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ABSTRACT

Real-time acousto-optic (AO) sensing – a dual-wave modality that combines ultra-

sound with diffuse light to probe the optical properties of turbid media – has been

demonstrated to non-invasively detect changes in ex vivo tissue optical properties

during high-intensity focused ultrasound (HIFU) exposure. The AO signal indicates

the onset of lesion formation and predicts resulting lesion volumes. Although proof-

of-concept experiments have been successful, many of the underlying parameters and

mechanisms affecting thermally induced optical property changes and the AO de-

tectability of HIFU lesion formation are not well understood. In thesis, a numerical

simulation was developed to model the AO sensing process and capture the relevant

acoustic, thermal, and optical transport processes.

The simulation required data that described how optical properties changed with

heating. Experiments were carried out where excised chicken breast was exposed to

vi



thermal bath heating and changes in the optical absorption and scattering spectra

(500 nm – 1100 nm) were measured using a scanning spectrophotometer and an

integrating sphere assembly. Results showed that the standard thermal dose model

currently used for guiding HIFU treatments needs to be adjusted to describe thermally

induced optical property changes.

To model the entire AO process, coupled models were used for ultrasound prop-

agation, tissue heating, and diffusive light transport. The angular spectrum method

was used to model the acoustic field from the HIFU source. Spatial-temporal tem-

perature elevations induced by the absorption of ultrasound were modeled using a

finite-difference time-domain solution to the Pennes bioheat equation. The thermal

dose model was then used to determine optical properties based on the temperature

history. The diffuse optical field in the tissue was then calculated using a GPU-

accelerated Monte Carlo algorithm, which accounted for light-sound interactions and

AO signal detection. The simulation was used to determine the optimal design for

an AO guided HIFU system by evaluating the robustness of the systems signal to

changes in tissue thickness, lesion optical contrast, and lesion location. It was de-

termined that AO sensing is a clinically viable technique for guiding the ablation of

large volumes and that real-time sensing may be feasible in the breast and prostate.
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1

Chapter 1

Introduction

1.1 HIFU for the Treatment of Cancer

1.1.1 HIFU Background and Principles

Ultrasound has long been employed as a diagnostic medical tool, providing real time

images with fine spatial resolution deep within the body. However, therapeutic ultra-

sound is also emerging as a promising non-invasive alternative to open surgery for the

resection of solid, cancerous tumors (Kennedy, 2005; ter Haar and Coussios, 2007a;

Coussios and Roy, 2008). Additional therapeutic applications include the treatment

of bone and soft tissue injuries (Watson, 2008), the destruction of kidney stones and

gall stones (Rassweiler et al., 2011), and targeted drug delivery (Mo et al., 2012).

High-intensity focused ultrasound (HIFU), otherwise known as focused ultrasound

surgery (FUS), was first investigated as a method for the thermal ablation of tumors

in the 1940’s (Lynn et al., 1942; Lynn and Putnam, 1944). The technique uses either

spherically focused single-element ultrasound transducers or phased arrays to create

significantly localized region of high pressures. The energy of the ultrasound is ab-

sorbed by the tissue and converted to heat, causing the cells in the ultrasonic focus

– a volume which is approximately the size and shape as a grain of rice for a typical

HIFU frequency of 1 MHz – to rapidly undergo irreversible coagulative necrosis, while

leaving the surrounding tissue undamaged (ter Haar, 1995; ter Haar and Coussios,

2007b). The concept is illustrated in Fig. 1·1, and the region of tissue that is de-

stroyed is referred to here as a lesion. In addition to the thermal effects caused by
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ultrasound absorption, mechanical effects such as high shear stresses and cavitation

can cause further ablation within the HIFU focus (Coussios et al., 2007). In order to

ablate large volumes of tissue, there are two strategies. The surgeon may either create

an array of lesions one at a time, or may continuously scan the HIFU transducer to

create one large lesion (ter Haar, 2012).

Figure 1·1: An illustration of non-invasive tumor ablation with HIFU.
The megahertz-frequency ultrasound traverses the intervening tissue
and creates a lesion about the size and shape of a grain of rice at the
focus inside of the tumor.

To date, HIFU has been used clinically in the treatment of tumors of the prostate,

breast, brain, liver, kidney, uterine, pancreas, and bone (Kennedy, 2005; Al-Bataineh

et al., 2012). These exploratory treatments have been investigated using commercially

available systems guided by either diagnostic ultrasound or Magnetic Resonance (MR)

imaging. These guidance methods, along with several other developmental technolo-

gies, are discussed in detail in Section 1.1.3.

1.1.2 The Role of HIFU in Cancer Therapy

Several methods currently exist for the palliative and curative treatment of cancer.

The most firmly established treatment methods are chemotherapy, open surgery, hor-

monal therapy, immunotherapy, gene therapy, radiotherapy, radio frequency ablation,
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cryoablation, laser ablation, and electroporation (Pazdur and Hoskins, 2003). The last

five techniques listed are considered minimally invasive. Several of these approaches

are often used in combination in an effort to more effectively treat the disease.

HIFU shows great promise as an alternative to both open surgery and the minimally-

invasive techniques listed above. Advantages include: a reduced risk of infection, re-

sulting in decreased mortality and morbidity (Kennedy, 2005), leaving necrosed tumor

tissue in situ, which has been shown to result in an increased immune response (Wu

et al., 2001, 2007), and minimal risk of hemorrhage from visceral or vascular punc-

ture provided the HIFU exposure is operated to avoid excessive cavitation or boiling

activity. Moreover, HIFU is completely non-ionizing. Consequently, treatments can

be repeated without any lasting damage being done to the patient, and with no risk

of side effects other than minor skin burns (Wu et al., 2001, 2004; Illing et al., 2005).

Overall, HIFU shows promise as a supplement to any type of cancer therapy, but it is

particularly applicable as a non-invasive and non-ionizing alternative to open surgery

and radiotherapy for the treatment of deep-seated, solid tumors.

1.1.3 HIFU Guidance

As HIFU is completely non-invasive and treatment planning is difficult due to patient

and time-dependent environmental factors – blood flow, respiration, body tempera-

ture, intervening tissue heterogeneities, etc. – a reliable treatment monitoring and

guidance technique is imperative for its efficacy and its clinical acceptance (Rivens

et al., 2007). The likelihood that a given set of exposure parameters will result in

lesion formation is difficult to ensure a priori, owing the complexity of the situation.

Targeting errors, changes in perfusion blood cooling, and the presence or absence of

cavitation all impact the location, volume, and shape of a HIFU lesion. Since the

treatment of a large volume usually requires that multiple lesions be formed, and

some therapies are performed in sensitive organs where minimizing the damage to
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surrounding healthy tissue is imperative, it is extremely desirable to be able to moni-

tor treatment progress in real time for each lesion that is created. A surgeon must be

certain that the target volume is adequately treated, while ensuring that surrounding

or intervening healthy tissue is unaffected. To date, diagnostic ultrasound (ter Haar

et al., 1989; Sanghvi et al., 1996; Wu et al., 2004) and magnetic resonance (MR)

thermometry (Hynynen et al., 1996; McDannold, 2005) are the only two guidance

methods that have seen substantial clinical use. While each of these techniques have

particular advantages and disadvantages, they both leave much to be desired in the

way of providing reliable and cost-effective real-time feedback for HIFU guidance.

B-mode images from diagnostic ultrasound scanners have been used to image

HIFU induced tissue damage since the 1970’s (Fry et al., 1970), and have been widely

employed in the years since due to their low cost, portability, and capability of imaging

in real-time. Although these factors certainly make diagnostic ultrasound guidance

an attractive option, there is a fundamental problem with the approach. It has

been demonstrated that there is insufficient contrast between necrotic and healthy

tissue to reliably image HIFU lesions on a B-mode scan (Hill and Ter Haar, 1995;

Vaezy et al., 2001; Rabkin et al., 2005, 2006; Coussios et al., 2007). Instead, the use

of B-mode imaging for HIFU guidance relies on enhanced echogenecity associated

with the generation of sizable, stable gas and/or vapor bubbles generated within the

treatment volume. The bubbles are either generated by the substantial tensile stress

present in intense sound fields (i.e. acoustic cavitation) or by elevated temperatures

induced by HIFU heating (i.e. boiling). When present, these bubbles have been

shown to produce unpredictable and abnormally formed lesions (Meaney et al., 2000;

Bailey et al., 2001; Khokhlova et al., 2009). In addition to the unpredictability of

lesion formation associated with the generation of vapor bubbles, some studies have

found no correlation between the presence of enhanced echogenicity on a scan and
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the rate of tumor destruction (Sibille et al., 1993). Moreover, it is possible, and in

some cases desirable, to generate HIFU lesions in tissue without boiling or excessive

cavitation activity, resulting in necrotic tissue that is not visible in a B-mode image,

as demonstrated in Fig. 1·2.

35 mm
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 m

m
Before HIFU After HIFU

(a) (b)

Figure 1·2: B-mode images of ex vivo chicken breast obtained imme-
diately before (a) and after (b) a 40 s HIFU exposure with a target
peak positive pressure of 10 MPa and a frequency of 1.1 MHz, result-
ing in an approximately 200 mm3 lesion. The HIFU focus is located
inside of the dashed yellow boxes. (Images courtesy of Dr. Puxiang
Lai, Washington University in St. Louis)

Unlike diagnostic ultrasound, which directly measures mechanical changes in tis-

sue, MR thermometry uses measurements of proton resonance frequency shifts to

calculate temperature rise (Ishihara et al., 1995) and from this infers the likelihood

of lesion formation based on the temperature-time history of the target volume. MR

thermometry is currently considered the “gold standard” for HIFU guidance (Rivens

et al., 2007; Goldberg et al., 2009; Tempany et al., 2011). Current systems are able

to provide two dimensional, quasi-real time temperature measurements in situ every

1-5 s with a spatial resolution on the order of 1-2 mm, with a trade-off between speed

and accuracy (Rivens et al., 2007). An example of the image that a surgeon sees
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Figure 1·3: Coronal (a) and sagittal (b) plane temperature maps seen
by a surgeon during uterine fibroid ablation using a Phillips Sonalleve
MR-HIFU machine. Typical temperature voxels are 2.5 x 2.5 x 7 mm3

and temperature maps are acquired every 2.9 s. Spatially-dependent
thermal dose is calculated at every temperature acquisition, and the
areas which have accumulated a thermal dose of 30 equivalent minutes
and 240 equivalent minutes are outlined in yellow and white, respec-
tively. The image displayed under the temperature map is acquired
before treatment, and an estimation of the acoustic field is overlaid in
light orange (Kim et al., 2014).

during the treatment is shown in Fig. 1·3. MR thermometry measures temperature,

and not a damage dependent lesion property; therefore it is an indirect measurement.

Consequently, a temperature dependent model is needed to infer the thermal damage

inflicted by temperature elevation. These models may not accurately predict tissue

ablation (Church, 2007). MR guided HIFU systems using the CEM43 thermal dose

model (Sapareto and Dewey, 1984) to calculate the likelihood of thermal damage are

the current gold standard for HIFU guidance (Tempany et al., 2011). However, they

are expensive, complex, non-portable, and sensitive to patient movement (Kennedy,

2005).

The weaknesses associated with both ultrasound and MR guidance techniques

elicit the motive for new approaches to monitoring lesion formation. The development

of new HIFU guidance techniques is an active area of research, and several different
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methods are currently under development which range from techniques that leverage

the contrast between the shear modulus of normal and lesioned tissue – including

elastography (Righetti et al., 1999) and acoustic radiation force impulse imaging

(ARFI) (Nightingale et al., 2001) – to techniques which image bubble activity in the

HIFU focus, such as passive acoustic mapping (PAM) (Nandlall et al., 2011; Jensen

et al., 2012). Another alternative method for monitoring HIFU lesion formation is

to image or sense optical properties as they change with thermal damage. Thermal

necrosis induces large changes in the optical absorption and scattering coefficients of

tissues, and thus exhibit high optical contrast as shown in Fig. 1·4. Although there

is a high optical contrast between lesioned and native tissue, the the high scattering

coefficients possessed by biological tissues limit the spatial resolution at which optical

systems are able to sense or image contrast within the body. Alternatively, dual-wave

imaging methods – such as photoacoustics (Xu and Wang, 2006) and acousto-optics

– utilize the interaction between light and sound to image optical contrast at depth

with a spatial resolution dictated by the ultrasound beam.

1 0 2  
mm

3 4  5  

Figure 1·4: Cross-section photo of a lesion created in ex vivo chicken
breast by a 50 s HIFU exposure with a target peak positive pressure
of 10 MPa and a frequency of 1.1 MHz. The ultrasound propagated
from left to right and its focal plane was in the center of the lesion.
(Courtesy of Dr. Puxiang Lai, Washington University in St. Louis.)

Although photoacoustic and acousto-optic (AO) techniques both use light-sound

interactions to image optical contrast with acoustic resolution, their operating prin-

ciples are very different. Photoacoustic imaging operates by detecting ultrasound

emitted by a volume of tissue as it rapidly expands following the absorption of a
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short pulse of light – an effect which is dependent on both the temperature and opti-

cal absorption properties of the tissue. Therefore, photoacoustic techniques hold an

advantage over acousto-optic techniques for HIFU guidance as they can either mea-

sure temperature (Nikitin et al., 2012) or optical changes (Khokhlova et al., 2006;

Chitnis et al., 2010; Prost et al., 2012; Alhamami et al., 2014), albeit with a pen-

etration depth severely limited by acoustic absorption and optical exposure limits.

Alternatively, AO techniques operate by detecting phase modulations which are im-

parted on diffuse light as it passes through an ultrasound beam. This technique

boasts several advantages over photoacoustics. AO sensing is inherently sensitive to

both optical absorption and scattering. Additionally, AO sensing does not rely on

sensitive noise detection and thus can be utilized in real time, while the HIFU field is

turned on. Finally, AO can sense contrast at deeper depths and with better spatial

resolution at depth. Recently, AO sensing of thermally induced changes in the optical

properties of ex vivo tissues has been demonstrated as a viable technique for mon-

itoring non-cavitating HIFU exposures in real time (Lai et al., 2011; Murray et al.,

2012). The technique is the subject of this thesis, and it will be discussed in detail in

the following section.

1.2 Acousto-Optic Imaging and Sensing

1.2.1 AO Background and Principles

Optical imaging is gaining traction as a powerful diagnostic tool for an assortment

of medical applications, as the interaction of light with tissue has been shown to

reveal detailed structural and functional information (Tuchin, 2002). In addition to

the large amount of information available from optical imaging, it is also a desirable

modality because it is non-ionizing and it is completely innocuous at low intensities

(ANSI, 2007, 2005; International Commission on Non-Ionizing Radiation Protection,
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1996). Unfortunately, the applicability of optical imaging at depth is limited in tissue

due to the absorption of light by tissue chromophores – hemoglobin, melanin, water,

etc. – and the strong scattering of light from variations in refractive index (Cheong

et al., 1990; Jacques, 2013). To avoid strong absorption deep inside of tissue, near

infrared (NIR) light with a wavelength in the ‘biological window’ (650-900 nm), where

tissue chromophores display low absorption, can be used (Vo-Dinh, 2010; Wang and

Wu, 2012). Additionally, certain tissues such as brain (Yaroslavsky et al., 2002),

breast (Pifferi et al., 2004), and prostate (Pantelides et al., 1990) are deemed optically

penetrable as they possess much lower absorption than highly perfused tissues such as

liver. Unfortunately, scattering is still a dominant factor when illuminating tissue with

light in the biological window. In practice, scattering typically limits the penetration

of light to ∼6-7 cm in tissue, and spatial resolution is limited to ∼10 mm using

standard diffuse optical imaging techniques such as diffuse optical tomography (DOT)

(Arridge, 1999; Boas et al., 2001). While scattering does fundamentally limit the

penetration depth of light within tissue, spatial resolution can be improved using

multimodal techniques such as photoacoustics or acousto-optics.

Acousto-optic imaging (AOI) – otherwise known as ultrasound modulated optical

tomography (Wang and Zhao, 1997), acousto-optic tomography (Kempe et al., 1997;

Forget et al., 2003), and ultrasound tagging of light (Marks et al., 1993; Mahan et al.,

1998) – is a dual-wave modality that uses ultrasound to phase modulate diffuse light

at depth in turbid media in order to image optical contrast with a spatial resolution

dictated by the dimensions of the ultrasound beam (Dolfi and Micheron, 1992; Marks

et al., 1993; Leutz and Maret, 1995; Wang et al., 1995b). By measuring the flux and

magnitude of the phase modulations of the modulated, or “tagged”, light (Leveque

et al., 1999), one is able to infer the optical properties of the tissue in the HIFU focus.
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Figure 1·5: Illustration of the principles of AO imaging and sensing.
As diffuse light propagates through the focused ultrasound beam, it
becomes phase modulated by periodic scatterer displacements and pe-
riodic modulations in the refractive index. The intensity modulation
of a single speckle grain is shown in the time and frequency domain.
Note that scattering is low in this illustration and that no absorbers
are included. Image reproduced from Elson et al. (2011).

Figure 1·5 illustrates the working principles of AOI. The sample being imaged

is simultaneously illuminated and insonified with either pulsed or continuous wave

(CW) light and sound. As light propagates through the medium, each individual

photon traverses a unique optical path, with the average distance between consecutive

scattering events given by the scattering mean free path, or the reciprocal of the

scattering coefficient. (A detailed description of light propagation in tissue is provided

in Chapter 2.) When the tissue is under insonification from the ultrasound, the optical

scatterers inside of the ultrasound field are periodically displaced with a magnitude

proportional to the local acoustic pressure. Additionally, the ultrasound induces
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a periodic compression and rarefaction inside of the tissue, resulting in a periodic

density and thus refractive index variation that is proportional to the local pressure.

Therefore, each photon path experiences a unique modulation in its optical path as it

traverses through the ultrasound field due to the displacement of scatterers and the

changing refractive index. (Further details on ultrasound induced modulation of light

can be found in Chapter 3.) The two described mechanisms (Marks et al., 1993; Leutz

and Maret, 1995; Wang, 2001b,a) and the correlation between them (Sakadžić and

Wang, 2005) result in a net cumulative phase shift of the light propagating through

the tissue. It should be noted that density variations also result in a small amplitude

modulation of the light, but the amplitude modulation is a much smaller effect than

the phase modulation and has not been observed experimentally (Wang and Zhao,

1997).

Because the magnitude of the ultrasound induced phase shift is dependent upon a

combination of the optical properties of the medium and the local acoustic pressure,

the net phase shifts are significantly more sensitive to the optical properties in the

acoustic focus than elsewhere in the field (Murray et al., 2004; Ramaz et al., 2004;

Sakadžić and Wang, 2004; Xu et al., 2007; Li et al., 2008b; Rousseau et al., 2008;

Lai et al., 2009). Thus, the area where the focus of the ultrasound is coincident with

diffuse light is termed the “AO interaction volume” (Murray and Roy, 2008), and

the dimensions of this volume characterize the spatial resolution of the system. In

order to construct an image, the interaction volume can be scanned in one, two, or

three dimensions. However, it may prove sufficient to monitor or measure optical

properties at one location, in which case the interaction volume remains stationary.

This is referred to as AO sensing (Lai et al., 2011).

The optical field in the sample is a composition of the partial waves that propagate

along unique optical paths. The interference between each of these paths causes
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a speckle pattern to form at the tissue boundaries (Goodman, 2007), as shown in

Fig. 1·5. Because the phase of the light at each speckle grain is independent, the

ultrasound induced phase modulations are not correlated from speckle to speckle

and are therefore spatially incoherent. Because of this spatial incoherence, detection

cannot be performed with a large single aperture photodetector. Additionally, due to

tissue motion and blood flow, the speckle field is subject to a temporal decorrelation on

the order of 0.5 ms in vivo (Gross et al., 2005; Lev and Sfez, 2003). Consequently, the

detection of AO signals is non-trivial. The primary AO detection methods currently

in use are discussed in the following section.

1.2.2 AO Detection Methods

The purpose of this section is to present a comprehensive survey of the primary AO

detection methods currently in use. A detailed analysis of each method is beyond

the scope of this discussion, however a more complete review may be found in El-

son et al. (2011). In reviewing detection methods, a clear distinction can be made

between incoherent techniques – based on spectral filtering of the scattered light to

select the acoustic sidebands – and coherent techniques which measure ultrasound in-

duced phase modulations by detecting an intensity modulation. The two established

incoherent techniques are presented first, followed by the coherent techniques.

Confocal Fabry-Pérot Interferomer Filtering

A confocal Fabry-Pérot interferomer (CFPI) is a filter consisting of two partially

transmitting mirrors aligned to create a reflective cavity. Light enters the cavity

and undergoes self-interference due to multiple reflections. The center frequency of

the filter is adjustable by controlling the distance between the two mirrors, and the

bandwidth is a function of the distance between the mirrors and their reflectivity. To

detect tagged photons, the filter is tuned to a center frequency of ω0 ± ωa, where ω0
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is the optical source frequency and ωa is the acoustic frequency (Monchalin, 1985;

Monchalin et al., 1989). The bandwidth of the filter must be less than ωa. A single

aperture photodetector measures the intensity of the light that passes through the

CFPI. By isolating the acoustic sideband, one is able to make a direct measurement

of the flux of the modulated light. This has the distinct advantage of being insensitive

to complications associated with the spatial and temporal incoherence of the speckle

pattern. Most current implementations use multiple passes through the CFPI to

reduce the bandwidth of the filter and further reject the light at ω0 (Sakadžić and

Wang, 2004; Rousseau et al., 2009). Unfortunately, in order to achieve sufficient

suppression of the unmodulated light, it is generally necessary to use a relatively high

ultrasound frequency (≥ 5 MHz). Therefore, a CFPI based detector is best suited

for shallow imaging applications, such as high-resolution AO microscopy (Kothapalli

and Wang, 2008, 2009).

Spectral Hole Burning

In an attempt to overcome the limitations of a CFPI, spectral hole burning (SHB)

has been proposed as an alternative spectral filtering technique for AO detection (Li

et al., 2008a,b). An SHB crystal is a rare-earth ion doped, inhomogeneously broad-

ened optical absorber with an inhomogenous bandwidth of a gigahertz. The crystal

can be modeled as a two level system, meaning when atoms are in their ground state

they possess high absorption properties, but when excited they allow optical trans-

mission. When cryogenically cooled and illuminated with a sufficiently intense laser,

an SHB crystal can possess a spectral “hole”, or transparency, with a sub-megahertz

homogeneous linewidth (Li et al., 2008b). For use with AO detection, a high-power

pump laser is frequency shifted to one of the acoustic sidebands and is used to burn

a spectral hole in the crystal. Like with CFPI, the light at the acoustic sideband is

transmitted through the SHB crystal and is collected with a single aperture photode-
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tector. Current implementations use multiple passes through the SHB to improve

its filtering efficiency (Xu et al., 2010). This detection method has many advan-

tages. It exhibits a high étendue (light collection efficiency), it is insensitive to the

temporal and spatial incoherence of the speckle pattern, and it can be used with an

optical wavelength around 800 nm. However, it requires expensive and non-portable

equipment, and with recently demonstrated techniques the efficiency of the spectral

filter is low, exhibiting a 2.6 dB suppression of the acoustic sideband and an 18 dB

suppression of the laser frequency (Xu et al., 2010; Li et al., 2008b).

Point Detection

The first attempts of detecting ultrasound induced phase modulations were made with

fast single point detectors, such as photodiodes or photomultiplier tubes (PMTs), that

were configured with apertures small enough to monitor intensity modulations in the

light from individual speckles (Wang et al., 1995b; Wang and Zhao, 1997). This

technique is inherently different from previously discussed detection methods, which

measure phase modulations, as it only detects weak intensity modulations caused by

changes in optical properties within the HIFU focus. In these studies, an electronic

filter was used to isolate the AC component of the detected signal, and thus the mod-

ulated light. More recently, other point detection techniques have been demonstrated

that either use a local oscillator (Kempe et al., 1997) or a digital autocorrelator (Pow-

ell and Leung, 2013a) in order to better measure phase modulations. The advantage

of point detection techniques is that they are simple and very fast, allowing detection

to be made before the speckle temporally decorrelates due to blood flow or tissue mo-

tion (i.e. � 0.5 ms). Unfortunately, the intensity of the modulated signal detected

from a single speckle is extremely weak, and thus the signal-to-noise ratio (SNR) is

very poor. It is possible to collect more light by detecting over Ng speckle grains,

but the modulation depth of the signal – the total modulated fluence divided by the
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unmodulated fluence – decreases with
√
Ng because of the spatial incoherence of the

speckle pattern.

Parallel Speckle Modulation Processing

By detecting over Ng speckle grains with independent sensors, such as the pixels of

a camera, the SNR can be improved by
√
Ng without compromising the modulation

depth (Marks et al., 1993; Gleyzes et al., 1995; Leveque et al., 1999). However, the lim-

ited acquisition speed of current charged-coupled device (CCD) and complementary

metal-oxide-semiconductor (CMOS) cameras prevent them from directly recording

AO modulations. In order to work around this limitation, the light source is ampli-

tude modulated at the acoustic frequency, creating a low frequency beating which is

detectable by the camera. Four images are recorded, each corresponding to different

relative phases between the illumination and the ultrasound. By computing linear

combinations of the four images, the amplitude and phase of the modulated light

can be recovered at each pixel (Leveque et al., 1999; Yao et al., 2000). However, the

time required to acquire the four images is much greater than the speckle decorrela-

tion time, which introduces a large amount of noise. Additionally, data is normally

post-processed, so this detection method has not been demonstrated in real time.

Digital Off-Axis Holography

Many of the problems associated with parallel speckle modulation processing arise

from the fact that the intensity of the modulated light is very weak compared to

the intensity of the unmodulated light. It is necessary to employ detectors with

large dynamic ranges to measure these signals, and even then the signal is normally

much smaller than the background noise of the detectors. In order to address this

issue, Gross et al. (2003) have demonstrated the implementation of digital off-axis

heterodyne holography (Le Clerc et al., 2000) for the detection of AO signals. By
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splitting the illumination laser prior to reaching the sample to create a local oscillator,

then frequency shifting the local oscillator to one of the acoustic sidebands, the signal

becomes amplified above the camera’s read noise and the system becomes shot-noise

limited. Then, by introducing an additional small frequency shift (1/4 of the camera’s

frame rate) to the local oscillator, the camera records the interference pattern between

the signal beam and the local oscillator with four different relative phases. With these

four images, the modulation depth can be calculated at each pixel (Yamaguchi and

Zhang, 1997). Additionally, by introducing a small angle between the signal beam and

the local oscillator, the interference between the signal beam and the local oscillator

creates a sinusoidally modulated interference pattern in space. By taking a spatial

Fourier transform of the recorded holograms, the interference pattern can selected

and the speckle decorrelation noise can be filtered out (Gross et al., 2003). Although

the speckle decorrelation noise can be filtered out over long exposure times, fast frame

rates are still required to achieve axial resolution – either using pulsed ultrasound or

AO coherence tomography (AOCT) (Benoit a la Guillaume et al., 2012). Recently,

a state-of-the-art CMOS camera has been developed which functions with a frame

rate of 4 kHz and features in-pixel processing for holography based AOCT (Laforest

et al., 2013). The 4 kHz frame rate of the camera allows holograms to be recorded

before the speckles temporally decorrelate, and the on-board processing dramatically

reduces image acquisition times.

Laser Speckle Contrast

In an attempt to detect AO signals from a single camera image, as opposed to the

multiple images required for parallel speckle modulation processing or digital holog-

raphy, Li et al. (2002) proposed an analysis of the blurring of the speckles during

the camera exposure time. As the scatterers within the tissue are displaced by the

ultrasound during the camera exposure time, the camera records a moving speckle
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pattern, causing the speckle grains to appear blurred. By measuring the contrast of

the image, the degree of speckle blurring can be determined, and a correlation can

be made to the amount of modulated light at the detector. While this technique has

the advantage of only requiring one image, the signal is very weak as the images need

to be acquired within the temporal coherence time of the speckles, and therefore the

SNR is generally poor. Additionally, any small movement of the tissue during the

camera exposure time has a large impact on the measured modulation.

