
ADAPTIVE MODEL-PREDICTIVE CONTROL AND 

3D ACOUSTIC RADIATION FORCE IMAGING 

FOR THE IMPROVEMENT OF MAGNETIC 

RESONANCE-GUIDED FOCUSED 

ULTRASOUND THERAPIES

by

Joshua Thomas de Bever

A dissertation submitted to the faculty of 
The University of Utah 

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy 

in

Computing

School of Computing 

The University of Utah 

May 2015



Copyright © Joshua Thomas de Bever 2015 

All Rights Reserved



T H E  U N I V E R S I T Y  O F  U T A H  G R A D U A T E  S C H O O L

STATEMENT OF DISSERTATION APPROVAL
The dissertation of

Joshua Thomas de Bever

has been approved by the following supervisory committee members:

John M. Hollerbach
Chair

12/10/2014
Date Approved

Robert B. Roemer
Member

12/10/2014
Date Approved

Jake J. Abbott
Member

12/10/2014
Date Approved

Dennis L. Parker
Member

12/10/2014
Date Approved

Douglas A. Christensen
Member

12/10/2014
Date Approved

and by Ross Whitaker, Chair of the School of Computing, and by David B. Kieda, 

Dean of The Graduate School.



ABSTRACT

Focused ultrasound (FUS) is a promis ing noninvasive and radiation-free cancer 

therapy that selectively delivers high-intensity acoustic energy to a small target 

volume. This dissertation presents original research that improves the speed, safety, 

and efficacy of FUS therapies under magnetic resonance imaging (MRI) guidance.

First, a new adaptive model-predictive controller is presented that leverages the 

ability of MRI to measure temperature inside the patient at near real-time speeds. The 

controller uses MR temperature feedback to dynamically derive and update a patient- 

specific thermal model, and optimizes the treatment based on the model’s predictions. 

Treatment safety is a key element of the controller’s design, and it can actively protect 

healthy tissue from unwanted damage. In vivo and simulation studies indicate the 

controller can safeguard healthy tissue and accelerate treatments by as much as 50%. 

Significant tradeoffs exist between treatment speed, and safety, which makes a real­

time controller absolutely necessary for carrying out efficient, effective, and safe 

treatments while also highlighting the importance of continued research into optimal 

treatment planning.

Next, two new methods for performing 3D MR acoustic radiation force imaging 

(MR-ARFI) are presented. Both techniques measure the tissue displacement induced 

by short bursts of focused ultrasound, and provide a safe way to visualize the 

ultrasound beam’s location. In some scenarios, ARFI is a necessity for proper targeting



since traditional MR thermometry cannot measure temperature in fat. The first 

technique for performing 3D ARFI introduces a novel unbalanced bipolar motion 

encoding gradient. The results demonstrate that this technique is safe, and that 3D 

displacement maps can be attained time-efficiently even in organs that contain fat, 

such as breast. The second technique measures 3D ARFI simultaneously with 

temperature monitoring. This method uses a multi-contrast gradient recalled echo 

sequence which makes multiple readings of the data without increasing scan time. This 

improves the signal to noise ratio and makes it possible to separate the effects of tissue 

heating vs displacement.

Both of the 3D MR-ARFI techniques complement the presented controller since 

proper positioning of the focal spot is critical to achieving fast and safe treatments.
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CHAPTER 1

INTRODUCTION

1.1 Dissertation Overview

This dissertation presents work done to improve the speed, safety, and efficacy 

of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies. 

While MRgFUS offers many potential benefits, the primary thrust of this work is to 

advance MRgFUS as a noninvasive and radiation-free cancer therapy.

Focused ultrasound bears similarity to diagnostic ultrasound imaging, but 

differs by delivering high intensity acoustic energy to a small volume and in a highly 

selective manner. Furthermore, the goal of FUS is to generate mechanical or thermal 

tissue effects instead of images. Applications of focused ultrasound are growing rapidly 

and currently include: mechanical fractionation of tissue (histotripsy), adjuvant 

hyperthermia, blood-brain barrier opening, assisted drug delivery, neuromodulation, 

and pain palliation.

This work focuses on thermal ablation of cancer where a variety of organs are 

currently being targeted including brain, breast, uterus, and liver, among others. 

Magnetic resonance (MR) imaging adds powerful new capabilities to ablative FUS 

procedures. First, MRI provides excellent soft tissue contrast for anatomical imaging, 

tumor identification, treatment planning, and post-treatment assessment. Second, MR 

thermometry makes it possible to continuously monitor the temperature inside the



patient during treatment. Third, acoustic radiation force imaging, offers the ability to 

interrogate the mechanical properties of tissue.

Despite these advantages, significant technical challenges impede the 

widespread adoption of MRgFUS in clinics. First, MRgFUS treatments take an 

extended period of time, both in treatment planning and patient setup stages, and in 

the treatment itself. This adds to the cost of MRgFUS therapy and leads to patient 

discomfort. Second, while MR thermometry provides vital temperature feedback, the 

interval between measurements is still long compared to the rate of tissue damage at 

higher temperatures. This leads to excessive treatment of the tumor, which wastes time 

and compromises the safety of normal tissues not at the focus, but in the beam path. 

Third, accurate positioning of the focal positions is critical to providing safe and 

effective treatments, but standard beam localization methods using low-power 

interrogation pulses risk causing unwanted tissue damage.

This dissertation presents progress toward addressing these challenges and is 

divided into five sections. In the remainder of Chapter 1, background theory on MRI 

and focused ultrasound is presented. Chapter 2 presents original results into improved 

control of MRgFUS using a new adaptive model-predictive controller (AMPC). The 

AMPC aids in accelerating MRgFUS treatments while also mitigating safety concerns 

through direct safeguards of healthy tissue. Chapters 3 and 4 present two methods for 

improved focal spot localization using 3D acoustic radiation force imaging. These 

techniques enable time-efficient visualization of the tissue displacement induced by a 

short burst of ultrasound, and are shown to be a safe alternative to standard 

approaches. Additionally, 3D ARFI is shown to work in tissue environments
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containing fat where standard MR thermometry is ineffective. Both ARFI techniques 

presented encode tissue displacement into the phase of the image, however, the work 

in Chapter 3 presents a new motion encoding scheme used in a spin-echo sequence 

while Chapter 4 presents a multicontrast gradient recalled echo sequence which can 

simultaneous measure tissue displacement and temperature. These two 3D ARFI 

approaches are directly applicable to the AMPC as it requires accurate focal spot 

positioning to provide fast, effective, and safe MRgFUS treatments. Lastly, Chapter 5 

summarizes the tasks accomplished and describes avenues for future investigation.

1.2 Principles of Magnetic Resonance Imaging

1.2.1 Benefits of MRI 

Magnetic resonance imaging offers several advantages including the ability to 

noninvasively acquire high-resolution images with excellent soft-tissue contrast 

without ionizing radiation. The MR signal is dependent on many physical and system 

parameters, which has led to the development of numerous types of signal contrast 

that visualize differences among tissues in unique ways. MRI’s flexibility has found 

wide ranging application including the identification of normal and cancerous tissue, 

functional mapping of the brain’s internal networks, and monitoring of tissue changes 

over time. The lack of ionizing radiation makes it safer than modalities like X-ray 

computed tomography, and can produce more detailed images than ultrasound. A 

unique aspect of MRI is that the signal measured is derived from the sample itself, as 

opposed to X-ray techniques where the internal structures are inferred from the 

transmission (or lack thereof) of an external X-ray beam, or positron emission 

tomography (PET) where radioactive material is put into the body and the positrons
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that escape account for the detected signal.

1.2.2 M RI Hardware Components 

A typical MRI scanner consists of three principal hardware systems: (1) a 

primary superconducting magnet, (2) a set of resistive gradient coils, and (3) a radio 

frequency (RF) coil. The closely coordinated operation of these systems generates, 

encodes, and detects a signal, which is then reconstructed to produce images.

The primary superconducting magnet (Figure 1.1) is responsible for producing 

a strong and uniform magnetic field, B0, which polarizes the sample within the bore of 

the MRI. Field strengths produced by clinical MRI systems currently range from 

approximately 1 -  3 Tesla, and the field produced by these systems are typically 

homogeneous to 3 ppm over a spherical volume 40-70 cm in diameter. So called “high- 

field” full body MRI scanners currently in development can achieve 7-11 T. Stronger 

main field strengths are desirable because they increase the degree of sample 

polarization and thus increase the amount of signal available for measurement. 

However, the homogeneity of the B0 field is also critical to successful MRI imaging. 

Homogeneity of the main field is usually enhanced with both passive and active field

Figure 1.1: Schematic of the principal systems of an MRI.



“shimming” devices. Iron or steel blocks are inserted into the bore during installation 

of the main magnet to improve static field homogeneity, while special shim coils carry 

small currents, which can be adjusted for each subject, to generate magnetic fields that 

cancel out unwanted field deviations.

Radio frequency (RF) coils are responsible for both exciting the sample and 

detecting the resulting signal. Excitation is performed by generating a secondary time- 

varying magnetic field, B1, which is perpendicular to B0. After excitation, the RF coil 

is switched into “Receive Mode,” and the voltage induced in the RF coil by the sample 

is recorded. The induced voltage recorded is the fundamental MR signal that forms all 

images. RF coils derive their name from the fact that the frequency of the time-varying 

currents they carry (typically 40 -  130 MHz for clinical systems) overlaps with the FM 

radio frequency spectrum. A single RF coil can be used to both excite the sample and 

measure the induced signal, and such coils are called transmit/receive coils. However, 

to maximize the signal to noise ratio (SNR), it is advantageous to place the receive coil 

as close as possible to the sample. Consequently, it is common to use the RF coil 

integrated into the bore of the magnet (sometimes called the body coil) to excite the 

sample while receiving with a separate coil closer to the volume of interest.

Gradient coils are resistive electromagnets that make imaging possible by 

spatially encoding the signal. A set of three gradient coils, one for each Cartesian axis, 

generate small magnetic fields that modulate Bz linearly along the x, y, and z  directions. 

The magnetic field gradients produced are in the range of 10 -  50 m T/m  for human 

MRI systems, but can be upward of 1000 m T/m  for dedicated small animal systems.

The following sections describe in more detail how MRI generates and detects
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a signal, and how that signal is used to form images. The following references are also 

excellent resources for additional information and derivations [1]-[4].

1.2.3 Producing a Net Magnetization 

In 1922, German physicists Otto Stern and Walther Gerlach, performed an 

experiment that demonstrated that the angular momentum of silver came only in 

quantized values. Work in quantum mechanics later explained this result was due to 

an intrinsic quantum mechanical property of particles called spin angular momentum, 

or “spin.” Bosons can possess only integer spin (0, 1, 2, ...), while Fermions (such as 

electrons, protons, and neutrons) can possess only nonzero multiples of V2 integer spin 

(2, | ,  §,...). Consequently, the net spin of atomic nuclei (which are composed of 

Fermions) can take on only multiples of 0, V-integer, or full-integer spin. When a 

particle with spin ^ 0 is placed in a static magnetic field, its spin angular momentum 

will precess, or rotate, about the applied field at a frequency called the Larmor 

Frequency given by:

^ o = l Bo (1.1)

where 7 is the gyromagnetic ratio (a nuclei specific proportionality is constant). This 

linear relationship between frequency of precession and field strength will prove 

important later when image formation is discussed.

Though imaging of other nuclei, such as 3H, 13C, 19F, 31P, and 23Na (which has 

spin 3/2) is possible, the most commonly imaged nucleus is *H (spin V) primarily 

because of its high natural abundance in the human body and large gyromagnetic ratio



(see Table 1.1).

Since MR imaging in this work was entirely based on *H, the remainder of this 

discussion will assume a spin V2 system. When such a system is placed in a static 

magnetic field, its spins can inhabit a superposition of only two energy states: aligned 

parallel to Bo (low-energy state) and aligned antiparallel to Bo (high-energy state). This 

is called Zeeman Splitting (or the Zeeman Effect), and the ratio of the probability of 

measuring a spin to be in the parallel state, vs the antiparallel state, N^, is given 

by:

7

( A E
^  =  e x p l  ~ W (1.2)

where k = 1.38x10"23 J/°K  is the Boltzman constant, T  is absolute temperature in °K, 

and A E  is the energy difference between parallel and antiparallel states. To a first order 

approximation, A E  = 7hB0 where h = h/2n  and h is Planck’s constant 6.6 x 10"34 

J • s. At a field strength of 3 T and body temperature of 310 °K, the population 

difference between N T and is approximately 10 parts per million. This small

Table 1.1 : Properties of selected nuclei

Nucleus Spin Relative Abundance 
in Human Body

Gyromagnetic
Ratio
7 / 2^

[MHz/T]

Larmor 
Frequency at 3T 

[MHz]

*H 1/2 88 M 42.576 127.7
13C 1/2 0 M 10.705 32.1
i9F 1/2 4 |iM 40.052 120.2

23Na 3/2 80 mM 11.262 33.8
31p 1/2 75 mM 17.235 51.7



difference is one reason higher field strengths are desirable; however, an observable 

signal is still generated due to the large number of spins contained in the system.

A charged particle with spin %, such as a proton, behaves like a small electrical 

current, and thus produces a magnetic field much like a bar-magnet. It is useful to 

consider an entire population of spins so that quantum mechanical effects can be 

simplified to a classical picture. Without the influence of a magnetic field, the thermal 

energy possessed by each spin of the group serves to randomize their orientations. 

Thus there will be no net magnetization since each spin’s magnetic moment will be 

canceled by another in the population. Once placed in a static field however, a net 

positive number of spins will align with the field (Zeeman Splitting), and the 

summation of the spin’s moments will produce a net magnetic moment, M0, along the 

direction of Bo. This is the classical picture of net magnetization that will be used in 

the following sections. After reaching equilibrium, the net magnetization vector points 

along the z-direction and has magnitude given by:

|M o |= M 0 = ^ ^ § ^  (I.3)

where Ns is the number of spins in the sample.

1.2.4 Nuclear Magnetic Resonance and Signal Generation 

At this stage, the spins subjected to B0 are precessing, and there is a net 

magnetization (Mo) along z due to the alignment of the spins, but it is important to 

note that Mo is not precessing about Bo and thus there is no observable signal. To 

generate a signal, Mo must be perturbed from equilibrium. This is done using nuclear

8



magnetic resonance (NMR), a discovery made by Isidor Isaac Rabi in 1938 for which 

he was awarded the 1944 Nobel Prize in physics. Rabi discovered that a system with 

spin ̂  0 would absorb, and then release, energy if excited by a magnetic field oscillating 

at a resonant frequency in a direction perpendicular to B0. The resonant frequency 

turned out to be the Larmor F requency (Eqn (1.1)), which was discovered in a different 

context decades earlier by Sir Joeseph Larmor in 1897. The Dutch physicist Cornelius 

J. Gorter proposed NMR theoretically one year before Rabi, however, Rabi was first 

to demonstrate the effect experimentally. To tip M0, composed of *H nuclei residing in 

a 3 T field, away from B0, the transmitted B1 field must oscillate at the Larmor 

Frequency of 127.7 MHz (Table 1. 1). This excitation pulse is commonly referred to as 

an RF pulse. Once M0 has a component in the xy (or transverse) plane, it begins to 

precess about B0. The angle that M0 is tipped from B0 is called the flip angle (FA), and 

this can be adjusted by varying the duration and/or the amplitude of the transmitted 

B1 field. The achieved flip angle can be calculated from the Bloch equations, and 

reduces to:

rTrf
a FA= I j B 1(t)dt (1.4)

0

where a FA is the resulting flip angle, B 1 (t) is the applied, time-varying, RF pulse, and 

Trf is the duration that Bj is applied (usually on the order of milliseconds). Note that 

the excitation is nucleus specific and that this allows the selective excitation of one 

nucleus without disturbing any others. Common flip angles needed for MR imaging

9



are 90° (shown in Figure 1.2), which results in all of M0 being transferred into the 

transverse plane, and 180°, which mirrors the entire spin system about the x  or y  axis.

1.2.5 Signal Detection 

If a receiving RF coil is placed near the precessing magnetization, a voltage will 

be induced in the coil due to Faraday’s Law. This voltage is the fundamental signal in 

MRI. It is necessary to tune the receiving RF coil circuit such that it resonates at the 

Larmor Frequency, and consequently different RF coils must be designed for every 

nuclei and for each field strength.

1.2.6 Longitudinal and Transverse Relaxation 

The magnetization tipped into the transverse plane represents the signal 

available for detection; however, the system is now out of equilibrium. After the RF

10
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pulse, Mz restores to Mo exponentially with a characteristic time constant, T1. This 

process is called longitudinal relaxation, and the value of T1 varies for each tissue type. 

The restoring of M z can be modeled by the Bloch equations, and the solution, 

assuming M z(0) is the remaining magnetization along the z-axis immediately after the 

RF pulse, is given by:

Relaxation of the magnetization also occurs in the transverse plane, 

independently of longitudinal relaxation, and is described by an exponential decay 

with time constant T2:

where M xy (0) is the magnetization initially tipped into the transverse plane by the RF 

pulse. This relaxation process also varies by tissue type, and imposes limits on the 

duration available for sampling the MRI signal. Table 1.2 summarizes values of T1 

and T2 for several tissues. For liquids, T2 is relatively long, while for solids it tends to 

be shorter. It is always the case that T1 is longer than T2.

Unfortunately, Eqn (1.6) for T2 is for a highly idealized case and many factors, 

such as field inhomogeneity or interactions among spins, will cause the signal to decay 

faster than T2 predicts. A second transverse relaxation rate, T2*, is frequently used as 

an effective decay rate that accounts for static field inhomogeneities. It relates to T2 

by the relation:

M z(t) = M°Z( 1 -  e-t/T1) +  M z(0)e-t/T1 (1.5)

(1.6)
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Table 1.2 : Values of T1 and T2 at 1.5T for various tissue types

Tissue T1
[ms]

T2
[ms]

Water/CSF 4000 2000
Gray matter 900 90

Muscle 900 50
Liver 500 40
Fat 250 70

Tendon 400 5

i i  =  f5  +  7AB» (1'7)

Even this deviates from reality, however, it is a commonly used and useful 

approximating function.

1.2.7 Free Induction Decay 

All 2D and 3D MR imaging is underpinned by a much simpler experiment 

called a free induction decay (FID). As a first example, assume a sample with a single 

group of spins (T1 = 500 ms, T2 = 50ms), which do not interact with one another, and 

who experience a uniform magnetic field. Starting from equilibrium such that Mz = 

M0, and Mxy = 0, a 90° RF pulse is applied and subsequently Mxy = M0, while Mz 

= 0. The net magnetization begins to precess around B0, and the rotating transverse 

magnetization induces a voltage in the receiving RF coil. This signal is given by:

S(t) = M0 sin(aFA)e-t/T2e-lWot (1.8)

As the rotating My  changes its orientation with respect to the receiver RF loop, so does



the magnetic flux and induced voltage, and so the signal recorded oscillates between 

+ /- its maximum value at the Larmor Frequency (Figure 1.3a). As time passes, the 

signal amplitude is bounded by an exponential decay envelope, and after one T2 

interval, 63% of the initial transverse magnetization has been lost. By five T2 intervals, 

nearly all the signal has been lost. Conversely, Mz recovers approximately 63% of its 

equilibrium value after one T1 interval.

Now consider a second example where there are two spin groups with the same 

T1 and T2 as before, but who experience different magnetic fields due to an 

inhomogeneity of Bo. The result is that each group precesses at a slightly different 

frequency which causes the transverse magnetization to decay at a rate of T2* instead 

of T2 (Figure 1.3b).
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Figure 1.3: Signal from a single spin group compared to that of two spin groups. (a) 
FID from a single spin group in a uniform field. Dashed line indicates signal decay 
envelope at a rate of T2. (b) FID from a sample with two spin groups experiencing 
different fields due to inhomogeneity of Bo. FID decays at T2*, faster than T2 (dashed 
lined). Note: Larmor Frequency reduced to make oscillations more visible.



