3,490 research outputs found

    Magneettikuvauksella ohjattu korkean intensiteetin kohdennettu ultraÀÀniteknologia syöpÀtautien liitÀnnÀishoidoissa ja syöpÀlÀÀkkeiden annostelussa

    Get PDF
    Ablative hyperthermia (more than 55 °C) has been used as a stand-alone treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40-45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is noninvasive and spatially accurate, with precise and homogeneous heating limited to the target region. High-intensity focused ultrasound (HIFU) can noninvasively heat solid tumors deep within the human body. Magnetic resonance imaging (MRI) is ideal for HIFU treatment planning and monitoring in real time due to its superior soft-tissue contrast, high spatial imaging resolution, and the ability to measure temperature changes. The combination of MRI and HIFU therapy is known as magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU). Low temperature-sensitive liposomes (LTSLs) release their drug cargo in response to heat (more than 40 °C) and may improve drug delivery to solid tumors when combined with mild hyperthermia. MR-HIFU provides a way to image and control content release from imageable low-temperature sensitive liposomes (iLTSLs). This ability may enable spatiotemporal control over drug delivery - a concept known as drug dose painting. The objectives of this dissertation work were to develop and implement a clinically relevant volumetric mild hyperthermia heating algorithm, to implement and characterize different sonication approaches (multiple foci vs. single focus), and to evaluate the ability to monitor and control heating in real time using MR-HIFU. In addition, the ability of MR-HIFU to induce the release of a clinical-grade cancer drug encapsulated in LTSLs was investigated, and the potential of MR-HIFU mediated mild hyperthermia for clinical translation as an image-guided drug delivery method was explored. Finally, drug and contrast agent release of iLTSLs as well as the ability of MR-HIFU to induce and monitor the content release were examined, and a computational model that simulates MR-HIFU tissue heating and drug delivery was validated. The combination of a multifoci sonication approach and the mild hyperthermia heating algorithm resulted in precise and homogeneous heating limited to the targeted region both in vitro and in vivo. Heating was more spatially confined compared to the use of single focus sonication method. The improvement in spatial control suggests that multifoci heating is a useful tool in MR-HIFU mediated mild hyperthermia applications for clinical oncology. Using the mild hyperthermia heating algorithm, LTSL + MR-HIFU resulted in signiïŹcantly higher tumor drug concentrations compared to free drug and LTSL alone. This technique has potential for clinical translation as an image-guided drug delivery method. MR-HIFU also enabled real-time monitoring and control of iLTSL content release. Finally, computational models may allow quantitative in silico comparison of different