Photorefractive Holograpy

Introduced to the field of AOI by Murray et al. (2004) and Ramaz et al. (2004), a

photorefractive crystal (PRC) is material whose index of refraction adaptively varies

according to the spatial distribution of incident optical illumination (Teich and Saleh,

1991; Solymar et al., 1996). As light is absorbed in a PRC, free carriers (electrons

or holes that are free to move throughout the semiconductor lattice) are generated

in a process known as photogeneration. Because of spatial concentration gradients,

the free carriers diffuse from bright regions in the PRC and become trapped in dark

regions1, resulting in a non-uniform space-charge distribution and thus a spatially

modulated electric field. The time required for the formation of this electric field

is referred to the PRC response time (Millerd et al., 1998). Because the PRC is

electro-optic (i.e. its refractive index is proportional to its internal electric field), the

spatially modulated electric field also creates a holographic refractive index pattern

which diffracts the incident light.

By splitting the illumination laser prior to the sample, a reference beam is cre-

ated. When this reference beam is recombined with the signal beam at the PRC,

an interference pattern is created, which is then recorded as a hologram inside the

1 The application of an external field enhances this process and creates a stronger refractive index
grating (Delaye et al., 1997; Millerd et al., 1998), resulting in a higher two-wave mixing gain.



18

θ

Photodetector

PRC

Signal Beam

Reference Beam

Transmitted Signal

Diffracted 

Signal

Transmitted 

Reference

DiffractedReference

Figure 1·6: An illustration of two wave mixing in a photorefractive
crystal. As the complex wavefront of the signal beam interferes with
the planar wavefront of the reference beam at the PRC, a complex in-
terference pattern is created and a hologram is recorded. The hologram
partially diffracts each of the beams in the direction of the other, per-
fectly phase matching the reference beam to the signal beam in this
case. Detection is then performed with a large single aperture pho-
todetector. Among other factors, the TWM gain is dependent upon
the intensity of the beams and the angle between them.

crystal. In a process known as two-wave mixing (TWM), the signal beam and the

reference beam exchange energy and a portion of the reference beam is refracted in

the direction of the signal beam, creating a constructive interference between the two

beams. If the crystal is properly configured (Sui et al., 2005), the two beams will be

perfectly in phase, as shown in Fig. 1·6. Ultrasonically induced phase modulation

occurs too quickly for the crystal to adapt to. Therefore, ultrasound induced phase

modulation in the signal beam translates into spatially coherent intensity modulation

in the interference between the signal and reference beams. The entire speckle pat-

tern can then be integrated over a large single aperture detector without averaging

out the modulation over multiple speckles. By selecting the frequency of the refer-

ence beam to be either the illumination frequency or the acoustic sideband frequency,

one can detect either the unmodulated or the modulated light, respectively (Gross

et al., 2009). It bears mentioning that it is also possible to perform PRC-based AO

detection with a self-referenced signal beam, but the response time of the crystal is
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dramatically reduced in this configuration (Benoit a la Guillaume et al., 2013).

The main advantage of a PRC-based detection system is that fast detection can

be performed with a single aperture detector over multiple speckles with a large

étendue. However, there are also several disadvantages. First, the spectral response

of PRCs limits their use to specific wavelengths. Additionally, the response time

of the crystal needs to be sufficiently fast to adapt to speckle decorrelation caused

by blood flow and physiological movement. While the use of a tellurium-doped tin

thiohypodiphosphate (SPS:Td) ferroelectric crystal has been demonstrated at 790

nm, its response time (100 ms) is too slow for in vivo applications (Farahi et al.,

2010). Likewise, phototorefractive polymer films (Suzuki et al., 2013) have been

demonstrated to have large étendues and high TWM gains, achieving AOI in tissue-

mimicking phantoms of up to 9.4 cm in thickness (Lai et al., 2013), but their response

times are on the order of many seconds. An AO system with a GaAs crystal, which

works at a wavelength of 1064 nm, has has been reported to achieve a response time

of 0.25 ms, which is compatible with in vivo imaging of thick tissues (Lesaffre et al.,

2007). Unfortunately, achieving a fast response time requires the use of a very intense

reference beam, which then may be scattered and cause an additional noise source

at the detector. To date, photorefractive holography based detection with a GaAs

crystal is the only technique that has been used for HIFU guidance and this approach

will be discussed in further detail in Chapter 3.

Summary

Because of their insensitivity to the decorrelation of both the light source and the

speckle pattern, incoherent AO detection techniques appear most suitable for in vivo

imaging. However, each of the current incoherent detection techniques have signif-

icant limitations. The Fabry-Pérot interferometer suffers from a low étendue and a

severe lack of robustness because its spectral selectivity is disrupted in the presence
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of vibrations. Spectral hole burning has advantages as a detection system, but it

has not been widely adopted because it is technically difficult to achieve low enough

temperatures to achieve the narrowband filters necessary for AO detection. Among

the coherent detection techniques, no clear preference has been made within the AO

scientific community. The choice of technique generally depends on the equipment

available and the expertise of the researcher employing it. With the development of

fast CMOS cameras (Laforest et al., 2013) and high very étendue PRC systems (Lai

et al., 2012), both digital off-axis holography and PRC holography techniques show

great promise for in vivo AO imaging and sensing in thick tissues.

1.2.3 AO Sensing for HIFU Guidance

Using a GaAs PRC-based lock-in detection system, real-time AO sensing of thermally

induced changes in the optical properties of ex vivo tissues has been demonstrated

during non-cavitating HIFU exposures (Lai et al., 2011; Murray et al., 2012). A

schematic of the apparatus is presented in Fig. 1·7. Light from a single longitudinal

mode 1064 nm Nd:YAG laser is split into a signal beam and a reference beam by a

variable beam splitter, which allows the operator to select the power ratio between

the beams. The signal beam is then expanded to lower the intensity incident upon the

sample, and the reference beam is collimated and expanded to the size of the PRC.

The sample is insonified by a 1.1 MHz HIFU transducer, which is 100% amplitude

modulated at 50 Hz. The synchronous output from the 50 Hz HIFU modulation sig-

nal serves as a reference input for the lock-in amplifier. A passive cavitation detector

(PCD) monitors inertial cavitation activity in the HIFU focus during insonication in

order to rule out the presence of bubble activity which affects the stability of the AO

signal. Diffuse modulated and unmodulated light is collected in transmission through

the sample by a large lens, and is focused to the face of the PRC. The sample beam

and the reference beam create a hologram in the PRC, and the TWM gain is enhanced
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Figure 1·7: A schematic of the apparatus used for real-time sensing of
HIFU lesions with PRC-based lock-in detection. The tissue is insonified
by the HIFU system along the +Z-axis and illuminated by the sample
beam along the +X-axis. The apparatus consists of four subsystems: a
HIFU drive system, an illumination system, a passive cavitation detec-
tion system, and a PRC based AO detection system. A synchronization
output from the HIFU drive system serves as a reference input for the
lock-in amplifier.

by the application of an external AC voltage field. Without any ultrasound, the light

at the output of the PRC is a constructive interference between the signal beam and

the reference beam. In the presence of ultrasound induced modulations, the PRC can

not adapt to the quickly changing signal beam, and the constructive interference be-

tween the signal beam and the reference beam is compromised. Therefore, ultrasound

induced modulations in the signal beam cause an intensity modulation at the output

of the PRC. The light at the output of the PRC is focused by another lens onto the

active element of a high-gain and fast-response avalanche photodiode (APD), which is

then low-pass (LP) filtered, amplified, and sent to the lock-in amplifier. More details

of the setup can be found in Lai et al. (2011).

Because the HIFU drive signal is amplitude modulated, so is the intensity of the
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Figure 1·8: (a) A typical time domain AO signal measured at the
output of the low-pass (LP) filter (see Fig. 1·7) using a relatively low
ultrasound focal pressure (1 MPa peak positive) in ex vivo chicken
breast. This waveform was obtained by coherently averaging over 1,000
sweeps of the 10-ms HIFU burst, which took more than 20 s. The
curvature in the signal is due to the finite response time of the PRC.
(b) A typical AO signal at the output of the lock-in amplifier. The
exposure was a 10 MPa target peak positive pressure for 40s in ex vivo
chicken breast. As the optical properties in the HIFU focus change, the
AO signal drops in proportion to the lesion volume. The data is taken
from Lai et al. (2011).

light measured by the APD, as shown in Fig. 1·8(a). The output of the lock-in

amplifier is a low-noise signal that is proportional to the root mean square (RMS)

value of the amplitude modulated intensity measured by the APD. More details on

this signal are provided in Chapters 3 and 5. Because the amplitude of the modulated

intensity at the APD is proportional to the magnitude of the phase modulations,

it is a function of the optical properties in the focus of the HIFU. Therefore, by

monitoring the output of the lock-in amplifier, one is able to directly monitor the

optical properties in the focus of the HIFU. It is this signal that we will term the

“real-time AO signal”. As the tissue in the HIFU focus undergoes thermal necrosis,

its optical properties change and so does the magnitude of the AO signal. Figure

1·8(b) shows the AO signal as a function of time for a 40 s exposure of 10 MPa

target peak positive pressure in chicken breast. By making HIFU lesions in ex vivo
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chicken breasts under many different exposure conditions, Lai et al. (2011), see Fig.

1·9, showed that the resulting lesion volume was a function of the normalized change

in the AO signal, independent of the exposure parameters. This motivates the work

reported in this thesis.
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Figure 1·9: The percent reduction in AO signal amplitude (∆S) as a
function of resulting lesion volume for 40 s exposures of a target peak
pressure of 8 MPa (group 1) and 5-60 s exposures of 6-10 MPa (group 2)
in ex vivo chicken breast samples. The least-squares error (LSE) fit of
the data is able to predict the resulting lesion volume for all investigated
exposures. For more information on the exposure parameters and the
fit, see Lai et al. (2011).

1.3 Recapitulation and Specific Aims

The largest barrier to the widespread acceptance of HIFU for the treatment of cancer

is the lack of a reliable and accessible feedback and monitoring technique. Improve-

ment in feedback and monitoring will reduce treatment time, will increase the safety

and efficacy of treatments, will reduce the costs of treatments, and will increase its

accessibility. Real-time AO sensing of lesion formation has been proposed as a sup-

plemental or alternative monitoring technique to the current gold standard of MR

thermometry guidance. Although proof-of-concept experiments have demonstrated
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the feasibility of real-time AO sensing for HIFU guidance in ex vivo tissues, the tech-

nique has not been optimized and the parameters which affect the AO detectability

of HIFU lesions are not well understood. Not only are system design considerations

such as illumination wavelength, detector size, and illumination/detection configura-

tion not well understood, but the literature lacks reliable data to describe the optical

contrast between undamaged and thermally lesioned tissues.

The two main goals of this work are to better understand the optical contrast

between native and lesioned tissues, and to assess and improve upon current AO

guided HIFU techniques using a modeling based approach. To accomplish these

goals, the following specific aims are established:

1. Quantify the optical properties of native and thermally necrosed ex vivo tissues,

and develop a model to describe the kinematics of thermally induced optical

property changes.

2. Develop a comprehensive model to describe the AO guidance of HIFU. This

includes calculations of acoustic pressure and intensity, temperature changes

due to ultrasound absorption and thermal diffusion, thermally induced optical

property changes, light propagation, ultrasound induced phase modulations,

and AO signal detection.

3. Use the model to determine an optimal design for an AO guided HIFU system,

and assess the robustness of its AO signal to changes in factors such as tissue

thickness, lesion optical contrast, and lesion location.

4. Use the model to assess the clinical viability of AO guided HIFU by examining

its ability to guide the ablation of large volumes, and by predicting the SNR of

AO signals in different organ models.
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In Chapter 2, the theory of light-tissue interactions and optical property measure-

ments in tissue are presented. These principles are used to introduce measurements

of the optical properties of native and thermally necrosed chicken breast tissue, and

to develop a time-temperature model to describe the kinematics of thermally induced

optical property changes. In Chapter 3, the development of the AO guided HIFU

model is presented, including all relevant theory, numerical implementations, and

validations. In Chapter 4, the model is employed to accomplish specific aim num-

ber 3, and in Chapter 5 modeling results are presented which pertain to specific aim

number 4. Finally, a brief summary of the important results from Chapters 2-5 is

presented in Chapter 6, and suggestions for future work are made.
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Chapter 2

Optical Properties and Thermally

Induced Changes

The optical contrast between undamaged and thermally necrosed tissue is the basis

for AO guided HIFU. To explain this contrast, a basic understanding of light-tissue

interactions is required. This chapter introduces the fundamental concepts of light

propagation in tissue, defines the optical properties used to characterize light-tissue

interactions, and describes how these properties change with thermal damage. Exper-

iments performed to measure optical properties and their thermal dependence were

previously published (Adams et al., 2014), and are again presented here. The results

show that thermally induced optical property changes can be predicted using the

thermal dose model, provided an appropriate isodose constant is employed. These

results are used as a basis for modeling work which is presented in Chapter 3.

2.1 Light-Tissue Interactions

The interactions between light and tissue can generally be described by two dominant

mechanisms – absorption and scattering. These mechanisms are governed by the

wavelength of the light and the size, shape, density, and chemical composition of the

tissue’s constituents (cellular organelles, proteins, fibers, etc.). The absorption and

scattering of light in tissue are described in the following sections.
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2.1.1 Absorption

The absorption of light occurs when the chromophores present in a medium convert

the energy of a photon into a different form – typically heat or molecular excitation

– resulting in a reduction of the light’s intensity. The reduction in the intensity of

light passing through a homogeneous, non-scattering medium can be described by the

Beer-Lambert law (Wang and Wu, 2012):

I (λ) = I0e
−µa(λ)L, (2.1)

where I0 is the initial intensity, L is the optical path length within the medium, and

µa is the wavelength dependent optical absorption coefficient of the medium. The

optical absorption coefficient of a medium is a function of the molar concentration,

ci, and the molar absorptivity (or extinction coefficient), εi, of each chromophore

within the medium. Specifically,

µa (λ) =
N∑
i=1

ciεi (λ) (2.2)

where N is the total number of chromophores present in the medium. As a bulk

property, µa is typically given in units of cm−1 and it describes the probability of

photon absorption per unit path length. Alternatively, 1/µa gives the mean free path

between absorption events.

In tissue, the absorption of visible light is dominated by blood – which is dependent

upon its oxygenation – and absorption due to water becomes important when using

near-infrared (NIR) light. The absorption spectra of these chromophores is shown

in Fig. 2·1(a,b). Other chromophores which contribute to the absorption of light

in tissue are fat, melanin, billrubin, and beta-carotene (Jacques, 2013). The bulk

absorption coefficient of a tissue can be expressed as a linear combination of each of
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Figure 2·1: Absorption coefficients of dominant chromophores in tis-
sue (a-c) and selected bulk tissues (d). (a) Absorption coefficient of
oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) (Prahl, 2012a). (b)
Absorption coefficient of water (Hale and Querry, 1973). (c) Absorp-
tion coefficient of fat (Prahl, 2012a). (d) Approximate absorption coef-
ficients of selected tissues calculated using blood, water, and fat content
(Jacques, 2013).

its chromophores:

µa (λ) = fbSµa,HbO2 (λ) + fb(1− S)µa,Hb (λ) + fwµa,H2O (λ) +
N∑
i=1

fiµa,i (λ) , (2.3)

where f is the volume fraction of the blood (b), water (w), or other chromophore (i),

S is the oxygen saturation of the hemoglobin (Hb) in the blood, and the summation

term is the contribution from all other chromophores. For many tissues this term

may be ignored, but in tissues with high fat contents, such as breast, or high melanin
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contents, such as dark skin, other chromophores become important. The approximate

absorption coefficient of a tissue can be calculated if the concentration of important

chromophores and the oxygenation of blood is known (Jacques, 2013), and calculated

coefficients for selected organs are shown in Fig. 2·1(d). As shown, tissues with high

blood content, such as liver, have very high absorption coefficients, making optical

imaging undesirable. Alternatively, tissues such as breast and brain have relatively

low absorption coefficients, making them optically penetrable.

2.1.2 Scattering

Optical scattering originates from the refraction and/or reflection of light as it passes

through spatial gradients, or interacts with discrete discontinuities, in the medium’s

index of refraction, n. The refractive index is a non-dimensional parameter given

by the speed of light in vacuo divided by the speed of light in the medium. To

first order, scattering alters light trajectory without incurring energy loss, whereas

absorption dissipates light energy without impacting trajectory. In tissue, optical

scattering dominates over absorption, as light scatters off of biological structures with

sizes ranging from cell membranes (∼0.01 µm) to whole cells (∼10 µm). In general,

the larger the size of a scattering structure (relative to the optical wavelength) and the

greater the difference in refractive index, the greater the scattering cross section will

be. In most healthy biological tissues, the structures with the highest scattering cross

sections are cell nuclei and mitochondria which both have characteristic dimensions

on the order of 1 µm and both have refractive indices of 1.38–1.41, compared to ∼1.36

for extracellular fluid and cytoplasm (Drezek et al., 1999; Wang and Wu, 2012). Like

absorption, the process of multiple scattering in bulk tissue can be described as the

probability of a photon experiencing a scattering event per unit length, and is given

by µs. Again, 1/µs gives the mean free path between scattering events. The intensity

of unscattered (or ballistic) light after passing through a non-absorbing medium can
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be calculated by replacing µa with µs in Eq. 2.1.

In addition to the probabilistic treatment of the frequency of scattering events in

bulk tissue, the distribution of scattering angles that a photon experiences at each

scattering event is generalized. The probability that a photon will scatter into a unit

solid angle oriented at a zenith angle θ relative to its original trajectory is governed

by the phase function p(θ) of the scattering structure (Henyey and Greenstein, 1941).

In tissue, the phase function is generalized as a single anisotropy factor, g, which is

defined as the expectation value of the cosine of θ. The azimuthal angle Ψ, shown

in Fig. 2·2, is randomly distributed between 0 and 2π. The anisotropy factor is

mathematically expressed as:

g =

π∫
0

p (θ) cos θ2π sin θ dθ, (2.4)

and its possible values range from -1 to 1, representing complete backscattering and

complete forward scattering, respectively. For normal optical wavelengths in tissue,

g typically ranges from 0.75–0.99, with an average value of about 0.9 (Cheong et al.,

1990; Jacques, 2013).

θ

Ψ

Incident Direction

Scattered Direction

Figure 2·2: A schematic of a photon scattering from a particle with a
zenith scattering angle θ and an azimuthal angle Ψ.

In diffuse optics applications such as AOI, µs and g are often combined into a
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single parameter known as the reduced scattering coefficient:

µ′s = µs (1− g) . (2.5)

The purpose of µ′s is to describe the diffusion of photons in a random walk of step

size of 1/µ′s where each step involves isotropic scattering (g = 0). This is equivalent

to the description of photon migration using many small steps of length 1/µs with

independent scattering angles, calculated based on the tissue’s g, provided there are

many scattering events before an absorption event (µ′s � µa) (Graaff et al., 1993).

This similarity relation has also been shown to extend to calculations of ultrasound

induced phase modulations for the purposes of AOI (Sakadžić and Wang, 2002).

Unlike absorption, the wavelength dependence of µ′s is not based on the chemical

composition of the tissue. Instead, it is based solely on a relationship between the

size of the tissue’s scattering structures and the wavelength of the light, and it can

normally be described by Mie theory (Bohren and Huffman, 2008) with a power law

(Jacques, 1996):

µ′s (λ) = µ′s,0

(
λ

λ0

)−b
, (2.6)

where µ′s,0 is the reduced scattering coefficient at λ0 and b is a dimensionless pa-

rameter dependent upon the mean size of the scattering particles within the tissue.

Wavelength dependent reduced scattering coefficients of selected tissues are shown in

Fig. 2·3 where values for µ′s,0 and b are taken from Jacques (2013). It should be noted

here that these values are approximate, especially in the case of brain tissue where

different types of brain tissues exhibit drastically different optical properties.

2.1.3 Thermally Induced Changes

The application of heat to tissue – from HIFU or otherwise – can cause irreversible

thermal damage leading to immediate cell death or a delayed secondary effect well
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Figure 2·3: The approximate reduced scattering coefficient of breast,
brain, prostate, fat, and bone calculated using Eq. 2.6 with values from
Jacques (2013).

after the heating event. For the purposes of AO guidance of HIFU, we are inter-

ested in primary thermal injuries which produce immediately detectable structural

and functional abnormalities in cells and tissues. In order (from low to high tem-

perature), these primary thermal effects are the thermal dissociation (melting) of

phospholipid cellular membranes, intracellular protein denaturation, and extracellu-

lar stromal protein denaturation (Thomsen and Pearce, 2011). It should be noted

that at higher temperatures (approaching 100◦C and up), water vaporization, tissue

caramelization and carbonization, and tissue ablation will occur, but these tempera-

tures are associated with boiling and cavitation which prevent the use of AO guidance,

and are generally a sign of over treatment.

As cellular membranes melt, cell organelles collapse, and proteins denature, the op-

tical properties of tissues change. Specifically, the chemical structure of chromophores

change, while proteins are reduced from highly organized structures into small, amor-

phous granules, resulting in an increase in µ′s and µa of the host tissue (Jacques and

Gaeeni, 1989; Essenpreis, 1992; Çilesiz and Welch, 1993; Germer et al., 1998; Nils-

son et al., 1998; Ritz et al., 2001; Yaroslavsky et al., 2002; Black and Barton, 2004;

Ben-David et al., 2008). These optical changes are generally assumed to be linearly
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proportional to the volume fraction of damaged cells within the tissue (Kim et al.,

1996), and they have been shown to correlate well with the death of breast cancer

cells (Nandlall et al., 2010).

The primary thermal mechanisms resulting in optical property changes are gen-

erally treated as first-order kinetic processes and have previously been modeled by

the Arrhenius equation (Jacques et al., 1991; Yang et al., 1991; Agah et al., 1996;

Skinner et al., 2000). Kinetic models for irreversible thermal damage in tissues em-

ploy a dimensionless thermal damage parameter, Ω, which represents the natural log

of the ratio of the original concentration of undamaged cells, c (0), to the remaining

undamaged cells after heating, c (tf ) (Pearce, 2009):

Ω (tf ) ≡ ln

(
c (0)

c (tf )

)
. (2.7)

Given by the Arrenhius equation, Ω is described by:

Ω (tf ) =

tf∫
0

A exp

(
−Ea
RT (t)

)
dt, (2.8)

where the “pre-exponential factor” A is a measure of the effective collision frequency

between reacting molecules in bimolecular reactions, Ea is an activation energy bar-

rier, R is the gas constant, T is the temperature, and tf is the heating time in seconds.

As discussed in Section 1.1.3, the primary thermal metric for predicting thermal

damage during HIFU is thermal dose, as defined by Eq. 2.9:

t43 =

tfinal∫
t=0

R43−T (t)dt, (2.9)

where T (t) is temperature as a function of time and the “thermal damage isodose

constant”, R, is taken as 0.5 above 43◦C and 0.25 below 43◦C (Chung et al., 1999).

The thermal dose model relates the exposure time at any temperature to an equivalent
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exposure time at a reference temperature – here 43◦C – in order to calculate the

probability of tissue damage or death. Using this model, the surgeon employs an

empirically-determined dose threshold, normally 240 min (Meshorer et al., 1983), to

demarcate the lesion boundary as shown in Fig. 1·3. Therefore, for the purposes

of HIFU it would be convenient if optical property changes could be expressed as a

function of thermal dose rather than as an Arrhenius model. While the thermal dose

model is mathematically closely related to Arrhenius models, a direct relationship

between thermal dose and optical property changes has never been demonstrated.

Given the measured thermal dose that a tissue has been exposed to, t43, the thermal

damage parameter can alternatively be expressed as:

Ω (t43) =
t43
τ43

, (2.10)

where τ43 (min) is the thermal damage time constant for heating at 43◦C, defined as

the time required for a healthy population of n cells to decline to a population of n/e.

Using Eq. 2.10, the volume fraction of remaining undamaged cells after an exposure

to a thermal dose of t43 can be calculated as:

c (t43)

c(0)
= exp

(
− t43
τ43

)
. (2.11)

Here it is assumed that optical properties are linearly proportional to the fraction

of damaged cells, so that:

µ = µ0c0 + µdcd, (2.12)

where µ0 and µd are the original and damaged values of the optical property, and

c0 and cd are the concentrations of healthy and damaged cells. Therefore, a given

optical property µ can be expressed as a function of the thermal dose to which it has
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been exposed using:

µ (t43) = µ0 + (∆µ)max

(
1− exp

(
− t43
τ43

))
, (2.13)

where (∆µ)max = µd − µ0 is the difference in the value of said optical property in

damaged and healthy tissue.

Overall, little experimental data exists to describe the magnitude of thermally

induced optical property changes, or to support the kinetics that theoretically govern

them. In sections 2.2 and 2.3, the process of how optical properties are measured is

described and in section 2.4 data is presented which describes thermal dose dependent

optical property changes in chicken breast. However, in order to understand how

optical property measurements are made, a general understanding of modeling light

propagation in tissue is required. A brief introduction to this topic is presented in

the following section.

2.2 Diffuse Light Transport and the Extraction of Optical

Properties

2.2.1 The Forward Problem

Light propagation through any medium with known optical properties can be rigor-

ously described using Maxwell’s electromagnetic theory (Maxwell, 1865). However,

the full solution for electromagnetic propagation in multiply scattering media is too

complex for practical use. Alternatively, the multiple scattering problem can be

simplified by ignoring the wave characteristics of light, such as polarization and inter-

ference, and instead focusing on the flow of energy through the medium (Ishimaru,

1978), essentially recasting the wave propagation problem as a much simpler radiative

transport problem. In this case, the flow of optical energy through turbid media is
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described by the radiative transfer equation (RTE):

1

c

∂L (~r, ŝ, t)

∂t
= −ŝ · ∇L (~r, ŝ, t)− µtL (~r, ŝ, t)

+ µs

∫
4π

L (~r, ŝ, t) p (ŝ′ · ŝ) dΩ′ + S (~r, ŝ, t) , (2.14)

where c is the speed of light, L (~r, ŝ, t) is the radiance1 at the point r and time t

flowing in direction ŝ, µt = µa + µs is the total attenuation coefficient, p (ŝ′ · ŝ) is the

scattering phase function, and S (~r, ŝ, t) is the source term which describes injection

of light into the point r at time t in direction ŝ. The RTE can be solved analytically

by decomposing it into spherical harmonics and describing it as a diffusion equation

(Farrell et al., 1992; Kienle and Patterson, 1997; Contini et al., 1997). However, ap-

proximations are required in order to derive the diffusion equation (such as an effective

homogeneous medium), and the solution is limited to specific geometries. Moreover,

the validity of the solution is restricted to conditions in which the observation point is

more than one or two transport mean free paths2 from a source, limiting the accuracy

of the solution to distances greater than 1 or 2 mm from a source in typical tissues

(Jacques and Pogue, 2008). Alternatively, the RTE may be solved with fewer limi-

tations by using numerical approaches, such as the adding-doubling method (Prahl,

1995), or stochastic approaches such as the Monte Carlo method (Wang et al., 1995a).

Overall, Monte Carlo methods offer the most accurate and most flexible solutions to

the RTE – allowing for both time-dependent and steady-state calculations inside of

optically inhomogeneous and arbitrarily complex media – but they are time consum-

ing as many photons must be simulated to achieve accurate fluence distributions.

The adding–doubling method is faster than Monte Carlo methods, but it is generally

only appropriate for calculating total transmittance or reflectance from a tissue, and

1 Radiance
(
W/m2 · sr

)
is a physical quantity that represents the intensity of light. It is defined as

power per unit solid angle per unit projected area.
2 The transport mean free path l′t = 1/(µa + µ′

s).



37

it requires the medium to be approximated as a semi-infinite layer with homogeneous

optical properties.

