 75.6 56.9 73.0 74.6 81.5 149.0
A15 18.9 43.1 75.4 66.5 81.6 82.8 89.6 154.0
A16 23.4 47.0 75.6 60.7 74.3 78.6 84.4 159.9
A17 17.5 43.6 77.1 64.6 81.6 83.0 89.4 161.6
A18 21.5 40.8 80.9 56.3 76.9 78.7 85.4 172.5
A19 22.4 58.0 80.6 75.5 85.0 90.1 86.9 175.6
A20 24.1 57.6 80.7 82.2 92.5 93.6 99.1 178.6
A21 20.3 52.3 78.1 73.1 86.1 93.7 98.5 185.1
A22 19.0 45.7 78.0 68.5 85.1 87.8 94.6 168.8
A23 25.9 63.9 82.2 80.7 91.1 98.0 97.4 188.4
A24 23.6 47.2 81.0 65.3 80.4 86.4 94.3 188.2
A25 22.7 63.9 74.8 84.3 94.3 102.8 109.4 194.6
A26 21.6 76.6 83.4 105.2 113.6 123.5 126.1 225.1
A27 26.0 81.6 78.9 104.4 113.7 122.9 124.3 225.3
A28 27.2 87.6 88.9 110.0 123.0 129.2 132.6 256.3
A29 26.3 82.2 96.7 107.7 128.9 139.9 145.9 304.1
A30 41.5 116.1 103.4 147.9 164.0 173.8 175.5 345.2
A31 30.8 71.6 96.3 104.2 114.7 123.8 140.8 261.0
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Table A.8 Import Time – Layered Images. For each layered virtual machine
in set A, this table shows the import time into the Image Store with the selected back
ends and the time required to copy or compress the corresponding image file or to
recursively copy its contents.

Time (s)

Copy MIS Import

ID Image Content Compress default zlib1 zlib3 zlib5 lzma1

A01 18.4 28.3 73.9 37.1 50.3 53.9 61.3 117.1
A02 5.1 3.0 19.8 3.7 5.0 5.3 5.9 12.5
A03 4.1 3.1 18.4 4.0 5.2 5.4 6.2 11.6
A04 5.1 6.5 20.1 9.1 10.7 11.5 12.4 20.7
A05 5.4 4.6 21.1 5.9 8.1 8.8 10.2 20.8
A06 6.3 9.1 22.3 11.7 14.1 14.8 16.2 28.7
A07 7.1 7.7 22.9 9.0 12.0 13.0 14.6 27.2
A08 5.2 8.0 21.4 11.6 14.2 14.9 16.4 30.6
A09 5.7 8.5 22.7 11.4 14.8 15.8 17.3 33.6
A10 7.0 6.4 23.7 8.0 11.3 12.4 14.3 30.3
A11 5.5 9.1 22.2 11.9 15.0 16.1 17.9 32.9
A12 5.8 9.8 23.4 12.9 16.7 17.8 19.6 36.8
A13 6.4 10.0 24.3 13.9 17.8 18.8 21.1 41.7
A14 8.4 11.3 24.7 13.9 17.7 19.1 21.2 41.1
A15 7.3 14.3 24.4 18.8 22.9 24.1 26.2 53.7
A16 6.4 10.6 25.1 14.1 18.6 19.9 22.6 45.9
A17 8.3 13.0 25.7 16.6 21.4 23.1 26.1 49.1
A18 7.6 10.6 28.8 13.7 19.7 20.9 24.1 65.4
A19 7.6 12.0 27.2 14.4 20.5 22.3 25.8 51.2
A20 9.7 21.9 26.5 27.4 32.8 34.5 37.6 61.2
A21 8.5 18.7 28.0 25.1 31.8 33.7 37.5 66.1
A22 8.2 15.1 28.1 20.3 25.8 27.4 30.8 59.0
A23 8.9 20.2 30.4 24.8 32.4 34.8 40.3 75.0
A24 9.4 13.9 30.9 18.4 26.5 28.6 32.9 82.5
A25 9.3 27.7 27.6 35.2 44.1 46.0 50.1 77.3
A26 11.4 34.1 34.3 47.9 58.5 61.9 67.7 105.0
A27 13.2 33.7 35.4 46.4 56.0 58.3 64.9 103.6
A28 14.1 40.4 42.9 52.0 65.7 69.1 75.3 140.9
A29 14.3 41.4 55.3 54.4 76.8 78.7 88.2 190.4
A30 15.8 47.0 61.4 73.8 97.7 101.1 113.3 212.6
A31 15.6 28.1 45.4 38.3 61.4 68.2 79.6 156.4
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Appendix A. Virtual Machine Image Storage – Detailed Evaluation Results

Table A.9 Export Time – Regular Images. For each regular virtual machine
in set A, this table shows the export time out of the Image Store with the selected
back ends and the time required to copy or decompress the corresponding image file
or to recursively copy its contents.