1.2.8 Image Formation in 2D and 3D

In the FID experiment, nothing can be done about the field inhomogeneities 

that increased the rate of signal loss, and so the optimal time to measure the signal is 

immediately after the RF pulse. This is problematic for MR imaging because the 

additional steps required before the signal can be measured (to be discussed later) result 

in significant signal decay. There are two commonly used techniques that recover 

some of the lost signal by creating a signal echo after a user defined delay called the 

echo time (TE). These techniques have the additional advantage of affording some 

flexibility in selecting when to measure the signal.

1.2.8.1 Gradient recalled echoes

The first approach to creating a signal echo is to apply an intentional field 

gradient along one direction, say the x direction, which adds phase to the spins and 

reduces the signal. Then, the gradient polarity is reversed causing the phase of the spins 

to decrease and eventually refocus to produce a signal echo. This is called a gradient 

recalled echo (GRE) and is illustrated in Figure 1.4. This technique tends to be fast, 

but cannot compensate for static field inhomogeneities and thus the signal decays as 

T2* instead of T2.

1.2.8.2 Spin-echoes

Figure 1.5 demonstrates the spin-echo (SE) approach to forming a signal echo. 

By adding an additional RF pulse with a 180° flip angle at a time TE/2 after the initial 

excitation RF pulse, the spin system will be mirrored such that the spins’ accrued phase 

in the transverse plane is negated. As the spins continue to precess after the 18o° pulse,

14
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0 20 40 60 80 100 
Time [ms]

Figure 1.4: Gradient recalled echo generated at TE by applying gradients to 
intentionally dephase the spins, then rewinding the spins with an opposing gradient 
which forms an echo at TE. Signal decays with T2*, faster than T2, and static field 
inhomogeneities are not reversed.

0 20 40 60 80 100 
Time [ms]

Figure 1.5: Spin-echo generated at TE by applying a 180° pulse at TE/2. Signal decays 
with T2, but static field inhomogeneities are reversed to recover more signal at t = TE.



they will come back into phase at t = TE creating a signal echo. One major advantage 

of the SE approach over the GRE approach is that the effect of static field 

inhomogeneities will be canceled out at the echo time because the spins encounter the 

same field deviations after the 180° pulse as they did before the 180° pulse. As a result, 

the signal decays at a rate of T2 (which is not reversible) instead of T2* as in the GRE 

case. The downside of the SE method is that it requires an additional RF, which takes 

time and deposits additional energy into the sample. The 180° pulse can also induce 

new, unwanted, signal that can corrupt the image.

1.2.8.3 Frequency and phase encoding

Up to this point, NMR has been used to induce a FID signal which is a measure 

of the bulk magnetization in the sample. However, to assemble a 2D image, a method 

for localizing where the signal came from must be developed. It may seem obvious 

now that the equation for the Larmor Frequency, u  = 7B 0 , gives us a method for 

accomplishing this, but the technique, first published in 1973, won Paul Laterbur a 

Nobel Prize. By modulating the large B0 field by imposing an additional field that 

varies linearly across one dimension, for example the x direction, the precession 

frequency becomes a function of position given by:

u(x) = 7 (B0 + Gxx) (1.9)

where Gx(x) describes the gradient field in T/m. This is called frequency encoding. 

For a real object, the signal measured is now a function of the density of spins, p(x), 

and the position of those spins along the x  direction:
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S(x, t )  = f  p(x)e ljGxXtdx (1.10)

where the baseline frequency u 0 has been subtracted. It is important to note that the 

fact that the gradient is linear and of known magnitude is critical for accurate spin 

localization. A skilled pianist sitting at their piano blind folded can determine the 

location of keys that produce low pitch notes (to their left) vs high pitched notes (to 

their right) because they are familiar with the ordering of the piano. Similarly, the 

known gradient makes it possible to map the measured frequency to a location along 

the x axis. It is common to refer to the axis being frequency encoded as the “readout 

direction.” There remains one problem; every yz  plane at a given x position has been 

assigned the same frequency and cannot be separated.

To solve this, an additional form of spatial encoding, called phase encoding 

(PE), is performed. Similar to frequency encoding, a linearly varying magnetic field, 

produced by the gradient coils, is applied along a direction perpendicular to the 

readout direction, commonly referred to as the phase encode direction. The phase 

encoding gradient is only enabled for a brief amount of time, but while enabled, it 

causes spins along the PE-direction to accrue a phase proportional to the time the PE 

gradient is enabled and their position along the PE direction. Thus, if the PE direction 

is along the y  axis, and the field is given by Gy(y) in T/m , then the phase of the spins 

along y  is now:

/r PE
j G y(t)y dt (1.11)
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This can be thought of as a gradient-time area, or gradient moment, and explains that 

for a given phase/area, time can be exchanged for higher amplitude or vice versa. An 

ideal gradient system turns on and off instantaneously, and under this idealization, 

Eqn (1.11) reduces to:

The last dimension (the z axis but generally referred to as the slice direction) is 

localized by selectively exciting a plane (2D imaging), or volume (3D imaging). The 

NMR concept says that an RF pulse only excites spins that share its resonant 

frequency. By applying a third gradient along the slice direction, spins will resonate at 

a range of frequencies, and by designing the RF pulse carefully so as to match the 

bandwidth of the desired spins, only a small slice of the object will be excited. 

Consequently, parts of the sample not in the slice will not generate a signal because 

their magnetization remains aligned with B0 and not in the transverse plane. For 2D 

imaging, it is sufficient to perform this slice selective RF pulse and perform phase and 

frequency encoding. Multiple 2D slices can be acquired to increase the coverage of the 

sample. Alternatively, a 3D acquisition can be accomplished where the selective 

excitation is performed over a thick slice (a slab) that encompasses the entire volume 

of interest, and a second set of phase encoding is required along the z direction to

0 (^) =  TPEl G y(y) (1.12)

And the updated signal equation is:

(1.13)
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resolve spins within the excited volume.

1.2.8.4 Sampling k-space and the Fourier transform reconstruction

A unique aspect of MRI is that the data acquired represent samples of the 

spatial-frequencies of the object. This spatial-frequency domain is referred to as 

k-space. In order to generate an image that accurately represents the object, k-space 

sampling must satisfy the Nyquist sampling criteria. As shown in Figure 1.6, for a 

square field-of-view (FOV) and desired resolution (Ax) the required k-space sampling 

parameters are calculated from:

A k x = —l—  W k x = ^ ~  (1.14)
x FOV kx A x

A useful analogy is to think of k-space as an “Etch-a-Sketch” where the knobs are the 

frequency encoding gradient (which moves the sampling point along kx) and the phase 

encoding gradient (which moves along ky). The gradient amplitude controls how fast 

k-space is traversed. The complex signal on the RF receive coil is a single point of 

k-space, which is sampled by an analog-to-digital converter (ADC). Once all the 

required k-space samples are collected, the data are transformed into image space using 

a Fourier transform.

The timing diagram in Figure 1.7 shows how two lines of k-space could be 

sampled using a 2D spin-echo acquisition. First, slice-selective excitation is performed. 

Immediately after excitation, the sampling point is at the center of k-space. The first 

line of k-space to be acquired is ky = 0, so no phase encoding gradient is required. A
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Figure 1.6: MRI samples (black dots) of the object’s spatial-fTequencies in k-space. 
After sufficient sampling of k-space, a Fourier transform is performed to generate an 
image. Width of the square field-of-view is FOV and the voxel size is A^. From these 
quantities, it is possible to solve for the required k-space sampling interval and 
frequency extent that must be sampled.
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180c 180c

ky = 0
kv

%

Figure 1.7: Example of Cartesian sampling of two k-space lines using a 2D spin-echo 
acquisition. Black dots indicate sample locations measured during the current 
excitation. Gray dots are samples acquired during other excitations. Dashed gray lines 
indicate the linear traversal between two circled locations in k-space without acquiring 
data. Solid gray lines indicate that data are being acquired at an interval At  while 
moving linearly between two circled locations. Numbers indicate the ordering of 
events as they unfold due to the timing diagram.



fast way to sample data along the frequency encode (readout) direction is to start at 

the -kx edge and traverse at constant speed toward +kx while sampling at an 

appropriate time interval, At. To accomplish this, a negative readout gradient moves 

to - k max, and then a positive, constant, gradient is applied to move toward +krnax. 

For a given readout gradient amplitude and A k x, the sampling interval A t  is given by:

22

. 2 k 2k

t = lG~x x = iG xFOV (L15)

This completes the acquisition of one line of k-space. The entire process is then 

repeated for ky = 1 where, after the excitation, the sampling point is again at kx = 

ky = 0. To move to ky = 1, the phase encode gradient must be applied. As higher ky 

frequencies are sampled, the phase encoding gradient area required grows. Normally, 

the duration of the phase encoding gradient is kept constant, so to cover a larger ky 

distance in the same time, it is necessary to increase the gradient amplitude. Assuming 

a phase encode duration of tpe , the PE gradient amplitude increment can be calculated 

by:

A G 'J lTPEA k » 1tpeFOV (U 6 )

The acquisition of each kx line requires a new excitation pulse. The time 

between repeated excitation pulses, TR, is an important parameter that determines the 

total amount of time it will take to acquire all lines of k-space, and how much



longitudinal relaxation will occur between of each acquisition along kx. Another 

fundamental sequence parameter is the echo time TE. Note that the echo was formed 

as kx = 0 was acquired. The center frequencies tend to be most important to the image, 

so it is advantageous to sample them when the signal is maximal. The process is similar 

for 3D acquisitions except for the additional kz phase encoding steps which require 

more repetitions.

1.2.9 MR Thermometry 

The first method for measuring temperature with MRI was published in 1983 

and was based on the temperature dependence of the longitudinal relaxation time 

constant, T1 [5], [6]. It was found that T1 varied linearly over small temperature ranges 

and could thus be used to measure absolute temperature. This technique did not gain 

widespread popularity in part because T1 mapping is time consuming, and also 

because T1 varies across multiple parameters including tissue type and field strength.

The most popular MR thermometry method, which is used exclusively in this 

work, is the proton resonance frequency shift technique [7], [8]. As the name implies, 

when protons in water heat up, their resonant frequency changes by 

approximately -0.009 ppm/°C. The reduction in resonant frequency is a result of 

increased shielding of the hydrogen atom by the electrons on the oxygen atoms in 

water. The increased shielding reduces the effective local magnetic field experienced 

by the hydrogen atom, resulting in a frequency reduction. When tissue warms, the 

hydrogen protons precess about B0 at a slower rate, and thus a phase difference will 

accrue over time.
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The PRF method is normally used in conjunction with a GRE pulse sequence 

since the refocusing 180° RF pulse in SE sequences would cancel out most of the phase 

accrued due to temperature. The phase difference for a series of measurements over 

time is computed by subtracting a baseline phase image from each time frame. The 

change in phase can then be converted to a change in temperature, AT, via:
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A T  = A $i (1 17)
PlBoTE  ( )

where A ^ t is the total phase change relative to the baseline for the i-th measurement, 

and P is the previously mentioned proportionality constant -0.009 ppm/°C. There is a 

tradeoff in selecting the value of TE since a longer TE results in more T2* signal loss 

(which reduces SNR) but provides more time for phase to accrue (which increases 

phase-SNR). Generally, a TE «  T2* strikes a good balance between these parameters.

It is fortunate that p is linear and relatively independent of tissue type over 

typical temperature ranges since it facilitates temperature monitoring in most tissue 

without advanced calibration. One notable exception to this is fat, which does not 

experience a temperature-dependent frequency change, and thus cannot be monitored 

with the PRF technique. This is especially problematic for MRgFUS applications in 

the breast.



1.3 Principles of Focused Ultrasound Thermal Therapies

1.3.1 Overview

The term “ultrasound” refers generally to any sound wave of a frequency above 

that of human hearing. Typical applications of ultrasound use frequencies above 20 

kHz up to 10 MHz, though frequencies can extend to several hundred MHz [9]. At a 

simple level, sound is a mechanical vibration of particles that propagates by contact 

with other particles. As particles come into contact and compress, a pressure above 

static pressure is generated, and this pressure field is propagated through most 

biological tissue. A common method of producing ultrasound waves is using 

piezoelectric materials that compress and expand in response to an applied voltage. 

These devices are called ultrasound transducers because they convert electrical energy 

into mechanical energy (ultrasound). However, the effect works in reverse as well; 

deformation of the piezoelectric element by an incident pressure wave will generate a 

voltage. This forms the basis for ultrasound detection and medical imaging via 

ultrasound.

Ultrasound has proved to be an invaluable tool in medical imaging because it 

is safe, portable, inexpensive, and provides high frame rates. In contrast, focused 

ultrasound is not used for imaging, but instead aims to modify tissue through either 

mechanical or thermal effects. To accomplish this, higher powers are often required. 

The effects of high-power ultrasound were noted as long ago as 1920 when Paul 

Langevin placed his hand in a water tank insonified with high-intensity ultrasound 

and discovered that pain was induced [10]. In the 1940s Lynn and Putnam first used 

focused ultrasound to produce cerebral lesions [11], [12], but in doing so also
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discovered how difficult it is to transmit ultrasound through bone. Soon after, in the 

1950s, the Fry Brothers in collaboration with Meyers would demonstrate focused 

ultrasound surgery in the brain by first performing a craniotomy [13], [14]. The 

development of new materials, new technologies such as MR thermometry, and 

increased computational power have led to a resurgence of focused ultrasound 

research. For example, it is now possible to transmit meaningful amounts of energy 

through an intact skull utilizing beam refocusing algorithms that make use of CT/MRI 

to measure the skull’s thickness. [15]. Furthermore, real-time MR thermometry makes 

it possible to monitor the progress and safety of cancer therapies performed by focused 

ultrasound.

1.3.2 Wave Propagation 

The following will assume that a transducer is positioned as shown in Figure 

1.8, and that this transducer produces a wave of frequency f  [Hz]. The mechanical
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Figure 1.8: Phased array transducer. D = Diameter. lf  = Focal length, d = diameter of 
focus.
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vibrations along the beam propagation direction (longitudinal, or z direction) give rise 

to a pressure, p(z) and results in a particle velocity, u(z). Note that the particles have 

no net motion, they simply oscillate about a central position at a velocity given by u. 

The speed at which the wave front propagates is given by c, the speed of sound, values 

for which vary by tissue type. For water, cw = 1500 m /s, and this is a good approximate 

value for most soft tissues. The ratio of pressure and particle velocity defines a 

medium’s impedance, Z , which is also related to the density of the tissue, p, and the 

speed of sound by:

The beam will propagate through a medium with a wavelength, A, given by:

Thus a 1 MHz wave in water would have a wavelength of \=  0.15 cm. From these 

quantities, the power density of a wave is defined as:

(1.18)

(1.19)

(1.20)

As the wave propagates through successive layers of tissue, several factors conspire to 

dissipate its energy, namely: (1) absorption, (2) scattering, (3) reflections off tissue 

interfaces. Absorption and scattering are usually combined into a single attenuation



coefficient, a, that varies by tissue type and is approximately linearly proportional with 

frequency. If a wave entering a block of tissue has initial pressure p0, and 

corresponding power density I0, then the remaining pressure and power after traveling 

a distance z through the tissue is:

p ( z ) = p 0e-az I(z) = I0e-2az (1-21)

In medical imaging applications it is desirable to use smaller wavelengths to improve 

the imaging resolution. However, Eqn (1.21) demonstrates the increased attenuation 

that results from higher frequencies will reduce the depth of penetration for a given 

power density. Using the same reasoning, when attempting to transmit focused 

ultrasound through the skull, lower frequencies are desirable because less loss occurs 

in the bone and regions deeper into the head become reachable. As will be seen later, 

the weakness of using larger frequencies for FUS is that it enlarges the focal spot.

Finally, reflections must be considered. Assume the situation in Figure 1.9
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Figure 1.9: Reflection and refraction of incident wave at interface between two tissue 
types.
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where a plane wave traveling in a medium with speed of sound cx and impedance Z1 

strikes a tissue boundary at an angle 6i relative to the normal of the boundary. Also, 

assume the second material has speed of sound c2 ±  c1 and impedance Z2 ±  Z 1. Some 

of the incident beam will be reflected at an angle dr = 6i and thus cannot contribute 

to the forward motion of the wave. The transmitted wave will be refracted as it passes 

through the boundary due to differences in the speed of sound of the materials. The 

angle of the transmitted wave is given by Snell’s law, which applies for ultrasound 

waves just as it does for electromagnetic waves:

A reflection coefficient, R, is defined as the ratio of the reflected (pr) and transmitted 

(pl) pressure waves for a given angle of incidence and transmission:

In this work, only small incident angles will be considered (6i = 6t & 0°), which 

reduces the previous equation to:

s in^  \ 1 c1
(1.22)sin dt X2 c2

R pr (z 2/cos 0t) -  (Z1/c°s e1)  
Pi (Z2/c° set) + (Z1/c°s °i)

(1.23)

~ Z2 - Z -  
= Z ^ + Z : (1.24)

Most often, the reflected power is of more interest than the reflected pressure. By 

computing the ratio of power densities we attain for the reflected wave:
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r n2 / z_
(1.25)

For the transmitted wave:

(1.26)

From these equations it is now possible to calculate the losses due to attenuation while 

traveling through a uniform tissue layer, as well as the reflected and transmitted power 

densities at a boundary between two tissue layers.

To generate selective and intense tissue heating, it is necessary to concentrate a 

transducer’s power density into a small volume, referred to in this work as the “focal 

spot.” Several methods exist to produce this focusing effect.

First, a single-element transducer can have a sonic lens placed in front of it, 

which, much like glasses correct human vision, causes the incident wave to be bent 

and focused to the desired focal distance. This method has the advantage that different 

lenses can be inserted to provide multiple focal distances with a single transducer. 

However, it is not optimal for FUS therapies since it cannot be changed quickly during 

a treatment and so mechanical positioning would still be necessary.

Second, the surface of a single-element transducer can be made in a spherical 

shape, which results in a natural focus (or geometric focus) determined by the radius 

of curvature (see Figure 1.8). This eliminates the need for a lens, but also fixes the focal

1.3.3 Beam Focusing and Transducer Types



position, and thus to reach multiple positions in the tumor, mechanical movement of 

the transducer would be needed.

Third, the surface of a spherically shaped transducer can be broken into many 

individually controllable elements. This is called a phased-array transducer and is the 

type of device used throughout this work. For a given radius of curvature, the single 

element transducer creates a geometric focus at the same location as the phase-array, 

however, the phased-array can dynamically adjust the location of peak intensity by 

altering the phase of the voltage that excites each element. This is referred to as 

electronic steering and does not require mechanical movement of the transducer. A 

variety of phased-array transducer designs exist with the number of elements ranging 

from 10s to 1000s.