2.2.2 The Inverse Problem

In order to determine the optical properties of a material given the light distribution

within it or, more commonly, at its boundaries, the RTE must be solved in an inverse

manner. However, no direct inverse solution to the RTE exists. Instead, optical prop-

erties are usually obtained by repeatedly solving the RTE until the solution matches

the measured light distributions. The most commonly employed approach for doing

this is the inverse adding–doubling (IAD) method (Prahl et al., 1993). The IAD

guesses the optical properties of the sample, then iteratively performs a numerical so-

lution to the RTE using the adding–doubling method (Prahl, 1995) until the solution

converges to measured values of reflection and transmission. Given measurements of

total transmittance and total reflectance – normally made with a single or double

integrating sphere setup (Pickering et al., 1993) – and collimated transmission, the

IAD is able to obtain a unique solution for the material’s µs, µa, and g coefficients.

In many cases, collimated transmission measurements are unavailable as they are ex-

perimentally difficult to make. In these situations, the IAD uses an assumed value of

g to calculate a unique solution for the material’s µ′s and µa coefficients.

The IAD is an accurate solution of the RTE for all optical properties, optical

depths, and phase functions but a number of restrictions apply to the algorithm.

Specifically, the light distribution is independent of time, samples have homogeneous

optical properties, sample geometry is an infinite plane-parallel slab, boundaries are

smooth, internal reflectance is governed by Fresnel’s law, and polarization effects are

ignored. Because of these restrictions, the IAD is limited to use with ex vivo tissues.

Despite its constraints, the IAD has a number of positive features and open-source

software is readily available to perform IAD calculations (Prahl, 2013). In addition
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to being well supported and vigorously validated, the software is fast and accurate,

it works for any combination of optical properties, it takes into account all of the

interactions of a sample sandwiched between glass slides (which are used to ensure

smooth boundaries), and it incorporates the effects of integrating spheres and light

lost from the sides of samples during measurements.

2.3 Optical Property Measurement Materials and Methods

Now that theoretical models for photon migration in diffusive media have been pre-

sented and a method for extracting optical properties from experimental measure-

ments has been established, experiments are presented which were performed to char-

acterize optical property changes as a function of thermal damage. Excised tissues

were heated, their bulk optical properties were inferred as a function of temperature

history, and results were compared with the measured thermal dose in each sample.

2.3.1 Summary Overview

Experiments were performed to measure thermally induced optical property changes

of ex vivo chicken breast tissues between 500–1100 nm (Adams et al., 2014). The

objective of the experiments was to quantify the optical properties of undamaged and

thermally necrosed tissues, and to examine the effectiveness of the thermal dose model

in accurately predicting thermally induced optical property changes. The absorption

coefficient, µa, and the reduced scattering coefficient, µ′s, of samples were measured

as a function of thermal dose over the range 50-70◦C. Additionally, the maximum

observable changes in µa and µ′s were measured as a function of temperature in

the range 50-90◦C. Results show that the standard thermal dose model used in the

majority of HIFU treatments is insufficient for modeling thermally induced optical

property changes. However, it was found by modifying the isodose constant it is

possible to capture optical changes well. Additionally, results are presented that show
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a temperature dependence on changes in the properties, with an apparent threshold

effect occurring between 65–70◦C.

2.3.2 Sample Preparation

All samples employed in this study were ex vivo chicken breast tissues purchased from

a local store on the same day as the experiments. Chicken breast was chosen because

of its apparently high optical contrast between normal and thermally damaged tissue,

and its widespread use in HIFU and diffuse imaging studies (Pogue and Patterson,

2006). Moreover, characterizing the dynamics of thermally induced optical property

changes of chicken breast allows the comparison of the modeling studies presented

in Chapter 4 to the experimental AO guided HIFU data from Lai et al. (2011).

Using a procedure similar to that employed by Çilesiz and Welch (1993), samples of

approximately 2-mm thickness were cut with a handheld manual dermatome and then

trimmed to approximately 25 × 50 mm. The 2-mm thickness was chosen to ensure

an even and repeatable dermatome cut, and to allow a sufficient amount of light to

transmit through the sample. The samples were moistened with saline, then mounted

in holders constructed of two microscope slides, separated by 2-mm thick spacers and

sealed with epoxy on each end. The saline also helped minimize the presence of air

bubbles between the slides and the tissue. A schematic of a mounted sample is shown

in Fig. 2·4.

2.3.3 Optical Measurements and Property Extractions

Integrating Sphere Measurements

Optical properties were determined from integrating sphere measurements of total

reflectance and total transmittance made between 500–1100 nm, at 1 nm data inter-

vals with a spectral bandwidth of 5 nm in the visible spectrum and 10-20 nm in the

NIR, using a UV-Vis-NIR spectrophotometer (Cary 5000, Agilent, CA, USA) and
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Figure 2·4: Side view (left) and top view (right) of the sample
and holder geometry. Samples were mounted between two microscope
slides, separated by 2-mm thick spacers. The holders were sealed with
epoxy at each end. During saline bath exposures, a thermocouple was
inserted into the tissue, slightly off center.
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Figure 2·5: Schematic of the modified spectrophotometer and inte-
grating sphere in reflectance (a) and transmittance (b) configurations.
An f = 15 mm lens (Lens 1) and an f = 50 mm lens (Lens 2) were used
to reduce the beam size at the reflection port, while an f = 35 mm lens
(Lens 3) was used to reduce the beam size at the transmission port.
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an internal Diffuse Reflectance Accessory (DRA) (DRA 2500, Agilent). The internal

DRA was modified as shown in Fig. 2·5 in order to increase the port-to-beam-size

ratio and prevent the overestimation of absorption due to light being lost through

the sides of the sample (Torres et al., 1994). The DRA’s lens system was removed,

and a custom lens assembly was inserted which allowed for the use of different lenses

for transmittance and reflectance measurements. In reflectance mode, a 15-mm and

a 50-mm focal length lens were used to reduce the beam diameter to approximately

2 mm at the reflection port, while in transmittance mode a single 35 mm lens was

used, resulting in a 2-mm diameter beam at the transmission port. The 50 mm and

35 mm lenses were fit with 10-mm diameter circular apertures to block stray light

and to ensure that the beam was approximately circular. Custom mounts were also

designed, constructed, and attached to the sides of the integrating sphere to allow for

a repeatable placement of the sample holders and to ensure that the samples were

held flush against the side of the sphere. Finally, the reference beam port was fit with

a 2-mm diameter circular aperture to reduce its power to a similar level as the signal

beam. Reducing the reference beam power lowered the required dynamic range of

the detectors and allowed for more accurate measurements with higher SNR. These

modifications are shown in Fig. 2·6.

The instrument was controlled and data was acquired using the Cary WinUV

software (Agilent). The instrument settings were chosen to be a fixed bandwidth of 5

nm in the visible, a fixed source energy of 180 in the NIR, a full slit aperture, a grating

changeover at 800 nm, and a detector changeover at 880 nm. During transmittance

measurements, averaging times of 0.15 s/nm and 0.2 s/nm were used in the visible

and the NIR, respectively, while averaging times of 0.2 s/nm and 0.4 s/nm were used

for reflectance measurements. The spectral bandwidth and energy level were chosen

to optimize the balance between the power of the light reaching the sample and the
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port and sample holder. (d) The reference beam aperture.
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accuracy of the light’s wavelength, and the averaging times were chosen to obtain

reasonable SNR. Baseline transmission measurements were performed with an empty

transmission port, while baseline reflectance measurements were made with a 99%

reflectance standard supplied with the DRA.

IAD Calculations

The IAD algorithm was used to calculate µa and µ′s from measurements of total

transmittance, total reflectance, and the thickness of the samples. The software to

perform the calculations was downloaded from the Oregon Medical Laser Center web-

site (Prahl, 2013). For all measurements the refractive index of the microscope slides

was assumed to be 1.52, the refractive index of the tissue was assumed to be 1.4, and

the anisotropy factor of the tissue was assumed to be 0.97 (Sun and Wang, 2010).

Preliminary collimated transmission measurements made at 633 nm and 1064 nm

indicated that the anisotropy factor of the chicken breast did not change significantly

after heating, but reliable measurements were not able to be performed for each sam-

ple due to the time required to acquire data with reasonable SNR. Therefore, it was

assumed that the anisotropy factor of the chicken breast did not change significantly

after heating, but small changes in g have little effect on computed values of µ′s. All

IAD calculations were performed using the dual beam spectrophotometer option. An

example of a typical IAD input file and the command line syntax for executing the

software are shown in Appendix A.

Validation

To validate the integrating sphere measurements and IAD calculations, the optical

properties of three optical phantoms were measured. The 1.67-mm thick phantoms

were composed of polystyrene spheres (0.746-µm diameter, Polysciences, PA, USA)

suspended in water at three different particle number densities. Polystyrene spheres
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are useful for building optical phantoms because their scattering properties are well

described by Mie theory. Additionally, they are non-absorbing so the absorption

properties of the phantom are dictated by the suspension medium. In this case, the

absorption of the phantoms was that of water, but india ink or another absorber can be

added if additional absorption is desired (Royston et al., 1996). The particle densities

of the phantoms were determined by making collimated transmission measurements at

633 nm, where absorption due to water can be ignored, and calculating the extinction

cross-section of the spheres using Mie theory. The scattering coefficient was then

determined for each phantom based on its computed particle number density. The

procedure used followed that of Royston et al. (1996).

Measurements of collimated transmission, τc, through a sample were made using

the experimental setup shown in Fig. 2·7. Samples were illuminated with a 632.8

nm, 15 mW HeNe laser (05-LHP-991, Melles Griot, CA, USA) and the intensity of

the unscattered light was detected with a Silicon photodetector (DET10A, Thorlabs,

NJ, USA). When necessary, the power of the laser was adjusted with a calibrated and

adjustable ND filter wheel (Thorlabs) in order to bring the measured intensity within

the dynamic range of the detector. Signals were acquired using a data acquisition

(DAQ) board (Compuscope 14200, 14-bit resolution, 200 MS/s, GaGe, IL, USA) and

a computer using Matlab (Mathworks, MA, USA). The sample was placed a large

distance (∼4 ft) from the detector in order to minimize the collection of scattered

light.

The relationship between the collimated transmission coefficient, τc, and the par-

ticle number densities, N (particles/cm3), of the phantoms can be expressed as:

τc ≡
Ip
I0

= exp (−N · Cext · L) , (2.15)

where Ip is the unscattered intensity transmitted through the phantom, I0 is the
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Figure 2·7: Setup used for measuring collimated transmission through
a sample.

unscattered intensity transmitted through the sample holder when filled with water,

L is the optical path length of the sample, and the extinction cross-section, Cext,

equals the scattering cross-section of the polystyrene sphere, Cs, because absorption is

negligible. The scattering cross-section of each 0.746-µm diameter polystyrene sphere

was found to be 0.69 µm2 using a web-based Mie scattering calculator (Prahl, 2012b).

The refractive index of the water was assumed to be 1.33, while the real refractive

index of the polystyrene was assumed to be 1.583 and the imaginary refractive index

was assumed to be 0 (Ma et al., 2003). The calculated particle number densities,

volume concentrations, and µs at 633 nm of the three phantoms are shown in Table

2.1. The volume concentration was determined by multiplying N by the volume of

one sphere and dividing by the total volume of the phantom. Given N , the scattering

coefficient of the phantoms could be calculated at any wavelength as:

µs (λ) = N · Cs (λ) , (2.16)

where Cs (λ) was again calculated with a Mie scattering calculator using wavelength

dependent values for the refractive index of the spheres (Ma et al., 2003).

Once the optical properties of the phantoms were determined, total transmittance

and reflectance were measured with the spectrophotometer and integrating sphere

setup, and the measured optical properties were calculated using the IAD program.



46

Phantom N V c (%) µs(633nm)
Number (particles/cm3) (cm−1)

1 3.57× 109 0.15 18.0

2 5.29× 109 0.21 24.7

3 6.45× 109 0.31 36.3

Table 2.1: The calculated particle number density N , the volume
concentration V c, and the scattering coefficient µs at 633 nm for each
validation phantom.

For the phantoms, g was known at each wavelength from Mie calculations, so µs is

measured instead of µ′s. A comparison between predicted and measured scattering

and absorption coefficients of the 0.21% concentration phantom are shown in Fig.

2·8. The agreement between predicted and measured values was better than 15% for

all scattering measurements and better than 21% for all absorption measurements

greater than 0.01 cm−1. The agreement between predicted and measured values was

equally good for the other two phantoms. It should be noted that when absorption

is less than 0.05 cm−1, the system predicts unrealistically low absorption coefficients,

as shown in Fig. 2·8(b) at wavelengths smaller than 850 nm.
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Figure 2·8: Validation of scattering (a) and absorption coefficient
measurements (b) using a polystyrene sphere suspension (0.21% con-
centration). Data points are measured values, while the dashed lines
represent values predicted by Mie theory and water absorption.
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2.3.4 Thermal Damage Accumulation

Thermal damage was induced by exposing samples directly to a constant temperature

bath (PSP-DX6, Cole-Parmer, IL, USA) filled with 0.1% phosphate buffered saline

(Cole-Parmer). The temperature in the tissue was measured by means of an exposed

junction wire thermocouple (250-µm tip diameter, Type E, Omega, Stamford, CT)

that was inserted into each sample. The thermocouple was positioned at a distance

approximately 5 mm from the center of the sample so that it did not interfere with

the optical beam and affect the optical property measurements, but far enough from

the edge of the tissue (∼12 mm) that the temperature was an accurate measurement

of the optical measurement region. To reduce noise from the thermocouple, its out-

put was sampled via an 8-channel terminal block (TBX-1328, National Instruments,

TX, USA) connected to an SCXI analog signal conditioner (SCXI-1120, National

Instruments) which provided a 4 Hz low-pass filter, a 60 dB pre-amplifier, and an

electronic cold junction compensation. The SCXI output was digitized by a DAQ

board (AT-MIO-16E-1, 12-bit resolution, National Instruments) at 2 kHz and stored

in computer memory using Matlab. From the temperature measurements, the ther-

mal dose was calculated five times per second using Eq. 2.9. During experiments,

the isodose constant, R, was set to 0.25 below 43◦C and 0.5 above 43◦C. Preliminary

studies showed that thermal dose was approximately uniform throughout the entire

optical measurement region.

During experiments, measured optical properties, µa and µ′s, were fit as a function

of measured thermal dose using:

µ

µ0

= 1 +
(∆µ)max

µ0

(
1− exp

(
− t43
τ43

))
, (2.17)

where the fitting parameters were τ43 and (∆µ)max /µ0. Equation 2.17 is mathe-

matically equivalent to Eq 2.13, but it is non-dimensionalized. Curve fitting was
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accomplished by employing the trust-region-reflective algorithm for least squares of

nonlinear parameters in the Matlab curve fitting toolbox.

2.4 Measurements of Thermally Induced Optical Property

Changes

2.4.1 Temperature Dependent Changes

As a tissue sample is exposed to a high and constant temperature, its optical prop-

erties initially change quickly, but then approach a steady-state condition. In the

first set of experiments, samples were immersed in 50◦C, 60◦C, 70◦C, 80◦C, and 90◦C

saline baths – temperatures typically reached during HIFU exposures. The optical

properties of five samples were measured at 1 – 20 minute intervals during exposure

and steady state was defined as subsequent changes in less than 2%. Total immersion

times varied from 5 – 200 minutes.

Figure 2·9(a) shows µ′s as a function of wavelength, from 500–1100 nm, for the

five temperatures. It can be seen that the reduced scattering coefficient decreases

smoothly with wavelength and the data at 50◦C and 60◦C appear to cluster together,

while the data at 70◦C, 80◦C, and 90◦C also cluster together. In Fig. 2·9(b) the

temperature dependence at two wavelengths, 550 nm and 975 nm – which correspond

to peaks in the absorption spectra – also demonstrates a statistically significant (Stu-

dent t-test, 95% confidence) jump in µ′s between 60◦C and 70◦C. Both observations

suggest that a threshold effect in the reduced scattering coefficient changes exists

between 60◦C and 70◦C. Figure 2·10 shows the same data for µa. Here two peaks can

be seen; one at 550 nm which is attributed to deoxyhaemoglobin and a second at 975

due to water. There is no evidence for a similar threshold for absorption.
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Figure 2·9: (a) Mean value of the steady state µ′s of five samples as a
function of temperature before (dashed line) and after bathing at 50◦C
(blue), 60◦C (green), 70◦C (orange), 80◦C (red), and 90◦C (black). Ini-
tial measurements (dashed line) were performed at room temperature.
Although not apparent on this scale, initial measurements have a sim-
ilar wavelength dependence to measurements after bathing. (b) Mean
value of the steady state µ′s of five samples measured at 550 nm (red
diamonds) and 975 nm (black squares) with error bars representing
one standard deviation. Solid lines represent average initial values; one
standard deviation was represented with shading but cannot be seen
on this scale.
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Figure 2·10: (a) Mean value of the steady state µa of five samples
as a function of temperature before (dashed line) and after bathing at
50◦C (blue), 60◦C (green), 70◦C (orange), 80◦C (red), and 90◦C (black).
Initial measurements (dashed line) were performed at room tempera-
ture. (b) Mean value of the steady state µa of five samples measured at
550 nm (red diamonds) and 975 nm (black squares) where solid lines
represent average initial values. Error bars and shading represent one
standard deviation.
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2.4.2 Thermal Dose Dependent Changes

In the second set of experiments, samples were immersed in saline at 50◦C, 55◦C,

60◦C, and 70◦C. Each sample had a thermocouple inserted into it so that T (t) could

be measured and thermal dose calculated. Optical properties were measured as a

function of thermal dose. By using baths of different temperatures, the rate at which

the dose is accumulated will vary as the heating rates are dependent on temperature

difference. For tissue immersed at 50◦C, the samples were removed from the saline

bath at t43 = 2500 ± 5 min increments, brought to room temperature, and the op-

tical properties were measured. For 55◦C the intervals were 1000 ± 9 min, at 60◦C

(50 ± 0.27) × 103 min, and at 70◦C (56.8 ± 1.9) × 103 min. We note that samples

immersed in the 50◦C, 55◦C, and 60◦C saline all reached the bath temperatures over

the range of dose reported here. However, samples in the 70◦C bath only reached an

average maximum temperature of 65◦C as above this temperature the thermal dose

accumulates very quickly.

Figures 2·11 and 2·12 show the changes in µ′s and µa as a function of thermal

dose. The data was fit according to Eq. 2.17, and the calculated fitting parameters

for changes in µ′s and µa are shown in Tables 2.2 and 2.3 respectively. Thermal

changes in µ′s are shown at the absorption peaks of 550 nm (deoxyhaemoglobin) and

975 nm (water). Only two wavelengths are shown due to the smooth nature of µ′s as

a function of wavelength. For absorption, which had a more complex spectra, data

are also shown at 500 nm, where absorption is dominated by beta-carotene, and at

576 nm, where it is dominated by oxygenated haemoglobin (Prahl, 2012a).

The parameters in Table 2.2 show that the normalized change in the reduced

scattering coefficient, ∆µ′s/µ
′
s0

, was relatively independent of the bath temperature

(9.6 at 550 nm and 7.6 at 975 nm). However, the time constant τ43 varied by a factor of

20 for the different bath temperatures. This indicates that the evolution of scattering
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Figure 2·11: Scattering as a function of thermal dose accumulated
while samples are immersed in 50◦C (a), 55◦C (b), 60◦C (c) and 70◦C
(d) saline baths. Red diamonds represent µ′s at 550 nm, and black
squares represent µ′s at 975 nm. Data points represent averages from
five samples, with the error bars corresponding to one standard devi-
ation. The dashed lines are best fits using the parameters in Table
2.2.
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Figure 2·12: Absorption as a function of thermal dose accumulated
while samples are immersed in 50◦C (a), 55◦C (b), 60◦C (c) and 70◦C
(d) saline baths. Red diamonds represent µa at 500 nm, blue circles
represent µa at 550 nm, green triangles represent µa at 576 nm, and
black squares represent µa at 975 nm. Data points represent averages
from five samples, with the error bars corresponding to one standard
deviation. The dashed lines are best fits using the parameters in Table
2.3.
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550 nm 975 nm

Saline Bath τ43 ∆µ′s/µ
′
s0

τ43 ∆µ′s/µ
′
s0

Temperature (◦C) (min×103) (min×103)

50 8.35 9.21 9.94 7.59

55 26.7 9.60 33.0 7.93

60 111 9.84 118 8.44

70 183 9.84 191 6.48

Table 2.2: Parameters calculated from fitting equation 2.17 to the
thermal dose dependent reduced scattering coefficient data measured
at 550 and 975 nm, as shown in Fig. 2·11.

Saline Bath τ43 ∆µa/µ
′
a0

τ43 ∆µa/µ
′
a0

Temperature (◦C) (min×103) (min×103)

500 nm 550 nm

50 2.38 0.800 1.49 0.991

55 4.35 0.967 5.23 2

60 7.97 0.479 31.6 1.11

70 9.99 0.804 63.5 2.53

576 nm 975 nm

50 1.88 7.94 1.98 4.96

55 8.92 36.8 12.7 6.58

60 1.47 1.49 2.79 0.595

70 79.0 9.29 238 1.98

Table 2.3: Parameters calculated from fitting equation 2.17 to the
thermal dose dependent absorption coefficient data measured at 500,
550, 576 and 975 nm, as shown in Fig. 2·12.
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was rate dependent – although the final value was relatively rate independent. This

is because none of the samples reached the temperature threshold shown in Fig. 2·9.

For the absorption parameters in Table 2.3, the variation in the parameters makes it

difficult to come to similar conclusions.

2.5 Discussion

The results from this study demonstrate that the nominal parameters in the standard

thermal dose model used for the majority of HIFU studies are insufficient to describe

thermal changes in µ′s and µa of ex vivo chicken breast between 500 and 1100 nm.

This is perhaps not surprising as the coefficients were developed to describe cell death

for relatively slow heating rates. As shown in Tables 2.2 and 2.3, the time constant

τ43 is strongly dependent on the bath temperature employed in the experiment which

suggests a dependence on the heating rate of the tissue. Additionally, the best fit

values for τ43 are significantly different for scattering and absorption. The absorption

coefficient reaches a steady state much more quickly than the reduced scattering

coefficient.

Although the standard thermal dose model appears to be insufficient for describing

thermal changes in µ′s and µa, the isodose constant used to calculate the thermal dose

can be adjusted to achieve a more consistent measurement of τ43 across the different

bath temperatures. By varying R above 43◦C and recalculating the thermal dose for

every exposure, the least-squares error between the model and the measured data

was found to occur when R = 0.63 above 43◦C. Using this adjusted isodose constant,

data was refit to Eq. 2.17. The values for τ43 are shown in Tables 2.4 and 2.5 for

µ′s and µa respectively. For µ′s, it can be seen that τ43 varies by less than 40% over

the temperatures and wavelengths studied here, compared to a more than 20 fold

variation seen in Table 2.2. For µa, the values of τ43 were not constant. However, the
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550 nm 975 nm

Saline Bath τ43 ∆µ′s/µ
′
s0

τ43 ∆µ′s/µ
′
s0

Temperature (◦C) (min×103) (min×103)

50 1.81 9.47 2.16 7.86

55 1.76 9.62 2.18 7.96

60 2.69 9.90 2.85 8.50

70 2.08 9.44 2.18 6.21

Table 2.4: Parameters calculated from refitting the thermal dose de-
pendent µ′s data using an adjusted isodose constant R = 0.63 above
43◦C.

Saline Bath τ43 ∆µa/µ
′
a0

τ43 ∆µa/µ
′
a0

Temperature (◦C) (min×103) (min×103)

500 nm 550 nm

50 0.537 0.806 0.331 0.993

55 0.289 0.967 0.348 2.00

60 0.050 0.479 0.770 1.12

70 0.030 0.804 0.632 2.49

576 nm 975 nm

50 0.421 7.97 0.101 2.02

55 0.594 36.8 0.843 6.59

60 0.366 1.49 0.693 0.596

70 0.809 9.09 2.75 1.89

Table 2.5: Parameters calculated from refitting the thermal dose de-
pendent µa data using an adjusted isodose constant R = 0.63 above
43◦C.
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variation was still significantly less than the more than 100-fold variation seen in table

2.3. It should be noted that the time scales for changes in µa are an order of magnitude

less than those for µ′s. Although a detailed explanation eludes us, we speculate that

absorption changes occur on a faster time-scale because they are dominated by the

rupture of cell membranes and collapse of cell organelles, which are relatively low

temperature effects and cause hyperchromasia in a pathology examination (Thomsen

and Pearce, 2011). While the rupture of cell membranes and collapse of cell organelles

also affect the scattering properties of a tissue, thermally induced changes in scattering

are dominated by protein denaturation, which occurs at higher temperatures.

These data suggest that the thermal dose model can capture changes in optical

properties, at least for scattering, but that the nominal parameters employed in the

literature are not appropriate for the case studied here. Because R appears as the

base in a power law expression which is then integrated, the thermal dose is very

sensitive to the choice of R. We speculate that the choice of R is dependent, at the

very least, on tissue type, rate of heating, and the property of interest. It is clear that

more work needs to be done to determine R values appropriate to HIFU exposures.

In addition, the model for describing changes in µ′s and µa will also depend on

temperature. Looking at the steady state values of µ′s as a function of bath temper-

ature (Fig. 2·9), there appears to be a threshold effect somewhere between 60◦C and

70◦C. In Fig. 2·11, this threshold effect was not evident where the tissue reached an

average maximum temperature of 65◦C, and so we conclude that the threshold is in

the range of 65–70◦C. We hypothesize that this temperature threshold is related to

the coagulation of one of the proteins present in the chicken breast. Nandlall et al.

(2010) observed a similar threshold in polyacrylamide hydrogels containing bovine

serum albumin (BSA) and attributed it to the aggregation of proteins due to the

conversion of α-helices into intermolecular β-sheets. Similar temperature thresholds
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have also been previously observed in myocardial and epidermis tissue (Jacques and

Gaeeni, 1989; Thomsen et al., 1993). It should be noted that these temperature

threshold effects were not present in the data for µa. Additionally, we note that the

mean µ′s at 90◦C appears lower than that at 80◦C, but there is no statistically signif-

icant difference. We expect that this is due to sample-to-sample variation, however

it’s possible that this is a real effect as a similar trend was reported by Jacques and

Gaeeni (1989).

Overall, changes in µ′s are significantly more marked and more consistent than

changes in µa. This reveals that changes in scattering are more sensitive than changes

in absorption to thermally induced effects, and so scattering may be a better property

for monitoring thermal therapies. Additionally, since changes in µ′s occur over a longer

thermal dose scale and exhibit certain threshold effects, they are easier to monitor and

to relate to biologically relevant events. However, this study was unable to identify

any consistent differences between thermal changes in different tissue chromophores,

which may provide important information for monitoring thermal therapies in vivo.

2.6 Summary

In this chapter the fundamental concepts of light-tissue interactions were presented,

the optical properties used to characterize them were defined, and thermally depen-

dent changes in optical properties were introduced. The basics of diffuse light trans-

port, and methods to extract optical properties from experimental measurements

were described. Experiments which were performed to measure thermally induced

changes in the optical properties of ex vivo chicken breast over wavelengths from 500

nm to 1100 nm were presented. Results showed that the nominal parameters in the

standard thermal dose model do not describe the changes in optical properties, but by

changing the isodose constant and including a temperature threshold, it is possible to
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develop a reasonable model. The data suggest that the optical scattering coefficient is

more sensitive to thermal effects than optical absorption. In the Chapter 3, a model

which makes use of these experimental results will be presented to describe the AO

guidance of HIFU.
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Chapter 3

Modeling Theory and Methodology

In accordance with the specific aims presented in Chapter 1, much of the work re-

ported in this thesis was dedicated to developing a comprehensive model to describe

the AO guidance of HIFU. Developing such a model requires simulating many physi-

cal processes, including calculations of: acoustic pressure and intensity, temperature

changes due to the interaction of ultrasound with tissue, thermally induced optical

property changes, light propagation in tissue, ultrasound induced phase modulations

of diffuse light, and finally AO signal detection. Each of these sub-models must fit

together into a single multi-physics AO guided HIFU model, as shown in Fig. 3·1.

This chapter presents the theory relevant to each component of the model, describes

the computational methods that have been employed, and discusses the implemen-

tation of the model. All of the code discussed in this section can be found on the

Boston University Digital Common Library (Adams, 2014).