MR-HIFU heating algorithms as well as facilitate therapy planning for this drug delivery technique.Ablatiivista hypertermiaa (yli 55 °C) on perinteisesti kĂ€ytetty leikkauksiin soveltumattomien kasvainten hoitoon. LievĂ€n hypertermian (40-45 °C) on sen sijaan todettu olevan tehokas liitĂ€nnĂ€ishoito syöpĂ€tautien sĂ€de- ja lÀÀkehoidoille. Suotuisa hypertermiahoito on kajoamatonta ja tĂ€smĂ€llisesti kohdistettua. LĂ€mmityksen tulisi lisĂ€ksi olla tarkkaa, tasalaatuista ja kohdealueeseen rajoittunutta. Korkean intensiteetin kohdennettu ultraÀÀni (HIFU) -hoito mahdollistaa kasvainten kajoamattoman lĂ€mmityksen. Magneettikuvauksen (MK) etuina ovat erinomainen pehmytkudoskontrasti, korkea paikkaresoluutio ja kyky mitata lĂ€mpötilan muutoksia. NĂ€in ollen MK soveltuu erinomaisesti HIFU -hoitojen suunnitteluun ja seurantaan. MK:n ja HIFU:n yhdistelmÀÀ kutsutaan magneettikuvauksella ohjatuksi korkean intensiteetin kohdennetuksi ultraÀÀniteknologiaksi (MR-HIFU). LĂ€mpötilaherkĂ€t liposomit ovat suunniteltuja vapauttamaan lÀÀkeainesisĂ€ltönsĂ€ hieman normaalia ruumiinlĂ€mpötilaa korkeammissa lĂ€mpötiloissa (yli 40 °C). YhdessĂ€ lievĂ€n hypertermian kanssa tĂ€mĂ€nkaltaiset liposomit voivat mahdollistaa kohdistetun lÀÀkeaineen vapauttamisen. Liposomien sisĂ€llön vapautumisen tarkkailu voi myös mahdollistaa tarkan lÀÀkemÀÀrĂ€n kohdistetun annostelun kasvaimessa. VĂ€itöskirjatyössĂ€ kehitettiin kliinisesti merkittĂ€vĂ€ lĂ€mmitysalgoritmi lievĂ€n hypertermian aikaansaamiseksi, toteutettiin usean samanaikaisen kohteen sonikaatio (ultraÀÀnialtistus) menetelmĂ€ sekĂ€ arvioitiin algoritmin ja menetelmĂ€n kykyĂ€ kontrolloida kudoksen lĂ€mpötilaa kĂ€yttĂ€en kliinistĂ€ MR-HIFU laitetta. LisĂ€ksi tutkittiin HIFU:n kykyĂ€ vapauttaa lÀÀkeaine lĂ€mpötilaherkistĂ€ liposomeista, karakterisoitiin lÀÀke- ja kontrastiaineen vapautuminen kuvannettavissa olevista lĂ€mpötilaherkistĂ€ liposomeista sekĂ€ tarkasteltiin MR-HIFU:lla aikaansaadun lievĂ€n hypertermian potentiaalia kohdentaa lÀÀkeaineen vapautuminen kasvaimeen. TĂ€ssĂ€ työssĂ€ myös validoitiin laskennallinen malli, joka simuloi MR-HIFU:lla aikaansaatua lĂ€mmitystĂ€ ja siitĂ€ johtuvaa lÀÀkeaineen vapautumista, sekĂ€ todennettiin MR-HIFU:n sopivuus lĂ€mpöablaatioon perustuvaan kohdun pehmytkudoskasvainten hoitomenelmÀÀn kliinisessĂ€ kĂ€ytössĂ€. LievĂ€n hypertermian lĂ€mmitysalgoritmi yhdessĂ€ usean kohteen sonikaatiomenetelmĂ€n kanssa tuotti tĂ€smĂ€llisen, tasalaatuisen sekĂ€ paikallisesti rajoitetun lĂ€mmityksen kohdealueessa. Usean kohteen sonikaatiomenetelmĂ€ voi siis olla hyödyllinen työkalu MR-HIFU:n lievĂ€n hypertermian syöpĂ€hoidon sovelluksissa. MR-HIFU yhdessĂ€ lĂ€mpötilaherkkien liposomien kanssa sai aikaan merkittĂ€vĂ€sti korkeamman kasvaimen lÀÀkeainekonsentraation verrokkiryhmiin nĂ€hden, ja saattaa siten soveltua kliiniseen kĂ€yttöön kuvantamisavusteisena lÀÀkehoitona. Liposomien sisĂ€llön (lÀÀkeaine + MK-kontrastiaine) vapautumisen kuvannettavuus merkitsee, ettĂ€ MR-HIFU saattaa lisĂ€ksi mahdollistaa tarkan lÀÀkeannoksen kohdistetun vapauttamisen