The advantages of phased-array transducers has opened new possibilities for 

FUS that were not available to investigators in the 1940s. For starters, MR 

thermometry provides a remarkable noninvasive monitoring capability, but the 

movement of objects (such as a transducer), even if outside the imaging volume, can 

induce variations in the magnetic field experienced by the sample, corrupting the 

temperature maps. Furthermore, mechanical movement requires motors that tend to 

induce noise and artifacts in the MR images. Electronically steering the focal spot with 

a phase-array transducer avoids these issues, and complex trajectories can be achieved 

without motors. Transcranial transmission of ultrasound is another emerging 

application reinvigorated by phased-array technology. While nothing can be done to 

reduce the attenuation of the skull, the focal quality and amount of energy delivered 

to the target volume is degraded by variations in the skull’s thickness. With knowledge
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of the skull’s geometry derived from CT or MR imaging, the element phases can be 

adjusted to correct for these effects [15]. Phased-array transducers do introduce 

significantly more complexity to the electronics required to drive the system, and 

makes the system more costly. Also, power is lost to secondary grating lobes which 

can, depending on the design of the transducer, deposit significant energy outside the 

desired focal spot. This can be reduced by decreasing the spacing between elements to 

< A/2, but this can mean using a very large number of elements. Another strategy is 

to randomly position the elements such that they create fewer locations of secondary 

constructive interference.

The focal spot for ablative FUS transducers is usually ellipsoidal in shape, and 

the systems used in this work have a full width half max (FWHM) on the order of

2 x 2 x 8 mm at 1 MHz. For a spherical transducer, the pressure pattern at the focus is 

given by a first-order Bessel function of the first kind, and the diameter, d, of the focal 

spot can be computed from the first zeros of this function:

(1.27)

It can be seen that the width depends on the focal length, lf , and the transducer 

diameter, D, as well as the wavelength (see Figure 1.8). Thus lower frequencies (larger 

wavelengths) will increase the diameter of the focal spot.
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1.3.4 Heating Tissue with Focused Ultrasound

The amount of tissue heating generated by application of focused ultrasound 

depends on many parameters including: the transducer design, focal spot size, applied 

power, applied frequency, and tissue properties such as specific heat, density, and 

attenuation. While attenuation includes the combined effects of absorption and 

scattering, absorption is the dominant factor in most biological tissues. Therefore, 

energy lost due to attenuation is approximately the energy available to generate tissue 

heating. If the power density from Eqn (1.21) is differentiated with respect to a volume 

bz, the result is the following expression for the time-rate of energy deposition per unit 

volume, Q:

Sometimes a related quantity called the specific absorption rate (SAR) is used, and this 

is related to Q with:

Here, SAR has units of W /kg compared to Q units of W /m 3. Given the rate of energy 

delivery to the tissue, and the tissue’s specific heat, ch, the rate of temperature rise can 

be calculated from:

Q = —2 a l (1.28)

(1.29)

5T =  Q_
St pch

(1.30)
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In reality, this will only apply at the start of a heating pulse as conduction will transfer 

heat to neighboring tissue and reduce the rate of heating. A more accurate and detailed 

thermal model commonly used is the Pennes bioheat transfer equation [16]; it accounts 

for conduction and perfusion losses. This model can be implemented on a computer 

but requires detailed knowledge of the tissue properties and their spatial distribution. 

Regardless, the rate of tissue heating can be on the order of 1-4 °C /s for FUS thermal 

ablation, and given common MR thermometry sampling intervals of 2 -  8 s, significant 

temperature change can occur within one temperature sample. This poses challenges 

for control of thermal therapies, a topic addressed in more detail in Chapter 2.

MR thermometry allows for the monitoring of tissue heating caused by FUS, 

however, a metric that relates temperature history to tissue damage is necessary to 

effectively treat cancerous tumors while preventing damage to healthy tissue. The most 

commonly used metric, and the one used throughout this dissertation, is the 

cumulative equivalent minutes at 43 °C thermal dose metric [17], given by:

1.3.5 Thermal Dose

0
(1.31)

where T  is the temperature of the tissue in °C, and R _  2 when T  > 43 °C and R _  4 

when T  <43  C  . A thermal dose of 240 CEM43 is a conservative threshold for 

histological tissue damage. This is explored in more detail in Chapter 2.



1.4 MR Acoustic Radiation F orce Imaging

This section combines the MRI and ultrasound concepts discussed in Sections

1.2 and 1.3 to provide a description of how acoustic radiation force imaging (ARFI) 

can be measured using MRI. The benefits of performing MR-ARFI are discussed in 

Chapters 3 and 4. As ultrasound propagates through tissue, energy is lost due to 

absorption and reflections. Assuming a homogenous medium, reflections will be 

ignored. Given the time-average beam intensity, I , and the attenuation coefficient a, 

the resulting radiation force per unit volume, Ta is:
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r , , = 2 ^  (1.32)

This force causes the tissue to displace by a small amount, typically 1-30 |im 

depending on the applied power and tissue properties. To encode this displacement 

into the MR signal, a new set of gradients, called motion encoding gradients (MEG) 

are applied before the signal is readout. Many MEG schemes are possible, but a simple 

bipolar scheme is shown in Figure 1.10. If no displacement is present, as is the case 

when the ultrasound is off, then the first lobe of the MEG will add a phase to all spins 

which will be subsequently subtracted by the second lobe of the MEG. An entire set 

of k-space is acquired with ultrasound “OFF” and saved. Next, a measurement is 

acquired where a short burst of ultrasound (1 -  20 ms) is fired during only the second 

lobe of the MEG. In this case, the first lobe adds a phase, as before, however, spins 

that are displaced during the second lobe do not experience the same magnetic field 

they did during the first lobe, and thus a residual phase will remain in locations that
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Figure 1.10: Example timing diagram with ARFI motion encoding gradients. (a) 
When no US pulse is used the phase added by MEGa1 gets subtracted during MEGa2. 
(b) When US is fired during MEGA2, the phase added by MEGAi is not subtracted for 
tissue that was displaced by the US.

experienced displacement. When a motion encoding gradient of duration tenc is 

applied at an amplitude of Gmeg , then the tissue displacement, AD,  generates an 

accrued phase given by:

A 0a _  1 I GMEG(t)A D{t)dt 
0̂

(1.33)

Similar to PRF thermometry, described in Section 1.2.9, A 0 a is derived from a 

complex phase subtraction performed between the reference image (with no 

ultrasound), and the image with ultrasound on. Since Gmeg is known, the phase 

difference can then be converted to a time-average displacement using:

A D _
l M E G Mom (1.34)
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where M EGMom is the gradient area set by the user in the MR pulse sequence.

It is necessary to synchronize the start of the ultrasound burst with the MEG. 

At the time this work was carried out, no hardware existed for doing so. Appendix A 

describes the design of a device to trigger the ultrasound from an optical trigger pulse 

emitted by the MRI.
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CHAPTER 2

ADAPTIVE MODEL-PREDICTIVE CONTROLLER 

FOR MAGNETIC RESONANCE GUIDED 

FOCUSED ULTRASOUND THERAPY

This chapter is reproduced with permission of Informa Healthcare, J. de Bever, 

N. Todd, A. Payne, D. Christensen, and R. Roemer, International Journal of 

Hyperthermia, 2014; 30 (7): 456-470, copyright © 2014, Informa Healthcare[1].

2.1 Introduction

Magnetic resonance image-guided focused ultrasound (MRgFUS) is a 

promising noninvasive and radiation-free treatment modality that has been used to 

treat illnesses ranging from several types of cancer [2]-[9] to neurological disorders 

such as essential tremor [10]. In cancer therapy, MRgFUS has the advantage, 

compared to radiation therapy and chemotherapy, that dose delivery can be monitored 

during treatment and its effects on tissues can be observed relatively quickly.

While heating a tumor to sufficiently high temperatures will induce tumor 

necrosis, doing so accurately, with no collateral damage to normal tissue, and within 

practical treatment times is a major concern [3], [11]. Such time concerns are present 

in current FDA approved treatments of uterine fibroids [12] and will become 

increasingly prevalent when large malignant tumors located near critical tissues are



treated due to the enhanced need for dose delivery accuracy and normal tissue safety 

-  both of which lead to slower treatments. Thus, it is critical to deliver thermal dose as 

time-efficiently as possible, and this can only be achieved using both computerized 

control systems designed specifically to minimize treatment times and protect critical 

tissues, and optimal treatment planning.

Early investigations into treating large tumors with focused ultrasound 

optimized a series of sequential, point-by-point, sonications [13]-[15]. Because their 

focal zones were much smaller than the tumor, many focal positions were required, 

and it was concluded that to protect healthy tissues in the transducer’s near-field, a 

cooling period of 30-90 s must be inserted between every 5-20 s heating pulse [3], [11]. 

Such cooling periods allowed each successive pulse to be initiated at the same basal 

condition, thus providing for more uniformly applied heating pulses. However, such 

interpulse delay resulted in long treatments and the optimal delay that avoided normal 

tissue damage varied for each scenario.

Many temperature controllers have been introduced for hyperthermia to better 

account for the variability in heating in vivo tissues [16]-[19], with an emphasis on 

creating and maintaining a small, uniform temperature elevation over a large region. 

These were feedback controllers that required a priori knowledge for tuning, and their 

stability could be compromised if the control parameters were improperly tuned or if 

they changed during treatment. Other temperature controller work has sought to 

circumvent the interpulse cooling period in focused ultrasound surgery (FUS) 

treatments by increasing the volume heated via rapid switching of the focal zone 

among several locations [20]-[24]. Using multiple foci or rapid phased array steering
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effectively defocuses the focused ultrasound beam; thus, trading increased heated 

volume for decreased heating speed. Such multipass (or volumetric) heating strategies 

have been combined with magnetic resonance temperature imaging (MRTI) feedback 

to make controllers that seek to optimize a fixed treatment trajectory, such as spiral 

trajectories [20]-[22], and concentric circles [23], [24]. These volumetric heating 

strategies have demonstrated that MRgFUS can create consistent ablation regions in 

vivo, and they have the advantage of being easier to control with currently achievable 

MRTI sampling intervals because they raise the temperature of tissues more slowly. 

However, these controllers are constrained to a single volumetric ablation strategy, 

and rely on high acoustic power to achieve acceptable treatment times [23], and thus 

may not be appropriate for all tumor geometries or locations. The ability to conform 

the heated region to the target tissue geometry has successfully been shown in catheter- 

based systems [25]-[27], and this spatial temperature control improved the specificity 

of the ablated region. However, all of the aforementioned controllers have focused on 

controlling temperature, not thermal dose, and no direct protection for healthy tissues 

was provided.

Therefore, unmet needs exist, especially in the area of time-optimal control of 

thermal dose that ensures safety for critical normal tissues and that can accurately 

conform thermal dose delivery to an arbitrary shape. The adaptive model-predictive 

controller (AMPC) presented here addresses these needs primarily by augmenting the 

MRTI measurements with model-based predictions of the future temperatures and 

thermal doses to be delivered during both heating and cooling periods. Using model- 

prediction, the AMPC reduces treatment times by anticipating thermal dose that will
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be delivered to the tissue in the future, thereby increasing the accuracy of dose delivery 

and decreasing the dose delivered to healthy tissues. Unlike temperature controllers, 

the AMPC is concerned with controlling thermal dose, and because of the highly 

nonlinear accumulation of dose with temperature, model-prediction is critical to 

delivering the target dose as quickly and accurately as possible. The controller by 

Arora et al. [28] also controlled thermal dose using model-prediction, however that 

controller was restricted to 1D tumors and the model’s complexity required a priori 

knowledge, which would be difficult or time consuming to acquire clinically. The 

present AMPC is substantially different from previous work as it identifies and 

dynamically adapts the heating model during treatments, making the controller 

practical for treatments with any number of sonication points. This also makes its 

predictions robust to changes in tissue properties that may occur during treatment and 

eliminates the need for lengthy pretreatment model identification. Furthermore, the 

AMPC does not require any parameter tuning or a priori knowledge of tissue 

parameters.

To ensure treatment safety, two factors are critical: 1) the controller must have 

a means for protecting healthy tissues, and 2) the controller must monitor a sufficiently 

large region surrounding the treatment volume and the transducer’s beam path for 

undesired heating (for example, in the transducer’s near field [29], [30], or because of 

reflections from tissue-bone interfaces [6], [31], [32]). To address the first safety factor, 

the controller enforces configurable temperature constraints on tissues selected by the 

clinician thus providing a direct mechanism to limit, or eliminate, undesired dose 

delivery in a flexible manner that can favor safety over speed, or vice versa, at the
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clinician’s discretion. Moreover, this explicit safety feature is enhanced by the model- 

prediction feature which implicitly reduces normal tissue dose by reducing heating 

times. The second safety factor motivates the use of 3D MR imaging that delivers 

temperature measurements to the controller with high spatial resolution and a large 

field-of-view (FoV) [33], [34]. However, both of these imaging requirements 

accentuate an existing drawback of MR temperature imaging, that of a relatively long 

interval between measurements (1-8 s). Without model-prediction, the highly 

nonlinear nature of thermal dose combined with long measurement intervals makes 

accurate measurement and control of thermal dose difficult; the AMPC helps alleviate 

this problem by supplementing model-predicted temperature and thermal dose 

estimates between MRTI measurements.

Finally, the controller presented here will optimize heating times along any 

path selected and is not limited to spirals, circles or lines, thus allowing the ablated 

volume to be conformed to the shape of the target. During therapy, the clinician retains 

full supervisory control while leveraging a computer’s ability to rapidly monitor and 

adjust many parameters simultaneously.

The AMPC was tested in vivo, and simulations were used to evaluate the 

tradeoffs among competing controller parameters, to demonstrate the controller’s path 

independence, and to evaluate how model-prediction affects treatment time and the 

accuracy of thermal dose delivery.
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2.2 Materials and Methods

2.2.1 Controller Design

2.2.1.1 Overview

The adaptive model-predictive controller has the potential to facilitate 

treatments that are fast, reliable, and safe, and it supports clinicians by automating 

tasks that are difficult and time consuming for humans. The controller’s central goal 

is to automatically deliver a target thermal dose to a defined target tissue volume as 

quickly as possible while simultaneously safeguarding critical tissues. The clinician 

provides overall treatment supervision beginning with identification of two classes of 

voxels on the patient’s anatomical MR images: (1) treatment voxels (TVs) to be treated 

to a target thermal dose, and (2) protected voxels (PVs) to be safeguarded by limiting 

their maximal temperatures.

Figure 2.1a shows a simple example with nine treatment voxels and 14 

protected voxels; voxels not assigned (NA) to either class require neither ablation nor 

protection (e.g., tumor margin or other noncritical tissues). A treatment is completed 

once all TVs have received their target thermal dose (TD) as measured in cumulative 

equivalent minutes at 43°C (CEM43 ) [35], given by:

0
(2 .1)

where T  is the voxel’s MR-measured temperature, and R = 2 when T  > 43°C or R = 

4 when T  < 43°C. In this work, the small thermal dose that accrues below 42°C was 

neglected. A target dose of 240 CEM43 was used throughout this study, as this is a
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Figure 2.1: Three example controller treatment plans for a simplistic treatment, (a) MRI slice of patient taken perpendicular to 
the ultrasound beam-axis, on which the clinician identifies nine treatment voxels (TVs) and 14 protected voxels (PVs). The 
clinician groups TVs into cells (with each cell containing one or more TVs). During treatment, each cell is ablated sequentially as 
a “minitreatment” using a clinician-selected focal zone trajectory, (b) Plan 1 -  single-pass heating: example of one extreme (one 
TV per cell) where the tumor is broken into nine treatment cells (number outlined in red at top left), each with only a single TV. 
Each cell is ablated while the focal zone is stationary at the circled location for the cell. The first number within each circle 
indicates the associated treatment cell of the focal position, while the second indicates the ordering of focal positions within the 
cell. For example, treatment of the first cell begins with the focal zone dwelling at position 1:1 until the controller’s model predicts 
that the cell’s single TV has been sufficiently heated, at which time treatment advances to the second cell (focal zone dwelling at 
location 2:1), and so on until finally reaching the ninth cell with the focal zone dwelling at location 9:1. (c) Plan 2 -  multipass 
(volumetric) heating: the opposite extreme (all TVs in one cell) where all TVs are assigned to a single treatment cell that is ablated 
by repeatedly scanning the focal zone through positions 1:1, 1:2, ..., 1:9, until the controller predicts the entire cell is treated, 
(d) Plan 3 -  example of one possible treatment plan between the two extremes of Plans 1 and 2. The tumor is broken into three 
treatment cells, each of which is assigned three treatment voxels. Treatment begins with the focal zone stationary at 1:1 until all 
three TVs in its associated cell are predicted to receive their target dose, at which point the controller repeats the heating process 
for the second cell by moving the focal zone to location 2 :1, and so on until all three cells are treated.
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commonly used conservative threshold for histological tissue damage [36]-[39]. 

However, some tissues can be damaged at lower thermal doses [40] and the user is free 

to set the target dose that best suits their application. When calculating thermal dose, 

the controller assumes a linear temperature change between the discrete MR 

temperature measurements.

Many tumors will consist of a large number of TVs, so to provide flexibility in 

implementing their preferred treatment plan, clinicians divide the tumor into treatment 

cells (with each cell containing one or more treatment voxels) during pretreatment 

planning. The controller sequentially ablates each treatment cell as part of a series of 

individual minitreatments, and will heat each cell for the minimum time predicted for 

all of its treatment voxels to reach the target dose by the end of the treatment. The 

treatment plan parameters that must be specified are summarized in Table 2.1, while 

Figures 2.1b-d illustrate three example controller treatment plans for a simple 

treatment. Note that the applied transducer power is fixed during treatment, and that 

automated algorithms can greatly simplify treatment plan setup once a high-level 

treatment strategy (i.e., single-pass, multipass, etc.) is selected by the clinician. 

Regardless of the treatment plan, the controller’s model anticipates the future dose to 

be delivered to each cell after the focal zone moves to subsequent locations. This 

feature allows the controller to advance to the next treatment cell before all of the TVs 

in the current cell reach their target thermal dose, thus saving time.

MRTI allows the controller to monitor the TVs’ and PVs’ temperatures at 

discrete times during treatment and determine: (1) if the temperature of any PV has 

exceeded its specified safety limit, at which time the controller turns off the ultrasound
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Table 2.1: Summary of treatment plan parameters

Treatment Plan Parameter Normally Specified 
By Clinician1, Automatically^

Classifying regions as TVs or PVs
High-Level Treatment Strategy

(single vs multiple pass, path type,
starting location, focal point spacing)

Number of Treatment Cells

Sequential Ordering of TC’s

Assignment of TVs to Treatment Cells

Safety temperature thresholds: TON & TOFF

Cooling Model Parameters

Heating Model Parameters

US Power Level (constant)
Parameters that can only be assigned by a clinician. fParameters that could be 
assigned automatically by an algorithm. TV = Treatment voxel, PV = Protected 
voxel, TC = Treatment Cell.

power; and (2) if all TVs in the cell have reached their desired switching dose (see 

below), at which time the controller begins heating the next cell.

2 .2 .1.2 Treatment voxel model prediction

A real-time 3-D controller requires computationally efficient models so that 

predictions can be completed in a fraction of the temperature sampling interval. Thus, 

the AMPC uses a simple, flexible, exponential heating and cooling model for each 

treatment voxel, as follows:
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Theatz(t) = A l + B l ( l - exp
(2 .2)

Tcooift) = C ,-  D;exp

here i indicates the i-th treatment voxel, A i is the initial temperature before heating, 

is the final temperature after cooling, Bl and Dl are the overall temperature changes 

associated with heating and cooling, respectively, and th and tc are the exponential 

time constants for heating and cooling, respectively. A i is obtained dynamically from 

the temperature measurements, while Cl is set to 37 °C for all voxels as a conservative 

estimate. The heating terms Bl and th can be estimated before beginning the 

treatment and are subsequently derived and adapted during treatment as each new set 

of temperature measurements arrive. The cooling parameter Dl is updated 

dynamically by subtraction of from the peak temperature measured during heating, 

while Q  and rc are set in advance by the clinician and fixed during treatment.