Calculate Temperature
Field

Calculate Acoustic
Field

Calculate Optical 
Property Changes

Calculate Optical
Field

Calculate AO 
Signal Detection

Figure 3·1: The workflow of the full AO guided HIFU model.
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3.1 The Acoustic Field

3.1.1 Angular Spectrum Theory

In order to calculate ultrasound induced tissue heating and diffuse light modulations,

an accurate representation of the HIFU source’s acoustic field is required. In this work,

acoustic pressure, particle velocity, and intensity were calculated in three-dimensions

using the angular spectrum method (Stepanishen and Benjamin, 1982; Goodman,

2005). The angular spectrum method is a convenient, accurate, and computationally

efficient model for predicting diffractive wave propagation from a single plane into

any other parallel plane. The method expands an arbitrarily complex wave front into

a series of plane waves, propagates each plane wave individually to a parallel plane,

and then uses an inverse Fourier transform to revert the waves back to a complex

wave front. Although the angular spectrum solution has many positive features, the

form implemented in this work is restricted to a linear solution of the wave equation.

Because it is a linear model, it is not suitable for very high pressures. However, in

the range of pressures that are suitable for the AO guidance of non-cavitating HIFU

lesion formation, nonlinear effects are assumed to be small and are thus ignored. The

basics of the angular spectrum technique will be presented here in the form they were

implemented, and the reader is referred to Goodman (2005) for further details.

Let the pressure p(x, y, z, t) be a monochromatic time harmonic wave with a tem-

poral behavior of e−iωat, where ωa is the wave’s angular frequency. The source is

assumed to be positioned at z = 0 and directed along the +z axis. The pressure

in the source plane can be described in the frequency domain by applying a Fourier

Transform, which will be defined here as:

P (x, y, ωa) =

∞∫
−∞

p(x, y, t)eiωat dt. (3.1)
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F and F−1 will be used to indicate forward and inverse transforms respectively.

Given P (x, y, ωa) at the source plane, the angular spectrum of the source plane is

defined as its two-dimensional spatial Fourier Transform with respect to x and y:

P̃ (kx, ky, ωa) =

∞∫
−∞

∞∫
−∞

P (x, y, ωa)e
i(kxx+kyy) dx dy. (3.2)

By solving the two-dimensional spatial Fourier Transform of the Helmholtz equation,

it can be shown that the solution for the angular spectrum P̃ (kx, ky, z, ωa) at any

plane z is given by:

P̃ (kx, ky, z, ωa) = P̃ (kx, ky, ωa)e
i(kzz−ωat), (3.3)

where kz =
√
k2 − k2x − k2y is the z component of the wave vector and k = ωa

c0
+iα(ωa),

where c0 is the speed of sound in the medium and αa is the acoustic attenuation

coefficient of the medium. Given this solution, one can employ an inverse Fourier

Transform to find the pressure field in x and y at any z location.

Given a pressure field obtained using the angular spectrum method, the particle

velocity and the time averaged intensity fields can be solved for in the following

manner (Blackstock, 2000). First, the particle velocity field U(x, y, z, ωa) can be

calculated from the pressure field using:

U(x, y, z, ωa) = − ∇P
iωaρ0

, (3.4)

where ρ0 is the density of the medium. Then, using the time varying pressure and

particle velocity fields, the time averaged intensity field is calculated as:

Iav(x, y, z) =
1

2
Re(pu∗), (3.5)

where ∗ denotes a complex conjugate. This approach yields an accurate solution of
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the intensity and does not rely on a plane-wave assumption which overestimates the

intensity of the HIFU source. It also yields the directional vector of the particle

velocity field, û(x, y, z, t), which is later used for AO calculations.

3.1.2 Numerical Implementation

An angular spectrum solution for the pressure and intensity fields produced by a single

element, spherically-focused HIFU source with a 70-mm aperture, a 20-mm diameter

central hole, and a 62.4-mm focal length at its 1.1 MHz central frequency (model H-

102, Sonic Concepts, WA) was implemented in Matlab. An initial pressure source

condition of p0 = 1 at the face of the transducer was used. In order to specify the

source condition of the focused source in a single plane, it was defined at the mouth

plane of the transducer in k-space as (Wu and Stepinski, 1999):

P̃ (kx, ky) = F
(
P (x, y)eikdr

) k
kz
, (3.6)

where dr is the distance between the face of the transducer and the mouth plane

along the line of focus. The hole in the center of the H-102 transducer was accounted

for by employing Babinet’s principle and subtracting the solution for a transducer of

the same size and curvature as the hole (Jiménez and Hita, 2001).

For all of the simulations performed in this work, a grid spacing of 100 µm was

used and the calculation domain was extended to 5 times the radius of the source in

x and y. The calculation domain was large in order to minimize the effect of mirror

sources in the angular spectrum solution. The 100-µm grid spacing is smaller than

what is required to obtain an accurate solution, but it was chosen to be compatible

with the fine grid spacing required for the AO Monte Carlo simulations described in

Section 3.5. In all of the simulations performed for this work, the source was placed

in water and propagation was considered from water into tissue. In order to account
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for the boundary between water and tissue, a pressure transmission coefficient was

calculated as:

T =
2Z0,t

Z0,t + Z0,w

(3.7)

where Z0,t and Z0,w are the specific acoustic impedances of the tissue and the water

respectively. Angular transmissive and refractive effects were assumed to be negligi-

ble. For propagation from water into chicken breast, this resulted in an error of < 1%

in the worst case scenario.

3.1.3 Validation

In order to validate the angular spectrum code, the axial and radial pressure distri-

butions were compared to an analytical solution of the Rayleigh integral for a focused

transducer whose radius is large compared to the depth of its concave surface and the

acoustic wavelength (O’Neil, 1949). Again, the hole in the center of the transducer

was accounted for by employing Babinet’s principle. A comparison between the an-

alytic solution and the angular spectrum solution for the axial and radial pressure

amplitude distributions in water from the H-102 source is shown in Fig. 3·2(a) and (b)

respectively. Figure 3·2(c) and (d) show the axial-plane distributions of the pressure

and the intensity fields. The radial distance is defined as the transverse distance from

the focus in the focal-plane of the transducer, and the axial distance is defined as the

distance measured from the face of the center of the transducer. The pressure fields

are normalized to the source pressure, and the intensity values shown are for a source

pressure of 1 Pa. The acoustic properties used in this simulation are summarized in

Table 3.1.

The angular spectrum solution is most accurate in the focal region of the trans-

ducer, achieving a maximum error of ∼1.5% and a root-mean-square error �1%

within the full-width half maximum (FWHM) of the focus. Discrepancies are ob-
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Figure 3·2: The axial (a) and radial (b) pressure amplitude distri-
butions for an H-102 transducer in water calculated using the angular
spectrum code and O’Neil’s analytical solutions. The radial distribu-
tion is at the focal plane of the source. (c) The axial-plane pressure
distribution calculated with the angular spectrum code. (d) The axial-
plane intensity distribution calculated with the angular spectrum code
for a source pressure of 1 Pa.

Property Value

ρ0 (kg/m3) 998

ca (m/s) 1481

α (Np/m·MHz) 0.025

Table 3.1: The acoustic properties of water used in the angular spec-
trum simulation. ρ0 is the equilibrium density, ca is the speed of sound,
and α is the attenuation coefficient.
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served in the structure of the axial pressure fluctuations in the pre-focal region (par-

ticularly very close to the transducer face) and the second radial side lobes in the

focal plane. Additionally, ripples caused by mirror sources in the angular spectrum

solution are observed in the far field. As previously mentioned, the 100-µm grid spac-

ing used here is smaller than what is required to obtain an accurate solution. The

axial and radial root-mean-square errors between the angular spectrum solution and

the analytical solution are shown as a function of grid spacing in Fig. 3·3, where the

error is represented as a percentage of the focal pressure. Although the grid spacing

doesn’t have a major impact on the accuracy of the pressure solution, a large grid

spacing has a large effect on the accuracy of the numerical gradient performed in Eq.

3.4, and thus a large effect on the calculated velocity and intensity fields.
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Figure 3·3: The root-mean-square error of the angular spectrum so-
lution with respect to the analytical solution for the axial and radial
pressure amplitude distributions. The error was calculated within ±30
mm of the focus and is plotted as a percentage of the focal pressure
amplitude.
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3.2 The Temperature Field

3.2.1 Tissue Heating Theory

For the purposes of modeling AO guided HIFU, we are interested in how energy from

the HIFU source is absorbed into tissue and converted to heat, and how the heat

conducts through the tissue. The methods employed for this work are described in

this section, but the reader is referred to Edson (2001) and Yang (2003) for more

complete reviews of models used to calculate temperature rises due to the absorption

of ultrasound.

The absorption of ultrasound as it propagates through tissue results in heat trans-

fer to the tissue. For a plane time harmonic wave, the ultrasonic power deposition

per unit volume is (Pierce, 1989):

qHIFU = 2αa|Iav|, (3.8)

where Iav is the time averaged intensity vector and αa is the acoustic absorption co-

efficient. Given the heat deposited into the tissue by the HIFU field, the temperature

field, T , can be calculated using Pennes bioheat transfer equation (Pennes, 1948),

with qHIFU incorporated into the equation as an extra heat source term (ter Haar,

2004):

ρtCt
∂T

∂t
= Kt∇2T −WbCb (T − Tb) + qm + 2αa|Iav|. (3.9)

Here, ρt, Ct, and Kt are the equilibrium density, heat capacity, and thermal conduc-

tivity of the tissue respectively. The second term on the right hand side of Eq. 3.9 is

the perfusion cooling term, where Wb, Cb, and Tb are the blood perfusion coefficient,

heat capacity, and ambient temperature of the blood respectively. The third term on

the right hand side is a source term to account for heat generated during metabolic

processes in the body, represented by the power density of metabolic heat generation,
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qm. The Pennes model provides an accurate and flexible three-dimensional solution

to the temperature field given the time averaged acoustic intensity field (Eq. 3.5),

however it is computationally intensive to solve.

3.2.2 Numerical Implementation

The temperature field was determined by solving the bioheat transfer equation using

a three-dimensional finite-difference time-domain (FDTD) method implemented in

Matlab. The FDTD approach allows a partial differential equation to be solved

using discrete time steps over a discrete spatial grid. Equation 3.9 is discretized to

second order-accuracy in space and time using Eqs. 3.10, where (i, j, k) refers to the

voxel position. ∆x, ∆y, ∆z are the spatial grid spacings, and n refers to a time step

of duration ∆t.

∂2T

∂x2
=

1

∆x2
(Ti+1,j,k − 2Ti,j,k + Ti−1,j,k) ,

∂2T

∂y2
=

1

∆y2
(Ti,j+1,k − 2Ti,j,k + Ti,j−1,k) ,

∂2T

∂z2
=

1

∆z2
(Ti,j,k+1 − 2Ti,j,k + Ti,j,k−1) ,

∂T

∂t
=
Tn+1 − Tn

∆t
. (3.10)

Once discretized, Eq. 3.9 was solved using an alternating direction modification

to the Crank–Nicolson method (Ames, 1992). Tn+1 was solved for in three steps.

First, the x derivative was evaluated at n + 1
2
, and a first approximation T ∗n+1 was

obtained using the first step of Eq. 3.11. Next, the evaluation of the y derivative was

moved ahead by means of the second step of Eq. 3.11 and a second approximation

T ∗∗n+1 was obtained. Finally, the z derivative was moved ahead using the third step

of Eq. 3.11 to obtain the true value of Tn+1. This approach yields a solution which

is locally second-order correct in space and time and which is unconditionally stable,
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regardless of the spatial or temporal grid spacing. The equations are shown below,

where the entire right hand side of Eq. 3.9 is given as a net source term, qnet, and

the spatial derivatives are written in their continuous form to save space.

ρtCt
T ∗n+1 − Tn

∆t
= Kt

(
1

2

∂2
(
T ∗n+1 + Tn

)
∂x2

+
∂2Tn
∂y2

+
∂2Tn
∂z2

)
+ qnet

ρtCt
T ∗∗n+1 − Tn

∆t
= Kt

(
1

2

∂2
(
T ∗n+1 + Tn

)
∂x2

+
1

2

∂2
(
T ∗∗n+1 + Tn

)
∂y2

+
∂2Tn
∂z2

)
+ qnet

ρtCt
Tn+1 − Tn

∆t
= Kt

(
1

2

∂2
(
T ∗n+1 + Tn

)
∂x2

+
1

2

∂2
(
T ∗∗n+1 + Tn

)
∂y2

+
1

2

∂2 (Tn+1 + Tn)

∂z2

)
+ qnet

(3.11)

For all of the thermal simulations performed in this work, a grid spacing of 100 µm

and a time step of 100 ms were used. In order to improve the code’s computational

efficiency within the Matlab environment, the solution utilized matrix operations.

Although this solution was shown to improve computational times, it restricted the

geometry of the simulation volume to a cube. A cubic tissue volume was sufficient

for the studies performed in this work, but the solution can be modified to a set of

parallelized loops in order to accommodate an arbitrarily shaped geometry if nec-

essary. The 100-µm grid spacing iss again smaller than what is required to obtain

an accurate solution, but it was chosen to be compatible with the fine grid spacing

required for the AO Monte Carlo simulations.

Most of the simulations performed in this work were chosen to mimic the experi-

mental conditions presented in Lai et al. (2011), where the tissue was ex vivo. Thus,

the source and sink terms due to metabolic heat generation and blood perfusion were

set to zero. As an initial condition, the temperature within the tissue was set to 21 ◦C

– the average temperature of the water during experiments. An insulating boundary

condition was chosen as the simulated tissue was typically surrounded by a plastic
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holder, but the boundary conditions have little impact on the solution due to the

sharp thermal gradients present during HIFU.

3.2.3 Validation

The bioheat transfer equation code was validated by comparison to an analytical

solution of the focal temperature rise caused by a heat source extending infinitely

along the z axis with a Gaussian radial profile (Parker, 1983, 1985). To create the

source, the intensity distribution of the HIFU source was calculated for a target peak

focal pressure of 6 MPa using the angular spectrum code described in Section 3.1,

with propagation from water into a 40-mm thick chicken breast. As with all of the

acoustic solutions in this work, nonlinear effects were ignored. For all of the peak

pressures stated throughout this work, a “target” peak pressure refers to the peak

focal pressure calibrated in water (the actual peak pressure may be lower inside of the

tissue due to attenuation). Next, a gaussian curve in the form of Eq. 3.12 was fit to

the radial intensity distribution of the HIFU source using the Matlab curve-fitting

toolbox.

I (r) = I0 exp(−r2/β), (3.12)

where I0 and β are the fitting coefficients. The analytic solution to the focal temper-

ature for a source of this form is given by (Parker, 1985):

T (t) =
2αaI0
ρ0cv

(
β

4κ

)
ln

(
1 +

4κt

β

)
, (3.13)

where κ = K/ρ0cv is the thermal diffusivity of the medium.

While calculating the temperature rise with the bioheat transfer code, metabolic

heat generation and cooling due to perfusion were not considered. The acoustic prop-

erties of water are given above in Table 3.1, while the acoustic and thermal properties

of chicken breast that were used are summarized in Table 3.2. The root-mean-square
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error between the focal temperature rise calculated by the bioheat transfer equation

code and the Parker analytical solution are shown for a 60 s heating time as a function

of grid spacing and time step in Fig. 3·4(a) and (b) respectively. Figure 3·4(c) shows

the calculated focal temperature rises as a function of time for a grid spacing of 100

µm and a time step of 100 ms, and (d) shows the error between the two solutions.

As shown in Fig. 3·4(a) and (b), the grid spacing has a large effect on the accuracy

of the solution, but the time step has almost no effect. As shown in Fig 3·4(c), the

bioheat transfer equation code over-predicts the focal temperature rise by ∼1.2 ◦C

for a heating time of 60 s. This is an acceptable amount of error considering the

long heating time and the large temperature focal temperature rise calculated. As

shown in Fig 3·4(d), the relative error asymptotes around 1.5%, so the absolute error

is smaller when the temperatures are lower.

Property Value Property Value

ca (m/s) 1585 ρt (kg/m3) 1040

α (Np/m·MHz) 0.5f 1.1
0 αa (Np/m) 0.78α

Ct (J/kg·C) 3210 Kt (W/m·C) 0.4683

Table 3.2: The acoustic and thermal properties of chicken breast used
in all of the angular spectrum and bioheat transfer simulations. ca is
the speed of sound, ρt is the equilibrium density, α is the attenuation
coefficient, αa is the absorption coefficient, Ct is the specific heat, and
Kt is the thermal conductivity. Acoustic properties were taken from
(Draudt, 2012) and thermal properties were taken from (Huang and
Liu, 2009).

3.3 Thermally Induced Optical Property Changes

The theory relevant to thermally induced optical property changes is detailed in

Chapter 2, therefore only the numerical implementation will be discussed here. It

is worth noting that we assume that optical property changes are induced only by



71

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

Grid Spacing (mm)

R
M

S
E

 (
°
C

)

0 0.2 0.4 0.6 0.8 1

0.725

0.73

0.735

0.74

0.745

Time Step (s)
R

M
S

E
 (

°
C

)
(a) (b)

0 10 20 30 40 50 60

0

20

40

60

80

100

Heating Time (s)

T
em

p
er

a
tu

re
 R

is
e 

(°
C

)

 

 

Bioheat Solution

Parker Solution

0 10 20 30 40 50 60

0

0.5

1

1.5

2

Heating Time (s)

E
rr

o
r 

(%
)

(c) (d)

Figure 3·4: Validation of the focal temperature rise over 60 s calcu-
lated with the bioheat transfer code by comparison to Parker’s analyt-
ical solution for a heat source extending infinitely along the z axis with
a Gaussian radial profile. The root-mean-square error of the solution
is shown as a function of grid spacing (a) and time step (b). (c) The
temporal dependence of the two solutions for a grid spacing of 100 µm
and a time step of 100 ms. (d) The error between the two solutions for
the grid spacing and time step shown in (c).
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heating, and not by mechanical effects. Given a simulation voxel with an average

temperature of Tavg during the time step ∆t, the thermal dose accumulated during

∆t ws calculated as:

∆t43 = R43−Tavg∆t, (3.14)

where ∆t is expressed in minutes. The isodose constant R was taken as 0.25 for

Tavg < 43◦C and 0.63 for Tavg > 43◦C based on the measurements reported in Chapter

2 (Adams et al., 2014). At the end of the simulation time step, ∆t43 was calculated

for each voxel within the computational domain and added to the voxel’s thermal

dose before the time step.

Given the total thermal dose, t43, in a voxel after each time step, the optical

reduced scattering, µ′s, and absorption, µa, coefficients were both calculated using:

µ = µ0 + (∆µ)max

(
1− exp

(
− t43
τ43

))
, (3.15)

where µ0 is the initial value of the coefficient, (∆µ)max is the maximum observable

change in the coefficient, and τ43 is the thermal dose constant that governs the rate

at which the property changes. As discussed in Section 2.4.1, (∆µ′s)max is tempera-

ture dependent. Therefore, the maximum temperature calculated for each voxel was

also provided as an input to the function by the bioheat transfer equation code. A

Matlab function then generated the optical properties on a grid which could be

imported into the optical code. Figure 3·5 shows µ′s (a) and µa (b) in the axial plane

of the chicken breast after an exposure of a target peak pressure of 6 MPa for 60 s,

followed by 30 s of cooling. The resulting thermal dose after the exposure is shown

in Fig. 3·5(c). The optical properties used for the calculations were derived from

experimental data at 1064 nm (see Section 2.4), and are shown in Table 3.3.
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Figure 3·5: Calculated µ′s (a) and µa (b) at 1064 nm in the axial
plane of a chicken breast heated for 60 s with a target peak pressure
of 6 MPa, followed by 30 s of cooling. (c) The resulting thermal dose
after the exposure shown on a log scale.

Property Scattering Absorption

µ0 (cm−1) 1.1 0.01

(∆µ)max (cm−1) 7.535 if Tmax < 70◦C 0.065
11.66 if Tmax > 70◦C

τ43 (min) 2214 598

Table 3.3: The optical properties of chicken breast at 1064 nm used in
all simulations. Values are based on experimental data (Adams et al.,
2014).
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3.4 The Optical Field

3.4.1 Light Transport Theory

In order to properly model AO sensing as a mechanism for HIFU guidance, the prop-

agation of light through tissue must be accurately modeled. The theory pertaining

to light-tissue interactions and diffuse light transport in biological tissue is detailed

in Chapter 2. As discussed, light transport in turbid media is described by the radia-

tive transfer equation (Eq. 2.14). For the purposes of this work, the RTE is solved

numerically using the Monte Carlo method (Wang et al., 1995a). Originally imple-

mented to solve the diffusion of neutrons in fissionable materials (Metropolis, 1987),

the Monte Carlo method has since seen widespread use for many other applications

in which analytical solutions cannot be directly calculated, but can be broken up into

subprocesses that are each characterized by a known probability distribution. By

randomly and repeatedly sampling from these distributions, an accurate solution is

obtained as the number of repetitions approaches infinity.

When applied to diffuse light transport, the Monte Carlo method offers the most

accurate and flexible solutions to the RTE (Rubinstein and Kroese, 2007). However,

the method is limited by its computational expense. Millions or billions of photon

“packets” must be simulated in order to obtain an accurate solution of the optical field

for a given tissue and illumination geometry. A photon packet is a group of photons

that propagates through a unique optical path with a “weight”, which represents the

amount of energy present in the packet. In what follows, the terms photon and photon

packet are used interchangeably. In order to enhance computational efficiency and

reduce computation times, parallelization algorithms are often employed to simulate

hundreds or thousands of photon packets simultaneously. One such algorithm that

has seen widespread use in the optics community is Monte Carlo eXtreme (MCX)

(Fang and Boas, 2009). MCX is an open-source (Fang, 2009), graphics processing
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unit (GPU) accelerated Monte Carlo algorithm that is able to perform time resolved

simulations in an arbitrarily complex tissue volume with heterogeneous optical prop-

erties. MCX was used as a basis for all of the AO code developed for this thesis, and

its algorithm and implementation will be presented in the following section.

3.4.2 Monte Carlo Implementation

The important details of the MCX algorithm will be presented in this section, but

the reader is referred to Fang and Boas (2009) for a full description. Implemented in

the CUDA programming language, MCX uses a GPU to simultaneously propagate

thousands1 of photon packets through a tissue volume with circular detectors at the

tissue boundaries. Once the specified number of photon packets have been propa-

gated, the results from the individual photon packets (expressed as raw probabilities)

are coherently summed and normalized to obtain a statistical representation of the

fluence rate within the tissue. When a photon packet reaches a detector, its infor-

mation – the number of scattering events it’s experienced and the total path length

it’s traveled in each medium type2 within the tissue – is saved. The workflow of

each individual photon packet is summarized in Fig. 3·6, where the steps at which a

probability distribution is randomly sampled are shown with rounded red boxes.

The Workflow of Each Photon Packet

The source condition for each MCX simulation is a unity pencil beam3 with a specified

location ~r and direction ŝ. Each photon emanating from the source has an initial

packet weight of 1. Once launched, the code calculates the free path, ls, of the

photon in direction ŝ before encountering its first scattering event. Each free path is

1 The number of photon packets simulated simultaneously is dependent upon the number of threads
available on the GPU.

2 A medium type refers to one or more voxels with a unique set of optical properties.
3 A pencil beam is an infinitely narrow source with a specified direction.
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Figure 3·6: The workflow of a single photon packet in the Monte Carlo
light transport model. Millions of photon packets must be simulated to
yield an accurate solution of the optical field. The rounded red boxes
indicate steps at which a probability distribution is randomly sampled.
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a randomly chosen value taken from probability density function with an exponential

distribution, and it is calculated using:

ls =
− ln ξ

µs
, (3.16)

where ξ is a random number distributed between 0 and 1. All random numbers are

generated using a logistic-lattice algorithm (Phatak and Rao, 1995; Wagner, 1992)

with a lattice size of 5. The code attempts to move the photon one voxel length

lv, along ŝ. If lv < ls, ls is adjusted at the voxel boundary according to the optical

properties of the voxel it is entering. If ls < lv, the photon is stopped at the end of its

trajectory. Once stopped at the voxel boundary or at the scatterer, the packet weight

is reduced by the absorption coefficient along the step according to Eq. 2.1 and it is

added to the current voxel’s raw probability, Praw. If the user is performing a time

resolved simulation, the probability is binned based on a time gate. A new scattering

direction vector is calculated using a Henyey-Greenstein phase function (Henyey and

Greenstein, 1941). As discussed in Section 2.1.2, the azimuthal angle Ψ is randomly

distributed between 0 and 2π. Therefore,

Ψ = 2πξ, (3.17)

and the zenith angle θ is calculated using:

cos θ =
1

2g

[
1 + g2 −

(
1− g2

1− g + 2gξ

)2
]
. (3.18)
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If a photon packet traveling in the direction Ω̂ is scattered at an angle (θ,Ψ), its new

direction Ω̂′ is given by (Wang and Wu, 2012):

Ω̂′x =
sin θ(Ω̂xΩ̂z cos Ψ− Ω̂y sin Ψ)√

1− Ω̂2
z

+ Ω̂x cos θ,

Ω̂′y =
sin θ(Ω̂yΩ̂z cos Ψ + Ω̂x sin Ψ)√

1− Ω̂2
z

+ Ω̂y cos θ,

Ω̂′z = −
√

1− Ω̂2
z sin θ cos Ψ + Ω̂z cos θ. (3.19)

If the photon direction is very close to the z-axis, the following formulas are used

instead:

Ω̂′x = sin θ cos Ψ,

Ω̂′y = sin θ sin Ψ,

Ω̂′z = sgn(Ω̂z) cos θ, (3.20)

where sgn is the sign function.

A photon packet propagates through the tissue volume until it reaches a boundary

between two media with different refractive indices. Upon reaching such a boundary,

the probability of a photon being internally reflected is determined by the Fresnel

reflection coefficient R(θi):

R(θi) =
1

2

[
sin2(θi − θt)
sin2(θi + θt)

+
tan2(θi − θt)
tan2(θi + θt)

]
, (3.21)

where θi = cos−1 Ω̂x,y,z is the angle of incidence on the x, y, or z boundary and θt is

determined by Snell’s law:

ni sin θi = nt sin θt. (3.22)

After calculating the probability of internal reflection, a random number is generated



79

and if ξ < R(θi) the photon is reflected and the appropriate x, y, or z component of

its directional vector is flipped. Otherwise, the photon exits the current voxel. If the

photon exits the computational volume and is incident upon a detector, its weight

and its total number of scattering events are saved.

The Simulation Output

As previously discussed, the result from each Monte Carlo simulation is the raw prob-

ability, Praw (unitless), accumulated in each voxel4. Therefore, at the conclusion at

each simulation, Praw must be converted into a physical quantity via a normalization

procedure. The specifics of the photon normalization procedure are beyond the scope

of this discussion, but the details can be found in literature (Boas et al., 2002; Fang

and Boas, 2009). By default, the output of MCX is the time-resolved particle flux

distribution, F (r, ti) (1/mm2 ·s), for a unitary source of infinitely narrow pulse width.

For the purposes of this work, we are interested in the fluence rate distribution, Φ(r)

(W/mm2), produced by a CW source of power S0. In order to convert the particle

flux within each time gate to a CW fluence rate distribution, F (r, ti) was multiplied

by the time gate length, ∆tg,i and summed:

Φ(r) = S0

∑
i

F (r, ti)∆tg,i (3.23)

3.4.3 Validation

Although Monte Carlo algorithms are considered to be more accurate than any an-

alytical diffuse light transport model, it is still necessary to validate them to ensure

they don’t contain any numerical errors or unwanted biases. As discussed in Section

2.2, the most common analytical solution to the radiative transfer equation (RTE)

is known as the diffusion approximation (Farrell et al., 1992; Kienle and Patterson,

4 The simulation also outputs the information collected by each detector, which is already in physical
units.
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1997; Contini et al., 1997). MCX has been vigorously validated against the diffusion

approximation (Fang and Boas, 2009), but an additional comparison is presented here

to confirm the accuracy of the code implemented in this work.