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    Heating technology for malignant tumors: a review

    Get PDF
    The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 degrees C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 degrees C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors

    Doctor of Philosophy

    Get PDF
    dissertationFocused ultrasound (FUS) is a promising noninvasive and radiation-free cancer therapy that selectively delivers high-intensity acoustic energy to a small target volume. This dissertation presents original research that improves the speed, safety, and efficacy of FUS therapies under magnetic resonance imaging (MRI) guidance. First, a new adaptive model-predictive controller is presented that leverages the ability of MRI to measure temperature inside the patient at near real-time speeds. The controller uses MR temperature feedback to dynamically derive and update a patient-specific thermal model, and optimizes the treatment based on the model's predictions. Treatment safety is a key element of the controller's design, and it can actively protect healthy tissue from unwanted damage. In vivo and simulation studies indicate the controller can safeguard healthy tissue and accelerate treatments by as much as 50%. Significant tradeoffs exist between treatment speed, and safety, which makes a real-time controller absolutely necessary for carrying out efficient, effective, and safe treatments while also highlighting the importance of continued research into optimal treatment planning. Next, two new methods for performing 3D MR acoustic radiation force imaging (MR-ARFI) are presented. Both techniques measure the tissue displacement induced by short bursts of focused ultrasound, and provide a safe way to visualize the ultrasound beam's location. In some scenarios, ARFI is a necessity for proper targeting since traditional MR thermometry cannot measure temperature in fat. The first technique for performing 3D ARFI introduces a novel unbalanced bipolar motion encoding gradient. The results demonstrate that this technique is safe, and that 3D displacement maps can be attained time-efficiently even in organs that contain fat, such as breast. The second technique measures 3D ARFI simultaneously with temperature monitoring. This method uses a multi-contrast gradient recalled echo sequence which makes multiple readings of the data without increasing scan time. This improves the signal to noise ratio and makes it possible to separate the effects of tissue heating vs displacement. Both of the 3D MR-ARFI techniques complement the presented controllersince proper positioning of the focal spot is critical to achieving fast and safe treatments

    A modeling-based assessment of acousto-optic sensing for monitoring high-intensity focused ultrasound lesion formation

    Get PDF
    Real-time acousto-optic (AO) sensing - a dual-wave modality that combines ultrasound with diffuse light to probe the optical properties of turbid media - has been demonstrated to non-invasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposure. The AO signal indicates the onset of lesion formation and predicts resulting lesion volumes. Although proof-of-concept experiments have been successful, many of the underlying parameters and mechanisms affecting thermally induced optical property changes and the AO detectability of HIFU lesion formation are not well understood. In thesis, a numerical simulation was developed to model the AO sensing process and capture the relevant acoustic, thermal, and optical transport processes. The simulation required data that described how optical properties changed with heating. Experiments were carried out where excised chicken breast was exposed to thermal bath heating and changes in the optical absorption and scattering spectra (500 nm - 1100 nm) were measured using a scanning spectrophotometer and an integrating sphere assembly. Results showed that the standard thermal dose model currently used for guiding HIFU treatments needs to be adjusted to describe thermally induced optical property changes. To model the entire AO process, coupled models were used for ultrasound propagation, tissue heating, and diffusive light transport. The angular spectrum method was used to model the acoustic field from the HIFU source. Spatial-temporal temperature elevations induced by the absorption of ultrasound were modeled using a finite-difference time-domain solution to the Pennes bioheat equation. The thermal dose model was then used to determine optical properties based on the temperature history. The diffuse optical field in the tissue was then calculated using a GPU-accelerated Monte Carlo algorithm, which accounted for light-sound interactions and AO signal detection. The simulation was used to determine the optimal design for an AO guided HIFU system by evaluating the robustness of the systems signal to changes in tissue thickness, lesion optical contrast, and lesion location. It was determined that AO sensing is a clinically viable technique for guiding the ablation of large volumes and that real-time sensing may be feasible in the breast and prostate

    How sonoporation disrupts cellular structural integrity: morphological and cytoskeletal observations