Time (s)

Copy MIS Export

ID Image Content Extract default zlib1 zlib3 zlib5 lzma1

A01 18.8 28.7 50.0 34.0 41.3 41.0 41.2 43.1
A02 21.3 32.1 44.8 40.5 49.5 48.0 46.1 47.7
A03 17.0 29.2 44.7 37.3 47.2 47.5 45.7 46.2
A04 17.9 34.9 48.6 47.5 58.9 58.0 53.5 56.6
A05 20.0 33.1 48.8 39.1 49.0 48.8 48.3 50.0
A06 20.3 43.7 42.1 43.1 57.3 56.7 57.4 57.0
A07 19.0 33.9 45.1 40.1 51.7 51.9 50.0 55.7
A08 16.7 35.5 44.7 53.4 63.7 61.9 59.6 58.2
A09 19.2 37.5 50.1 50.3 62.5 60.3 58.1 59.0
A10 23.1 39.4 45.4 49.1 54.3 53.0 52.0 53.3
A11 17.7 39.9 49.6 47.0 58.8 59.8 59.5 58.6
A12 17.9 40.2 44.8 48.6 60.5 62.2 62.0 62.1
A13 17.2 38.7 45.4 48.7 68.2 64.4 63.4 65.8
A14 21.8 41.5 44.5 52.4 63.7 61.0 59.1 59.6
A15 18.9 43.1 44.5 60.1 72.0 69.6 69.5 65.3
A16 23.4 47.0 45.7 47.8 67.5 65.2 63.7 66.7
A17 17.5 43.6 45.8 56.5 69.0 67.9 65.7 65.5
A18 21.5 40.8 44.3 51.0 62.2 59.1 55.9 64.3
A19 22.4 58.0 46.0 45.2 59.8 58.8 61.1 66.8
A20 24.1 57.6 47.1 67.1 80.8 81.1 78.5 79.8
A21 20.3 52.3 44.4 57.4 76.9 81.6 76.9 79.6
A22 19.0 45.7 46.3 60.1 74.6 72.2 72.0 70.8
A23 25.9 63.9 52.3 55.3 76.7 76.1 76.0 77.7
A24 23.6 47.2 53.3 48.3 65.2 67.6 65.4 74.2
A25 22.7 63.9 46.8 62.0 87.4 89.5 86.9 89.7
A26 21.6 76.6 47.9 80.5 105.0 108.0 104.4 111.5
A27 26.0 81.6 52.0 74.9 99.7 103.9 99.4 100.4
A28 27.2 87.6 49.9 78.0 110.9 107.8 110.2 108.0
A29 26.3 82.2 54.1 83.6 119.6 123.0 116.5 128.5
A30 41.5 116.1 56.9 113.5 143.8 143.5 132.7 149.1
A31 30.8 71.6 58.8 78.0 99.6 99.8 93.8 104.4
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Table A.10 Export Time – Layered Images. For each layered virtual machine
in set A, this table shows the export time out of the Image Store with the selected
back ends and the time required to copy or decompress the corresponding image file
or to recursively copy its contents.

Time (s)

Copy MIS

ID Image Content Extract default zlib1 zlib3 zlib5 lzma1

A01 18.4 28.3 42.4 34.8 42.8 41.6 42.3 44.7
A02 5.1 3.0 16.9 3.0 4.0 3.9 3.8 4.7
A03 4.1 3.1 17.6 3.5 4.5 4.2 4.2 4.7
A04 5.1 6.5 16.5 9.6 10.1 10.0 10.0 10.2
A05 5.4 4.6 16.5 5.3 6.4 6.3 6.4 6.8
A06 6.3 9.1 18.5 10.8 12.8 12.8 12.6 12.2
A07 7.1 7.7 17.0 6.9 8.4 8.5 8.4 9.1
A08 5.2 8.0 15.9 12.6 13.3 13.0 13.0 14.3
A09 5.7 8.5 17.4 11.4 12.7 12.6 12.6 13.0
A10 7.0 6.4 18.4 7.5 8.2 8.2 8.4 9.6
A11 5.5 9.1 18.2 12.3 14.2 13.6 13.6 13.4
A12 5.8 9.8 18.6 12.9 15.6 14.8 14.8 14.8
A13 6.4 10.0 18.5 14.6 17.1 17.0 16.7 16.3
A14 8.4 11.3 20.0 11.8 12.9 12.9 12.9 15.5
A15 7.3 14.3 17.4 18.8 20.5 20.1 19.9 26.6
A16 6.4 10.6 17.8 13.9 16.5 16.6 16.9 18.1
A17 8.3 13.0 20.5 15.2 17.3 17.3 16.9 17.6
A18 7.6 10.6 18.1 12.2 13.9 13.8 13.6 19.8
A19 7.6 12.0 19.5 11.4 14.6 14.9 14.1 16.1
A20 9.7 21.9 18.7 23.1 26.0 25.6 25.3 25.6
A21 8.5 18.7 18.4 22.1 25.4 24.5 24.5 25.0
A22 8.2 15.1 18.3 19.2 21.0 21.3 21.3 21.6
A23 8.9 20.2 19.6 19.9 23.8 23.7 23.2 23.8
A24 9.4 13.9 20.0 16.3 19.9 19.8 19.6 26.2
A25 9.3 27.7 18.7 25.3 32.4 29.7 29.2 29.9
A26 11.4 34.1 20.3 43.2 50.2 46.3 46.3 48.2
A27 13.2 33.7 21.7 37.3 42.4 41.7 41.5 40.4
A28 14.1 40.4 21.3 41.5 52.0 51.6 50.7 53.6
A29 14.3 41.4 23.7 48.6 62.8 60.4 59.7 71.0
A30 15.8 47.0 26.1 61.7 82.0 77.5 77.0 84.5
A31 15.6 28.1 22.7 38.4 41.1 40.4 39.6 45.4
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