The diffusion approximation solution to the RTE for a homogeneous semi-infinite

medium for a 1 W CW point source of light located at rs and measured at rd is given

by:

Φ(rs, rd) =
1

4πD

[
exp(−

√
3µ′sµa |rs − rd|)
|rs − rd|

− exp(−
√

3µ′sµa |rs,i − rd|)
|rs,i − rd|

]
, (3.24)

where D = 1/3µ′sµa is the diffusion constant. The semi-infinite boundary condition

is satisfied by using the method of images with an extrapolated boundary condition

(Haskell et al., 1994). Figure 3·7 shows a comparison between Eq. 3.24 and the

MCX solution for the fluence rate inside of an approximately semi-infinite medium

with the optical properties of breast tissue at 1064 nm (Koelzer et al., 1995), which

are shown in Table 3.4. The semi-infinite medium condition was approximated by

simulating 100 million photons in a 60x60x60 mm3 volume. The source was positioned

at (x, y, z) = (30, 30, 0) mm and was directed along the z-axis. Figure 3·7 shows the

fluence rate distributions calculated along the (30, 30, z) (a) and (x, 30, 30) (c)

axes, which correspond to the the source propagation axis and the transverse axis at

Property Value

λ (nm) 1064

µa (cm−1) 0.097

µs (cm−1) 7.57

g 0.9

n0 1.4

Table 3.4: The optical properties of breast used in the MCX validation
simulation. n0 is the equilibrium refractive index of the tissue.
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Figure 3·7: Validation of the CW fluence rate distribution calculated
by MCX for a tissue with the optical properties of breast at 1064 nm
by comparison to the diffusion approximation solution. Fluence rates
are shown along the (30, 30, z) (a) and (x, 30, 30) (c) axes, and the
error between the MCX and diffusion approximation solutions at these
locations are shown in (b) and (d). (e) A contour plot (10 dB spacing)
of the two solutions in the source plane.
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the half-depth of the tissue respectively. The error between the MCX solution and

the diffusion approximation solutions along these axes are shown in (b) and (d). A

contour plot (10 dB spacing) is shown for the two solutions in the source plane (e).

The error between the two solutions is small for all positions that aren’t near the

source or the boundaries, where the MCX medium is no longer semi-infinite and the

diffusion approximation isn’t valid.

3.5 The Acousto-Optic Effect

3.5.1 Theory

For the purposes of modeling AO sensing for HIFU guidance, the phase modulations

imparted on diffuse coherent light by the CW HIFU field must be calculated, and

how these phase modulations are detected in an actual physical experiment must be

modeled. This section will present the theory and implementation relevant to cal-

culating AO phase modulations, and the detection of these phase modulations will

be presented in Section 3.6. As discussed in Section 1.2.1, there are two primary

mechanisms responsible for the ultrasound induced phase modulations imparted on

diffuse light (Wang, 2001b,a). Although a third mechanism also exists – the per-

turbation of the medium’s optical absorption and scattering properties due to the

compression and rarefaction of the tissue (Mahan et al., 1998) – it is very weak and

will thus be ignored in this work. These two primary mechanisms, which require the

light to be temporally coherent throughout its propagation, will be discussed further

here. The theory presented here assumes the mean free path of a photon is much

greater than the optical wavelength, the ultrasound induced refractive index pertur-

bations are small enough to be linearly proportional to the pressure amplitude, and

the ultrasound induced displacement of the scatterers are much less than the optical

wavelength (Sakadžić and Wang, 2005). The latter two assumptions impose upper
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limits on the allowable acoustic pressure amplitude, as discussed below.

An acoustic field generates a strain which alters the refractive index of the medium

in which propagates (Raman and Nagendra Nath, 1935; Wang, 2001b). This phe-

nomenon is known as the elasto-optic effect, and assuming the perturbation of the

dielectric permittivity due to the acoustic pressure p(~r, t) is small, the modulated

refractive index of an insonified material is given by:

∆n(~r, t) = n0
∂n

∂p
p(~r, t), (3.25)

where ∂n
∂p

is the adiabatic piezo-optic coefficient of the material. As a result of the

modulated refractive index, the optical phase between two consecutive scattering

events is also modulated. Considering a plane electromagnetic wave with wavenumber

k0 propagating between two points ~ri−1 and ~ri within an insonified medium, the phase

variation (from that of an optically homogeneous medium) along this path is given

by:

φn,i(~ri−1, ~ri, t) = k0n0
∂n

∂p

~ri∫
~ri−1

p(~r, t) d~r, (3.26)

where k0 is the optical wave number.

In addition to the phase modulations generated by ultrasound induced refractive

index perturbations, the displacements of optical scatterers in an insonified medium

modulate the path lengths of the multiply scattered light that propagates through

it (Leutz and Maret, 1995; Wang, 2001b). Assuming that optical scatterers follow

the movement of the background medium in amplitude, phase, and direction, the

periodic displacement of optical scatterers from their rest positions induced by the

propagation of a monochromatic acoustic wave is described by:

~ξs(~r, t) = Ω̂a

∫
u(~r, t) dt, (3.27)
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where Ω̂a is the acoustic propagation direction (given by the directional vector of the

particle velocity). Given this particle displacement, the phase variation at the i’th

scattering event is given by:

φd,i(~r, t) = k0n0Ω̂a · (Ω̂inc − Ω̂sc)

∫
u(~r, t) dt, (3.28)

where Ω̂inc and Ω̂sc are the incident and scattered photon directions, respectively.

The total ultrasound induced phase modulation over a single optical path involving

N free paths andN−1 scattering events is a summation of the perturbations expressed

in Eqs. 3.26 and 3.28, and it is given by:

φus(t) =
N−1∑
i=1

φd(~ri, t) +
N∑
i=1

φn(~ri−1, ~ri, t), (3.29)

where i is a single scattering event, ~r0 is the source location, and ~rN is the detector

location. Assuming that the medium is insonified by a monochromatic acoustic field

with a temporal behavior described by e−iωat, φus(t) may be expressed as (Blonigen

et al., 2005; Sakadžić and Wang, 2006b; Powell and Leung, 2012):

φus(t) = Re {|φus| exp(−i[ωat+ ϕus])} , (3.30)

where |φus| and ϕus are the magnitude and phase angle of φus respectively. Thus, when

considering an optical wave propagating along an optical path s within a diffusive and

insonified medium, the electric field of the wave, Es(~r, t) takes the form:

Es(~r, t) = as(~r) exp(−i[ω0t+ φm,s(~r, t) + φus,s(~r, t)]), (3.31)

where as is the amplitude of the electric field and φm,s is some random phase due to

the multiple scattering process (which may randomly fluctuate due to effects such as

Brownian motion).
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The power of the modulated and unmodulated light in each optical path is given

by the power spectrum of Es(~r, t). According to the Wiener-Khinchin theorem (Good-

man, 1985), the power spectrum of a wide-sense stationary electric field is given by

the Fourier transform of its temporal autocorrelation function, G(τ):

G(τ) =

∣∣∣∣∣∣
∞∫

−∞

E(~r, t)E∗(~r, t− τ) dt

∣∣∣∣∣∣ . (3.32)

Neglecting Brownian motion and other temporal fluctuations in φm,s, assuming that

the mean free path between scatterers is much greater than the optical wavelength,

and assuming that the ultrasound induced scatterer displacements are small, the

autocorrelation function of a single optical path is given by (Sakadžić and Wang,

2006b):

Gs(τ) =
ωa
2π

2π/ωa∫
0

a2s exp(i|φus,s|{cos(ωat+ ϕus,s)− cos[ωa(t+ τ) + ϕus,s]}). (3.33)

By expanding the exponentiated cosine function into a series of Bessel functions via

the Jacobi-Angers identity (Abramowitz and Stegun, 1972), the integral in Eq. 3.33

can be evaluated, yielding the expression:

Gs(τ) = a2s

[
J2
0 (|φus,s|) +

∞∑
m=1

2J2
m(|φus,s|) cos(mωaτ)

]
, (3.34)

where Jm is a Bessel function of the first kind of order m. Therefore, the power

spectrum of each optical path will consist of a strong unmodulated component at ω0

proportional to J2
0 (|φus|), and numerous modulated sidebands shifted by multiples of

ωa, where the power of the m’th sideband is proportional to 2J2
m(|φus|).
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3.5.2 Numerical Implementation

Acousto-optic calculations were implemented by modifying the Monte Carlo algo-

rithm, MCX, presented in Section 3.4.2. The modifications were implemented in a

procedure similar to that employed by Sakadžić and Wang (2006b), and they will be

described here. At the initialization of a Monte Carlo simulation, each voxel was as-

signed a four-element array: [p0Ω̂a,x, p0Ω̂a,y, p0Ω̂a,z, φa], where φa is the acoustic phase

constant within the voxel, and the average propagation direction within the voxel,

Ω̂a = ~ka/ka, was derived from the particle velocity field. The array describing the

acoustic field was loaded onto the global memory of the GPU. The acoustic field from

the angular spectrum solution was expressed in each voxel as:

p (t) = p0 cos(ωat+ φa). (3.35)

For each photon packet step of length li within a given voxel, the phase increment

accumulated by the packet due to the modulation of the refractive index, ∆φn,i, was

calculated using Eq. 3.26 as:

∆φn,i(t) =
k0n0liη

ρ0c2a
p(t), (3.36)

where η = ∂n
∂p
ρ0c

2
a is known as the elasto-optic coefficient of the tissue. Alternatively,

Eq. 3.36 may be expressed as:

∆φn,i(t) = pn,cos,i cos(ωat) + pd,sin,i sin(ωat), (3.37)

where:

pn,cos,i =
k0n0liη

ρ0c2a
p0 cos(φa),

pn,sin,i = −k0n0liη

ρ0c2a
p0 sin(φa). (3.38)
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Similarly, for each scattering event j, the phase increment accumulated by the packet

due to the ultrasound induced scatterer displacement, ∆φd,j, was calculated using

Eq. 3.28 as:

∆φd,j(t) =
k0n0

kaρ0c2a
Ω̂a · (Ω̂inc − Ω̂sc)

∫
p(t) dt. (3.39)

Alternatively, Eq. 3.39 may be expressed as:

∆φd,j(t) = pd,cos,j cos(ωat) + pd,sin,j sin(ωat), (3.40)

where:

pd,cos,j =
k0n0

kaρ0c2a
Ω̂a · (Ω̂inc − Ω̂sc)p0 sin(φa),

pd,sin,j =
k0n0

kaρ0c2a
Ω̂a · (Ω̂inc − Ω̂sc)p0 cos(φa). (3.41)

At each step, the total ultrasound induced phase shift, φus(t), of the photon packet

was calculated using Eq. 3.29:

φus(t) =

[∑
i

pn,cos,i +
∑
j

pd,cos,j

]
cos(ωat) +

[∑
i

pn,sin,i +
∑
j

pd,sin,j

]
sin(ωat),

(3.42)

and it can be expressed in the form of Eq. 3.30, where |φus| and ϕus are calculated

using:

|φus| cos(ϕus) =
∑
i

pn,cos,i +
∑
j

pd,cos,j,

|φus| sin(ϕus) = −
∑
i

pn,sin,i −
∑
j

pd,sin,j. (3.43)

At each scattering event, the power spectrum of the modulated optical path was

calculated using the Fourier transform of Eq. 3.34. Assuming that contributions from

higher order sidebands are negligible, a portion of the packet weight, J2
0 (|φs|)Ws, was
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added to the voxel’s unmodulated light probability, Praw,0, and a portion 2J2
1 (|φs|)Ws

was added to the voxel’s modulated light probability Praw,1, (Sakadžić and Wang,

2006b) where Jn is a Bessel function of the n’th order. At the completion of the

simulation, the raw probability fields of the modulated and unmodulated light were

normalized using the same procedure referenced in Section 3.4.2, yielding the unmod-

ulated, Φ0, and modulated, Φ1, fluence rates within the medium.
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Figure 3·8: The ratio of the AO signal with and without a ∼30 mm3

lesion in chicken breast illuminated with a 1064 nm source and insoni-
fied with 1.1 MHz HIFU at variable peak pressures.

In this implementation, a number of assumptions were used. First, it was as-

sumed that the ultrasound induced phase modulations are small. This limits the

acoustic pressures used in the AO simulations to ∼100 kPa (Sakadžić and Wang,

2006b). However, we often are only interested in the ratio of the AO signal with and

without a lesion, FAO/FAO,0, where FAO is the AO radiant flux as defined below in

Eq. 3.46. As shown in Fig. 3·8, where FAO/FAO,0 is plotted as a function of peak

pressure amplitude for a ∼30 mm3 lesion, FAO/FAO,0 is approximately independent

of pressure. Additionally, it was assumed that the acoustic field is monochromatic

and can accurately be described within a voxel using Eq. 3.35, which imposes an

upper limit on the voxel size to ∼100 µm for a 1.1 MHz acoustic frequency. Next,
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it was assumed that the displacement of the optical scatterers follow the background

medium in phase, amplitude, and direction. Finally, it was assumed that because

of the small ultrasound induced phase modulations, the contributions to the power

spectrum from higher order sidebands are negligible.

3.5.3 Validation

The mathematics and physics associated with developing acousto-optic models are

very complex, therefore few analytical formulations are available to validate the AO

Monte Carlo model with. Nevertheless, a temporal correlation diffusion equation ex-

ists which can be used to calculate the power spectrum of light modulated by a nonuni-

form ultrasound field in an optically scattering and absorbing medium (Sakadžić and

Wang, 2006a). Using a solution to this equation, the AO Monte Carlo algorithm

was validated by comparison to an analytical solution for the modulation depth,

MD = Φ1/Φ0, within an optically homogeneous and diffusive semi-infinite slab of

width 20 mm, insonified by a 3.175 mm radius cylinder of plane wave ultrasound. In

order to mimic the configuration used for the solution presented by Sakadžić and Wang

(2006a), the simulation was performed in a cuboid medium of dimensions 20x100x40

mm3, with a voxel size of 100 µm. The dimensions of the medium were chosen to

minimize boundary effects. As shown in Fig. 3·9(a), the medium was illuminated at

(x, y, z) = (0, 10, 0) mm with a 532 nm pencil beam launching 500 million photons in

+x, and the acoustic and optical properties of the medium are given in Table 3.5.

The modulation depth was evaluated along the y axis in both the reflection (x = 0

mm) and transmission (x = 20 mm) planes (z = 0 mm for all cases). As shown in Fig.

3·9(b), excellent agreement was found between the AO MCX code and the analytical

solution. The large discrepancy near the source (y = 10 mm) is due to a diffusion

approximation used when deriving the analytical solution. At all other evaluated

locations, the error between the Monte Carlo code and the analytical solution is less
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Figure 3·9: Validation of the AO MCX code by comparison to the
modulation depth, MD, inside of an optically homogenous medium in-
sonified by a 3.175 mm radius cylinder of plane wave ultrasound. (a)
A cross-section (z = 0) of the computational domain used to validate
the AO MCX code. The properties of the medium are given in Table
3.5. The cylinder of ultrasound propagates in the +z direction, and the
optical source location and direction is indicated by the red arrow. (b)
Comparison of the MD along the y-axis in the reflection, x = 0 mm,
(blue circles) and transmission, x = 20 mm, (red diamonds) planes.

than 2 dB.

3.6 Acousto-Optic Signal Detection

As discussed in Section 1.2.2, photorefractive holography using a GaAs crystal is the

only AO detection method that has been used for HIFU guidance to date. Thus, all of

the simulations performed in this work use a photorefractive crystal (PRC) detection

model. The principles of PRC-based detection were introduced in Section 1.2.2, and

the theory pertaining to the two-wave mixing that occurs within the PRC will be

discussed further here. For a more complete description of PRC-based AO detection,

the reader is referred to Sui (2006) and Lai (2010).
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Property Value Property Value

ca (m/s) 1480 ρ0 (kg/m3) 1000

f0 (MHz) 1.1 p0 (kPa) 100

λ0 (nm) 532 n0 1.33

µs (cm−1) 10 µa (cm−1) 0.1

g 0.001 η 0.32

Table 3.5: The acoustic and optical properties of the medium used to
validate the AO MCX code. The properties were chosen to match the
analytical solution presented in (Sakadžić and Wang, 2006a).

3.6.1 PRC Theory

When light exits the tissue at a boundary, the signal beam is gathered by a diffuse light

collection system and it forms a speckle pattern at the face of a PRC. As discussed in

Section 1.2.2, the interference pattern between the spatially incoherent signal beam

and a coherent reference beam creates a hologram within the PRC in the form of

a refractive index grating. The time required to form this grating is referred to

as the PRC response time (Millerd et al., 1998) and is ∼20 ms for a GaAs crystal

(Lai, 2010). The grating is able to adapt itself to any variations in the signal beam

that occur on a slower time scale than its response time. In the absence of ultrasound

modulation, a portion of the reference beam diffracts from the refractive index grating

into the direction of the signal beam. The efficiency of the reference beam diffraction

is described by the two-wave mixing (TWM) gain of the crystal, γ = γ′ + iγ′′, and

the existence of an imaginary component of γ means that the reference beam may

be uniformly shifted in phase with respect to the signal beam. For the purposes

of AO guidance, the PRC is normally configured such that γ is purely real. Thus,

the diffracted reference beam and the signal beam are perfectly in phase and thus

interfere constructively, yielding a maximum optical intensity at the output of the

PRC, which we will refer to as an “enhanced” signal beam.



92

In the presence of ultrasound induced modulations, the refractive index grating

cannot adapt to the quickly changing signal beam, and thus an intensity change is

observed in the enhanced signal beam. The intensity of the enhanced signal beam in

the presence of ultrasound induced modulations is a summation of the contributions

from each optical path, and is given by (Delaye et al., 1995; Blonigen et al., 2005):

ISE(t) = exp(−αcLc)
∑
s

a2s[|exp(γLc)|2 + 2 Re([exp(γLc)− 1]

× [exp(iφUS,s(t))− 1])], (3.44)

where αc is the absorption coefficient of the crystal and Lc is the optical path length

of the crystal. It can be seen by inspection that the random phase term, φm,s in

Eq. 3.31, responsible for the spatial incoherence of the signal beam has vanished. By

applying a Bessel series expansion to the last term in Eq. 3.44 and retaining only the

lowest order terms, the expression for the enhanced signal beam can be broken into

three components:

INSE = exp(−αcLc) exp(2γ′Lc)
∑
s

a2s,

IACSE = 4 exp(−αcLc) exp(γ′Lc) sin(γ′′Lc)
∑
s

a2sJ1(|φUS,s|) cos(ωat+ ϕUS,s),

IDCSE = 2 exp(−αcLc)(exp(γ′Lc) cos(γ′′Lc)− 1)
∑
s

a2s(J0(|φUS,s|)− 1). (3.45)

The first component of the signal, INSE is a DC offset signal that contains no infor-

mation about phase modulations, but it is the dominant source of noise in the signal.

The second component IACSE is an AC signal whose amplitude is proportional to both

|φUS,s| and ϕUS,s. Since ϕUS,s varies randomly from 0 to 2π between different optical

paths, the AC contributions from different paths do not add coherently. Additionally,

when γ is purely real, IACSE = 0. The final component IDCSE is a DC signal, which is
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proportional only to |φUS,s|. Therefore, the contributions from each optical path add

coherently to produce this signal. This is the signal that is used for AO sensing, and

we will heretofore refer to the radiant flux of IDCSE at the photodetector as the ”AO

signal”, FAO, defined by:

FAO = IDCSE Adet, (3.46)

where Adet is the active area of the photodetector.

3.6.2 Numerical Implementation

To simulate the PRC-based detection of AO signals in the AO MCX code, circular

detectors of radius r and efficiency ηdet (see Section 3.6.3 below) were placed directly

on the boundaries of the tissues. When a photon packet reached a detector, its packet

weight, Ws, and its phase modulation terms, |φUS,s| and ϕUS,s were recorded. At the

completion of each AO MCX simulation, the detected AO signal was calculated in

a post-processing manner using Matlab. First, the total radiant flux, Ft, to reach

each detector was calculated as:

Ft = S0

∑
s

Ws, (3.47)

where S0 is the simulated source power and s corresponds to a single photon packet.

The total radiant flux to reach the detector was then scaled by ηdet to account for the

diffuse light collection system, and the detected AO signal, FAO was calculated as:

FAO = 2ηdetS0 exp(−αcLc) (exp(γ′Lc) cos(γ′′Lc)− 1)
∑
s

Ws(J0(|φUS,s|)− 1). (3.48)

3.6.3 Light Collection Efficiency of the Simulation Detectors

The efficiency of a diffuse light collection system is governed by the theory of étendue,

which specifies the geometric capability of the system to transmit and accept light
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(Chaves, 2008). For a conical beam normal to a source or detector of area A, étendue,

G0, can be expressed as a product of the component’s area, A, and the projected solid

angle at which light is transmitted or received, Ω:

G0 = AΩ. (3.49)

At the surface of the tissue, the angle at which light can be transmitted through

the tissue is limited by the critical angle, θc. At angles greater than θc, measured

with respect to the axis normal to the tissue boundary, light is internally reflected

within the tissue. For a tissue submerged in water, θc is calculated as:

θc = arcsin

(
nwater

nair

)
. (3.50)

Therefore, given an AO MCX detector of area Adet placed on the boundary of the tis-

sue, the étendue at which light is transmitted through this detector can be calculated

as:

Gdet = Adetπ sin2 θc. (3.51)

The efficiency of a system is constrained by its component with the smallest

étendue. In the PRC-based detector, the PRC itself is the constraining component

in the system. Therefore, the solid angle at which light is accepted from the surface

of the tissue, Ωa, over an area Adet is constrained by the étendue of the PRC, GPRC.

Given GPRC, Ωa is calculated as:

Ωa =
GPRC

Adet

. (3.52)

The PRC modeled in this system accepts light over an area of 49 mm2, and accepts

light over a projected solid angle of 0.16, which is constrained by the angle between

the signal and reference beam. This results in an étendue of 7.8 mm2.
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Given the solid angles over which light is transmitted from the tissue, and the solid

angle at which the light is accepted over an area of Adet, the light collection efficiency

of a simulated detector can be calculated as the ratio of the two solid angles:

ηdet =
Ωa

π sin2 θc
. (3.53)

Therefore, for an MCX detector with a 20 mm radius placed on the surface of the

tissue, ηdet = 0.004.

3.7 Integration of the Models

3.7.1 An Example Script

Although each of the models described in Sections 3.1 – 3.6 were written as separate

Matlab functions or CUDA binaries, they were implemented in a way that they

could be integrated together in a single Matlab script to model the AO guidance

of HIFU. An example of such a script is presented in Appendix B, where a 40x40x40

mm3 cube of chicken breast tissue is illuminated with a 1064 nm light source and

exposed to a target peak pressure of 6 MPa for 120 s, and FAO was calculated every 5

s (using a peak pressure of 100 kPa). Figure 3·10(a,c) shows the distribution of Φ0 and

Fig. 3·10(b,d) shows the distribution of Φ1 before (3·10(a,b)) and after (3·10(c,d))

the exposure given in this script. 100 million photon packets are used for each AO

simulation.

Additionally, Fig. 3·11 shows the AO signal (a) and the lesion volume (b) as a

function of HIFU exposure time, as well as the percent change in the AO signal as a

function of lesion volume (c). The noise shown in Fig. 3·11(a) was calculated based

on the SNR of the signal – a function of INAO – and the method used for calculating

it will be presented in Chapter 5. Although the HIFU exposure parameters (pressure

amplitude, tissue thickness) are significantly different, by comparing Fig. 3·11(a) and



96

z (mm)

x
 (

m
m

)

 

 

0 10 20 30 40

0

10

20

30

40

lo
g

1
0
(Φ

0
)

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

z (mm)
x

 (
m

m
)

 

 

0 10 20 30 40

0

10

20

30

40

lo
g

1
0
(Φ

1
)

−6.5

−6

−5.5

−5

(a) (b)

z (mm)

x
 (

m
m

)

 

 

0 10 20 30 40

0

10

20

30

40

lo
g

1
0
(Φ

0
)

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

z (mm)

x
 (

m
m

)

 

 

0 10 20 30 40

0

10

20

30

40

lo
g

1
0
(Φ

1
)

−6.5

−6

−5.5

−5

(c) (d)

Figure 3·10: Unmodulated (a, c) and modulated (b, d) fluence rate
distributions inside of unlesioned (a, b) and lesioned (c, d) chicken
breast illuminated at 1064 nm nm and insonified with a peak pressure
of 100 kPa at 1.1 MHz. The lesion was created by an exposure of a
6 MPa target peak pressure for 120 s. The physical properties of the
medium can be found in Appendix B. 1 billion photons were used in
this simulation to achieve smoother fluence rate distributions.



97

0 20 40 60 80 100 120

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Time (s)

F
A

O
/F

A
O

,0

0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

Time (s)

L
e
si

o
n

 V
o
lu

m
e
 (

m
m

3
)

(a) (b)

0 20 40 60 80 100 120

0

5

10

15

20

Lesion Volume (mm
3
)

∆
 F

A
O

 (
%

)

(c)

Figure 3·11: An example of the signals that are obtained from the
integrated AO guided HIFU model. The chicken was exposed to a 6
MPa target peak pressure for 120 s, and the AO signal was calculated
every 5 s, assuming an acoustic pressure amplitude of 100 kPa. (a)
Normalized FAO as a function of time with added noise based on the
predicted SNR. (b) Lesion volume as a function of time. (c) Magnitude
of the percentage change in FAO as a function of lesion volume.

Fig. 1·8(b) we can see that the simulated signal closely matches the profile and the

noise level of the signals measured during experiments. A more detailed comparison

between the model and experimental data is presented in Chapter 4.

3.7.2 Restrictions and Hardware Requirements

When using each of the sub-models integrated into a single script, a number of re-

strictions and assumptions are placed upon the simulation. Each of these restrictions
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and assumptions have been discussed in previous sections, but they are summarized

here.

• The calculation of the acoustic field is linear. This limits the pressure amplitude

used to calculate heating to regimes where non-linear propagation effects are

not substantial. The acoustic field is also required to be monochromatic for the

AO simulations.

• The thermal model requires the volume to be cubic. If the user wishes to

perform an optical or AO simulation on a non-cubic medium, the medium may

be truncated following the thermal simulation.

• Optical property changes are due only to heating, and not to any mechanical

effects, such as those associated with cavitation or boiling.

• The AO model requires the voxel size, lv � λa. Therefore, a grid spacing of

100 µm was used for every simulation in this work.

• The mean free scattering path, ls � λ0. For breast tissue, whose optical prop-

erties are presented in Table 3.4, ls = 1.3 mm.

• The displacement of optical scatterers follow the displacement of the background

medium in amplitude, phase, and direction.

• The ultrasound induced phase modulations are very small so that Eqs. 3.26

and 3.34 are valid. In order to safely avoid breaking this assumption, the peak

pressure amplitude of all AO simulations was limited to 100 kPa.

• Polarization dependent effects are negligible in the AO MCX simulation, so that

there is no interaction between photon packets.
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Like all of the simulations presented in this thesis, the example presented here

was executed on the Boston University engineering grid. Because of the fine grid

spacing required by the AO code, a large amount of memory was required to perform

the simulations. Typically, scripts such as the example shown in Appendix B were

executed on a grid node with 32 GB of available RAM, and the AO code was executed

on a Tesla C2070 graphics card (Nvidia, CA, USA) with 6 GB of available memory.

It is recommended that a graphics card with at least 6 GB of available memory is

used for all AO MCX simulations.