    Get PDF
    Posters: no. 1Control ID: 1672429OBJECTIVES: In considering sonoporation for drug delivery applications, it is essential to understand how living cells respond to this puncturing force. Here we seek to investigate the effects of sonoporation on cellular structural integrity. We hypothesize that the membrane morphology and cytoskeletal behavior of sonoporated cells under recovery would inherently differ from that of normal viable cells. METHODS: A customized and calibrated exposure platform was developed for this work, and the ZR-75-30 breast carcinoma cells were used as the cell model. The cells were exposed to either single or multiple pulses of 1 MHz ultrasound (pulse length: 30 or 100 cycles; PRF: 1kHz; duration: up to 60s) with 0.45 MPa spatial-averaged peak negative pressure and in the presence of lipid-shelled microbubbles. Confocal microscopy was used to examine insitu the structural integrity of sonoporated cells (identified as ones with exogenous fluorescent marker internalization). For investigations on membrane morphology, FM 4-64 was used as the membrane dye (red), and calcein was used as the sonoporation marker (green); for studies on cytoskeletal behavior, CellLight (green) and propidium iodide (red) were used to respectively label actin filaments and sonoporated cells. Observation started from before exposure to up to 2 h after exposure, and confocal images were acquired at real-time frame rates. Cellular structural features and their temporal kinetics were quantitatively analyzed to assess the consistency of trends amongst a group of cells. RESULTS: Sonoporated cells exhibited membrane shrinkage (decreased by 61% in a cell’s cross-sectional area) and intracellular lipid accumulation (381% increase compared to control) over a 2 h period. The morphological repression of sonoporated cells was also found to correspond with post-sonoporation cytoskeletal processes: actin depolymerization was observed as soon as pores were induced on the membrane. These results show that cellular structural integrity is indeed disrupted over the course of sonoporation. CONCLUSIONS: Our investigation shows that the biophysical impact of sonoporation is by no means limited to the induction of membrane pores: e.g. structural integrity is concomitantly affected in the process. This prompts the need for further fundamental studies to unravel the complex sequence of biological events involved in sonoporation.postprin

    Developmental delays and subcellular stress as downstream effects of sonoporation

    Get PDF
    Posters: no. 2Control ID: 1672434OBJECTIVES: The biological impact of sonoporation has often been overlooked. Here we seek to obtain insight into the cytotoxic impact of sonoporation by gaining new perspectives on anti-proliferative characteristics that may emerge within sonoporated cells. We particularly focused on investigating the cell-cycle progression kinetics of sonoporated cells and identifying organelles that may be stressed in the recovery process. METHODS: In line with recommendations on exposure hardware design, an immersion-based ultrasound platform has been developed. It delivers 1 MHz ultrasound pulses (100 cycles; 1 kHz PRF; 60 s total duration) with 0.45 MPa peak negative pressure to a cell chamber that housed HL-60 leukemia cells and lipid-shelled microbubbles at a 10:1 cell-tobubble ratio (for 1e6/ml cell density). Calcein was used to facilitate tracking of sonoporated cells with enhanced uptake of exogenous molecules. The developmental trend of sonoporated cells was quantitatively analyzed using BrdU/DNA flow cytometry that monitors the cell population’s DNA synthesis kinetics. This allowed us to measure the temporal progression of DNA synthesis of sonoporated cells. To investigate whether sonoporation would upset subcellular homeostasis, post-exposure cell samples were also assayed for various proteins using Western blot analysis. Analysis focus was placed on the endoplasmic reticulum (ER): an important organelle with multi-faceted role in cellular functioning. The post-exposure observation time spanned between 0-24 h. RESULTS: Despite maintaining viability, sonoporated cells were found to exhibit delays in cell-cycle progression. Specifically, their DNA synthesis time was lengthened substantially (for HL-60 cells: 8.7 h for control vs 13.4 h for the sonoporated group). This indicates that sonoporated cells were under stress: a phenomenon that is supported by our Western blot assays showing upregulation of ER-resident enzymes (PDI, Ero1), ER stress sensors (PERK, IRE1), and ER-triggered pro-apoptotic signals (CHOP, JNK). CONCLUSIONS: Sonoporation, whilst being able to facilitate internalization of exogenous molecules, may inadvertently elicit a cellular stress response. These findings seem to echo recent calls for reconsideration of efficiency issues in sonoporation-mediated drug delivery. Further efforts would be necessary to improve the efficiency of sonoporation-based biomedical applications where cell death is not desirable.postprin