To minimize treatment time, the controller uses the model to anticipate three 

aspects of the future temperatures of the TVs in the active treatment cell: (1) heating 

time prediction -  the heating time remaining for the TVs to reach their switching dose;

(2) cooling dose prediction -  the TVs’ temperatures, and concomitant thermal doses, 

predicted to occur during the period when the controller has advanced the focal zone 

to subsequent treatment cells, and; (3) peak temperature prediction -  the peak 

temperature that each TV will reach at the time when heating of the current cell ends. 

These three model-based anticipation features allow the heating power to be moved to 

the next cell earlier than it would be otherwise, thus minimizing heating time and,



most importantly, the amount of concurrent heating of protected tissues.

2.2.1.2.1 Heating time prediction. This feature iteratively calculates the shortest 

heating time remaining such that all TVs in a treatment cell will reach their target dose 

by the time the tissue has cooled to < 42°C. Note that a TV’s switching dose, the 

thermal dose delivered at the time the heating of a cell ends, is less than the TV’s target 

dose because the cooling prediction (described below) is performed at each iteration. 

Heating time prediction also saves time by allowing the controller to switch from one 

cell to the next between MRTI measurements since for a given MRTI sampling 

interval (e.g., 5 s), it frequently occurs that a cell’s TVs will all have reached the 

switching dose just after one temperature measurement has been made (e.g., 1 s after). 

Thus, if prediction were not being used, and so the controller waited until the next 

measurement arrived before advancing to the subsequent cell, 4 s of unnecessary 

heating would have been applied, thereby over-treating the tumor (not detrimental) 

but, more seriously, unnecessarily heating the protected voxels. While not necessarily 

a concern for a single heating pulse, the effect in the normal tissue is cumulative due 

to overlap of the SAR pattern in the near-field. This feature can reduce the penalties 

incurred when increasing the MRTI sampling time, which can in turn improve 

temperature measurement precision, increase field-of-view, or improve spatial 

resolution.

2.2.1.2.2 Cooling dose prediction. The cell’s TV temperatures and thermal doses 

are predicted for the future time period after the controller has advanced the focal zone 

to the next treatment cell. Again, this allows the controller to move to the next 

treatment cell earlier rather than waiting for the entire target dose to be delivered
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during the heating period.

2.2.1.2.3 Peak temperature prediction. This feature is activated once the heating 

time prediction mode schedules the transition to the next cell. When a cell is heated 

for only part of an MR acquisition interval, the peak temperature of the TVs may not 

be measured by MRTI, which could result in an underestimate of the true thermal 

dose delivered. This is important due to the strong nonlinearity of thermal dose that 

results in large doses being delivered in very short times at high temperatures. The 

controller corrects for this by supplementing the discrete MRTI measurements with 

continuous, model-predicted TV temperatures up to the switching time. This improves 

knowledge of the actual dose delivered and mitigates the effects of longer MRTI 

sampling durations.

The computational simplicity of this model allows the controller to rapidly 

adapt the heating model of each TV in the active cell after receiving a new set of MRTI 

measurements. Consequently, any changes to the tissue environment that impact the 

rate of heating (e.g., increased or decreased blood flow or changes in ultrasound 

attenuation) will automatically be taken into account. Furthermore, because the 

heating model is continuously updated during treatments, its predictions need only be 

accurate until the next measurement is received, not for the entire heating duration. 

Adaptation (updating of parameters in Eqn. 2.2) is performed by a constrained least- 

squares error fit, using Matlab’s fmincon function, to at least, the last Nmill 

measurements and at most, the last Nmax measurements since heating began in the 

current cell. Both N mill and N mx are user specified parameters, but for this study 

setting NmiD = 2 and N  max = 3 was found to identify accurate models. If the MRTI
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sampling rate is slow relative to the heating rate, so that the heated cell gets fully treated 

before NmiD MRTI samples are acquired (N < Nmin), then a model cannot be 

dynamically identified. In this case, the controller will make predictions based on an 

initial-guess model, if provided, until a model can be identified dynamically (N > Nmin), 

or in the last resort, it will disable heating-prediction. From the perspective of 

minimizing heating time, this is a drawback. However, this is not a problem from the 

point of view of delivering the target dose because the controller is monitoring the 

thermal dose accrued in all TVs, and thus at the next MRTI measurement it will detect 

that the target dose has been achieved and advance to the next cell. The simplicity of 

the exponential model is also advantageous because it minimizes the need for a priori 

knowledge of tissue properties or for pretreatment parameter identification, thus 

reducing the patient’s and clinician’s time spent in the MR facility.

2.2.1.3 Protected voxel safety

The controller safeguards protected voxels by enforcing a pair of user- 

configurable temperature constraints: TOFF and TON. The controller disables the 

ultrasound beam (triggering a cooling period) when the temperature of any PV exceeds 

Toff, and resumes heating once all PVs are below Ton. Each PV can be assigned 

unique constraint temperatures; for example, to more rigorously protect a particular 

area. Using temperature constraints is a conservative and flexible approach for limiting 

patient pain and protecting against tissue damage due to thermal dose. The effect of 

increased treatment safety on treatment time was examined in simulations.
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2.2.1.4 Additional controller features

The AMPC has several additional noteworthy features. First, measurement is 

given priority over prediction; i.e., if the heating model has under-predicted the actual 

thermal dose delivered during a measurement interval, and the next measurement 

confirms that all of the cell’s treatment voxels have actually received their target dose, 

the controller disregards the prediction and begins treatment of the next cell. Second, 

the controller continuously monitors and updates the thermal dose of all voxels in the 

imaging volume so if the heating of a given cell is interrupted by a safety violation, but 

the cell reaches its target dose during the subsequent safety-triggered cooling period, 

the controller will automatically advance to the next cell once the PVs reach Ton. 

Finally, as a “fail-safe” measure, if any TVs have not reached their target dose by the 

end of the treatment, then the controller will perform a “clean up” pass to deliver any 

missing dose.

2.2.2 Simulations

All simulations treated a cylindrical tumor of radius 7 mm and height 10 mm 

(1539 TVs) positioned in the center of a homogenous 10 x 10 x 10 cm tissue volume 

(Figure 2.2a) with a finite-difference grid resolution of 1 x 1 x 1 mm. A 4 x 4 x 3 cm 

volume of protected voxels (50,430 PVs in total) was identified starting at the 

ultrasound beam’s plane of entry into the simulated volume and extending 3 cm into 

the volume, leaving 1.5 cm of unassigned “tumor margin” voxels between the PVs and 

the bottom edge of the tumor (Figure 2.2b). The simulated transducer was a 256- 

element phased-array operating at 1 MHz (focal distance of 13 cm, aperture diameter 

of 14.5 cm, f-number = 0.90). The transducer was positioned in water 8 cm from the
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Figure 2.2: Configuration of simulation volume. (a) The ultrasound beam propagates 
through 8 cm of water before entering the 10 x 10 x 10 cm tissue volume of muscle 
with a cylindrical tumor centered within it. (b) Zoomed-in view of the tumor and 
protected voxels shown in (a). The tumor, (radius = 0.7 cm, height = 1 cm) is 
subdivided into three planes, which are visited in the order (M) middle (z = 0 mm, 
geometric focus), (B) back (z = +3 mm), (F) front (z = -3 mm).



simulated volume.

Two single-pass treatment plans (Figure 2.3) were simulated: (1) single pass- 

hottest neighbor (SP-HN) and (2) single pass-square spiral (SP-SS). For both treatment 

plans, the trajectories shown in Figure 2.3 were replicated in each of three planes 

shown in Figure 2.2b. Treatment progressed in axial “stacks,” each of which consisted 

of a single treatment cell from each plane, with the three cells in each stack ablated in 

the order: middle (z = 0 mm), back (z = +3 mm), front (z = —3 mm). There were 

149 treatment cells per plane (447 cells total), yielding an average of ~3.4 TVs/cell.

While the two treatment plans have the same number of cells, focal positions, 

and average number of TVs per cell, they differ in the sequence in which the cells are 

treated. The hottest-neighbor treatment plan takes advantage of the adjacency of 

successive axial stacks and the thermal buildup resulting from the superposition of 

SAR patterns from the most recently heated cells. The square-spiral initially shares 

some of that adjacency, and also takes advantage of thermal buildup in the tumor by 

proceeding sequentially from the center of the tumor to its periphery; however, as 

treatment progresses its treatment cells become increasingly farther apart and more 

independent from its recently heated predecessor cells.

The hybrid angular spectrum ultrasound simulation method [41] was used to 

efficiently precompute the 447 SAR patterns for each focal zone position required for 

each plan. The simulated SAR patterns were used in conjunction with Pennes’ bio­

heat transfer equation [42], in which the metabolic power generated by the tissue was 

neglected, the specific heat of the tissue and arterial blood were assumed to be 

approximately equivalent, and conduction and perfusion were assumed to be scalars,
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Figure 2.3: Middle plane (M) for the two simulated treatment plans: (a) single pass- 
hottest neighbor (b) single pass-square spiral; Gray = treatment voxels; Red outline = 
treatment cell; Black dot = focal zone position for a cell. The starting focal zone 
location is marked with a white star, while the ending location is marked by a white 
square. The focal zone dwells at each location until the associated cell’s treatment is 
completed. Note: although not visible in this drawing, each treatment cell includes 
multiple TVs (~3.4 on average) that extend in the direction perpendicular to the slice 
shown.
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leading to the simplified equation:

ptc , iT{X' ^ Z' t) = Qa(x,y , z , t )  + kV 2T  — w,,ct (T — Tb) (2,3)

where T  is the tissue temperature in °C; x, y, z are the spatial coordinates in m; t is 

time in s; pt is the tissue density in kg/m3; ct is the tissue’s specific heat in J/kg/°C; 

Qa is the absorbed ultrasound power per unit volume in W /m 3 ; k is the tissue’s thermal 

conductivity in W /m/°C; wb is the blood perfusion rate in kg/m3/s, and Tb is the 

temperature of the blood in °C. Tb and all boundaries were set to the volume’s initial 

temperate, T0 = 37 °C. An explicit finite-difference solution (Euler’s method) was 

used to update temperatures between two time periods, Tl+1 and Ti, separated by At. 

For each time step, the simulation used one precomputed Qla pattern scaled to the 

desired power magnitude. Arbitrary focal zone trajectories can be simulated by 

successively changing the Qla pattern for each corresponding time step. The simulation 

time step was = 0.1 s except when the controller’s predicted heating time was not 

evenly divisible by A t (e.g., 0.25 s), in which case a single shorter time step equal to 

the remainder (e.g., 0.05 s) was used for the last time step.

The MR sampling interval A t MR is the duration required to acquire each MR 

temperature measurement. While the finite difference thermal model operates at A t 

to ensure numerical stability, the controller is only given temperature information 

every A tMR. Furthermore, at the i-th M R measurement, the center of k-space is 

usually sampled at the midpoint of the sampling interval, i.e., at t m . = A t MR(i — 0.5),



thus the temperature reported at the end of an interval, te . = i- A t MR , is most 

indicative of the tissue temperature at tm . Effectively, the controller is making 

decisions at t based on measurements at tm , a delay of At™R, and this real-world 

effect is included in the simulations.

The following tissue properties were assigned to all voxels; these values fall 

within published ranges for biological tissues [43], [44]: US attenuation = 0.05 

Np-cm-1-MHz-1, speed of sound = 1517 m-s-1, pt = 993 kg-m-3 , k = 0.58 W-m-1-°C-1, 

ct = 4187 J-kg-1-°C-1, wb = 0.5 kg-m-3-s-1 . Unless otherwise noted, simulations used: 

M mr = 3.0 s, Toff = 43.0 °C, Ton = 41.5 °C, and an applied power of 15 W. At this 

power, the resulting max/min peak absorbed power densities in the treatment cells 

were 1.97 x 107 /  1.46 x 107 W-m-3, which correspond to linear heating rates of 4.7 /

3.5 °C-s-1.

To quantify the time savings derived from each of the major controller 

optimization features, simulations were performed at successively increasing levels of 

optimization, with each level keeping the features of the previous level and adding one 

more optimization feature. As a reference case, the independent heating pulses (IP) 

scenario was run first without any AMPC features. For this case, each cell begins at a 

baseline temperature of 37 °C and the cell’s entire 240 CEM43 target dose is delivered 

during the heating period. Next, the different AMPC optimization levels were enabled 

as follows: (1) +temperature buildup: this first level of optimization illustrates the 

simplest benefit of using MRTI to monitor the TVs’ temperatures. Rather than 

beginning at the baseline temperature of 37 °C (as in the IP reference case), the cell’s 

TVs begin at the final temperatures reached after treating the previous cell. As in the
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IP case, each cell receives 240 CEM43 and only the dose delivered while heating that 

cell is considered (i.e., no prior dose was accounted for, and the future dose to be 

delivered after the focal zone advanced to the next cell is ignored). (2) +Prior dose: 

adding this feature to the temperature buildup feature demonstrates the benefit of using 

a computer that can use MRTI to calculate the thermal dose delivered to the volume 

in real-time. When treatment of a new cell begins, the dose already delivered to that 

cell’s TVs is known, and thus the controller need only deliver the remaining dose. (3) 

+Adaptive model-predictive control: this level adds the three predictive modes of the 

AMPC (described previously) to the use of temperature buildup and prior dose 

accounting.

In the IP reference case, only the three cells with focal zone positions along the 

transducer centerline at x = y  = 0, z = {0 mm, -3 mm, +3 mm} were simulated. The 

time to treat each of these three cells was multiplied by the number of cells in each z- 

plane (149) and summed to arrive at the total treatment time. This represents the 

minimum treatment time achievable by the independent heating pulses approach (for 

a given transducer power) since it ignores the inherent power losses when using 

phased-array steering to treat the edges of the tumor. These losses would reduce the 

SAR and thereby lengthen the needed heating times. All simulations were run first 

with safety constraints disabled, and again with safety constraints enabled 

(Ton = 41.5 °C and Toff = 43.0 °C).

2.2.3 In Vivo Experiments 

After completing development tests in phantoms, the AMPC was tested in vivo 

in rabbit thigh muscle (two rabbits, three thighs) with a target dose of 240 CEM43 in all

58



treatment voxels. Experiments were designed to test specific features of the controller. 

In all tests, the rabbit was positioned on its side (Figure 2.4a) approximately 11.5 cm 

above the transducer, which was driven by electronics from Image Guided Therapy 

(Pessace, France). The transducer (described in the previous section) was coupled to 

the rabbit with deionized water that was degassed using a custom built degassing 

system. Measurements from a Hanna Instruments HI-9146 (Woonsocket, Rhode 

Island, USA) meter confirmed that this system degassed the water to a dissolved 

oxygen level of < 1.0 mg/L of water.

In order to demonstrate the controller feature that allows it to assign different 

numbers of TVs to each treatment cell and then automatically treat them in sequence,
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Figure 2.4: Configuration of in vivo experiments. (a) Rabbit’s position during all 
controller tests. (b) Anatomical MR image of in vivo rabbit experiment in the transverse 
(left) and coronal (right) planes, respectively. White box indicates approximate 
treatment location for Run 1. (c) Controller configuration: single-pass-raster scan 
treatment plan with nine treatment cells covering a 5 x 5 x 3 mm volume. Each cell 
was heated by a single focal zone position (circles). Shading and outlines indicate to 
which cell each treatment voxel was assigned.



the controller was configured to treat a 5 x 5 x 3 mm treatment volume using a single­

pass raster-scan treatment plan in a single plane, as shown in Figure 2.4b. The 25 

treatment voxels were assigned to nine treatment cells, and each cell was sequentially 

ablated by dwelling at a single focal zone position. Controller Runs 1-4 used a 

transducer power of 20 W and had no normal tissue constraints, while Run 5 used a 

transducer power of 33 W and had a 16 x 16 x 3 mm region of protected voxels 

specified in a plane 2 cm below the treatment volume with TOFF and TON thresholds of 

45 °C and 41 °C, respectively. Each run was performed in a unique region of rabbit 

thigh that had not been ablated by previous tests, and a single short test shot was 

performed in advance of each run to adjust the targeting of the center cell.

Temperature measurements for controller feedback were acquired using a 

Siemens 3T Tim Trio MRI scanner and a segmented gradient recalled echo (GRE) 

echo planar imaging (EPI) proton resonance frequency shift (PRF) thermometry 

sequence with fat saturation. For Runs 1-4, 3D temperatures were acquired every 4.2 

s in a 256 x 168 x 27 mm volume at 2 x 2 x 3 mm voxel resolution, and each 

measurement was zero-fill-interpolated to a voxel spacing of 1 x 1 x 1.5 mm to reduce 

partial volume effects [45]. Other relevant MR parameters were: TR/TE = 35 /  11 ms; 

flip angle = 15°; EPI factor = 9; 18 slices with 33.3% slice over-sampling; and 

bandwidth = 738 Hz/pixel. For Run 5, the PRF sequence was run with three 2D slices 

(two in the tumor, one in the protected tissue) in order to cover a sufficiently large 

field-of-view to monitor the protected voxels; relevant MR parameters for this 

sequence were: FoV = 256 x 176 mm; resolution = 2 x 2 x 3 mm (zero-fill-interpolated 

to 1 x 1 x 3 mm); TR/TE = 39/8 ms; flip angle = 25°; EPI factor = 1; bandwidth = 751
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Hz/pixel; acquisition time = 3.7 s.

2.3 Results

2.3.1 Simulations

2.3.1.1 T reatment plan independence

To illustrate the controller's treatment plan independence, both treatment plans 

shown in Figure 2.3 were simulated at 15 W with and without safety constraints, and 

the resulting treatment time and maximum thermal dose delivered to the protected 

tissue are shown in Figure 2.5. With safety constraints disabled, the single pass-hottest 

neighbor plan was 17% faster than the single pass-square spiral plan (15 vs 18 

minutes), and also reduced the maximum dose delivered to the protected voxels by 

44% (282 CEM43 vs 500 CEM43). For the practical case when safety constraints were 

enabled, the single pass-hottest neighbor plan was again faster than the single pass- 

square spiral plan (1 hour 45 minutes vs 2 hours 5 minutes), however, both plans were 

approximately 6-7 times slower than their unsafe cases. Importantly, however, the

Figure 2.5: Treatment time and maximum protected voxel thermal dose as a function 
of treatment plan at 15 W. AMPC was used for all runs. SP-SS = single-pass-square- 
spiral, SP-HN = single-pass-hottest neighbor.



protected voxel dose was limited to < 27 CEM43 for the single pass-hottest neighbor 

plan and < 35 CEM43 for the single pass-square spiral plan.

Unless otherwise noted, the remaining simulations only consider the single 

pass-hottest neighbor treatment plan because it was 24% faster than the single pass- 

square spiral plan and delivered 23% less dose to the protected tissues.
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2 .3 .1.2 Time savings derived from controller optimization levels

The treatment times and maximum protected voxel thermal dose resulting as 

each of the major controller optimization features are enabled are shown in Figure 2.6. 

The no-constraint half of this graph shows the time gains attainable by successively 

adding controller optimizations; however, all of those results yielded thermal doses in 

the protected voxels that exceeded the target dose for tumor ablation. For example, 

the +thermal buildup (+TB) case without safety constraints delivered >3000 CEM43 to

IP +TB +PD +AMPC +AMPC +PD +TB

Figure 2.6: Treatment time and maximum dose delivered to protected voxels for the 
single pass-hottest neighbor treatment plan at 15 W as a function of optimization 
feature when PV safety constraints are disabled (shaded region) and enabled (white 
region). IP = independent heating pulses (no optimization); +TB = thermal buildup 
added; +PD = prior dose added; +AMPC = adaptive model-predictive control added. 
The maximum PV dose for +TB with no safety constraint is 3277 CEM43.



the protected tissues. Thus, the no-constraint cases are of interest only to illustrate the 

importance of considering safety.