3.8 Summary

This chapter presented the relevant theory for every component of the AO guided

HIFU model, and described the implementation and validation of each of the sub-

models. All of the sub-models can be integrated into a single Matlab script, and an

example of such a script is given in Appendix B. The assumptions and the restric-

tions imposed upon the model were described throughout the chapter, but they are

summarized in Section 3.7.2. In Chapter 4, the model is used to investigate important

design considerations for an AO guided HIFU system, and a strategy is developed for

the treatment of large volumes. In Chapter 5, the model is used to investigate the

feasibility of AO guided HIFU in a clinical environment by evaluating its ability to

guide the treatment of large volumes and by calculating expected SNRs in multiple

organs.
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Chapter 4

Design of an Optimized AO-Guided HIFU

System

4.1 Overview

One of the specific aims of this work is to use the model presented in Chapter 3 to

design an optimized AO guided HIFU system. Doing so involves investigating the

effect of many different parameters, such as the illumination/detection geometry, the

illumination wavelength, and the detection aperture size. Specifically, the objective

is to design a system that maximizes the signal contrast of a lesion, while maintaing

a reasonable SNR so that guidance can be performed in real time. Once the design

parameters of the system are optimized, it is important to characterize how the AO

system’s signal changes as a lesion grows in volume – as this change in signal can be

used as a predictor for lesion volume during HIFU guidance. Moreover, it is vital to

understand how robust the signal is to changes in factors such as tissue thickness,

lesion optical contrast, and lesion position. Knowing this will allow the user to make

better predictions of lesion volume during HIFU treatments, and it will also determine

the uncertainty of these predictions. In this chapter a model for an optimized AO

guided HIFU system is presented, the robustness of its signal to changes in tissue and

lesion properties is evaluated, a comparison is made between the AO signal and the

purely optical signal – characterized by changes in total optical intensity. Moreover,

this study is used as a vehicle for generating simulation results for comparison with
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the experimental data from Lai et al. (2011), and possible causes of discrepancies

between simulation and experimental results are discussed.

Unless otherwise stated, the simulation medium for all of the results presented in

this chapter was a 40x40x40 mm3 cube of chicken breast with a grid spacing of 100

µm immersed in water. For every case, the acoustic field was calculated for the HIFU

source described in Section 3.1. The acoustic properties of the water are given in Table

3.1, the acoustic and thermal properties of the chicken breast are given in Table 3.2,

and the optical properties of the chicken breast and lesion are given in Table 3.3. A

time step of 100 ms was used for all thermal calculations. In every case, the tissue was

insonified along the +z-axis and the pressure field co-registered with the lesion. Unless

otherwise stated, the tissue was illuminated with a 1064 nm pencil beam positioned

at the center of the x = 0 plane and launching 100 million photons directed in +x (as

shown by S2 in Fig. 4·1(a)), and a 20-mm radius detection aperture was placed in

the center of the tissue boundary at the maximum x dimension (as shown by D4 in

Fig. 4·1(a)). The 1064 nm optical wavelength was chosen to match the experimental

arrangement of Lai et al. (2011), and the effect of the optical wavelength on the AO

signal is discussed in Section 4.2.3. The detector properties used for each simulation

are listed in Table 4.1.

Property Value Property Value

ηdet 0.004 Ad (cm2) 0.2

αc (cm−1) 1.8 γ′ (cm−1) 0.5

Lc (cm) 0.7 γ′′ (cm−1) 0

Table 4.1: The properties of the photorefractive crystal based detec-
tion system. The values were chosen to match the setup employed in
Lai et al. (2011).

For thermal simulations, the focal pressure amplitude was set to 6 MPa so that

a lesion the same size as the HIFU focal region could be formed in 60 s. This likely
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violates the linear approximation used to calculate the acoustic field, but considering

nonlinear effects was beyond the scope of this work. This exposure resulted in a lesion

of approximately the same size as the HIFU focus (∼30 mm3) in the center of the

volume, as shown in Fig. 1·4. For each AO simulation, the pressure amplitude was

scaled down to a peak pressure of 100 kPa as discussed in Section 3.7 and the AO

“signal contrast” of a lesion is evaluated. We define the AO signal contrast, ∆AO, of

a lesion as:

∆AO =
|FAO,l − FAO,0|

FAO,0

× 100%, (4.1)

where FAO,l is the detected AO signal in the presence of a lesion and FAO,0 is the

detected AO signal in the absence of a lesion. Therefore, the signal contrast is the

change (in percentage) in the AO signal from its original value induced by a lesion.

4.2 Investigation of System Design Parameters

Three aspects of the AO system for HIFU lesion detection will be considered: (i)

illumination/detection geometry, (ii) detection aperture size, and (iii) optical wave-

length. In this section, these parameters are varied with the goal of maximizing the

AO signal contrast of a lesion.

4.2.1 Illumination/Detection Geometry

The illumination/detection geometries available for a system will be target dependent.

For organs with good optical accessibility, such as breast, many different geometries

can be considered. However, other organs, such as liver, kidney, and bone, have

limited optical access, e.g. only one or two sides of the organ. In this section we

attempt to determine the optimal illumination/detection geometry for organs with

good optical access, while also demonstrating the effect of only having access to one

or two sides of an organ.
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In order to examine the effect of the illumination/detection geometry on AO signal

contrast, a 5-mm diameter spherical inclusion with the optical properties of a HIFU

lesion is placed in the center of the otherwise homogeneous volume. A spherical

inclusion is used here in place of a HIFU lesion to avoid effects caused by the lesion’s

asymmetry. As shown in Fig. 4·1(a), optical sources at 0◦ (S1), 90◦ (S2), and 180◦

(S3) relative to the HIFU propagation are considered. For each of these sources, the

AO signal contrast is evaluated for transmission, reflection, and side detection (D1 –

D5 in Fig. 4·1). These nine different geometries are described in Table 4.2.
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Figure 4·1: (a) A cross-section from the center of the volume showing
the 5-mm diameter spherical inclusion. The locations of the five 20-mm
radius circular detectors are shown with dashed grey lines and the lo-
cations of the three optical sources are shown with red arrows. (b) AO
signal contrast of the spherical inclusion for the nine illumination/de-
tection geometries described in Table 4.2. The bulk medium has the
optical properties of chicken breast at 1064 nm, while the inclusion has
optical properties of a lesion at 1064 nm, as defined in Table 3.3.

Although this geometry is optimal, it may be impractical to implement in some

cases because it requires access to three sides of the tissue. While this is possible in

organs with good optical accessibility, it may not be possible in others. If there is

access to only two sides of the organ, the best contrast is observed when illuminating



104

Source R T Side

S1 D1 D3 D5

S2 D2 D4 D5

S3 D3 D1 D5

Table 4.2: The source/detector pair used for each geometry used in
Fig. 4·1(b). The source and detector locations are depicted in Fig.
4·1(a).

opposite to the HIFU (S3) and detecting in transmission (D1). However, this geometry

results in a loss of about 80% of the signal contrast when compared to the optimal

geometry. Additionally, this geometry only demonstrates a marginally higher AO

contrast than the configuration requiring access to only one side of the organ, which

possesses significant practical advantages over a two-sided geometry.

4.2.2 Detection Aperture Size

The size of the detection aperture is important as it determines the amount of mod-

ulated and unmodulated light that is collected. Here, the effect of detection aperture

size was investigated by illuminating the tissue with S2 in Fig. 4·1(a) and modeling

the detector as a disk of various radius in both transmission (D4) and reflection (D2)

modes. Figure 4·2(a,c) shows the AO signal contrast and Fig. 4·2(b,d) shows the

normalized AO signal magnitude of the ∼30 mm3 HIFU lesion (shown in Fig. 3·5)

as a function of the detection aperture radius. For transmission mode, it can be seen

that using a smaller aperture results in a slightly better contrast – as it minimizes the

collection of light that has accumulated phase-shifts outside of the HIFU focus – but

it comes at the expense of the signal’s magnitude. The magnitude of the AO signal

is proportional to the radiant flux of the light collected by the aperture, therefore it

is expected that it would decay exponentially with the size of the detection aperture.

With a smaller aperture, significantly less light is collected, and as will be discussed
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in detail in Chapter 5, the SNR will be adversely affected. Thus, while detecting in

transmission it is generally advisable to employ an aperture that is as large as practi-

cally possible in order to collect as much transmitted light as possible. For reflection,

it can be seen that there is an optimal detector radius for maximizing the AO signal

contrast – which is equal to the length of the HIFU lesion along the acoustic propa-

gation axis. However, as with transmission mode, using a larger aperture results in

more light being collected and thus a gain in SNR.
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Figure 4·2: The AO signal contrast (a,c) and the detected AO signal
normalized by the source power, S0, (b,d) of a ∼30 mm3 HIFU lesion as
a function of the detection aperture radius for transmission (a,b) and
reflection (c,d) detection.
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4.2.3 Optical Illumination Wavelength

The final parameter considered was the impact of the illumination wavelength on the

AO signal. As discussed in Chapters 2 and 3, the optical wavelength dictates how the

light interacts with the tissue and the ultrasound. Additionally, the contrast in the

optical properties between lesioned and unlesioned tissue is wavelength dependent. In

standard diffuse optical imaging (without AO interactions), it is normally preferable

to illuminate at an optical wavelength where the transport coefficient, µ′t = µ′s + µa,

is lowest (provided the optical contrast is sufficient at this wavelength). When µ′t is

minimized, the penetration depth of the light will be maximized. For an AO system,

it is not as obvious that this is the best strategy because the wavelength of the light

will also impact the AO phase modulations.

Table 4.3 shows the AO signal magnitude (normalized by S0) and the signal

contrast of the ∼30 mm3 HIFU lesion for a variety of optical wavelengths. These

wavelengths were chosen for either their biological relevance (minima or maxima in

chromophore absorption spectra) or technical relevance (common laser wavelength).

Examining the data, there appears to be a balance between high contrast and low

signal level. The highest AO contrast occurs at 500 nm, but this wavelength results in

the lowest detected radiant flux. The highest radiant flux is observed at 660 nm, but

the AO contrast is second lowest at this point. Optimizing the wavelength therefore

depends on the relative importance of flux and AO contrast.

Practically, the selection of the optical wavelength often depends on technical

restrictions. For example, the use of a GaAs PRC for detection requires a 1064 nm

source. In what follows, we employ 1064 nm because it is the operating wavelength

of the GaAs crystal previously employed for the AO guided HIFU experiments (Lai

et al., 2011) and it exhibits a good balance between detectable radiant flux and AO

contrast. Additionally, it should also be noted that the fact that AO signal magnitudes
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λ (nm) 500 550 576 660 800 940 975 1064

∆AO(%) 25.7 22.6 16.8 9.6 8.18 9.99 16.3 10.9
|FAO|
S0

× 10−6 0.15 0.70 7.77 13.5 9.89 7.99 3.89 6.77

Table 4.3: The detected AO signal magnitude and the AO signal con-
trast of the ∼30 mm3 lesion as a function of illumination wavelength.
The optical wavelengths were chosen based on their biological or tech-
nical relevance. The optical properties of the bulk tissue and the lesion
are given by the data presented in Chapter 2.

vary with the illumination wavelength means that multi-wavelength functional AO

imaging or sensing is possible. Although not explored in this work, the potential of

the technique has been investigated by Kim et al. (2007), and it is possible that it

could be a potential tool for the functional imaging of HIFU lesions.

4.3 Robustness of the AO Signal

One advantage of a realtime AO guided HIFU system is the ability to use ∆AO

as a feedback signal to control the volume of a lesion. In an ideal situation, the

feedback signal would depend only on the volume of a lesion, and not other factors

such as the location of the lesion, optical contrast, the thickness of the tissue, or the

HIFU pressure amplitude used to create it. Unfortunately, this is not the case. In this

section, the AO signal change is evaluated as a function of lesion volume for the case of

a lesion in the center of a chicken breast tissue with the goal of determining how robust

∆AO is to changes in tissue thickness, lesion optical contrast, and lesion position.

Additionally, in characterizing ∆AO as a function of lesion volume, simulations are

compared to experimental data (Lai et al., 2011) in order to validate the performance

of the model.
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4.3.1 Signal Dependence on Lesion Volume and Tissue Thickness

Lai et al. (2011) showed that for the case of a lesion in the center of chicken breast,

of thicknesses 15–30 mm, the AO signal contrast of a lesion with a given volume

is approximately independent of the tissue thickness and HIFU pressure amplitude.

Here, the experimental arrangement is mimicked for tissues of thicknesses 20–30 mm

and Fig. 4·3 shows ∆AO as a function of lesion volume for the geometry described

in Section 4.1. That is, the tissue is insonified along the z-axis, illumination is along

the x-axis, and detection is in transmission mode. Here thickness variation is in

the x dimension, and it is equal to the source-detector separation distance. As Fig.

4·3 demonstrates, the simulated signal contrast of a given lesion size is in fact not

independent from the tissue thickness. It can be seen that ∆AO increases with lesion

volume, but that the magnitude of the change is reduced as tissue thickness increases.
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Figure 4·3: The AO signal contrast as a function of lesion volume for
tissues of 20 (blue circle), 25 (white box), and 30 (red diamond) mm
thicknesses. The dashed black line is a best-fit derived from experimen-
tal measurements of samples of thicknesses 15–30 mm (Lai et al., 2011).
The simulation geometry and properties are described in Section 4.1.
The lesions are computed using a 6 MPa target peak pressure for the
acoustic and thermal simulations, but the peak pressure is reduced to
100 kPa for the AO simulations.
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Additionally on Fig. 4·3, experimental data from samples of thicknesses 15–30

mm is overlaid. The predictions bracket the experimental data for volumes less than

150 mm3 and suggest that the model captures the physical process over this range.

For larger volumes the simulations predict the response to saturate and suggest less

sensitivity to lesion volume, whereas the experimental data continues to increase.

One reason for this may be the large difference in pressure amplitudes between the

AO model and the experiments. As previously discussed, the assumptions used to

calculate phase modulations limit the peak pressure of the model to 100 kPa, while

peak pressures of up to 10 MPa were used in experiments. In the model, the pres-

sures outside of the HIFU focus are too low to significantly contribute to each photon

packet’s total phase shift (except for in some pre and post-focal locations). Alter-

natively, during experiments the pressure amplitudes outside of the focus may still

be quite high and could in fact contribute significantly to the total phase shift of

each optical path. This would result in the AO signal being more sensitive to opti-

cal changes outside of the HIFU focus, thus inducing a larger ∆AO for larger lesion

volumes. Another possible explanation for the discrepancy between the data is that

the optical properties of large HIFU lesions – where exposure times are longer and

both mechanical stresses and temperatures are likely to be higher – are different than

those used in the simulations.

4.3.2 Signal Dependence on Lesion Optical Contrast

Next, the effect of variability in the optical contrast of a lesion is considered. Clearly,

lesions are expected to exhibit different optical contrast in different tissues, but there

may also be less predictable sources of variability such as lesion location, body tem-

perature, patient age and gender, hydration levels, blood flow, etc. Looking at Fig.

2·11, where µ′s is plotted as a function of thermal dose for five ex vivo chicken breast

samples, it can be seen that the standard deviations of the measurements are ∼20%
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of the average values. It is possible, and perhaps likely, that these standard devia-

tions would be even higher in vivo. For this reason, it is very important to know how

robust the AO signal is to variability in the optical contrast between lesioned and

unlesioned tissue.

Here, the optical contrast of the lesion, C, is defined as:

C =
(∆µ)max

µ0

, (4.2)

where (∆µ)max and µ0 are defined in Eq. 3.15. In Fig. 4·4, ∆AO is plotted as

a function of a given lesion volume is affected as the optical contrast of a lesion is

perturbed. The simulated optical contrast is changed by adjusting the absorption

and scattering coefficients of the lesion equally, while the optical properties of the

unlesioned medium stay fixed. Figure 4·4(a) shows ∆AO as a function of lesion volume

for lesions with the average measured contrast at 1064 nm, Cavg, (black diamonds),

Cavg±25% (blue line), and Cavg±50% (red line), which covers 2.5 standard deviations.

The average measured contrast is derived from the data presented in Table 3.3.

Figure 4·4(b) shows ∆AO as a function of the normalized optical contrast of a

single ∼30 mm3 lesion. As the data shows, a doubling of the optical contrast of a

∼30 mm3 lesion results in a shift of ∆AO by less than 5%. While this seems like

a small shift in response, Fig. 4·4(a) demonstrates that for a ∼30 mm3 lesion with

average optical properties, a 25% uncertainty results in a prediction of a lesion volume

between ∼20-45 mm3, and a 50% uncertainty results in a prediction of a lesion volume

between ∼8-75 mm3. As the lesion volume increases, the uncertainties become even

greater. For example, a 25% uncertainty in the optical properties of a 100 mm3 lesion

results in a volume prediction between ∼75-145 mm3, and a 50% uncertainty results

in a prediction between ∼65-250 mm3. Thus, if a high level of accuracy is required for

predictions of lesion volume, it may be advisable to only use AO guidance for lesion
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Figure 4·4: (a) AO signal contrast as a function of lesion volume
for lesions with Cavg (black diamonds), Cavg ± 25% (blue line), and
Cavg ± 50% (red line). (b) AO signal contrast of the ∼30 mm3 lesion
in the center of the volume as a function of its normalized optical con-
trast, C/Cavg. The simulation geometry and properties are described
in Section 4.1. Absorption and scattering are varied equally to achieve
a desired optical contrast.

volumes on the order of the HIFU focus or smaller.

4.3.3 Signal Dependence on Lesion Position

The final lesion parameter affecting the AO signal investigated was the location of

the lesion relative to the source and the detector. If ∆AO is not independent of

location, a position-based adjustment must be applied to the prediction of lesion

volume during HIFU. Figure 4·5 shows the impact of moving the lesion all three

directions, the x (optical source), y (lateral), and z (HIFU source), on ∆AO. As the

lesion is moved, the acoustic field moves with it so that the acoustic focus is always

co-registered with the lesion. As the lesion is moved close to the optical source (along

x), the AO detection sensitivity increases proportionally with the light fluence. As

the lesion moves away from the center of the volume in y and z, the AO detection

sensitivity decreases with the fluence of the light. The difference observed between

moving the lesion in z as opposed to moving it in y is due to the lack of symmetry
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in the acoustic field along its propagation axis. It should be noted that if a wider

beam or multiple sources were used then the lesion position along y and z would

have a reduced effect on the signal contrast, but its position along x would remain

an important parameter. Nevertheless, the lesion position’s effect on the AO signal

is significant, but it is something that can be predicted by estimating the fluence in

the HIFU focus, and it should be compensated for during AO guided HIFU.
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Figure 4·5: AO signal contrast of the ∼30 mm3 lesion as its position
within the volume is changed. The described lesion position is the
location of the center of the lesion as it is scanned along the x (red
diamonds), y (blue circles), and z (white squares) axes. The x axis is
the optical source axis and the z axis is the HIFU propagation axis.
The simulation geometry and properties are described in Section 4.1.

4.4 The AO Signal vs. the Optical Signal

Currently employed AO detection methods are technically difficult to implement, and

are often the most expensive and limiting components of an AO system. Additionally,

because the fluence of modulated light is orders of magnitude less than the fluence of

unmodulated light, the AO signals are much smaller than the total optical intensity

signals and thus have significantly worse SNR. Because of the technique’s limitations,

there needs to be just cause to employ AO sensing as opposed to simply using total
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intensity changes as a feedback mechanism for HIFU.

In an attempt to address this issue, the change in the AO signal and the change

in the total optical intensity signal were evaluated as a function of lesion volume for

the case of a chicken breast illuminated and insonified under the exposure conditions

described in Section 4.1. Standard optical sensing is defined as measuring total op-

tical intensity changes, calculated based on Eq. 3.47. Figure 4·6 shows the increase

in both AO and optical intensity changes as a function of lesion volume and demon-

strates the largest benefit of using AO sensing (red diamonds) over standard optical

sensing (blue circles) is that the signal is significantly more sensitive to the lesion

formation, especially when the lesion is within the HIFU focus (<∼30 mm3). The

higher sensitivity displayed by the AO signal was expected, as the vast majority of

the modulated light is generated in the HIFU focus, where the lesion forms.
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Figure 4·6: A comparison between the AO (red diamonds) and total
optical intensity (blue circles) signal changes as a function of lesion
volume. The total optical intensity is calculated based on Eq. 3.47.
The simulation geometry and properties are described in Section 4.1.

Another important property of the AO signal is that it is very sensitive to optical

changes in the HIFU focus (where the lesion is forming), but unlike the optical signal

it should not be very sensitive to optical changes outside of the focus. If the optical
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properties outside of the focus change during the HIFU exposure – due to changes

in blood flow, tissue movement, etc. – the AO signal should not be significantly

affected. Conversely, these optical property changes could induce large changes in

the measured optical intensity signal – on the order of or larger than the changes

induced by lesion formation – which would hamper the ability of a purely optical

system to predict lesion volume based on total intensity changes. This effect has

previously been modeled and confirmed for the case of an optical absorber moved

around a medium for both optical and AO sensing in transmission and reflection

detection (Powell and Leung, 2012).

As previously mentioned, the enhanced signal contrast obtained by using AO

sensing does not come without a cost. Not only are AO signals technically more

difficult to measure, and AO detection methods are expensive to implement, but

more importantly the signals have significantly lower SNR than the total optical

intensity signals. In Chapter 5, the expected SNR of the AO signals are analyzed in

an attempt to address the clinical viability of AO sensing in different organs.

4.5 Summary and Conclusions

In this chapter, a number of different design parameters were investigated with the

goal of developing an optimized AO guided HIFU system: illumination/detection

geometry, detection aperture size, and optical wavelength selection. It was found

that an optimally designed AO guided HIFU system should illuminate the target

organ at 90◦ relative to the HIFU propagation with an optical wavelength which

exhibits minimal absorption in tissue, and that signal detection should be performed

in transmission mode using a detection aperture that collects as much light as possible.

Unfortunately, this requires access to three sides of the target organ. Therefore, the

optimal organs for AO guided HIFU are those with good optical accessibility, such as
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the breast.

Using this optimally designed system, the AO signal contrast changes was evalu-

ated as a function of lesion volume for tissues of different thicknesses. This study was

used as an opportunity to compare the simulation results to the experimental data

collected by Lai et al. (2011). It was determined that the modeling results agree very

well with experimental data while the lesion is within the HIFU focus (≤∼30 mm3).

As the lesion grows outside of the HIFU focus, the simulated signal asymptotes while

the experimental data continues to increase. The cause of this divergence is likely

due to the significantly higher pressures present in experiments.

Next, the robustness of the AO signal contrast to changes in the optical contrast

and position of the lesion was examined. It was found that variations in the optical

properties of a lesion cause significant uncertainties in the prediction of lesion volume

based on ∆AO, and that these uncertainties are greater for larger lesions. Therefore,

accurate lesion volume predictions made based on AO sensing can only be made when

lesions are small (on the order of the HIFU focus), or optical property variabilites

are well known. It was also found that the signal contrast scales with the local light

fluence, and that in deploying an AO sensing system for HIFU it would be necessary

to account for tissue thickness and lesion location in order to account for this. Finally,

it was shown that the AO signal contrast is more sensitive to lesion formation than

the optical signal contrast (based on total optical intensity changes), and a discussion

was presented which argued why AO sensing is better to use for HIFU guidance than

purely optical sensing.
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Chapter 5

Clinical Viability of AO Guidance for

HIFU

5.1 Overview

The final specific aim of this thesis is to use the model presented in Chapter 3 to assess

the clinical viability of an AO guided HIFU system. In order for a HIFU guidance

system to be viable in a clinical scenario it must be robust to variations in lesion

location and properties, it must be able to guide the ablation of clinically relevant

volumes (larger than one single lesion), and it must be able to perform real-time

guidance of lesion formation in healthy and cancerous tissues in vivo. In Chapter 4

an optimal system design for guiding HIFU using AO sensing was presented, and the

robustness of the signal to changes in lesion and tissue properties was evaluated. It

was shown that although the system’s signal is not completely insensitive to changes

in tissue thickness and lesion location, or to variabilities in a lesion’s optical contrast,

the system should still be able to predict lesion volumes with reasonable accuracy

(with the degree of accuracy depending upon the size of the lesion).

In this chapter, the clinical viability of the AO guidance system is further evalu-

ated by assessing its effectiveness in guiding the ablation of large volumes, and the

feasibility of performing real-time guidance of single lesion formation is evaluated for

multiple tissue types. In doing so, the SNR of the AO signal is calculated in breast,

prostate, brain, and liver tissues, and we identify scenarios where this SNR is suf-
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ficient to allow HIFU guidance. Finally, the viability of real-time AO guidance for

ablating tumors is assessed by simulating the SNR for single lesions created inside of

a model breast tumor.

5.2 Guiding the Ablation of Large Volumes

An important characteristic of a HIFU monitoring technology is its ability to guide the

treatment of large volumes. In practice, ablating clinically relevant volumes requires

the HIFU transducer to be strategically scanned – either continuously, forming one

large lesion, or intermittently, forming an array of small lesions (ter Haar, 2012). In

this section, the effectiveness of AO sensing for guiding the ablation of large volumes is

evaluated by employing the latter approach. As discussed in Section 4.3.3, the change

in the AO signal with respect to lesion volume is dependent upon the position that the

lesion is created in. Therefore, as the HIFU transducer is scanned, the sensitivity of

the AO feedback signal is expected to change with position. However, when creating

an array of multiple lesions, it is also critical to determine if pre-existing lesions will

even further affect the sensitivity of the AO feedback signal, resulting in the same

∆AO being induced by lesions of variable sizes.

In this simulation, an array of nine lesions was created in a simulation medium

with the same geometry and properties described in Section 4.1. The medium was

a 40x40x40 mm3 cube of chicken breast immersed in water, with a grid spacing of

100 µm and a time step of 100 ms used for all thermal simulations. The tissue was

illuminated with a 1064 nm pencil beam, positioned at the center of the x = 0 plane,

launching 100 million photons directed normal to the HIFU propagation in +x (as

shown by S2 in Fig. 4·1(a)), and a 20-mm radius detection aperture was placed in

the center of the tissue boundary at the maximum x dimension (as shown by D4 in

Fig. 4·1(a)). The tissue was exposed with a target peak pressure of 6 MPa in water
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until ∆AO reached 10%, then the HIFU was turned off, the tissue was allowed to

cool for 30 seconds, and the HIFU transducer was moved to the next position. The

acoustic and thermal properties of the chicken breast are given in Table 3.2, and the

optical properties of the chicken breast and lesion are given in Table 3.3. Although

the thermal simulations were performed with 100 ms time steps, the AO feedback

was only calculated every 5 seconds in order to maintain a reasonable computational

time.

Figure 5·1 shows the resulting treatment volume after creating the lesion arrays

starting distal (a) and proximal (b) to the light source, which projects downwards

from the “top” of the lesion array. In Fig. 5·1(a) the lesions were created by starting

in the lower right and scanning in −y and −x respectively, while in Fig. 5·1(b) they

were created by starting in the upper right and scanning in −y and +x respectively.

The isosurfaces correspond to the volume where the optical properties of the lesion

reached (∆µ)max.

(a) (b)

Figure 5·1: Lesions arrays created using ∆AO = 10% as a feedback
condition to stop heating. Considering illumination from the “top”,
the arrays were created beginning distal (a) and proximal (b) to the
illumination source.

As Fig. 5·1 demonstrates, there is clearly an optimal strategy to employ while

creating lesion arrays to ablate large volumes using AO guidance with transmission
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detection. This strategy is to begin creating lesions distal to the source first, and then

to move towards it. This strategy can be explained by examining Fig. 5·1(b), where

the exposure began proximal to the source. When lesions are first created proximal

to the source, the fluence in the focus is higher and the change in the AO signal is

more sensitive to lesion volume (as demonstrated in Fig. 4·5). Thus, a smaller lesion

is required to produce the same signal change close to the source than elsewhere in

the volume. As the treatment moves away from the source, the pre-existing lesions

cause a shadowing effect and less light reaches the HIFU focus than otherwise would,

resulting in the AO signal being even less sensitive to lesion volume. Thus, as the

HIFU treatment volume moves away from the light source the shadowing effect and

the increasing distance from the light source compound, and the sensitivity of the AO

signal with respect to lesion volume becomes lower, resulting in larger lesion volumes.

Alternatively, if the exposure begins distal from the source, there is no shadowing

effect when creating the first row of lesions. As the treatment moves closer to the

source, the pre-existing lesions cause less modulated light to reach the detector, but

this is offset by the increased sensitivity of the AO signal caused by the higher fluence

present in the HIFU focus. Therefore, at least in the case of chicken breast, these two

effects are balanced and nine lesions of approximately the same volume are created.