    A study on the change in plasma membrane potential during sonoporation

    Get PDF
    Posters: no. 4Control ID: 1680329OBJECTIVES: There has been validated that the correlation of sonoporation with calcium transients is generated by ultrasound-mediated microbubbles activity. Besides calcium, other ionic flows are likely involved in sonoporation. Our hypothesis is the cell electrophysiological properties are related to the intracellular delivery by ultrasound and microbubbles. In this study, a real-time live cell imaging platform is used to determine whether plasma membrane potential change is related to the sonoporation process at the cellular level. METHODS: Hela cells were cultured in DMEM supplemented with 10% FBS in Opticell Chamber at 37 °C and 5% CO2, and reached 80% confluency before experiments. The Calcein Blue-AM, DiBAC4(3) loaded cells in the Opticell chamber filled with PI solution and Sonovue microbubbles were immerged in a water tank on a inverted fluorescence microscope. Pulsed ultrasound (1MHz freq., 20 cycles, 20Hz PRF, 0.2-0.5MPa PNP) was irradiated at the angle of 45° to the region of interest for 1s.The real-time fluorescence imaging for different probes was acquired by a cooled CCD camera every 20s for 10min. The time-lapse fluorescence images were quantitatively analyzed to evaluate the correlation of cell viability, intracellular delivery with plasma membrane potential change. RESULTS: Our preliminary data showed that the PI fluorescence, which indicated intracellular delivery, was immediately accumulated in cells adjacent to microbubbles after exposure, suggesting that their membranes were damaged by ultrasound-activated microbubbles. However, the fluorescence reached its highest level within 4 to 6 minutes and was unchanged thereafter, indicating the membrane was gradually repaired within this period. Furthermore, using DIBAC4(3), which detected the change in the cell membrane potential, we found that the loss of membrane potential might be associated with intracellular delivery, because the PI fluorescence accumulation was usually accompanied with the change in DIBAC4 (3) fluorescence. CONCLUSIONS: Our study suggests that there may be a linkage between the cell membrane potential change and intracellular delivery mediated by ultrasound and microbubbles. We also suggest that other ionic flows or ion channels may be involved in the cell membrane potential change in sonoporation. Further efforts to explore the cellular mechanism of this phenomenon will improve our understanding of sonoporation.postprin

    Real-time imaging of cellular dynamics during low-intensity pulsed ultrasound exposure

    Get PDF
    Control ID: 1671584Oral Session 5 - Bioeffects of therapeutic ultrasoundOBJECTIVE: Although the therapeutic potential of low-intensity pulsed ultrasound is unquestionable, the wave-matter interactions involved in the process remain to be vaguely characterized. Here we seek to undertake a series of in-situ cellular imaging studies that aim to analyze the mechanical impact of low-intensity pulsed ultrasound on attached fibroblasts from three different aspects: membrane, cytoskeleton, and nucleus. METHODS: Our experimental platform comprised an in-house ultrasound exposure hardware that was coupled to a confocal microscopy system. The waveguided ultrasound beam was geometrically aligned to the microscope’s fieldof-view that corresponds to the center of a polystyrene dish containing fibroblasts. Short ultrasound pulses (5 cycles; 2 kHz PRF) with 0.8 MPa peak acoustic pressure (0.21 W/cm2 SPTA intensity) were delivered over a 10 min period. Live imaging was performed on both membrane (CellMask) and cytoskeleton (actin-GFP, tubulin-RFP) over the entire observation period (up to 30 min after end of exposure). Also, pre- and post-exposure fixed-cell imaging was conducted on the nucleus (Hoechst 33342) and two cytoskeleton components related to stress fibers: F-actin (phalloidin-FITC) and vincullin (Alexa Fluor 647 conjugated). To study whether mechanotransduction was responsible in mediating ultrasound-cell interactions, some experiments were conducted with the addition of gadolinium that blocks stretch-sensitive ion channels. RESULTS: Cell shrinkage was evident over the course of low-intensity pulsed ultrasound exposure. This was accompanied with contraction of actin and tubulin. Also, an increase in central stress fibers was observed at the end of exposure, while the nucleus was found to have decreased in size. Interestingly, after the exposure, a significant rebound in cell volume was observed over a 30 min. period. These effects were not observed in cases with gadolinium blockage of mechanosensitive ion channels. CONCLUSIONS: Our results suggest that low-intensity pulsed ultrasound would transiently induce remodeling of a cell’s membrane and cytoskeleton, and it will lead to repression of nucleus. This indicates that ultrasound after all represents a mechanical stress on cellular membrane. The post-exposure outgrowth phenomenon is also of practical relevance as it may be linked to the stimulatory effects that have been already observed in low-intensity pulsed ultrasound treatments.postprin
    • 

    corecore