In the practical case when safety constraints are enabled, treatment time 

sequentially decreases as each optimization level is added. Enabling temperature 

buildup gives a treatment time of 3 hours 52 minutes, almost as fast as the independent 

pulses case without safety constraints (note that the IP case is artificially fast since it 

does not include the interpulse cooling period, often 90 s, that would be necessary to 

make the pulses truly independent). Adding prior dose reduces treatment time to 2 

hours 33 minutes, and full AMPC is the fastest, taking only 1 hour 45 minutes; a 54% 

reduction compared to +TB only. The full AMPC case was also the safest case, 

yielding a maximum protected voxel dose of 27 CEM43 compared to 40 and 57 CEM43 

for the +prior dose and +thermal buildup cases, respectively.

2.3.1.3 Safety constraint thresholds

The previous results have shown that activation of the AMPC’s safety 

constraints reduces the thermal dose delivered to the protected voxels. Thus, to 

investigate the tradeoffs of different safety thresholds, multiple Toff /T on 

combinations were simulated.

Starting with the safety constraint thresholds used previously, Toff = 43.0 °C 

and Ton = 41.5 °C, Figure 2.7 shows the change in treatment time and maximum 

protected voxel dose when Toff is decreased in 0.5 °C intervals to 42.0 °C (the 

temperature below which thermal dose is assumed to no longer accumulate). Then, 

Toff is held constant at 42.0 °C (limiting the protected voxel dose to zero) while Ton
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Figure 2.7: Effect of safety threshold on treatment time and maximum PV thermal 
dose for the single pass-hottest neighbor treatment plan at 15 W with AMPC. Shaded 
region: Toff reduced in 0.5 °C increments, fixed Ton = 41.5°C. Unshaded region: Ton 
reduced in 0.5 °C increments, fixed Toff = 42 °C. Placing more stringent constraints 
on Toff reduces dose delivered to protected voxels at the expense of increased 
treatment time. Reducing Ton increases cooling time before the US is re-enabled, but 
also increases the available heating time before the next constraint violation occurs.

is decreased in 0.5 °C intervals, effectively varying the cooling duration per constraint 

violation. The results show that, if desired, the controller can be configured with a 

strict Toff value that disallows any significant thermal dose being delivered to the 

protected tissue; for example, when Toff /  Ton = 42.0/41.5 °C, protected voxel 

thermal dose was constrained to 0 CEM43, whereas a maximum of 27 CEM43 was 

delivered to the protected voxels when Toff /  Ton = 43.0/ 41.5 °C. Such increased 

safety comes at the expense of considerably increased treatment time; e.g., the fastest 

treatment when zero protected tissue dose was allowed (Toff /  Ton = 42.0/40.5 °C) is 

1.8 times as long as when 27 CEM43 was allowed (with Toff /  Ton = 43.0/ 41.5 °C).

Interestingly, when fixing Toff = 42.0 °C (to minimize protected voxel dose), 

Figure 2.7 shows that decreasing Ton, to force longer cooling intervals, yields a net 

time savings until Ton = 39.5 °C. After this point, the additional heating time afforded



is countered by the additional cooling time required, and total treatment time begins 

increasing again.

2.3.1.4 Accuracy and uniformity of thermal dose delivered

To investigate how accurately and uniformly the controller delivered the target 

dose to all treatment voxels, the final thermal dose distributions achieved for each 

controller optimization level were analyzed for the practical AMPC case of Figure 2.6: 

the single pass-hottest neighbor treatment plan with safety constraints enabled. The 

top row of Figure 2.8 shows a frequency distribution of dose for all treatment voxels 

in the tumor, while the bottom row shows the distribution of the doses for only the 

lowest dosed treatment voxel in each cell. Treatment time is dominated by the voxel 

that receives the lowest SAR in the cell, and thus overdosing in the other treatment 

voxels of the cell is expected. The target dose for all voxels was 240 CEM43, and the 

median doses delivered to the least dosed voxel of each cell were 1676, 886 , and 450 

CEM43 for the +temperature buildup, +prior dose, and +AMPC optimizations, 

respectively. The safety constraint threshold was exceeded 70, 44 and 30 times for the 

+temperature buildup, +prior dose, and +AMPC cases, respectively. Enabling each 

additional controller optimization level thus makes a significant improvement in 

treatment quality (more accurate dose delivery and fewer safety triggered cool-down 

periods). The full featured AMPC delivers the target thermal dose to the treatment 

voxels more accurately, the fastest, and with the lowest doses delivered to the protected 

voxels.
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Figure 2.8: Histogram of final dose delivered as controller features are enabled. +Temperature buildup (+TB): (a) all treatment 
voxels, (b) minimum dose delivered to cells. +Prior dose (+PD): (c) all treatment voxels, (d) minimum dose delivered to cells. 
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2.3.1.5 Applied power and treatment time

When increasing the applied power magnitude there is a tradeoff between the 

increased rate of heating of the tumor vs that of the protected voxels. Figure 2.9 

demonstrates this tradeoff for the single pass-hottest neighbor treatment plan with full 

AMPC optimization and safety constraints enabled. Treatment time and dose to the 

protected voxels monotonically decreases with higher powers, but there is a “knee” in 

the curve beyond which the benefits of higher power rapidly decreases.

2.3.1.6 Effect of MR sampling time

MR acquisition time is valuable currency which can be spent, for example, to 

increase the imaging field-of-view, improve spatial resolution, and decrease noise, but
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Figure 2.9: Treatment time and maximum protected voxel (PV) thermal dose as a 
function of applied ultrasound power for single pass-hottest neighbor treatment plan 
run with AMPC and safety constraints enabled. Values in parenthesis indicate the 
number of safety violations for each case.



these gains would be accrued at the expense of a longer interval between 

measurements. It would be beneficial if model prediction could help mitigate the costs 

of increasing the MR sampling interval and allow the clinician more freedom in 

selecting the imaging parameters. Simulations using the +AMPC and +prior dose 

optimization levels were run at a fixed power of15 W for 1, 3, 5, and 7 s MR sampling 

intervals to explore the effect of MR sampling time on treatment time and dose 

delivered to the protected voxels. As shown in Figure 2.10, the AMPC treatment time 

increased by 42% when the sampling interval increased from 1 s to 7 s, while the 

protected tissues' maximum dose increased by 28% over the same range; however, the 

AMPC outperforms the +Prior Dose optimization level by 19-31% over all sampling 

intervals, thus illustrating how AMPC can reduce treatment times even with long MR 

sampling times. For the AMPC, as the sampling interval increases, the temperature 

overshoot above the TOFF safety threshold also increases, but was < 0.2 °C for all cases.
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Figure 2.10: Treatment time (a) and maximum protected voxel thermal dose (b), as a 
function of MRTI acquisition interval; simulations run at 15 W with +AMPC or 
+Prior Dose optimization with safety constraints enabled using the single pass-hottest 
neighbor treatment plan. Implementing AMPC decreases both the treatment time and 
maximum thermal dose in the protected voxels for any given MR acquisition interval.



Similarly, the number of violations changed from 29 to 37 for the 1 s and 7 s MR 

sampling intervals, respectively.

2.3.2 In Vivo Results

2.3.2.1 AMPC repeatability

Figure 2.11 illustrates the final thermal dose deposited after each in vivo 

controller test for the treatment plan shown in Figure 2.4c. All four runs successfully 

delivered the target dose to all of the TVs, and the controller was able to create sharp 

boundaries between the target volume and surrounding tissues, with doses falling 

below 10 CEM43 after a distance of < 4 mm outside of the prescribed treatment volume. 

The first trial (Figure 2.11a) shows signs of secondary dose delivered due to proximity 

of the rabbit’s thigh bone to the treatment volume (see Figure 2.4b).

Of the 36 treatment cells treated in the four trials (nine cells per trial), the 

controller’s ability to monitor the temperature and thermal dose history of the entire 

volume allowed for one cell to be skipped entirely because the AMPC detected that it 

had already received the target dose during treatment of the previous cells. In two cells 

the controller deferred to the MRTI measurements and advanced the treatment to the 

next cell because the target dose had been delivered before a heating model could be 

identified dynamically. Most interestingly, the controller’s prediction that the 

switching dose for the active cell would be delivered between MRTI measurements 

and that the cell’s target dose would be reached during cooling were borne out in 91% 

of cells treated.
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2.3.2.2 Temperature prediction accuracy during heating

The simplicity of the exponential heating model used by the AMPC for 

prediction is a benefit for ease of use because it can be identified and adapted during 

treatment. However, to evaluate the accuracy of the predictions, the temperatures 

predicted by the model at tj for the following measurement at t i+1 were compared to 

the temperatures actually measured at t i+1 for one in vivo rabbit trial. Each dot of 

Figure 2.12 represents a measured temperature and the corresponding error in the 

predicted temperature. The MRTI measurements were assumed to have zero-mean 

Gaussian noise and calculated to have a standard deviation of a = 1.2 °C by sampling 

an unheated 10 x 10 mm region of the rabbit thigh during the initial baseline 

temperature measurements. The results indicate that the heating model predicted the 

measured temperature within the measurement error, and the average prediction error 

was - 0.2 ±0.7 °C.
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2.3.2.3 Safety constraints

An in vivo evaluation of the safety constraints consisted of configuring the 

AMPC to monitor a plane of PVs 2 cm below the treatment volume with safety 

thresholds that allowed high normal tissue temperatures for short intervals (TOFF = 

45°C and Ton = 41°C). All treatment cells successfully received their 240 CEM43 target 

dose, and as shown in Figure 2.13, the controller constrained the temperature of the 

protected voxels by entering the cooling mode when TOFF was violated and then 

resuming treatment after all protected voxel temperatures were < Ton. This example 

included an additional, optional, controller feature that can be enabled to increase 

safety; this feature forces the PVs to cool to Ton between the heating of each cell even 

if Toff has not been breached. While this feature slowed the in vivo test treatment (as 

did the choice of path—which was made to demonstrate the controllers features, not 

to deliver the fastest treatment), the AMPC constrained the maximum dose delivered 

to the protected voxels to 8.4 CEM43.

2.4 Discussion

our simulation and in vivo results show that a real-time model-predictive 

controller can be practically implemented for MRgFUS therapy, and can reduce 

treatment times, optimize any treatment path, and actively protect normal tissues. 

Each controller optimization feature (+thermal buildup, +prior dose, and +adaptive 

model-prediction) makes significant contributions to those improvements (Figure 2.6), 

and model-prediction reduces treatment time by approximately 55% compared to only 

accounting for thermal buildup. Furthermore, the reduced heating times made possible 

with model-prediction also result in reduced dose delivered to protected tissues.
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Figure 2.13: Protected voxels’ maximum temperature vs time during in vivo treatment with Toff = 45 °C and Ton = 41 °C. For 
this demonstration only, an additional safety feature forced the treatment of each cell to begin with protected voxel temperatures 
< Ton- Maximum dose delivered to PVs was 8.4 CEM43.
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The nonlinearity of the thermal dose equation (Eqn. 2.1) makes accurate 

delivery of thermal dose difficult without model-predictive control (Figure 2.8). 

Modeling improves the accuracy of the delivered target dose by anticipating the 

nonlinear thermal dose effects, and has the additional advantage of reducing heating 

times by anticipating dose delivered during cool-down periods. The simple heating 

model used for prediction is sufficiently accurate (Figure 2.12), has the advantage of 

not needing a priori knowledge of tissue properties, and is amenable to on-line 

adaptation making the controller robust to tissue property changes during treatment. 

During in vivo evaluations, the AMPC always delivered the prescribed 240 CEM43 

target dose to the treatment voxels (Figure 2.11) and the boundary between treated 

and untreated regions was sharply demarcated with <10 CEM43 delivered to regions > 

4mm away from the target volume.

While the AMPC will automatically benefit from the work of others who 

accelerate MR temperature measurements [34], model-prediction will always be useful 

in decreasing treatment time because it anticipates the future dose to be delivered after 

the focal zone leaves a given treatment cell. Furthermore, model-prediction provides 

the flexibility to trade MR sampling time for increased coverage or higher resolution 

measurements. For example, Figure 2.10 demonstrates that performing the single 

pass-hottest neighbor treatment plan with model-prediction and an MR sampling time 

of 5 s would achieve the same degree of safety and complete the treatment faster than 

if treatment were performed with a 1 s MR sampling time but without model- 

prediction.

Our results reinforce the previously shown [29], [30] importance of considering
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the safety of healthy tissue when discussing treatment time, as unconstrained 

treatments can deliver >>240 CEM43 to normal tissues (Figures 2.5 and 2.6). In vivo 

evaluations of the configurable safety constraint showed that the AMPC reliably and 

automatically triggered cooling periods and limited protected voxel dose to < 9 CEM43 

without affecting treatment efficacy. While enabling the AMPC’s safety feature comes 

at the expense of longer treatment times, and relies upon capturing a large field-of-view 

(preferably with a fully 3D acquisition scheme), it is necessary for the safe treatment 

of clinically relevant tumors. Simulations showed the AMPC is capable of 

constraining dose to zero in tissues near the tumor (Figure 2.7), but the resulting 

treatment time may be difficult for the patient to endure. As Figure 2.7 illustrates, a 

more balanced selection of temperature constraints (T off/T on = 43.0/41.5 °C) reduced 

thermal dose in the intervening tissues to manageable levels (< 30 CEM43) while 

achieving a more reasonable treatment time.

We have also demonstrated that the AMPC can be used with arbitrary 

treatment paths defined by the user (Figure 2.5 and 2.11), which allows the treatment 

to be conformed to the tumor geometry and patient anatomy. Those results 

demonstrate that a single-pass treatment plan with small cells, each heated by a single 

focal zone location, is clinically practical and that path selection is important for 

minimizing both treatment time and dose delivered to protected tissues. ou r results 

indicate that a treatment plan that achieves a high degree of adjacency (proceeding 

from the completed cell to a nearby cell) takes maximum advantage of the temperature 

buildup in the tumor. This explains why the single pass-hottest neighbor treatment 

plan is 24% faster and delivers 23% less thermal dose to the protected voxels than the
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single pass-square spiral plan. Path selection becomes critically important once safety 

constraints are enabled since every safety-triggered cool-down period causes thermal 

buildup in the tumor to dissipate. Therefore, a path with a high degree of adjacency 

will more fully leverage the benefit of thermal buildup and maximize the volume 

treated per constraint violation. While several treatment paths have been 

demonstrated, further studies into optimal path selection are needed.

Our results with a real-time controller agree with previous optimization 

findings [46], [47] that: (1) the use of higher powers monotonically decreases treatment 

times, although a point of diminishing returns is reached after which minimal time 

gains are attained even with large increases in applied power (Figure 2.9); and (2) that 

an optimal interpulse cooling time exists (Figure 2.7), though it likely depends on 

many treatment parameters and this controller does not solve for the optimal cooling 

period.

Given our experience with this initial version of the controller, several 

improvements are planned to allow the adaptive model-predictive controller to further 

reduce treatment times and improve safety and efficacy. First, given the influential role 

of safety constraints in prolonging treatment time, a model of the heating and cooling 

of the protected voxels will be added to complement that of the treatment voxels (Eqn. 

2.2). While moving the focal zone along the scan path, the controller could then 

predict if the next heating pulse would involve a safety violation. Using both the PV 

and TV models, the violation could be avoided by replacing the fixed TON safety 

threshold with a real-time optimization that solved for the optimal starting temperature 

(Ton_opt) [46]. Once the PVs cooled to Ton_opt, the next heating pulse could begin and
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would complete without interruption. It may also be possible to speed up treatments 

by implementing a “fuzzy logic” constraint that would allow a few short-lived 

violations of Toff. This would eliminate the lengthy process of reheating a cell, after it 

had cooled, to deliver only a small amount of dose. Such a change would essentially 

be a combined temperature and dose safety system, with model-prediction expanded 

to include PV dose prediction.

Second, improved controller features, such as better treatment voxel models, 

could further reduce treatment times. In particular, (1) the current model assumes that 

a single exponential cooling period follows each heating pulse, a conservative 

approach that does not account for the complex temperature profiles that occur due to 

SAR overlap while treating future cells. Extension of the current TV cooling model to 

include more specific future events, something that is imminently feasible when the 

scan path is known, could reduce heating times. (2) If the heating rate is high enough 

so that a heating model cannot be identified before a cell is fully treated (see the 

Materials and Methods section), the AMPC cannot take full advantage of its predictive 

abilities and will likely over-heat the treatment cell. A better heating model approach 

is needed for these faster heating rates. For example, data-mining of large collections 

of treatment data combined with machine learning algorithms could yield better initial 

guesses for model parameters and improve model adaptation by applying information 

from similar tumor locations from other treatments, or more simply, from previous 

cells of the current treatment. (3) As a conservative approach, the current 

implementation places a high emphasis on MRTI measurements over model-predicted 

temperatures. In particular, the controller is allowed to switch treatment cells only
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once within an MRTI interval to ensure at least one temperature measurement is 

acquired while treating each cell. In some cases this can introduce unnecessarily long 

heating times. Implementing the above changes would have the additional advantage 

of reducing the AMPC’s treatment time dependence on the MRTI sampling interval 

(Figure 2.10), allowing for improved MRTI imaging.

Other investigators have reported ablation rates of ~3-4 cm3/minute using 

multipass (volumetric) treatment strategies [12], [23], [24], values much larger than 

those attained in this study. The aforementioned studies obtained higher ablation rates 

because they performed treatments under different conditions. First, they did not 

predefine a target volume for ablation (as was done in this study), but instead executed 

a multipass treatment plan of fixed radius and evaluated the volume ablated post­

treatment. Second, the multipass treatment plan implemented in those studies was 

executed with much higher applied power (~130 W vs 15 W in most of the current 

study). Third, they treated large tumors. Lastly, and perhaps most notably, those 

studies did not implement safety constraints of any kind.

When the AMPC’S treatment conditions are made more equal to those used in 

prior studies, simulations show the AMPC can reach comparable ablation rates. For 

example, when the AMPC system is used with the treatment plan shown in Figure 

2.3a, a power of 130 W, a fast MRTI sampling interval, no safety constraints, and 

considering all ablated tissue, the AMPC’S resulting ablation rate was 4.9 cm3/minute 

(65 s treatment time). once the safety constraints are re-enabled (keeping the power at 

130 W), treatment time increases to 44 minutes and the ablation rate decreases to 0.04 

cm3/minute. This illustrates again how protecting a critical area in close proximity to
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the treatment volume can substantially prolong treatments.