Although it should be possible to employ this strategy to ablate large volumes, the

results in Fig. 5·1 suggest that AO guidance is sensitive to the optical properties of

the surrounding tissue. Not only could the feedback signal be affected by pre-existing

lesions, but it could also be affected by nearby optical inhomogeneities in the tissue.

Therefore, in practice it may be necessary to image the area surrounding the treatment

volume prior to ablating. Quantitative AO imaging (Powell and Leung, 2013b, 2014)

has recently been proposed as a method for measuring the optical properties of tissue

in situ, and could potentially be used prior to AO guided HIFU surgeries in order to
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predict the response of ∆AO to lesion volume. Nevertheless, these results demonstrate

that AO sensing as the potential to guide the ablation of large volumes with HIFU.

5.3 Signal to Noise Ratio of the AO Guidance System

Although signal robustness and the ability to guide the ablation of large volumes are

critical elements of a HIFU guidance technology, perhaps the most essential feature

of a system is its ability to perform real-time guidance at depth in vivo. For perform-

ing real-time AO sensing, the signal-to-noise ratio (SNR) of the system is a critical

parameter. The SNR of an optical signal is defined as the ratio of the power of the

detected signal, Psignal, to the power of the noise present in the signal, Pnoise:

SNR =
Psignal

Pnoise

. (5.1)

In this section, the system characteristics of Lai (2010) are used to predict the SNR of

the AO signal used for guiding the formation of single HIFU lesions in different tissues.

The PRC-based detection system uses a low-noise and high-gain avalanche photode-

tector (APD, Model APD50-AD5000-9-TO, Pacific Silicon Sensor, CA, USA), whose

5-mm diameter active area exhibits a pre-amplified responsivity of approximately

1.25 × 105 V/W at 1064 nm with a low noise read-out. The output of the APD is

further preamplified, low-pass filtered, and fed into a lock-in amplifier in order to

improve the SNR of the system and make real-time sensing possible. In Sections 5.4

and 5.5 this methodology is used to predict the SNR in a variety of biological tissues.

5.3.1 Noise Power Prior to Lock-In Amplification

When light impinges a photodetector, a photocurrent is generated which is linearly

proportional to the radiant flux (power) of the light. Simultaneously, variances in this

current are generated by noise sources. In the signal produced by a photodetector, the
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dominant noise sources are thermal noise and shot noise (Kingston, 1995). Thermal

noise, which is independent of the power of the detected light, is caused by both the

thermal excitation of photocarriers and the thermal motion of electrons in circuitry.

In low-noise, sensitive photodetectors, such as the APD employed by Lai (2010),

thermal noise is only important at low radiant fluxes.

Shot noise, which is caused by the discrete particle nature of photons, arises from

two different physical processes – fluctuations in power at the output of a laser and

the randomness of photon absorption events in a photodetector. However, in practice

these two phenomena are indistinguishable in the signal output by a photodetector

(Van Der Ziel, 1970). Nevertheless, both of these processes induce a variance in a

photocurrent which increases linearly with the power of the detected light. Thus,

above a particular threshold in the detected optical power, the noise power of the

signal increases linearly with the radiant flux. In this regime, the detection is said to

be shot noise limited.

When light with a wavelength of 1064 nm is incident upon the 5-mm diameter

active area of the APD, a voltage is generated from the APD pre-amplifier with a

responsivity of 1.25×105 V/W, where the termination impedance is 50 Ω. The signal

is then further preamplified (20 dB) and low-pass filtered (500 kHz, 24 dB/octave)

using an active filter (Model 3940, Krohn-Hite, MA, USA). (To perform real-time

sensing, the signal is then sent to a lock-in amplifier, as discussed in Section 5.3.3).

The noise power of the signal at the output of the active filter, Pnoise, calculated from

the variance its voltage (Lai et al., 2011), is shown in Fig. 5·2 as a function of the

incident radiant flux, Finc. As the data shows, the signal is shot noise limited above

a radiant flux of ∼6.7 nW. Below this threshold, the system is dominated by thermal

noise sources. By applying a linear fit to the shot noise limited data, we can predict

the noise power of the detected electrical signal (nW) as a function of an incident
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radiant flux (nW) greater than 6.7 nW:

Pnoise = 92.4 + 0.8(Finc − 6.7). (5.2)
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Figure 5·2: The noise power of the signal at the output of the active
filter as a function of incident radiant flux.

As previously discussed in Section 3.6.1, the optical intensity at the output of the

PRC can be split into multiple components, with an INSE component responsible for

the noise and an IDCSE component responsible for the AO signal. The INSE component

of the signal represents the total intensity of the beam in the absence of ultrasound

modulations, and is thus responsible for the total radiant flux incident on the detector.

Therefore, for all of the simulations presented in this chapter, the total radiant flux

incident on the detector, equal to the product of INSE and the area of the active area

of the APD, Adet, is calculated as:

Finc = ηdetS0 exp(−αcLc) exp(2γ′Lc)
∑
s

Ws. (5.3)

Accordingly, the noise power of the detected signal is calculated using Eq. 5.3 as an

input into the fit given in Eq. 5.2.
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5.3.2 Signal Power and SNR Prior to Lock-In Amplification

For the purposes of AO guided HIFU, the signal that is used as a feedback mechanism

to predict lesion volumes is the change in the AO radiant flux, FAO, induced by the

formation of a lesion. Given FAO with and without the presence of a lesion, the power

of the signal is calculated as:

Psignal =
(RdetFAO,l −RdetFAO,0)

2

Zload

, (5.4)

where Rdet is the responsivity of the APD (1.25 × 105 V/W), Zload is the output

impedance of the APD (50 Ω), and the l and 0 subscripts refer to signals calcu-

lated with and without the presence of a lesion, respectively. Therefore, SNR of the

preamplified and filtered APD signal is calculated as the ratio of Eq. 5.4 and Eq. 5.2.

5.3.3 SNR After Lock-In Amplification

In practice, the SNR at the output of the active filter is far too low to perform real-

time AO sensing for any application. In order to improve the SNR and make real-time

sensing feasible, a lock-in amplifier is used (Lai et al., 2011). Lock-in amplifiers use

a technique known as phase-sensitive detection to isolate a signal component of a

very small AC signal at a specific reference frequency embedded in a large amount

of wideband noise (Meade, 1983). The output of the lock-in amplifier is a DC signal,

whose value is proportional to the RMS value of the AC input signal at the reference

frequency, and whose noise level is determined by the bandwidth of the amplifier’s

low-pass filter. In order to convert the signal produced by FAO into an AC signal, the

HIFU is 100% amplitude modulated at 50 Hz, yielding an AC signal which oscillates

between Finc and Finc + FAO at a frequency of 50 Hz (see Fig. 1·8(a)).
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The SNR improvement induced by the lock-in amplifier can be expressed as:

SNRout = SNRin

√
Bin

BLPF

, (5.5)

where Bin is the equivalent noise bandwidth of the input signal, and BLPF is the

equivalent noise bandwidth of the lock-in amplifier’s low-pass filter, calculated based

on the integration time constant and filter slope selected by the user. Given the 565

kHz equivalent noise bandwidth of the input signal, and the 30 ms integration time

constant and 12 dB/octave roll-off employed by Lai et al. (2011), the lock-in amplifier

improves the SNR of the system by ∼25.7 dB.

5.3.4 Pressure Dependence of the SNR

The acoustic pressure amplitude used during HIFU has a significant impact on the

AO signal. It has previously been demonstrated that at low pressure amplitudes, the

ultrasound induced phase shifts are linearly dependent upon p0, and thus FAO has

a Bessel function dependence on p0 (Lai et al., 2009). Conversely, the component

of the signal which is responsible for noise, Finc, is independent of the acoustic pres-

sure. Therefore, the SNR has an approximately Bessel squared dependence upon the

pressure magnitude.

As explained in Sections 3.5 and 3.7.2, the peak acoustic pressure amplitude in all

of the AO simulations performed in this dissertation is limited to 100 kPa. However,

in reality peak pressure amplitudes of up to 10 MPa may be used during AO guided

HIFU (Lai et al., 2011). In order to account for the SNR enhancement generated

by high pressure amplitudes, pressure dependent experimental data (Lai et al., 2009)

measured in a homogeneous, non-absorbing phantom (µ′s = 7 cm−1) was fit with an

equation of the form:

SNR(p0) = (κ [1− J0 (βp0)])
2 , (5.6)
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where κ and β are fitting coefficients, and p0 is the peak pressure amplitude. Equation

5.6 is derived from an approximation of the AO signal, which assumes that the net

ultrasound induced phase shift is linearly dependent upon the pressure amplitude of

the ultrasound field, and that the phase shifts are small enough to be approximated

by a Bessel function. As Fig. 5·3 demonstrates, where SNR(p0)/SNR(100 kPa) is

plotted as a function of p0, this approximation causes a ringing of the fit at high peak

pressures. Nevertheless, it supplies an approximate pressure dependence of the AO

signal’s SNR, which appears to saturate around 2 MPa. At 1.1 MHz, a pressure-

based enhancement of 40 dB is predicted, and so this was applied to all of the results

presented in this chapter.

0 1 2 3 4 5 6
0

10

20

30

40

50

Peak Pressure Amplitude (MPa)

S
N

R
 E

n
h

a
n

ce
m

en
t 

(d
B

)

 

 

Best Fit

Experimental Data

Figure 5·3: Pressure dependence of the AO signal’s SNR relative to
the SNR at 100 kPa. The experimental data (Lai et al., 2009) is mea-
sured in a homogeneous, non-absorbing phantom (µ′s = 7 cm−1) and is
fit with Eq. 5.6.

5.4 Feasibility in Organ Models

In order to investigate the feasibility of AO guided HIFU at different depths in mul-

tiple tissues, the SNR of the AO signal was calculated in media with the optical

properties of breast, prostate, liver, and brain tissues (white and grey matter). For
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each simulation, the medium was a cuboid with dimensions of 40 mm in y and z,

and a thickness ranging from 20-60 mm in x. As in Section 5.2, the medium was

illuminated in the center of the x = 0 plane with a 1064 nm source directed in +x

(normal to the HIFU propagation), and unless otherwise stated detection was per-

formed in transmission with a 20-mm radius detection aperture centered in the middle

of the maximum x plane. In order to save computational time and avoid uncertainties

brought on by variabilities in the thermal properties of different tissues, each HIFU

lesion was approximated as an ellipsoid with a 2:1 aspect ratio and a major axis along

z, located in the center of in each volume. Thus, by varying the thickness of the tissue

both the source-detector separation and the depth at which the lesion was created

were varied. For every simulation, the HIFU source was directed along the +z axis,

and its focus was aligned with the center of the volume.

All of the optical properties for the tissues were taken from measurements of

human tissues (Yaroslavsky et al., 2002; Germer et al., 1998; Newman and Jacques,

1991; Koelzer et al., 1995), however the optical properties of some lesioned tissues

were not available in literature. Therefore, while the optical properties of lesioned

brain (Yaroslavsky et al., 2002) and liver (Germer et al., 1998) tissues were taken

from measurements in human tissue after exposure to heated saline baths, the optical

properties of lesioned prostate were based on the contrast of lesioned rat prostate

(Skinner et al., 2000). Furthermore, because no measurements of any type of lesioned

breast tissue were available in literature, the lesioned breast properties were calculated

based on the average contrast exhibited by the other four tissues. All of the optical

properties shown in Table 5.1 are approximations of what should be expected in vivo,

where factors such as hydration level and blood coagulation may play prominent

roles. Therefore, the results presented in this section should be taken as qualitative

and approximate rather than absolute. The acoustic properties are shown in Table
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5.2.

Native Lesioned

Tissue µa (cm−1) µ′s (cm−1) µa (cm−1) µ′s (cm−1)

Breast 0.042 8.4 0.061 20.9

Prostate 0.40 9.3 0.90 37.4

Grey Matter 0.5 5.7 1.1 24.0

White Matter 1.0 32.6 1.1 40.7

Liver 0.5 16.9 0.2 20

Table 5.1: The optical properties at 1064 nm of each of the tissues
examined in this chapter, derived from ex vivo measurements presented
in literature. The refractive index of all tissues was assumed to be 1.4,
and the anisotropy coefficient was approximately 0.9 for every tissue.

Tissue ρ0 (kg/m3) ca (m/s) α (Np/m)

Breast 1020 1510 9.50

Prostate 1030 1561 9.88

Grey Matter 1030 1550 10.5

White Matter 1030 1550 10.5

Liver 1060 1595 6.45

Table 5.2: The acoustic properties of each of the tissues examined in
this chapter (Duck, 1990; Cobbold, 2007).

Figure 5·4 shows the SNR of the AO signal as a function of lesion volume for

a range of thicknesses in each of the tissues. In breast, where absorption is low,

thicknesses of 20-60 mm are displayed. For all other tissues, thicknesses of 20-40 mm

are shown. As discussed in Section 5.3, the illumination and detection properties

used in the simulation were chosen to mimic the system characteristics of Lai (2010),

and are shown in Tables 5.3 and 4.1. From the data, it can be seen that real-time

AO guidance will not be feasible in liver or white matter brain tissue. In both of

these tissues, the native µa and µ′s coefficients are very high. As a result, the light
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Figure 5·4: The SNR of the AO signal as a function of lesion volume
in breast (a), prostate (b), grey matter (c), white matter (d), and
liver (e) tissues of varying thicknesses and lesion depths. The tissue is
illuminated with a 200 mW, 1064 nm source and detection is performed
in transmission. All lesions are located in the centers of the tissues.
Tissues thicknesses are shown in the figure legends in mm.
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S0 ηdet Integration Time Filter Roll-off

200 mW 0.004 30 ms 12 dB/oct

Table 5.3: The default illumination power, light collection efficiency,
and lock-in filter integration time and roll off used in the simulations
presented in this chapter (Lai et al., 2011).

is heavily attenuated when it reaches the HIFU focus, and even further attenuated

when it reaches the detector. Furthermore, as Table 5.1 shows, the contrast between

native and lesioned tissue is low compared to other tissues. Consequently, liver and

white matter are not good candidates for AO guided HIFU.

Alternatively, real-time AO guidance in breast, prostate, and grey matter appears

to be feasible given the proper conditions. For breast tissues, the SNR is greater than

0 dB for all investigated lesion volumes given a thickness of 50 mm or less. Even with

a thickness of 60 mm, a lesion with a volume greater than 60 mm3 may be detected

in real-time using the current system. Therefore, breast seems to be the most viable

candidate organ for AO guidance. For prostate and grey matter, the SNR is greater

than zero given tissue thicknesses of 25 mm or less. However, it should be possible to

improve the SNR in all of the tissues by adjusting properties such as the illumination

source power (S0), the light collection efficiency of the detector (ηdet), and the lock-in

amplifier properties.

Figure 5·5 shows the SNR of a 30 mm3 lesion in a 60 mm thick breast and a 30

mm thick prostate as a function of S0 (a), ηdet (b), the lock-in amplifier integration

time (c), and the slope of the lock-in amplifier’s low-pass filter (d). A 30 mm3 lesion

was chosen here because it is approximately the same size as the HIFU focus. As each

of these properties was varied, the other properties were held constant at the values

shown in Table 5.3. As Fig. 5·5(a) shows, the SNR is greater than 0 dB when the

illumination power is increased to 350 mW for a 60 mm thick breast, or 600 mW for a
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Figure 5·5: The SNR of a 30 mm3 lesion in 60 mm thick breast and 30
mm thick prostate tissues as the illumination power (a), light collection
efficiency (b), and lock-in amplifier properties (c,d) are varied. While
one property is varied, the others are kept constant at the values shown
in Table 5.3.
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30 mm thick prostate. Given the maximum permissible exposure of 1 W/cm2 at 1064

nm (International Commission on Non-Ionizing Radiation Protection, 1996), a 600

mW illumination power can be employed for beam sizes greater than 0.6 cm2. Figure

5·5(b) demonstrates that SNR can also be dramatically improved by increasing the

light collection efficiency of the detector. By increasing ηdet to 0.02, which may be

possible by using a large aperture fiber bundle (Lai et al., 2012), the SNR for both

tissues is increased by more than 10 dB when compared to the system modeled in

Fig. 5·4. Figure 5·5(c) and 5·5(d) indicate the SNR can be modestly improved by

increasing the lock-in amplifier integration time and filter roll-off. However, increasing

both of those result in longer settling times, and thus compromise the speed at which

the lock-in signal can be acquired.

It is important to emphasize that the data presented in Figs. 5·4 and 5·5 is only

applicable for transmission detection. For the case of reflection detection, the SNR

is significantly worse. However, as discussed in Chapter 4, designing an AO guided

HIFU system with transmission detection requires access to three sides of the target

organ. Therefore, while such a system is simple to implement in breast, it would likely

require the insertion of one or more catheters for targeting prostate, thus increasing

the invasiveness of the surgery. On the other hand, a transmission detection system

for grey matter, which is located primarily on the surface of the brain, may not be

achievable.

In order to investigate the feasibility of AO-guidance in grey matter, the SNR must

be evaluated in a reflection detection geometry. As Fig. 5·6 shows, where reflection

detection was performed with a 20-mm radius detection aperture centered at the

location of the optical source, detecting in reflection reduces the SNR by about 28 dB

at 1064 nm. Given this reduction in the SNR, real-time AO sensing in grey matter

does not seem attainable at 1064 nm. Nevertheless, the simulation results show that
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if the illumination wavelength is changed from 1064 nm to 800 nm, most of the loss

in SNR is recovered and real-time sensing may be possible in tissue thicknesses up to

25 mm, corresponding to a lesion located 12.5 mm below the surface of the tissue.

However, it is critical to recognize that these predictions of SNR were based on a

detection system that only operates at 1064 nm, and that the optical and acoustic

simulations were performed in the absence of a skull, which would significantly distort

the acoustic field and would further attenuate the light which reached the HIFU focus.

Given these caveats, the SNR of a 30 mm3 lesion centered 15 mm below the tissue

surface is plotted as a function of illumination power (a), ηdet (b), and lock-in amplifier

properties (c,d) in Fig. 5·7. As the data shows, given the proper illumination power

and detection efficiency, real-time AO sensing may be possible at a depth of 15 mm.
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Figure 5·6: The SNR of a 30 mm3 lesion in grey matter of multiple
thicknesses given illumination at 800 nm and 1064 nm, and detection
in both reflection (R) and transmission (T). All lesions are located in
the centers of the tissues.

5.5 AO Guidance in a Tumor Model

Although it is critical to identify organs in which AO guidance may be feasible, all

of the studies presented in Section 5.4 were conducted in media with the optical



133

0 0.2 0.4 0.6 0.8 1

−50

−40

−30

−20

−10

0

S
0
 (W)

S
N

R
 (

d
B

)

 

 

800 nm

1064 nm

0 0.01 0.02 0.03 0.04 0.05

−50

−40

−30

−20

−10

0

10

η
det

S
N

R
 (

d
B

)
 

 

800 nm

1064 nm

(a) (b)

0 0.05 0.1 0.15 0.2

−50

−40

−30

−20

−10

0

Integration Time (ms)

S
N

R
 (

d
B

)

 

 

800 nm

1064 nm

5 10 15 20 25

−40

−30

−20

−10

0

Filter Roll Off (dB/oct)

S
N

R
 (

d
B

)

 

 

800 nm

1064 nm

(c) (d)

Figure 5·7: The SNR of a 30 mm3 lesion centered 15 mm below the
surface of grey matter brain tissue illuminated with a 800 nm source,
and detected in a reflection geometry. SNR is plotted as a function
of illumination power (a), light collection efficiency (b), and lock-in
amplifier properties (c,d). While one property is varied, the others are
kept constant at the values shown in Table 5.3.
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properties of native and lesioned healthy tissues. However, because the focus of many

HIFU therapies is the treatment of cancer, it is critical to understand if the AO

system will still be viable for HIFU guidance in tumors. In this section, we seek to

answer this question by comparing the SNR of lesions created in a 40 mm thick cubic

breast tissue with and without the presence of a 10-mm diameter tumor. For each

simulation, both the elliptical lesion and the tumor are centered within the volume,

and the simulation geometry is identical to that described in Section 5.4. Breast tissue

is chosen here because it is the most realistic candidate for real-time AO-guidance.

In order to predict the SNR in breast tissues containing or absent of a tumor, the

optical properties listed in Table 5.4 were used. The acoustic properties of the tumor

were assumed to be equal to those of breast. The native properties of bulk breast

(Koelzer et al., 1995) and tumor (Jacques, 2013) tissues were taken from measure-

ments of ex vivo tissues, but no data exists in literature of lesioned breast or tumor

tissues. For this reason, the optical properties of the lesioned breast and tumor tis-

sues were calculated based on the average contrast between native and lesioned liver,

prostate, and brain tissues. Thus, the simulated optical contrast between native and

lesioned breast and tumor tissues is the same. Unfortunately, we can not be sure

as to how gross of an approximation this is. Keeping this in mind, the AO SNR is

presented as a function of lesion volume in Fig. 5·8 for the elliptical lesions created

Native Lesioned

Tissue µa (cm−1) µ′s (cm−1) µa (cm−1) µ′s (cm−1)

Bulk Breast 0.042 8.4 0.061 20.9

Tumor 0.11 9.2 0.16 22.9

Table 5.4: The optical properties at 1064 nm of native and lesioned
bulk breast and tumor tissues used in simulations. The refractive index
of all tissues was assumed to be 1.4, and the anisotropy coefficient was
approximately 0.9 for every tissue.
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inside of an otherwise homogeneous breast (red diamonds), and inside of a 10-mm

diameter tumor located in the center of the breast (blue circles).

As the data shows, the presence of the tumor has an insignificant impact on the

SNR of the lesions. This result is not surprising considering that the optical properties

of the tumor tissue are not significantly different from those of the breast tissue, and

the same contrast was assumed between native and lesioned tissues. However, the

insignificant difference between the optical properties of bulk breast and tumor tissues

means that it would be difficult to optically detect a breast tumor, at least at 1064

nm. Nevertheless, these results suggest that AO guided HIFU should be equally as

viable in tumors as it is in normal breast tissue. The illumination and detection

properties used in the simulation were the same as in Section 5.4, and are given in

Table 5.3.
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Figure 5·8: The SNR of the AO signal as a function of lesion volume
for lesions created in the center of breast tissue in the presence (blue
circles) and absence (red diamonds) of a 10 mm diameter tumor.

5.6 Summary and Conclusions

In this chapter, several different clinical scenarios were explored with the goal of

evaluating the clinical viability of an AO guided HIFU system. First, it was shown
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that although AO-guidance is suitable for guiding the ablation of large volumes, an

appropriate strategy must be employed. By starting away from the optical source and

moving towards it, an array of homogenous lesions can be created to treat a large

volume. However, if the treatement was to start close to the optical source and move

away from it, the resulting lesion volumes would be completely inhomogeneous and

the array would be grossly asymmetric. This demonstrates that there is an optimum

strategy to be employed while using AO guidance, and in order for the technique

to be more predictable, the optical properties of the targeted tissue may need to be

imaged prior to treatment. This is in addition to the strategy for moving the HIFU

source to minimize interactions from prior lesions.

Subsequently, the expected SNR of the AO signal in breast, prostate, brain, and

liver tissues was evaluated in an effort to determine which organs could be appropriate

for AO guidance. Overall, it was found that due to the low absorption and the

optical accessibility of the breast, it is the ideal target organ for AO guided HIFU.

By varying illumination and detection properties such as the source power, the light

collection efficiency, and the lock-in amplifier properties, it was shown that real-time

AO guidance may be feasible in breast at depths up to 30 mm and in prostate at

depths up to 15 mm. Furthermore, it was shown that by employing an 800 nm

source and a reflection-based detector, real-time guidance may be possible at lesion

depths up to 15 mm in the brain grey matter. In the final section, it was shown

that the presence of a breast tumor is expected to have a negligible impact on AO

guidance, although there is a need for more measurements as there is scant optical

data on tumor properties. However, the simulations suggest that the data presented

in Section 5.4 may be equally applicable to the treatment of cancerous tissues.

Although a number of predictions about the clinical viability of AO guidance have

been made in this chapter, it must be understood that several assumptions have been
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made in coming to these conclusions. The largest assumption made was that all of

these simulations were performed using optical properties that were not measured

in vivo. Moreover, the optical properties of lesioned breast and tumor tissues were

based off of the average contrast measured in other organs. Therefore, although it

was found that breast is the ideal candidate organ for AO guided HIFU, the optical

properties of native and lesioned breast tissues must be confirmed in vivo before the

technique can truly be considered clinically viable.
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Chapter 6

Summary and Conclusions

6.1 Summary of Results

The overall goals of the studies reported in this thesis were to better understand the

optical contrast between native and lesioned tissues, and to assess and improve upon

current AO guided HIFU techniques using a modeling based approach. In accordance

with these objectives, four specific aims were established and presented in Section 1.3.

The key results associated with each of these specific aims are summarized in this

section.

6.1.1 Thermally Induced Optical Property Changes

In Chapter 2, the basic theory of light propagation and light-tissue interactions was

introduced. Using first-order kinematic processes for describing irreversible thermal

damage, a model was developed to express thermally induced optical property changes

as a function of thermal dose – a widely-used metric for predicting thermal damage

induced by HIFU. A system for measuring the optical properties of tissues was con-

structed using a spectrophotometer fitted with a modified integrating sphere acces-

sory, and experiments were performed to measure thermally induced optical property

changes in ex vivo chicken breast between 500-1100 nm. Results showed that while

the nominal parameters used in the thermal dose model were insufficient for describ-

ing optical property changes, the parameters could be altered to develop reasonable

predictions. Additionally, the data suggested that the optical scattering coefficient
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was significantly more sensitive to thermal effects than the absorption coefficient. It

was also determined that a temperature threshold exists for scattering changes, but

no such threshold was observed for thermally induced absorption changes.

6.1.2 AO-Guided HIFU Model Development

In Chapter 3, a comprehensive model was developed to describe the AO guidance

of HIFU. The model consisted of five separate sub-models integrated into a single

Matlab script. The theory relevant to each sub-model was presented, and numerical

solutions were validated by comparisons to analytical solutions. The angular spectrum

method was used to model the linear acoustic field from the HIFU source, while

the resulting temperature field, due to the absorption of ultrasound, was modeled

using a finite-difference time-domain solution to the Pennes bioheat transfer equation.

Changes in tissue optical properties were calculated using the thermal dose dependent

model presented in Chapter 2. The diffuse optical field was modeled using an open-

source, GPU-accelerated Monte Carlo algorithm, which was modified to calculate

light-sound interactions in a linear regime, and AO signals were calculated using a

photorefractive crystal detection model. The restrictions and requirements of the

model were presented in Section 3.7.2, and all of the code can be found on the Boston

University Digital Common Library (Adams, 2014).

6.1.3 Design of an AO-Guided HIFU System

In Chapter 4, the comprehensive model was used to develop an optimal design for an

AO guided HIFU system, and to assess the robustness of its AO signal to changes in

tissue thickness, lesion contrast, and lesion location. Comparisons were made between

the model and experimental data, and excellent agreement was observed when the

size of the lesion was less than or equal to the HIFU focal volume. With larger

lesions, a divergence between the model and the previously obtained experimental
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data was observed, and it was hypothesized that this discrepancy was caused by the

high pressures used in experiments. Furthermore, it was demonstrated that the AO

signal contrast is much more sensitive to lesion formation than the total optical signal

contrast, and a discussion was presented which argued that AO sensing is better to

use for HIFU guidance than purely optical sensing due to its higher signal contrast

and spatial resolution.

With regard to system design, it was found that an optimally designed AO guided

HIFU system should have an optical source that illuminates the target organ at

90◦ relative to the HIFU propagation, employ an optical wavelength which exhibits

minimal absorption in tissue, and set up signal detection in transmission mode using

a detection aperture that collects as much light as possible. By perturbing the tissue

thickness and the lesion position, it was shown that both of these factors affect how the

AO signal changes as a lesion is formed, and that ∆AO scales with the optical fluence

within the HIFU focus. Therefore, predictions of lesion volume based on AO signal

change should be adjusted according to those factors. Additionally, it was found that

variations in the optical properties of a lesion cause significant uncertainties in the

prediction of lesion volume, and that these uncertainties are greater for larger lesions.

6.1.4 Assessing the Clinical Viability of AO-Guided HIFU

In Chapter 5, the comprehensive model was used to assess the clinical viability of AO

guided HIFU by examining its ability to guide the ablation of large volumes, and by

predicting the SNR of AO signals in multiple tissue types. It was determined that

AO sensing is a clinically viable technique for guiding the ablation of large volumes,

but that results are heavily dependent upon the treatment strategy employed. Fur-

thermore, it was determined that real-time sensing may be feasible using the current

AO system in breast tissue up to 60 mm thick and prostate tissue up to 30 mm thick.

Additionally, it was shown that illumination and detection properties such as source
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power, light collection efficiency, and lock-in amplifier settings can be adjusted to

achieve higher SNR and greater sensing depths. It was shown that if a system can be

designed with an 800 nm source and a reflection-based detector, real-time guidance

may be possible at lesion depths up to 15 mm in the brain’s grey matter.

In order to demonstrate that the system should also be viable for ablating can-

cerous tissues, a study was performed to compare the SNR of a lesion created in

the absence and presence of a tumor inside of a breast. Results showed that the

tumor had a negligible impact of the calculated AO SNR. However, this study was

performed using assumed optical properties, and must be confirmed using measured

optical properties. Overall, the results suggest that real-time AO guidance of HIFU

is clinically viable, and it is best suited for guiding HIFU treatments in breasts.

6.2 Suggestions for Future Work

Although this dissertation has demonstrated significant progress towards understand-

ing the important mechanisms and parameters associated with AO guided HIFU,

much work remains to be done in order to make the technique suitable for clinical

trials. In this section, suggestions for future work are divided into three categories.

6.2.1 Model Improvement

The AO guided HIFU model developed in Chapter 3 was sufficient for the purposes

of this work, but it has many limitations in its current form. In order to improve

the model’s flexibility, performance, and accuracy, the following improvements are

recommended. First and foremost is the incorporation of a nonlinear acoustic model

for HIFU propagation, and the development of the AO model to allow for the high

pressures and nonlinearities of the acoustic field. This would allow for more accurate

predictions of tissue heating, optical property changes, ultrasound induced phase

modulations, and AO signals for acoustic parameters that are commonly used for
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HIFU therapy. Next, it is recommended that the model be adjusted to allow for

the inclusion of inhomogeneous acoustic and thermal properties. This would allow

for tissue inhomogeneities such as blood vessels to be present in simulations, and for

lesions to possess different properties than the unlesioned medium. Additionally, it is

recommended that the temperature field solution be adjusted to allow for arbitrarily

complex geometries. This would allow for temperature calculations to be performed

in realistic organ models instead of approximating them as cubic media. Finally,

it is recommended that the performance of the acoustic and temperature codes be

improved by implementing them in more efficient computational languages, such as

CUDA.

6.2.2 Apparatus Improvement

As the results presented in Chapter 5 demonstrated, the SNR of the AO signal can be

enhanced by increasing the system’s illumination power and light collection efficiency.

Furthermore, increasing the illumination power of the system has the additional ben-

efit of improving the response time of the PRC, which is required in order for the

detection system to be compatible with the short speckle decorrelation times observed

in vivo. However, increasing the illumination power of a CW source requires that the

beam size be increased appropriately, in order to stay below the maximum permissible

exposure intensities in vivo. Alternatively, by employing a long-pulse laser with high

peak powers but low duty cycles, the SNR of the system can be improved without

increasing the beam size or the time averaged intensities (Rousseau et al., 2008).

In addition to increasing the source power by incorporating a long-pulse laser, it

is also recommended that the light collection efficiency of the system be improved.

Currently, the system uses large free-space lenses to perform diffuse light collection

and image the surface of the tissue to the face of the PRC. However, by placing

a large aperture fiber bundle at the surface of the tissue, significantly more diffuse
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light can be collected (Lai et al., 2012) and SNR can be drastically improved. The

implementation of fibers would be advantageous from a portability perspective as

well. Overall, it is recommended that both a pulsed laser and a large aperture fiber

bundle be implemented in the current apparatus.

6.2.3 Experiments

As previously discussed, all of the results presented in Chapter 5 were based on as-

sumed optical properties. In the best case scenarios, the properties were derived

from measurements of ex vivo human tissues, but many were calculated from con-

trast observed in other tissues. Specifically, the optical properties of lesioned breast

and tumor tissue, which we have concluded are the ideal target organs for AO guid-

ance, were calculated from the average contrast exhibited by lesioned brain, liver, and

prostate tissues. While we consider this a sufficient approximation for the purposes

of this work, the optical properties of both healthy and cancerous breast tissues must

be quantified prior to performing animal or clinical trials. In order to characterize

thermally induced optical property changes in breast, the ex vivo experiments pre-

sented in Chapter 2 should be repeated with human breast tissues. Additionally, it

is recommended that optical property measurements be performed on HIFU lesions,

and these measurements be compared to lesions created in thermal baths. Although

we believe that we have accurately characterized thermally induced optical changes,

it is possible that the mechanical effects of HIFU could induce further contrast.

Furthermore, it is recommended that a method be developed for characterizing

the optical properties of native and lesioned tissues in vivo. In reality, there is likely

to be additional optical changes in lesioned tissue that is caused by factors such as

hydration, blood content, and blood coagulation. However, these factors are impos-

sible to replicate ex vivo. Moreover, the ability to measure optical properties in situ

would allow for the target region to be imaged prior to a HIFU treatment, and al-
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gorithms could be created to adjust predictions of lesion volume based on the lesion

location and the surrounding medium. One such method that could possibly be used

for imaging optical properties prior to HIFU is pressure contrast imaging (Lai et al.,

2009).
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Appendix A

Using the Inverse Adding–Doubling

Program

In this thesis, the optical properties of tissues are determined by making measure-

ments of total reflectance and transmittance using an integrating sphere, and then

passing these measurements to an inverse adding-doubling (IAD) program, obtained

from Prahl (2013). The IAD guesses the optical properties of the sample, then itera-

tively performs a numerical solution to the RTE using the adding–doubling method

(Prahl, 1995) until the solution converges to measured values of reflection and trans-

mission. The adding–doubling method is a general numerical solution to the RTE,

which quickly solves numerical integrals in order to obtain a solution to the RTE

given a tissue with a known set of optical properties in a slab geometry.

Below is a sample input file (InputFile.rxt) that is used to pass integrating sphere

measurements to the IAD. In this case, total reflectance (M R) and transmittance

(M T) are passed to the IAD, while the collimated transmission fields (M U) are left

blank. The # symbol indicates that the rest of the line is a comment. The input file

is passed to the IAD from the command line with the following syntax:

prompt> ./iad -g 0.97 -e 0.002 -X InputFile

where the “-g” option sets the anisotropy coefficient, the “-e” option sets the error

tolerance, and the “-X” enables the dual-beam spectrophotometer option. If colli-

mated transmission measurements are available, the anisotropy coefficient does not

need to be specified.
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IAD1 # Mandatory identification tag

1.4 # Index of refraction of the sample

1.52 # Index of refraction of the top and bottom slides

1.95 # [mm] Thickness of sample

1.01 # [mm] Thickness of slides

2 # [mm] Diameter of illumination beam

0.99 # Reflectivity of the reflectance calibration standard

1 # Number of spheres during each measurement

# Properties of sphere used for reflection measurements

110 # [mm] Sphere Diameter

16 # [mm] Sample Port Diameter

20.3 # [mm] Entrance Port Diameter

26.9 # [mm] Detector Port Diameter

0.99 # Reflectivity of the sphere wall

# Properties of sphere used for transmission measurements

110 # [mm] Sphere Diameter

16 # [mm] Sample Port Diameter

0 # [mm] Entrance Port Diameter

26.9 # [mm] Detector Port Diameter

0.99 # Reflectivity of the sphere wall

2 # Measurements, i.e., M_R, M_T, M_U

#lambda M_R M_T M_U

500 0.546718674 0.069128938

501 0.550080528 0.070991306

502 0.552532845 0.073047185

503 0.553249588 0.075036602

504 0.556943436 0.076993542

505 0.558506432 0.079091129

...

1100 0.43905613 0.385099678



Appendix B

AO Guided HIFU Example

Below is an example Matlab script that is used to simulate the AO guidance of

HIFU. The script calls several sub-functions, all of which can be found on the BU

Digital Common Library (Adams, 2014). In order to run, each instance of the AO

MCX binary calls on an input file. An example input file, “MainLesions.inp”, is given

following the Matlab script.

B.1 AO ExampleCode.m

1 %% AO ExampleCode.m

2 % An example of how to use the AO guided HIFU code. This example

3 % exposes a chicken breast tissue to a target peak pressure of 6

4 % MPa for 120 s and calculates the AO signal every 5 s from a

5 % detector in transmission.

6 %

7 % Written by Matt Adams, 7/20/14

8

9 %% Setup

10 % Set paths for subfunctions

11 addpath /mnt/nokrb/adamsm2/MATLAB/mtimesx 20110223

12 addpath /mnt/nokrb/adamsm2/MATLAB

13 addpath /mnt/nokrb/adamsm2/aoi-mcx/mcx/utils

14 binpath = '/mnt/nokrb/adamsm2/aoi-mcx/mcx/bin/mcx det';

15

16 %HIFU Exposure Parameters

17 PeakP Water = 6e6; % Target Peak Pressure in Water

18 feedback time = 5; %AO feedback step time (s)

19 DutyCycle = 1; % The duty cycle of the HIFU (100%)

20 size tissue = [40 40 40]*1e-3; %Tissue size in mm

21
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22 % Grid, Domain, Heating time

23 grid =0.1e-3; % grid spacing (mm)

24 time step = 100e-3; % Time step for BHTE simulations (s)

25 cooling time = 0; % (s)

26 AO times = [0:feedback time:120]; %2 min of heating

27

28 % Acoustic Properties

29 f0 = 1.1e6; %Acoustic Frequency

30 tissue.cs = 1585; %Speed of sound in tissue (m/s)

31 tissue.alpha = 5*(f0/1e6).ˆ1.1; %Attenuation Coefficient (Np/m)

32 tissue.alphaAbs = tissue.alpha * 0.7816; %Absorption coefficient ...

(Np/m)

33 tissue.rho = 1040; % Density of tissue

34

35 % Thermal Properties

36 tissue.Cv = 3210; %Specific Heat of Tissue (J/kgC)

37 tissue.K = 0.4683; %Thermal Conductivity (W/mC)

38 T ambient = 21; %Ambient Temperature (C)

39 tissue.Wb = 0; %No perfusion or metabolic heat generation

40 tissue.Cb = 0;

41 tissue.Tb = T ambient;

42 tissue.Qm = 0;

43

44 % Thermal dose isodose constants

45 tissue.R1 = 0.25; % See Adams et al 2014 (in PMB)

46 tissue.R2 = 0.63;

47

48 % Optical Properties

49 tissue.mu a0 = 0.01; %(1/cm)

50 tissue.deltaA = 6.5; % maximum relative absorption change

51 tissue.mu sp0 = 1.1; %(1/cm)

52 tissue.deltaS low = 6.85; % max mu sp change below threshold

53 tissue.deltaS high = 10.6; % max mu sp change above threshold

54 tissue.g = 0.9; % anisotropy coefficient

55 tissue.n = 1.4; % refractive index

56 tissue.D0 43 = 2214; %Thermal dose constant in CEM 43

57 tissue.TempThreshold = 70; % scattering threshold temp (C)

58 tissue.MaxScat = 12.759; % Maximum scattering coefficient

59

60 % Target lesion location

61 target.shiftx = 0; %center

62 target.shifty = 0; %center
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63 target.depth = size tissue(3)/2+2e-3; % approx in center

64

65 % Initialize some vectors

66 PRC DC = zeros(1,length(AO times)); %AO signal

67 Volumes = zeros(1,length(AO times)); %Lesion Volumes

68 Thermal Dose = 0;

69 Tfinal = T ambient;

70 Tmax = T ambient;

71

72 %% Calculate Pressure

73 [~,~,p tissue,~,~] = ...

Calc H102 Pressure(grid,f0,tissue,size tissue,target);

74 Cal factor = 45.347994; % Max pressure in water for a 1 Pa source

75 p tissue = p tissue/Cal factor*PeakP Water; %Adjust pressure

76

77 %% Calculate Intensity

78 [Intensity,P Mag,P Angle,i hat,j hat,k hat] = ...

79 Calc Intensity(p tissue, f0, tissue, grid ,'AO');

80 mydim=size(Intensity);

81 PRESSURE = zeros(mydim(1),mydim(2),mydim(3),4);

82 PRESSURE(:,:,:,1)=P Mag.*i hat;

83 PRESSURE(:,:,:,2)=P Mag.*j hat;

84 PRESSURE(:,:,:,3)=P Mag.*k hat;

85 PRESSURE(:,:,:,4)=P Angle;

86

87 % Reduce Pressure to 100 kPa and write file for AO simulation

88 PRESSURE(:,:,:,1:3) = PRESSURE(:,:,:,1:3)/max(max(max(P Mag)))*1e5;

89 PRESSURE=single(PRESSURE);

90 fid = fopen('Acoustics.bin','wb');

91 aa = fwrite(fid,PRESSURE,'float');

92 fclose(fid);

93 clear PRESSURE i hat j hat k hat P Mag P Angle

94 display(['Acoustics Calculated at ' datestr(now) ' EST'])

95

96 %% Calculate Homogeneous

97 % Calculate volume and write file

98 vol=ones(mydim(1),mydim(2),mydim(3));

99 fid=fopen('Homogeneous.bin','wb');

100 aa=fwrite(fid,vol,'uchar');

101 fclose(fid);

102

103 % Run AO mcx file (0.1 mm grid spacing and detect a max of 6e7 photons)
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104 [status,result] = system([binpath ' -u 0.1 -H 60000000 -f Homo.inp']);

105 % Postprocess and calculate PRC signal

106 [~,~,~,~,PRC,~,~,~,~] = ...

107 AOI MCX Eval('Homo.inp',5e-9,size(vol),tissue.mu a0/10);

108 PRC DC(1) = PRC(2,1); %Only use the DC signal

109 display(['Homogeneous Medium Calculated at ' datestr(now) ' EST'])

110

111 %% Calculate heating and AO for each feedback time step

112 for idx = 2:length(AO times)

113 % NOTE: The first two steps need to be calculated separately

114 % because the optical properties haven't reached their maximum

115 % values yet

116

117 % Calculate Temperature and Thermal Dose

118 [Tfinal, Tmax, Thermal Dose, ~] = Calc BHTE(Intensity*DutyCycle, ...

119 Tfinal, Thermal Dose, feedback time, cooling time,time step, ...

120 tissue, grid, Tmax);

121

122 % Calculate Optical Properties

123 [mu spfinal,mu afinal]= ...

Calc Optical Changes(tissue,Thermal Dose,Tmax);

124 % Calculate Lesion Volume

125 Volumes(idx)=length(find(mu spfinal > tissue.MaxScat))*(grid*1e3)ˆ3;

126

127 % Create Volume with 5 tissue types

128 max scat = CreateAoMcxVolume(mu spfinal,5,'OpticalVolume.bin');

129

130 % Run Simulation

131 if idx == 2

132 [status,result] = ...

133 system([binpath ' -u 0.1 -H 60000000 -f Step1.inp']);

134 % Postprocess and calculate PRC signal

135 [~,~,~,~,PRC,~,~,~,~] = ...

136 AOI MCX Eval('Step1.inp',5e-9,size(vol),...

137 linspace(tissue.mu a0/10,max(max(max(mu afinal)))/10,5));

138 elseif idx == 3

139 [status,result] = ...

140 system([binpath ' -u 0.1 -H 60000000 -f Step2.inp']);

141 % Postprocess and calculate PRC signal

142 [~,~,~,~,PRC,~,~,~,~] = ...

143 AOI MCX Eval('Step2.inp',5e-9,size(vol),...

144 linspace(tissue.mu a0/10,max(max(max(mu afinal)))/10,5));
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145 else

146 [status,result] = ...

147 system([binpath ' -u 0.1 -H 60000000 -f MainLesions.inp']);

148 % Postprocess and calculate PRC signal

149 [~,~,~,~,PRC,~,~,~,~]= ...

150 AOI MCX Eval('MainLesions.inp',5e-9,size(vol),...

151 linspace(tissue.mu a0/10,max(max(max(mu afinal)))/10,5));

152 end

153

154 PRC DC(idx) = PRC(2,1);

155 display(['Heating Time ' num2str(idx) ' of ' ...

156 num2str(length(AO times)) ' Calculated at ' datestr(now) ' ...

EST'])

157 end

B.2 MainLesions.inp

100000000 # total photon, use -n to overwrite in the command line

1655742 # RNG seed, negative to generate

1 201.5 201.5 # source position (in grid units)

1 0 0 # initial directional vector (x,y,z)

0.e+00 5.e-09 5.e-09 # time-gates(s): start, end, step

OpticalVolume.bin # volume of media types (‘uchar’ format)

Acoustics.bin # Acoustics volume (4D‘float’ format)

1 401 1 401 # x: leave as 1, voxels per side, start/end indices

1 401 1 401 # y: leave as 1, voxels per side, start/end indices

1 401 1 401 # z: leave as 1, voxels per side, start/end indices

1040 1585 1.1 # rho (kg/m^3), cs (m/s), f0 (MHz)

1064 0.32 # lambda0 (nm), nu

5 # total number of media (not including air)

1.100 0.9 0.001000 1.4 #mu_s (1/mm), g, mu_a(1/mm), n

4.015 0.9 0.002625 1.4

6.930 0.9 0.004250 1.4

9.845 0.9 0.005875 1.4

12.76 0.9 0.007500 1.4

1 200 # number of detectors and radii (in grid units)

401 201 201 # detector 1 position (in grid units)
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Çilesiz, I. F. and Welch, A. J. (1993). Light dosimetry: effects of dehydration and
thermal damage on the optical properties of the human aorta. Applied Optics,
32(4):477–487.

Chaves, J. (2008). Introduction to nonimaging optics. CRC Press.



155

Cheong, W.-F., Prahl, S. A., Welch, A. J., et al. (1990). A review of the optical prop-
erties of biological tissues. IEEE Journal of Quantum Electronics, 26(12):2166–
2185.

Chitnis, P. V., Brecht, H.-P., Su, R., and Oraevsky, A. A. (2010). Feasibility of optoa-
coustic visualization of high-intensity focused ultrasound-induced thermal lesions
in live tissue. Journal of Biomedical Optics, 15(2):021313.

Chung, A. H., Jolesz, F. A., and Hynynen, K. (1999). Thermal dosimetry of a
focused ultrasound beam in vivo by magnetic resonance imaging. Medical Physics,
26(9):2017–2026.

Church, C. C. (2007). Thermal dose and the probability of adverse effects from
hifu. In 6th International Symposium on Therapeutic Ultrasound, volume 911,
pages 131–137. AIP Publishing.

Cobbold, R. S. (2007). Foundations of biomedical ultrasound. Oxford University
Press, USA.

Contini, D., Martelli, F., and Zaccanti, G. (1997). Photon migration through a turbid
slab described by a model based on diffusion approximation. I. Theory. Applied
Optics, 36(19):4587–4599.

Coussios, C. C., Farny, C. H., Ter Haar, G., and Roy, R. A. (2007). Role of acoustic
cavitation in the delivery and monitoring of cancer treatment by high-intensity
focused ultrasound (HIFU). International Journal of Hyperthermia, 23(2):105–120.

Coussios, C. C. and Roy, R. A. (2008). Applications of acoustics and cavitation
to noninvasive therapy and drug delivery. Annual Review of Fluid Mechanics,
40:395–420.

Delaye, P., Blouin, A., Drolet, D., De Montmorillon, L.-A., Roosen, G., and Mon-
chalin, J.-P. (1997). Detection of ultrasonic motion of a scattering surface by
photorefractive InP:Fe under an applied dc field. Journal of the Optical Society of
America B, 14(7):1723–1734.

Delaye, P., De Montmorillon, L.-A., and Roosen, G. (1995). Transmission of time
modulated optical signals through an absorbing photorefractive crystal. Optics
Communications, 118(1):154–164.

Dolfi, D. and Micheron, F. (1992). Imaging process and system for transillumination
with photon frequency marking. US Patent 5,174,298.

Draudt, A. B. (2012). Evaluation of harmonic motion elastography and acousto-optic
imaging for monitoring lesion formation by high intensity focused ultrasound. PhD
thesis, Boston University.



156

Drezek, R., Dunn, A., and Richards-Kortum, R. (1999). Light scattering from cells:
finite-difference time-domain simulations and goniometric measurements. Applied
Optics, 38(16):3651–3661.

Duck, F. A. (1990). Physical properties of tissues: a comprehensive reference book.
Academic Press.

Edson, P. L. (2001). The role of acoustic cavitation in enhanced ultrasound-induced
heating in a tissue-mimicking phantom. PhD thesis, Boston University.

Elson, D. S., Li, R., Dunsby, C., Eckersley, R., and Tang, M.-X. (2011). Ultrasound-
mediated optical tomography: a review of current methods. Interface Focus,
1(4):632–648.

Essenpreis, M. (1992). Thermally induced changes in optical properties of biological
tissues. University College London, England.

Fang, Q. (2009). Monte Carlo eXtreme (MCX). http://mcx.sourceforge.net/cgi-
bin/index.cgi?Home.

Fang, Q. and Boas, D. A. (2009). Monte Carlo simulation of photon migration
in 3D turbid media accelerated by graphics processing units. Optics Express,
17(22):20178–20190.

Farahi, S., Montemezzani, G., Grabar, A. A., Huignard, J.-P., and Ramaz, F. (2010).
Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a
Sn2P2S6:Te crystal. Optics Letters, 35(11):1798–1800.

Farrell, T. J., Patterson, M. S., and Wilson, B. (1992). A diffusion theory model of
spatially resolved, steady-state diffuse reflectance for the noninvasive determination
of tissue optical properties in vivo. Medical Physics, 19(4):879–888.

Forget, B.-C., Ramaz, F., Atlan, M., Selb, J., and Boccara, A.-C. (2003). High-
contrast fast Fourier transform acousto-optical tomography of phantom tissues with
a frequency-chirp modulation of the ultrasound. Applied Optics, 42(7):1379–1383.

Fry, F., Heimburger, R., Gibbons, L., and Eggleton, R. (1970). Ultrasound for
visualization and modification of brain tissue. IEEE Transactions on Sonics and
Ultrasonics, 17(3):165–169.

Germer, C.-T., Roggan, A., Ritz, J. P., Isbert, C., Albrecht, D., Mueller, G., and
Buhr, H. J. (1998). Optical properties of native and coagulated human liver tissue
and liver metastases in the near infrared range. Lasers in Surgery and Medicine,
23(4):194–203.



157

Gleyzes, P., Guernet, F., and Boccara, A. (1995). Picometric profilometry. II.
Multidetector approach and multiplexed lock-in detection. Journal of Optics,
26(6):251–265.

Goldberg, S. N., Grassi, C. J., Cardella, J. F., Charboneau, J. W., Dodd III, G. D.,
Dupuy, D. E., Gervais, D. A., Gillams, A. R., Kane, R. A., Lee Jr, F. T., et al.
(2009). Image-guided tumor ablation: standardization of terminology and report-
ing criteria. Journal of Vascular and Interventional Radiology, 20(7):S377–S390.

Goodman, J. W. (1985). Statistical optics. John Wiley & Sons.

Goodman, J. W. (2005). Introduction to Fourier optics. Roberts and Company
Publishers.

Goodman, J. W. (2007). Speckle phenomena in optics: theory and applications.
Roberts and Company Publishers.

Graaff, R., de Mul, F. F., Jentink, H. W., and Aarnoudse, J. G. (1993). Similar-
ity relations for anisotropic scattering in absorbing media. Optical Engineering,
32(2):244–252.

Gross, M., Goy, P., and Al-Koussa, M. (2003). Shot-noise detection of ultrasound-
tagged photons in ultrasound-modulated optical imaging. Optics Letters, 28(24):
2482–2484.

Gross, M., Goy, P., Forget, B., Atlan, M., Ramaz, F., Boccara, A., and Dunn, A.
(2005). Heterodyne detection of multiply scattered monochromatic light with a
multipixel detector. Optics Letters, 30(11):1357–1359.

Gross, M., Lesaffre, M., Ramaz, F., Delaye, P., Roosen, G., and Boccara, A. (2009).
Detection of the tagged or untagged photons in acousto-optic imaging of thick
highly scattering media by photorefractive adaptive holography. The European
Physical Journal E, 28(2):173–182.

Hale, G. and Querry, M. (1973). Optical constants of water in the 200-nm to 200-µm
wavelength region. Applied Optics, 12(3):555–563.

Haskell, R. C., Svaasand, L. O., Tsay, T.-T., Feng, T.-C., McAdams, M. S., and
Tromberg, B. J. (1994). Boundary conditions for the diffusion equation in radiative
transfer. Journal of the Optical Society of America A, 11(10):2727–2741.

Henyey, L. G. and Greenstein, J. L. (1941). Diffuse radiation in the galaxy. The
Astrophysical Journal, 93:70–83.

Hill, C. and Ter Haar, G. (1995). High intensity focused ultrasound—potential for
cancer treatment. The British Journal of Radiology, 68(816):1296–1303.



158

Huang, L. and Liu, L.-S. (2009). Simultaneous determination of thermal conductivity
and thermal diffusivity of food and agricultural materials using a transient plane-
source method. Journal of Food Engineering, 95(1):179–185.

Hynynen, K., Freund, W. R., Cline, H. E., Chung, A. H., Watkins, R. D., Vetro,
J. P., and Jolesz, F. A. (1996). A clinical, noninvasive, MR imaging-monitored
ultrasound surgery method. Radiographics, 16(1):185–195.

Illing, R., Kennedy, J., Wu, F., Ter Haar, G., Protheroe, A., Friend, P., Gleeson, F.,
Cranston, D., Phillips, R., and Middleton, M. (2005). The safety and feasibility
of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of
liver and kidney tumours in a Western population. British Journal of Cancer,
93(8):890–895.

International Commission on Non-Ionizing Radiation Protection (1996). Guidelines
on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000
nm.

Ishihara, Y., Calderon, A., Watanabe, H., Okamoto, K., Suzuki, Y., Kuroda, K., and
Suzuki, Y. (1995). A precise and fast temperature mapping using water proton
chemical shift. Magnetic Resonance in Medicine, 34(6):814–823.

Ishimaru, A. (1978). Wave propagation and scattering in random media. Academic
Press, 6 edition.

Jacques, S. (1996). Biomedical Optical Instrumentation and Laser-Assisted Biotech-
nology, chapter 1, pages 21–32. Kluwer Academic.

Jacques, S. and Gaeeni, M. (1989). Thermically induced changes in optical properties
of heart. Proceedings of the 11th International Conference on Engineering in
Medicine and Biology, 11, Part 4/6:1199–1200.

Jacques, S. L. (2013). Optical properties of biological tissues: a review. Physics in
Medicine & Biology, 58(11):R37–R61.

Jacques, S. L., Newman, C., and He, X.-Y. (1991). Thermal coagulation of tissues:
liver studies indicate a distribution of rate parameters, not a single rate parameter,
describes the coagulation process. In J. McGrath (ed.) Advances in Biological
Heat and Mass Transfer, 1991. New York: ASME, pages 71–73.

Jacques, S. L. and Pogue, B. W. (2008). Tutorial on diffuse light transport. Journal
of Biomedical Optics, 13(4):041302.
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Sakadžić, S. and Wang, L. V. (2005). Modulation of multiply scattered coherent light
by ultrasonic pulses: an analytical model. Physical Review E, 72(3):036620.
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Ultrasound in Tissue Characterization, June, 2014.

Adams, M. T., Cleveland, R. O., and Roy, R. A. Guiding high-intensity focused
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Adams, M. T., Giraud, D.S.H., Cleveland, R. O., and Roy, R. A. Modeling acousto-
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Adams, M. T., Giraud, D.S.H., Cleveland, R. O., and Roy, R. A. Modeling the
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