In the future, an automatic mechanism for dynamically adjusting the 

transducer phases to ensure that the active cell receives the maximum SAR would 

further simplify treatments for the clinician. Finally, the AMPC presented here has 

been tailored to ablative FUS applications, but the concept of adaptive model- 

predictive control could benefit mild hyperthermia treatments. Instead of using model- 

prediction to anticipate nonlinear thermal dose effects, it could make it possible to 

approach the target temperature more quickly or with less overshoot. Additionally, 

real-time model adaptation could help compensate for tissue environment changes, 

such as blood flow, as well as make treatments more automatic by reducing the need 

for pretreatment controller tuning. Moreover, the slower rates of temperature change 

and longer heating durations encountered in hyperthermia treatments make it easier 

to dynamically derive and adapt a model (reduced need for fast MRTI). Lastly, model- 

prediction may also benefit hyperthermia treatments by allowing for increased MRTI 

field-of-view or improved resolution

2.5 Conclusion

The simulations and in vivo results show that adaptive model-predictive control 

can automatically deliver safe, effective MRgFUS treatments, and that activation of 

each of its multiple features successively reduces treatment time; path planning; 3D 

temperature measurements; accounting for prior dose; and model prediction. Such 

model-predictive control is practical for single-pass heating approaches despite their 

associated short heating intervals and need for rapid controller actions. The safety 

features of the AMPC provide clinicians with a flexible tool to safeguard healthy tissue
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to any degree desired while automatically performing reliable and effective treatments 

in significantly reduced times. Finally, the controller’s features provide extensive 

flexibility to the clinician: it is independent of the specified focal zone path; the safety 

vs speed tradeoff is customizable; and the model’s parameters are identified and 

adapted during treatment.
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CHAPTER 3

THREE-DIMENSIONAL MR ACOUSTIC 

RADIATION FORCE IMAGING

3.1 Introduction

Magnetic resonance-guided focused ultrasound (MRgFUS) is a promising 

noninvasive technology with wide ranging applications for the treatment of cancer [1 ]-

[3], localized drug-delivery [4]-[6], neuromodulation applications [7], [8], and blood- 

brain barrier opening [9]—[11]. One critical aspect of successfully using MRgFUS for 

any application is accurate positioning of the ultrasound focal spot as well as ensuring 

high quality focusing when the beam propagates through an aberrating tissue 

environment. Aberrations caused, for example, by tissue inhomogeneity in the breast

[12], [13] or by tissue-bone [14] interfaces could cause inadvertent damage to 

nontargeted tissues.

One clinically implemented approach to minimizing the risk of inadvertent 

damage to nontargeted tissue is to perform low-power interrogation pulses while 

measuring the resulting temperature distribution via MR proton resonance frequency 

(PRF) shift thermometry. Since the location and magnitude of the temperature rise is 

not known in advance, and many interrogation pulses may be required during a single 

treatment, unintended tissue damage may occur. Furthermore, the standard PRF



thermometry method is ineffective in fat, which would be especially problematic for 

therapies in organs such as the breast. Previous work has shown that the tissue 

displacement caused by focused ultrasound can be measured using MR acoustic 

radiation force imaging (ARFI), and that this technique can be used to localize the 

focal spot in 2D [15]—[17]. Since these MR-ARFI techniques use short ultrasound 

bursts on the order of 1-20 ms with low duty cycles (1-10%), minimal tissue heating is 

induced, making 2D MR-ARFI a safe alternative to low power interrogation pulses. 

Additionally, MR-ARFI generates displacement maps via motion encoding gradients 

(MEG) that produce a phase difference proportional to the tissue’s displacement; as a 

result, MR-ARFI is not susceptible to the same issues as PRF thermometry and can 

measure displacement in any tissue type, including fat.

Several methods for performing MR-ARFI have been presented using both 

spin-echo and gradient echo sequences, and several MEG schemes have been used 

including: (1) repeated unipolar [16], [18]; (2) bipolar gradients [17], [19], [20] (often 

repeated on both sides of the refocusing RF pulse in spin-echo sequences); (3) 

alternating bipolar gradients [21]; and (4) tripolar gradients [22]. In addition to beam 

localization, variations of these encoding schemes have been used to apply MR-ARFI 

for phase aberration correction [22]-[25], and tissue property determination [16], [19], 

but has been done with 2D imaging only. While 2D imaging has proved to be fast, the 

low displacements being measured (on the order of micrometers) sometimes required 

many averages to improve SNR. When used for beam localization, there is the risk 

that the peak energy deposition does not occur in the imaging plane because the user 

must place the measurement plane before the location of the focus is known.
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Furthermore, significant energy may be deposited outside the 2D field-of-view (FoV), 

which will not be captured but may impact beam quality. Measuring the displacement 

field over a large FoV in 3D would simplify and improve the accuracy of beam 

localization as well as improve knowledge of how intervening tissues affect beam 

quality. For the purpose of phase aberration correction, it is also possible that the 

increased information content provided by a 3D displacement field would improve the 

resulting focus or reduce the number of scans required to perform the optimization 

process. Also, 3D acquisition schemes have inherent signal averaging which improves 

SNR compared to a single 2D acquisition.

This chapter presents a method for performing 3D MR-ARFI with special 

attention paid to reducing imaging time and maintaining safe levels of tissue heating 

(< 6 °C). Several unique features are presented including: (1) an unbalanced bipolar 

motion encoding gradient waveform that allows for lower echo-times and higher echo 

train lengths (ETL); (2) a configurable kz reduction factor (KZRF) that reduces the 

number of US pulses required by firing only during the acquisition of a central subset 

of the kz partitions; and (3) pulse repetition time (TR)-level interleaving of the US-ON 

and US-OFF images which can either reduce the effective duty cycle by half (reducing 

tissue heating) or reduce the total imaging time by half (keeping duty cycle constant). 

This work also presents a parametric study of the tradeoffs among sequence 

parameters that influence imaging time and tissue heating including duty cycle (DC), 

TR, ETL, and KZRF.
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3.2 Methods

3.2.1 Sequence Overview 

A 3D spin-echo segmented EPI pulse sequence was modified to include an 

unbalanced bipolar MEG and optional flyback readout (Figure 3.1a). The area of 

MEG lobe A1 and crusher gradient lobe A2 is specified by the user, and the area of 

the second MEG lobe is set to A1 + A2 to ensure that the 0th order gradient moment 

sums to zero. The second MEG lobe effectively combines the crusher gradient of a 

standard spin-echo sequence (required to suppress stimulated echoes between 

successive TRs due to imperfect refocusing pulses) and the required gradient moment 

for motion encoding. An optical trigger output from the MRI pulse sequence 

synchronizes the firing of an ultrasound burst with the second lobe of the MEG. This 

optical trigger is converted to an electrical pulse compatible with the ultrasound device 

with custom made electronics designed and manufactured by the first author. The 3D 

spin-echo unbalanced bipolar ARFI sequence presented here has two additional 

features that enhance safety. First, the KZRF reduces the number of ultrasound pulses 

delivered by firing only while acquiring a central subset of all kz partitions. Second, 

instead of sequentially acquiring all k-space lines for a volume with ultrasound ON 

followed by the acquisition of all k-space lines with ultrasound OFF, acquisition of an 

US-ON image can be interleaved with an US-OFF image at the TR level. Thus, the 

same line of k-space will be read twice in consecutive TRs: once with an ultrasound 

burst and once with no ultrasound. This reduces the ultrasound duty cycle by a factor 

of two while keeping total scan time constant, or conversely the imaging time can be 

halved while holding the duty cycle constant.
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Figure 3.1: Overview of the experiment configurations, (a) Pulse sequence diagram for unbalanced-bipolar spin-echo 
ARFI sequence, (b) Phantom experiment setup. Phased array transducer approximately 10 cm below gelatin phantom. 
Geometric focus penetrates approximately 3 cm into the phantom, (c) Ex vivo cadaver breast used with breast specific 
MRgHIFU system consisting of phased array transducer and integrated 11-chanel RF coil.



3.2.2 Comparison of 3D ARFI and 3D PRF Thermometry 

A study in a tissue-mimicking phantom was performed to evaluate the ability 

of 3D ARFI to predict the position of peak temperature rise, and also to compare the 

characteristics of the 3D displacement pattern measured by MR-ARFI to the 3D 

temperature pattern measured by standard PRF thermometry. A gelatin phantom was 

constructed in-house from powder (Vyse Gelatin Co., Schiller Park, IL, USA) and 

positioned approximately 10 cm (Figure 3.1b) above a 256-element phased-array 

transducer (Imasonic, Besan^on, France) operating at 1 MHz (focal distance of 13 cm, 

aperture diameter of 14.5 cm, full-width-at-half-maximum 2 x 2 x 8 mm, f-number = 

0.90). The transducer was driven by electronics and software by Image Guided 

Therapy (Pessac, France). A deionized and degassed water bath coupled the phantom 

to the transducer. The water bath was degassed using a custom built degassing system, 

and a Hanna Instruments HI-9146 (Woonsocket, Rhode Island, USA) dissolved 

oxygen meter confirmed that the dissolved oxygen content was reduced to < 1.0 ppm. 

A single loop radio-frequency (RF) receive-only coil was positioned around the 

phantom approximately 3 cm from the bottom of the phantom. The 3D ARFI maps 

were acquired with a Siemens 3T Tim Trio MRI scanner (Erlangen, Germany) over a 

192 x 108 x 48 mm volume at 1.2 x 1.2 x 2.0 mm resolution. The raw k-space data 

were Tukey filtered along kz (using Matlab’s (Mathworks Inc, Natick, MA) tukeywin 

function with R = 0.85) to suppress Gibbs ringing artifact, and then zero-fill- 

interpolated to 0.2 x 0.2 x 0.5 mm voxel spacing to mitigate partial volume effects. 

Complex phase subtraction between the US-ON and US-OFF images was performed 

to produce phase difference maps, which were converted to displacement using the
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following equation that assumes constant tissue displacement over the encoding 

interval:

A D  = ------------------------- (3 1 )
2x y f encGMEG(t)5t ( . )

where 7  is the gyromagnetic ratio of hydrogen in MHz/T, Gmeg is the trapezoidal 

motion encoding gradient amplitude in mT/m, and A0 is the phase difference 

measured.

Unless otherwise noted, the following scan parameters were used: TR = 200 

ms, echo time (TE) = 45 ms, ETL = 9, bandwidth = 744 Hz/px, flyback readout, flip 

angle = 90°, MEamp = 30 mT/m, MEGAi = 259 mT-m^-ms, MEGA2 = 25 mLm 4-ms, 

acquisition time = 56 s, US power = 55 W, USdur = 10 ms. Holding the ultrasound 

power constant, 3D ARFI maps were acquired while electronically steering the focal 

spot to four locations (USx, USy, USz): (0, 0, 0) mm, (6 , 0, 0) mm, (12, 0, 0) mm, and 

(0, 0, 8) mm. These displacement maps were acquired with KZRF = 0.64 (US on 

during 18 of 28 kz partitions). ARFI displacement maps were also acquired at 

geometric focus with the TR-interleaving feature enabled such that the effective duty 

cycle was reduced to 2.5% with KZRF remaining 0.64. For comparison, a fully 

sampled ARFI dataset was acquired with US on during all kz partitions (KZRF = 1.0) 

and with no filtering along kz.

A second set of experiments were performed to investigate whether 3D ARFI 

could predict the location of peak heating as measured by PRF thermometry. 

Temperature maps of continuous-wave heating (8.8 W applied for 27.72 s) were



acquired using a 3D segmented EPI PRF thermometry sequence with flyback readout. 

Temperature was measured over the same volume, at the same resolution, with 

equivalent kz filtering, and at the same four electronically steered focal spot locations 

as the 3D ARFI maps. All scan parameters were equal to the 3D ARFI scan 

parameters except: TR = 33 ms, TE = 15 ms, FA = 20°, and acquisition time = 9.24 s. 

The 3D ARFI and 3D temperature datasets were compared and the error between the 

position of peak ARFI displacement and location of peak temperature change was 

quantified.

3.2.3 Ex Vivo Cadaver Breast 

After tests in phantoms, an experiment in a cadaver breast was performed to 

evaluate the sequence’s effectiveness at measuring 3D displacement fields in a realistic 

inhomogeneous tissue environment. The breast was secured to a plastic plate and 

positioned on top a breast specific MRgFUS system [26] with integrated 11-channel 

RF coil and 940 kHz 256-channel phased array transducer (Imasonic, Besan^on, 

France). 3D ARFI maps were acquired in ME2 mode over a 256 x 196 x 36 mm 

volume at 2 x 2 x 3 mm resolution. Other sequence parameters include: TR = 250 ms, 

TE = 53 ms, ETL = 7, bandwidth = 751 Hz/px, flyback readout, flip angle = 90°, 

MEamp = 28 mT/m, MEGAi = 305 mT-m^-ms, MEGA2 = 25 mT-m4 -ms, acquisition 

time = 49 s, US power = 44 W, USdur = 10 ms.

3.2.4 Parametric Safety Study of 3D MR-ARFI 

Three-dimensional imaging requires more phase encoding steps than 2D 

imaging, and while the primary penalty of this is increased imaging time, for 3D MR-
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ARFI this also increases tissue heating due to the increased number of US pulses 

delivered. To safely perform MR-ARFI, the induced temperature rise should be 

limited to 6 °C, both to avoid the accumulation of thermal dose [27] and to satisfy 

FDA limits on Thermal Index [28]. To this end, an evaluation of the tradeoffs among 

sequence parameters affecting tissue heating was performed. This study considered the 

field-of-view and resolution used to acquire the experimental 3D ARFI maps in the 

previous section. Parameters studied that affect tissue heating included: ETL, KZRF, 

TR /  DC, and TR-Interleaving (see Sequence Overview). Echo-planar imaging helps 

achieve practical imaging times and reduces the number of US pulses required to attain 

a 3D MR-ARFI map. However, ETLs can increase ghosting artifacts and increase TE, 

both of which diminish image quality and SNR. Using this sequence’s kz reduction 

factor feature, the number of US pulses can be reduced without changing the ETL by 

setting KZRF < 1. This reduces the spatial resolution of the displacement maps along 

the kz direction (while maintaining full resolution of the anatomical images), however 

these high frequency components may not be necessary to resolve the ARFI peak since 

the broadest dimension of the beam is also along kz. The number of US pulses, N us, 

required for a given ETL and KZRF is given by:
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N us = - ^ - ^  x K Z R F  (3.2)

us EFL

where Ny and Nz are the number of 3D phase encoding steps required for a given field- 

of-view and resolution. For the fixed FoV and resolution studied, Ny = 90 and Nz = 28. 

The number of US pulses required for a single US-ON 3D MR-ARFI map was



computed using Eqn. (3.2) with ETL ranging from 1 to 15 and for three KZRFs: [1.00, 

0.64, 0.50].

To rule out impractically long sequence configurations (>60 s per 

measurement), the imaging time to acquire a single measurement of a 3D MR-ARFI 

sequence was computed using:
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N  N
tAcq = ~ k f i ^ TR  (3.3)

A set of heating experiments were performed in the gelatin phantom to quantify 

the temperature increase induced by the ultrasound pulses of varying duty cycles. 

During acquisition of the US-ON image, Eqn. (3.4) relates the TR interval, the US- 

pulse duration (USdur) and duty cycle (DC) when the TR-interleaving feature is 

disabled.

UQ
DC = x 100 (3.4)

TR

For these experiments, the ultrasound power and pulse duration were held 

constant (55 W and 10 ms, respectively) while TR was varied to adjust the duty cycle. 

The following TRs (duty cycles) were tested: 100 ms (10% DC), 200 ms (5% DC), 400 

ms (2.5% DC). Temperature rise was measured with a standard 3D PRF thermometry 

sequence with similar parameters to those described previously, but with a reduced 

FoV to improve the temporal resolution (4.16 s instead of 9.24 s). For each DC tested, 

the maximum temperature of each time frame was computed, and a double



exponential curve was fit to these temperature data via least-squared error 

minimization. These curves were used to evaluate how much heating occurred for a 

given number of US pulses at each duty cycle.

3.3 Results

3.3.1 Comparison of 3D MR-ARFI with 3D PRF Thermometry 

A representative 3D displacement pattern measured by the SE unbalanced- 

bipolar MR-ARFI sequence while firing at the geometric focus is shown in Figure 3.2. 

Slices through the displacement maps measured when electronically steering the US 

beam from (0, 0, 0) to (6 , 0, 0), (12, 0, 0) and (0, 0, 8) mm are shown in Figure 3.3a- 

d, with slices longitudinal to the beam through the point of maximum displacement. 

For comparison, the 3D PRF thermometry maps are shown in Figure 3.3e-h. The 

drop in maximum displacement and temperature rise as well as a measurement of the 

actual beam deflection as the US beam was steered electronically from geometric focus 

is illustrated in Figure 3.4. Maximum displacement fell from 32 ^m at geometric focus
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Figure 3.2: 3D ARFI volume measured at geometric focus. (a) Cut away view of 3D 
displacement map, (b) slice transverse to US beam through maximum displacement, 
(c-d) slices longitudinal to US beam through maximum displacement.
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Figure 3.3: Comparison of 3D ARFI and 3D temperature patterns while electronically 
steering to multiple positions. Slices are longitudinal to US beam propagation and cut 
through maximum displacement/temperature. While the 3D ARFI patterns are 
generally broader than the 3D temperature patterns, a clear peak exists and matches 
the location of the temperature peak within 0.4 mm in the transverse direction and 1.0 
mm in the longitudinal direction. The 3D ARFI maps captured the expected beam 
tilting and decreased displacement associated with electronic steering in addition to 
the near-field effects.
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Figure 3.4: Comparison of temperature and ARFI profiles when electronically steering 
the US beam. (a) Profiles along transverse line through maximum displacement (top) 
and maximum temperature (bottom) as beam is electronically steered to from (0 , 0 , 0) 
mm (black) to (6 , 0, 0) mm, (medium gray) and (12, 0, 0) mm (light gray). Numbers 
above lines indicate measured beam deflection. (b) Profiles along longitudinal line 
through maximum displacement (top) and temperature (bottom) as beam is steered 
from (0 ,0 ,0) mm (black) to (0 , 0 , 8) mm (light gray).

to 18 pm when the beam was steered to (6 , 0, 0) mm (a 44% reduction), and to 11 pm 

at (12, 0, 0) mm (a 65% reduction), despite the output power being held constant. The 

movement of the peak displacement tracked the prescribed beam deflection within 

0.4 mm when steering in the US-x direction (perpendicular to the US beam), and was 

within 1.5 mm when steering in the US-z direction (along the US beam). Evaluating 

the same quantities using the 3D temperature maps, at geometric focus the maximum 

temperature measured was 11.5 °C which was reduced to 10.0 °C when steering the 

beam to (6,0,0) mm (a 13% reduction), and to 7 °C at (12,0,0) mm (a 39 % reduction). 

The error between the location of peak temperature rise and the desired beam 

deflection distance was within 0.2 mm when steering in the US-x direction and within 

0.5 mm when steering in the US-z direction.



3.3.2 Ex vivo Cadaver Breast 

Slices through the 3D displacement volume measured in ex vivo cadaver breast 

are shown in Figure 3.5. Because of the high fat content of the breast, it was not 

possible to measure temperature using the PRF thermometry method, however, the 

fat content did not impact the ability to measure ARFI displacement.

3.3.3 Parametric Study of Heating due to 3D MR-ARFI 

Figure 3.6 summarizes the critical sequence parameters and their effects on 

tissue heating. Figure 3.6a illustrates the imaging time required for several TR and 

ETL combinations. For a given combination of ETL and TR, it is possible to look up 

the corresponding number of US pulses required in Figure 3.6b for various kz reduction 

factors. For example, with ETL = 9, TR = 200 ms, and KZRF = 1.0, Figure 3.6a 

shows that tAcq = 56 s while Figure 3.6b indicates 280 US pulses would be required. 

According to Figure 3.6c, which shows the tissue heating as a function of the number 

of US pulses for each duty cycle, acquiring a 3D ARFI map with this configuration 

would result in a 6.2 °C temperature rise which violates the 6 °C safety limit. However, 

by reducing KZRF to 0.64 (such that only 18 of the 28 kz partitions are acquired with 

US on), the number of US pulses decreases to 180 and induced tissue heating is 

reduced to 5.6 °C. The TR2-interleaving mode can either reduce the effective duty 

cycle by half (to 2.5%), which in this case would limit the induced temperature rise to

3.1 °C, or double imaging speed by reducing TR by 50% (duty cycle remains 5.0%). In 

this mode (TR = 100 ms, KZRF = 0.64, and ETL = 9), imaging time would be only 

28 s vs 56 s without TR-interleaving, while maintaining a safe tissue temperature.
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Figure 3.5: 3D displacement maps in cadaver breast. (a) Slice transverse to US beam. 
(b) Slice longitudinal to US beam. (c) Magnitude image at approximate location 
shown in (b).
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Figure 3.6: Effect of ARFI imaging parameters on resulting tissue heating, (a) Imaging time, calculated from Eqn. (3.3), as a 
function of ETL for TR = 400, 200, and 100 ms. (b) Number of ultrasound pulses delivered (Eqn. (3.2)) as a function of ETL 
and KZRF = 1.0 (Full sampling), 0.64, and 0.5. (c) Tissue heating as a function of number of US pulses for duty cycle = 10.0%, 
5.0%, and 2.5%. Curves are the result of double-exponential fits to experimentally measured tissue heating data with the 
ultrasound pulse duration kept constant at 10 ms. The dashed line indicates the 6 °C safety limit on induced tissue heating.
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The displacement profiles for the fully sampled mode (KZRF = 1.0, no filtering 

in kz), partial sampled mode (KZRF = 0.64, tukey filter in kz) and TR2 interleaved 

mode (KZRF = 0.64, tukey filter in kz) are shown in Figure 3.7. The location of peak 

displacement agree in US-x/y for all three modes, while the TR2 interleaved mode 

differs along the US-z direction by 0.5 mm. The magnitude of maximum displacement 

measured by the full and partial modes agree within approximately 10%, while the 

TR2 interleaved mode shows significantly less displacement, albeit a clear peak exists 

that is suitable for focal spot localization. Neither the reduction of KZRF from 1.0 to 

0.64, nor the filtering performed along kz diminished the displacement profile's quality 

appreciably.
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Figure 3.7: Comparison of displacement profiles measured by different acquisition 
schemes. (a) Displacement profiles along the US-x direction, (b) displacement profiles 
along the US-z direction. [Full] has US on during all kz partitions (KZRF = 1.0) and 
no k-space filtering, [partial] has US on during 18/28 kz partitions (KZRF = 0.64) and 
filtering along kz, and [TR2] has TR interleave mode enabled with KZRF = 0.64 and 
kz filtering. In all schemes the locations of the peaks agree within 0.5 mm, but partial 
and TR2 reduce the induced temperature rise to 5.6 °C and 3.0 °C, respectively, from
6.2 C in the full case.



3.4 Discussion

The choice of motion encoding gradient (MEG) proved to be beneficial in 

reducing imaging time and tissue heating. Other common motion encoding strategies 

employ two bipolar gradients pulses on either side of the 180° pulse (for SE sequences), 

single bipolar pulses with alternating polarity (for GRE sequences), or tripolar pulses. 

The double bipolar approach increases the TE or limits the ETL that can be used, 

which increases imaging time in a 3D acquisition and increases tissue heating due to 

repeated application of US bursts. A single bipolar approach helps reduce TE, but if 

alternating polarity gradient encoding is used, such that there is no US-OFF image, 

then the number of US pulses is doubled which would increase tissue heating. Tripolar 

gradients have the benefit of producing more self-canceling eddy currents, but increase 

the risk that the tissue is still displaced during the 3rd gradient moment thus incorrectly 

subtracting motion encoding phase. The unbalanced bipolar MEG gains time 

efficiency by combining the motion encoding and crusher gradient moments allowing 

the US to be on for a maximum amount of time. Since there is only one MEG (before 

the 180° pulse), motion encoding does not compete for time with the EPI readout after 

the 180° pulse, allowing for shorter TEs and larger ETLs.

The results in Figure 3.3 and Figure 3.4 demonstrate that 3D ARFI maps can 

localize the focal spot in all three dimensions in a single scan and that peak 

displacement is a good predictor of the location of peak temperature rise. This could 

be important in applications such as FUS treatments of breast where PRF temperature 

imaging may not be able to measure the temperature due to fat content of the tissue, 

or in brain treatments where performing a test heating to localize the focal spot may
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cause unwanted tissue heating. The errors between the location of peak temperature 

and displacement were within one measure voxel (before zero-filling). After zero- 

filling, the maximum difference in location of peak displacement vs temperature was 

0.4 mm transverse to the US beam and 1.0 mm along the US beam. While it does not 

improve the fundamental resolution of the image, zero-filling helps reduce errors 

introduced by partial volume effects and thus can improve the localization of the focal 

spot, especially in the case of ARFI where the profile has a sharp peak along the beam’s 

transverse direction. Since the PRF thermometry sequence is based on a GRE pulse 

sequence while the unbalanced-bipolar ARFI sequence is based on a SE sequence, the 

temperature imaging is susceptible to additional distortion (caused by, for example, 

static field inhomogeneities), which may not affect the SE ARFI sequences. The ARFI 

sequence also benefits from a longer TR and higher flip angle which may increase the 

available signal. However, these benefits are offset by the ARFI sequence’s relatively 

long TE (45 ms vs 15 ms) and the additional vibration and eddy currents caused by the 

strong motion encoding gradients.

The cadaver breast sample was highly inhomogeneous and contained a 

significant amount of fat which made it impossible to measure temperature with the 

PRF method. However, 3D displacement fields were successfully measured (Figure 

3.5), and the 21.3 |im peak displacement measured is similar in magnitude to the tissue 

mimicking phantom tests. This demonstrates the usefulness of 3D ARFI to fully 

localize the focal position regardless of tissue type, and in a scenario where standard 

test heating approaches would be unsuccessful.

At the power tested, the induced temperature rise for a 2.5% duty cycle reached
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steady state of 3.5 °C, and thus imaging for long durations could be performed safely 

without violating the 6.0 °C safety threshold (Figure 3.6). However, at the 5.0% and 

10% duty cycles it becomes important to consider the number of US shots delivered, 

as the 6 °C threshold is violated after 236 and 80 shots, respectively. Using Figure 3.6 

to guide the selection of imaging parameters for the imaging volume tested, ETLs of < 

5 are impractical either because the imaging time is too long (> 60 s) or because the 

number of US shots required results in significant tissue heating. On the other hand, 

as the ETL is increased there are diminishing returns in regard to imaging time and 

tissue heating. Higher ETLs can also increase ghosting artifacts as well as TE, which 

degrades SNR, and so ETLs in the range of 7-11 strike a balance between image 

quality, imaging time, and safety.

Adjusting the KZRF from 1.0 to 0.64 mitigated tissue heating concerns by 

reducing the induced temperature rise from 6.2 °C to 5.6 °C. While this also reduces 

the effective resolution of the 3D ARFI maps along the US-z direction, generally 

focused ultrasound transducers have an ellipsoid shaped focal zone with one 

dimension being elongated and this reduces the spatial resolution requirements along 

that dimension. The datasets shown in Figure 3.2-Figure 3.5 were acquired with 

KZRF = 0.64, but in Figure 3.7 it can be seen that the displacement profile shape and 

location of peak displacement did not differ appreciably when full sampling was used 

(KZRF = 1.0) and filtering was disabled. This indicates that the high frequency 

components did not contribute significantly to the localization of the focal spot and 

thus acquiring them with US on superfluously heats the tissue. Furthermore, the 

higher kz spatial frequencies were acquired (albeit without US), so the magnitude
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images needed for correlation of the MR-ARFI maps with patient anatomy would 

retain their full prescribed resolution.

Further reductions in tissue heating were achieved by enabling the TR- 

interleaving feature, which was used to halve the effective duty cycle. For comparison, 

sequential acquisition of the US-ON and US-OFF images using an US-pulse duration 

of 10ms, a TR of 200ms (5% DC), and KZRF = 1.0 resulted in a 6.2 °C temperature 

rise. By activating TR-interleaving and setting KZRF = 0.64, the TR remained 200 ms 

but the effective DC was reduced to 2.5% because the US fires every other TR. 

Consequently, the maximum tissue heating was lowered by 50% to only 3.1 °C. 

Alternatively, the TR-interleaving mode could have maintained the 5.0% DC and 

halved total imaging time by reducing the TR to 100 ms without causing unsafe tissue 

heating. Without TR interleaving, a TR of 100 ms (10% DC) would cause unsafe 

heating for any choice of ETL or KZRF studied since the safety threshold is violated 

after 80 US shots and even an ETL of 15 with KZRF = 0.5 requires 84 shots. However, 

by interleaving the acquisition of the US-ON and US-OFF images every TR, the 

imaging speed of TR = 100 ms is available with the tissue safety of the TR = 200 ms 

case.

The location of peak displacement measured by each imaging mode (full 

sampling, partial sampling, and TR-interleaved) agreed except for the US-z location 

in the TR2 mode which differed by 0.5 mm. More significantly, however, was that the 

TR2 mode measured a lower peak displacement of 7.4 |im vs 28.6 um for the fully 

sampled case. To investigate this result, an additional test was performed where three 

measurements were acquired in [OFF]-[ON]-[OFF] order, but where only the first two
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were interleaved and the third was acquired without interleaving. The phase of each 

measurement before subtraction, shown in Figure 3.8a, reveals that the first 

measurement has a phase profile akin to that of the second, US-ON, measurement 

despite it lacking US pulses. This is not seen in the third measurement, which also 

lacked US pulses but whose acquisition was not interleaved with an US-ON 

measurement. This indicates that signal pathways exist which allow stimulated echoes 

to contaminate the phase of the first US-OFF measurement, and thus reduce the 

measured displacement. When the third, US-OFF and un-interleaved, measurement 

is used as the reference phase, the measured displacement increases to 19.1 ^m which

106

Figure 3.8: Fully sampled mode compared to TR-interleaved mode. (a) Phase for three 
TR2 measurements before subtraction. The first (OFF) and second (ON) 
measurements were interleaved while all k-space lines for the third (OFF) 
measurement were acquired sequentially without interleaving. Though #1 and #3 
both lack US pulses, a phase bump exists in #1 that mimics that of #2 (which had US 
pulses). This indicates that stimulated echoes are distorting the phase measurement of 
#1, which artificially reduces the displacement measured by TR2 mode (Figure 3.7). 
(b) Displacement measured by ME2 mode computed to TR2 mode when #1 vs #3 is 
used as the reference phase. Eliminating the phase offset seen in #1 by using #3 as the 
reference phase increases the measured displacement.



agrees more closely to the displacement measured by ME2 mode (Figure 3.8b). 

Stimulated echoes may play a role in exaggerating the phase induced during ME2 

mode which could account for the remaining difference between ME2 and TR2. 

Future investigations and sequence improvements could disrupt the offending signal 

pathways and improve signal fidelity in both modes.

As a final note on safety, these measurements represent a worst-case scenario 

as the phantom is not perfused, and the US power used in both the phantom and breast 

studies generated tissue displacements that were larger than required for focal spot 

localization. Safety concerns under in vivo conditions should be allayed both by tissue 

perfusion, which accelerates tissue cooling, and reduced power. Using the study of 

sequence parameters and features to guide the selection of imaging parameters, 3D 

MR-ARFI maps can be safely acquired in a time efficient manner over a large field-of- 

view.

As with all 3D acquisition schemes, this sequence is sensitive to motion, both 

of the imaging subject, and peripheral objects (such as the coupling water bath) that 

may generate susceptibility changes in the imaging volume. It may be possible to 

reduce these side effects by adding a phase navigator to perform correction during 

image reconstruction. Nevertheless, this 3D ARFI technique could be beneficial for 

applications such as breast imaging and brain imaging where there is little organ 

motion, or the motion can be constrained.

In the future, it may be possible to further reduce the tissue heating and 

acquisition by integrating existing k-space undersampling techniques [29], [30] into 

this 3D ARFI sequence. Additional investigation into the use of 3D MR-ARFI for the
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purpose of phase aberration correction would also be beneficial, as the 3D 

displacement field provides significantly more information with which to perform 

correction.

3.5 Conclusion

A 3D spin-echo pulse sequence employing a novel unbalanced bipolar motion 

encoding gradient was presented and successfully tested in phantoms and ex vivo 

breast tissue. This sequence can safely measure displacement due to acoustic radiation 

force over a large FoV and at high resolution in reasonable scan times (< 60 s per scan). 

Comparisons to 3D PRF temperature imaging showed that the 3D ARFI sequence 

accurately localized the ultrasound focal spot using a single scan. The ability to cover 

a large FoV increases the likelihood that the peak displacement is captured, and that 

any near-field effects, such as reflections of bone interfaces, are observed before 

potentially harmful heating is attempted. The ability of 3D ARFI to localize the focal 

spot, even in a cadaver breast containing fat, proved that 3D ARFI is a useful 

alternative to standard low-power heating methods, which failed in this scenario. The 

tradeoffs among imaging parameters and tissue heating were explored in a parametric 

study of TR, ETL, and duty cycle. It was found that ETLs in the range of 7-11 strike 

a good balance between improving imaging time, reducing tissue heating, and 

managing image artifacts. Advanced sequence features such as kz reduction factor, 

where the US is enabled only during a subset of all kz partitions, and TR-interleaving, 

where the acquisition of US-ON and US-OFF images alternate every TR, were tested 

and shown to reduce tissue heating by up to 50% without affecting the accuracy of 

beam localization.
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CHAPTER 4

SIMULTANEOUS ACQUISITION OF 3D ACOUSTIC 

RADIATION FORCE IMAGING AND PRF 

THERMOMETRY USING A MULTI­

CONTRAST APPROACH

4.1 Introduction

In Chapter 3, a method for performing 3D acoustic radiation force imaging 

(ARFI) was presented using a spin-echo sequence. While it was found that 3D ARFI 

could be done safely, standalone PRF thermometry imaging was required to measure 

the induced temperature rise; this would be time consuming and potentially hazardous 

to perform after every 3D ARFI measurement. Consequently, it would be beneficial if 

the temperature rise induced by 3D ARFI could be monitored without additional 

imaging scans. This chapter presents a second 3D ARFI technique that is capable of 

simultaneously measuring tissue displacement and tissue heating.

The spin-echo method presented in the previous chapter is not sensitive to 

temperature change resulting from the proton resonance frequency shift (PRF), and so 

this ARFI method uses a gradient-recalled echo (GRE) pulse sequence that preserves 

the sensitivity to temperature change. However, once motion encoding gradients are 

added to the sequence, the measured phase has contributions from both tissue



displacement and tissue heating, and so a means of attributing the contribution made 

to the total phase change from each source is required. Other investigators have 

achieved this in 2D by alternating the polarity of the motion encoding gradients [1]; 

however, this approach has the downside of increased artifacts due to noncanceling 

eddy-currents and increased noise in the images [2]. This chapter presents a novel 

method of acquiring simultaneous temperature and displacement measurements using 

a multicontrast acquisition, without alternating the gradient polarity, and is also the 

first to do so in 3D. While multicontrast acquisitions have been used to measure other 

quantities, such as temperature, T1, and T2*, [3]-[6], this is the first use of a 

multicontrast acquisition for performing displacement measurements.

This new 3D ARFI method samples the same lines of k-space multiple times 

within a single TR interval, and it will be shown that this extra information can be 

used to solve for the constituent parts of the total phase change. This approach is 

particularly well suited to MR-ARFI because long TRs are usually required to prevent 

overheating the tissue. Thus, in most ARFI schemes, data acquisition consumes only 

a small fraction of the TR interval and the remaining time is wasted. This method 

makes more efficient use of the TR interval by filling the dead time with repeated 

measurements of the same k-space lines. This has two positive outcomes: (1) the 

signal-to-noise ratio (SNR) of the image is improved through signal averaging, and (2) 

the additional data make it possible to determine temperature separately from tissue 

displacement.
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4.2 Methods

The sequence timing diagram used throughout this chapter is shown in Figure 

4.1. The sequence is based on a GRE segmented echo planar imaging sequence that 

was modified to include a bipolar motion encoding gradient (MEG) and to allow 

repeated acquisitions of the readout train. Each repetition of the readout is referred to 

as a “contrast” and the number of contrasts allowed is limited by the TR interval. The 

ultrasound burst was synchronized with the second lobe of the MEG by means of an 

optical trigger emitted by the sequence. The device described in Appendix A was used 

to convert the optical trigger from the MRI to an electrical trigger compatible with the 

ultrasound waveform generator.
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Figure 4.1: Experiment configuration summary. (a) GRE multicontrast ARFI pulse 
sequence diagram. Readout is repeated multiple times with an echo forming at TE-1, 
TE-2, etc. (b) Experiment set up with phased-array transducer positioned 13 cm below 
a gelatin phantom. Transducer focus penetrated 3 cm into the phantom.



4.2.1 Determination of the ARFI and Temperature Phase Contributions 

Reconstruction of the multicontrast data must be done differently than in the 

previous chapter which performed a simple complex subtraction between a reference 

image with no ultrasound and a second image with ultrasound. The first step is to 

generate a regular complex image for each contrast for both the ultrasound-off and 

ultrasound-on measurements. Let the i-th contrast of the measurements with 

ultrasound be denoted as ON^, and let denote the *-th contrast of the images

without ultrasound. An example of the phase for ON1 through ON3 is shown in Figure 

4.2a-c. Since each contrast is acquired at an increasingly later echo time, the signal 

decreases for each successive contrast. Furthermore, the signal decays at a rate of T2*, 

which is faster than the spin echo technique of Chapter 3, since this sequence is based 

on a gradient recalled echo instead of a spin-echo acquisition. The next step is to 

perform a complex phase subtraction between ONjt and OFF.\ for each contrast to 

attain a phase difference, A ^ , for each contrast. At this point, it is still unknown how
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Figure 4.2: Image reconstruction for multicontrast sequence. (a-c) Phase maps for 
three contrasts demonstrating reduction in signal over time. (d) Example of separating 
displacement and temperature phase contributions by weighted fit. Slope of the line 
gives phase from temperature while intercept gives phase from displacement.



much of A0, is due to temperature change vs displacement. To resolve this, it is first 

noted that the phase due to temperature accrues as:

A $ T = ~fB0A T - T E  (4.1)

while the phase due to displacement accrues as:

A0d = 7  f  MEG(t)AD(t)dt  (4.2)
0

and the total phase is then:

A0, = 2 n jB 0A T  - TE  +  j  f  MEG(t)AD(t)dt  (4.3)
0

Since A ^ D is not a function of TE, and it is reasonable to assume the tissue 

displacement is the same for every ultrasound shot, then A ^ D will be a constant in the 

previous expression. Furthermore, if A T  changes slowly over the period of a single 

TR, then the term 2n^B0A T  in Eqn (4.3) is also a constant, reducing Eqn (4.3) to:

A ^ i = m - TE  +  b (4.4)

This reveals that the total phase difference evolves as a linear function of the echo time 

of each contrast, and that the displacement phase is the total phase at TE = 0. 

Intuitively, this makes sense since in the absence of tissue heating there would be a 

constant phase associated with a given displacement, as was the case with the SE

117



118

technique in Chapter 3. Thus, the final task is to perform a linear least-squared error 

fit to the vs TE of each voxel, at which point temperature can be solved for with:

where the displacement has been reduced to a weighted time-average displacement 

over the encoding interval, and the integral in the denominator is the known motion 

encoding gradient area. Figure 4.2d demonstrates the linear fit for one voxel with 

corresponding conversion of slope/intercept to temperature/displacement, and where 

the additional step of weighting the fit by the signal magnitude has been taken to 

account for the decrease in SNR over time. While this process increases the 

reconstruction time compared to the simple subtraction reconstruction method of the 

spin-echo technique, each voxel is independent and the task is easily computed in 

parallel on a CPU or GPU. If reconstruction speed were still a constraint, 

reconstruction could be limited to a region of interest surrounding the focal spot.

4.2.2 Validation of Multicontrast Sequence 

Experiments in a gelatin phantom compared the displacement and temperature 

measurements derived from the multicontrast sequence to those of the spin-echo

m = j B ^ a A T  ^  A T  = —
j B 0a (4.5)

and displacement is given by:

(4.6)



ARFI and standard PRF thermometry sequences, respectively. The relevant sequence 

parameters for each sequence are summarized in Table 4.1. All ARFI measurements 

used a pulse duration of 10 ms and an applied power of 44 W. The standard PRF 

thermometry sequence used the same ultrasound power and duty cycle as the ARFI 

scans (44 W, 10 ms on, 190 ms off), but had a faster acquisition time so the 

measurement that came closest in time to ARFI dataset was used for comparison.

A second experiment was performed to address an unsolved question regarding 

how well the location of peak heating and peak displacement agree along the beam’s 

propagation direction. Previous experiments, which were not capable of simultaneous 

ARFI and temperature measurement, have indicated that peak displacement may 

occur more proximal to the transducer than peak temperature. However, this has been 

a difficult experiment to perform since it required using two different sequences with
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Table 4.1 : Sequence parameters for each sequence type

TR
[ms]

TE
[ms]

Acq.
Time
per

Meas
[s]

FA
[°]

ETL Resolution
[mm]

Field-of-View
[mm]

MEGMom
[ms-mT/m]

MC
ARFI 200

30, 48, 
66 , 83, 

101,119, 
137,154, 

172

53 85 9 1 x 1 x 2.5 192 x 108 x 50 284

SE
ARFI 200 45 53 90 9 1 x 1 x 2.5 192 x 108 x 50 284

PRF 35 16 11 20 9 1 x 1 x 2.5 192 x 108 x 50 N/A

FA = Flip Angle. ETL = echo train length, i.e., the number of k-space lines acquired 
per contrast.



different acquisition schemes. Most notably, the standalone ARFI sequence was based 

on a spin-echo sequence while the thermometry sequence was a GRE based sequence. 

Since these two ways of forming an echo have different distortion and warping 

characteristics, it was difficult to register the two datasets precisely. With the 

multicontrast sequence, no registration is required because temperature and 

displacement are acquired simultaneously. For these tests, the volume was rotated 

such that phase encode direction with 1.0 mm resolution was along the ultrasound 

direction, instead of the slice encoding direction with 2.5 mm resolution. All datasets 

were zero-fill interpolated from their acquired resolution to 0.5 x 0.5 x 0.5 mm voxel 

spacing to reduce partial volume effects.

4.3 Results

A comparison of the 3D displacement maps measured by the multicontrast and the 

spin-echo techniques are shown in Figure 4.3, while Figure 4.4 shows the 3D 

temperature maps measured with the multicontrast sequence compared to the 

standard MR thermometry sequence. The peak displacements measured by each 

method agree to within 0.5 |im, while peak temperatures agree to within 0.8 °C. While 

both metrics agree within the noise of the measurements, it should be noted that due 

to the differing acquisition intervals, it was not possible to acquire a standard PRF 

temperature map with heating duration identical to that of the multicontrast 

temperature maps. As a result, the standard PRF sequence had a slightly longer 

heating duration. When the imaging direction with highest resolution was aligned with 

beam’s direction of propagation, the location of peak heating and peak displacement 

agreed to within 0.5 mm (see Figure 4.5).
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MC PRF

Figure 4.4: Comparison of 3D temperature maps as measured by the multicontrast 
approach and standard PRF thermometry. Note: duration of heating in the PRF 
method is slightly longer.
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-20  -10  0 10 20
z [mm]

Figure 4.5: Comparison of MC-ARFI and MC-Temperature when axis of best 
resolution (1 mm) was aligned with beam propagation direction. Location of peak 
ARFI and temperature agree to within 0.5 mm.

4.4 Discussion

The displacement maps in Figure 4.3 demonstrate qualitatively that the two 

measurement schemes produce similar 3D displacement fields. Additionally, the 

agreement of peak displacement to within 0.5 ^m indicates that the multicontrast 

approach can be relied upon as a means of ARFI measurement. The temperature maps 

in Figure 4.4 show signs of increased deviation between the two methods. However, 

the general shape of the patterns are similar, and the maximum temperatures agree 

within the noise of the measurements. This may be a sign that the weighting function 

used when performing the per-voxel linear fit to phase was not optimal, or there was 

simply too much signal decay by the later echoes which resulted in an improper slope 

calculation. Further investigation into the most appropriate and robust weighting is



warranted. In all cases, tissue heating was less than 4.5 °C which indicates this method 

is safe. The result in Figure 4.5 resolves an important question that has been difficult 

to definitively answer without simultaneous acquisition of temperature and 

displacement: does the location of peak ARFI displacement occur closer to the 

transducer than does the location of peak temperature? Figure 4.5 indicates that, at 

least in homogeneous media, the answer is: no, in fact they coincide quite closely. 

According to the new multicontrast measurement, peak ARFI displacement occurred 

within 0.5 mm of peak temperature, which is less than the size of a single voxel. This 

demonstrates a benefit of simultaneous measurements in addition to providing a safety 

monitoring mechanism.

Finally, for beam localization purposes, this sequence could be used without 

separating the effects of ARFI and temperature. Since both indicate the presence of 

the ultrasound beam, and there is now evidence that the two effects overlap even in 

the z direction; the combined sensitivity to temperature and displacement may improve 

the accuracy of focal spot determination. Of course the temperature and displacement 

effects could be separated at any time, but this “combined” phase could provide a 

useful third signal.

In future, this multicontrast technique could be applied to the determination of 

tissue mechanical properties and their temperature dependence. By continuously 

measuring ARFI and temperature, it may be possible to observe a mechanical change 

in the tissue experimentally, and have a record of the temperature history that 

generated that change. This may help provide another means of measuring tumor 

destruction which would further complement the earlier work of this dissertation.
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4.5 Conclusion

This chapter has presented and validated a new method of safely measuring 

acoustic radiation force and temperature simultaneously. By acquiring multiple 

acquisitions of the same k-space lines every TR, it was shown that the contributions of 

displacement and temperature to the total measured phase could be attributed to the 

proper source. This method’s measurements of temperature and displacement agreed 

favorably with those of independent techniques. The displacement peak matched to 

within 0.5 |im of a standard spin-echo ARFI method, and maximum temperature 

agreed to within 0.8 °C. This new tool was used to answer an important question: does 

peak temperature and peak displacement occur at a different location along the beam 

propagation direction? It was found that both peaks coincide within approximately 0.5 

mm, a result that is more reliable than when attempted with separate ARFI and 

temperature scans since this result is self-registered. When beam localization is the 

primary goal, this method may be used in a third mode where only the total phase 

difference is considered since the sensitivity to both temperature and displacement 

could provide a clearer indication of the beam’s center.
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CHAPTER 5

CONCLUSION

This dissertation has presented several methods for improving focused 

ultrasound thermal therapies. In Chapter 2, a new adaptive model-predictive controller 

was successfully demonstrated in vivo, and simulations showed that its predictive 

features helped reduce treatment time by approximately 50% compared to treatments 

performed without prediction. The predictive features also helped mitigate the 

negative effects of longer MR sampling intervals, allowing more flexibility in selecting 

imaging parameters. Chapter 3 presented a new technique for performing MR-ARFI 

in three dimensions. This 3D spin-echo method accurately localized the focal spot in 

a single scan, and would have direct application to setting up the controller presented 

in Chapter 2. Furthermore, this 3D ARFI technique localized the ultrasound beam in 

fat, which is not possible with traditional beam localization methods that rely on PRF 

thermometry. Finally, Chapter 4 demonstrated a novel method for acquiring 3D ARFI 

displacement maps simultaneously with 3D temperature maps using a multicontrast 

sequence. This improved the safety of using 3D ARFI repeatedly since temperature 

can be monitored.
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5.1 Additional Accomplishments

The effort expended while completing this dissertation has also resulted in over

50,000 lines of Matlab code, the creation of parsers for extracting useful information 

from the log files of several software programs, and generated over 35 conference 

abstracts, and nine journal publications including the following:

• J. de Bever, N. Todd, A. Payne, R. Roemer, “Adaptive model-predictive 
controller for magnetic resonance guided focused ultrasound therapy,” Int. J. of 
Hyperthermia, vol. 30, no. 7, pp. 456-470, Nov. 2014.

• Payne, J. de Bever, A. Farrer, B. Coats, D.L. Parker, D.A. Christensen, “A 
simulation technique for three-dimensional MR-guided acoustic radiation 
force imaging,” Med. Phys., (Accepted).

• H. Odeen, J. de Bever, S. Almquist, A. Farrer, N. Todd, A. Payne, J.W. Snell, 
D.A. Christensen, D.L. Parker, “Treatment envelope evaluation in transcranial 
magnetic resonance-guided focused ultrasound utilizing 3D MR 
thermometry,” J. of Ther. Ultrasound, vol. 2, no. 19, Oct. 2014.

• N. Todd, J. Prakash, H. Odeen, J. de Bever, A. Payne, P. Yalavarthy, DL 
Parker, “Toward real-time availability of 3D temperature maps created with 
temporally constrained reconstruction,” Mag. Res. Med., vol. 71, no. 4, pp. 
1394-04, Apr. 2014.

• A. Payne, R. Merrill, E. Minalga, U. Vyas, J. de Bever, N. Todd, R. Hadley, 
L. Neumayer. A. Christensen, R. Roemer, D. Parker, “Design and 
characterization of a laterally mounted phased-array transducer breast-specific 
MRgHIFU device with integrated 11-channel receiver array,” Med. Phys., vol. 
39, no.3, pp. 1552-60, Mar. 2012.

• N. Todd, U. Vyas, J. de Bever, A. Payne, D. L. Parker, “Reconstruction of 
fully three-dimensional high spatial and temporal resolution MR temperature 
maps for retrospective applications,” Mag. Res. Med., vol. 67, no. 3, pp. 724­
730, Mar. 2012.

• R. Koslover, B. Gleeson, J. de Bever, W. Provancher, “Mobile navigation 
using haptic, audio, and visual direction cues with a handheld test platform,” 
IEEE Transactions on Haptics, vol. 5, no. 1, pp. 33-38, Jan. 2012.

• Payne , U. Vyas, N. Todd , J. de Bever , D.A. Christensen , D. L. Parker, “The 
effect of electronically steering a phased array ultrasound transducer on near­
field tissue heating,” Med. Phys., vol. 38, no. 9, pp. 4971-4981, Sep. 2011.
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• N. Todd, U. Vyas, J. de Bever, A. Payne, and D.L. Parker, “The effects of 
spatial sampling choices on MR temperature measurements,” Mag. Res. Med., 
vol. 65, no. 2, pp. 515-521, February, 2011.

Additionally, Appendix A details the device I designed and constructed that 

converts the optical trigger emitted by the MRI into an electrical signal compatible 

with the ultrasound generator. This device was initially created for use with the ARFI 

pulse sequences discussed in Chapters 3 and 4, however, the flexibility of its design 

has made it useful for many other projects not discussed in this dissertation including 

ultrasound neurostimulation studies, where ultrasound pulses are triggered by a 

functional MRI pulse sequence, and for perfusion studies, where ultrasound heating 

pulses must be accurately synchronized with temperature imaging.

Appendix B expounds my design of a device for removing oxygen dissolved in 

water. By replacing the manual water boiling method we employed previously, this 

device has saved time, money, and improved the scientific rigor of our experiments.

Many opportunities exist for expanding the work presented in this dissertation. 

Merging the controller work of Chapter 2 with k-space undersampling strategies would 

reduce the time between temperature measurements and enable the controller to make 

faster, more accurate, decisions. Increasing the time horizon over which the controller 

makes predictions could also decrease treatment times (and may require more 

advanced models), as could further investigations into optimal treatment planning. 

Investigating the benefits of applying model predictive control concepts to other 

therapies such as ultrasound assisted immunotherapy, targeted drug-delivery, and 

hyperthermia could also be fruitful. A very real clinical need exists for performing 3D 

ARFI in human organs such as the breast and the brain. These organs are well suited
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to the 3D ARFI pulse sequences presented due to the limited motion they experience, 

and by adding navigator pulses, these techniques could become more robust to motion.



APPENDIX A

DESIGN AND CONSTRUCTION OF A 

TRIGGER CONVERSION DEVICE

A.1 Motivation

In order to perform the acoustic radiation force imaging (ARFI) techniques 

developed in Chapters 3 and 4, it was necessary to synchronize the firing of short 

ultrasound bursts (on the order of 1 -  20 ms in duration) with the motion encoding 

gradients generated by the MRI scanner. Unfortunately, we did not have this 

capability when we endeavored to perform ARFI. This chapter describes the technical 

challenges that needed to be solved as well as the design and construction of the device 

that made synchronization of the ultrasound and MRI pulse sequence possible.

A.2 Design Constraints and Features

The Siemens MRI scanner has a fiber optic output that can be used to generate 

trigger pulses at programmer determined moments during the pulse sequence. The 

converter device’s primary function is to convert the optical trigger from the MRI 

scanner to an electrical trigger signal compatible with the ultrasound generator. 

However, at the time of construction, three technical limitations existed. First, the 

ultrasound generator could only respond to an electrical trigger signal. Second, all 

Siemens MRI pulse sequences group hardware instructions into “event blocks.” These



event blocks are played out sequentially, and it is generally not possible to begin a 

hardware activity in one event block and conclude the activity in a subsequent block. 

Third, the electrical input to the ultrasound generator gates the output of the 

ultrasound, i.e., when the input signal is logical-high, ultrasound emission is 

permitted, and, conversely, emission is prevented when the gating signal is logical- 

low.

It is the second and third techincal limitations that most heavily impacted the 

design of the conversion circuitry. Given that the ultrasound generator uses a gating 

signal, it would seem logical to have the MRI pulse sequence emit an optical pulse for 

the entire duration of the ultrasound burst. However, this would force the pulse 

sequence event block to also last for the duration of the ultrasound burst, and this 

might interfere with the timing of other sequence event blocks. Instead, two very short 

optical pulses, each lasting ~20 |is, are emitted; the first optical pulse indicates when 

the ultrasound emission should begin, and the second when the ultrasound emission 

should end. This solves the event block problem because each optical trigger from the 

MRI can be in two different event blocks, and the trigger is so short that it will not 

impede other sequence activities. This also provides a large degree of flexibility in 

controlling the duration of the ultrasound pulse.

However, using the two-trigger approach requires a more advanced circuit in 

order to control the ultrasound gating signal described in the third limitation; it is no 

longer sufficient to simply convert the optical signal to an electrical signal. Now, the 

conversion circuit must remember the current state (allow vs disallow emission of 

ultrasound), and switch the electrical signal delivered to the ultrasound generator from
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logical-low to logical-high, or vice versa, every time an optical trigger pulse arrives 

from the MRI. This is achieved using a Schmitt-triggered JK Flip-Flop.

However, employing the two-trigger approach to overcome the 

aforementioned technical limitations creates a new safety concern that must be 

mitigated by the trigger conversion device. Under normal conditions, the gating signal 

will remain in the logical-high state for only 1 -  20 ms, and so despite the high acoustic 

power used by ARFI, the ultrasound pulses are safe. However, a variety of technical 

failures could result in the trigger conversion device not receiving the second MRI 

optical trigger, and thus the gating signal controlling the ultrasound burst would 

remain in the logical-high state indefinitely. This could cause significant risk to the 

target tissue in a matter of seconds.

For this reason, a “dead man’s switch” safety mechanism was integrated in the 

trigger converter’s design. When the converter powers on, it resets itself to a known 

state where the gating signal sent to the ultrasound generator is logical-low, preventing 

the emission of ultrasound energy. With the arrival of an optical trigger pulse from the 

MRI, the converter switches the gating signal from logical-low to logical-high while 

simultaneously starting a safety countdown timer. The safety timer’s duration is 

configurable (see Figure A. 1), but is typically 500 ms. If the safety timer expires before 

the second optical trigger arrives from the MRI, the timer forces the gating signal back 

to logical-low thus preventing an unsafe ultrasound emission. Furthermore, the device 

is placed in an error state (indicated visually by a red LED on the front of the device) 

which locks the device into safe mode (logical-low), and ignores further input trigger 

pulses. To return to normal operation, the user must manually press the reset button.
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Figure A.1: Final version of the trigger conversion device. Front panel has an input 
select switch and LED indicators that display which input method is active, an error 
LED that illuminates when the safety timer has expired, a manual reset button to reset 
the device, and a safety timer adjustment screw. The output signals are on the right 
hand side of the device. Both electrical and optical outputs are active simultaneously. 
Between the outputs are two switches that select the trigger type and output mode.

The converter circuit was also designed with flexibility in mind and can be 

operated in several modes. In addition to taking an optical trigger as the input signal, 

the converter device can also take an electrical TTL trigger, and manual push button 

input. The converter device also emits its output signal simultaneously as an electrical 

output (usually connected to the ultrasound generator), and an optical output in case 

other devices need to be triggered or the capabilities of the ultrasound generator 

expand. Additionally, three types of output trigger signal can be selected. The first 

trigger type, labeled as “safe” on the device, implements the two-trigger conversion 

with safety timer as described above. The second mode, labeled “pass thru” on the 

device, bypasses the JK Flip-Flop and safety timer functionality and simply converts 

the optical signal to an equivalent electrical signal. This mode may be used by 

hardware which allows direct triggering by an electrical signal as oppose to gating as 

in the “safe” mode. The last mode, labeled “unsafe” on the device, uses the JK Flip-



Flop functionality but bypasses the safety timer. This would be useful for applications 

where there is no safety risk associated with the gating signal remaining in the active 

state.

There are also three output modes. The first, labeled “Trig” on the device, 

outputs the trigger type selected in the previous paragraph. The second mode, labeled 

“Tmr” on the device, outputs the timer signal instead of the trigger signal. This is useful 

for diagnostics and confirming the timer duration. The last mode, labeled “ON” on 

the device, overrides all triggers and outputs a constant logical-high signal. This would 

be used when triggering is not needed, but when disconnecting the trigger conversion 

device would be too time consuming.

Finally, the device can operate on power provided by an electrical outlet, or 

four standard AA batteries.

A.3 Construction

An initial prototype was designed and implemented on a bread board before a 

printed circuit board was designed (see Figure A.2). The printed circuit board (PCB) 

was designed in PCB Artist (Advanced Circuits and WesDev Ltd). The final circuit 

schematic is shown in Figure A.3, and was laid out on a two-layer PCB (Figure A.4). 

The final PCB design was manufactured by Advanced Circuits. Surface mount 

components were attached to the PCB manually by applying solder paste to each pin 

pad and carefully laying the components on their designated location. The partially 

assembled PCB was then placed on a hot plate, as shown in Figure A.5, until the solder 

began to visually wick into the proper position. The board was then removed from the 

heating pad causing the solder paste to solidify. The PCB was designed to take this
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Figure A.2: The initial prototype conversion circuit implement on a breadboard (left) 
next to the final device (right).



Figure A.3: The final trigger converter circuit schematic
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(b)

Figure A.4: The final PCB layout. (a) Top layer of PCB. (b) Bottom layer of PCB.



139

Figure A.5: A hot plate was used to solder surface mount components.



manufacturing step into account since only the top layer would allow for surface 

mount components to be attached using this simple method. The remaining 

components were manually soldered, and the final result can be seen in Figure A.6 . 

An enclosure was designed in Solid Works (Dassault Systemes) and was fabricated 

using 3D printing. To facilitate through-panel connections, all electrical components 

were modeled to ensure accurate placement and hole sizes (see Figure A.7).

A.4 Discussion and Conclusion

The final trigger conversion device has proved to be very reliable, and the flexible 

design has found application beyond the MR-ARFI scenarios presented in this 

dissertation. For instance, the trigger conversion device has enabled precise 

synchronization of heating pulses with MR thermometry sequences, as well as 

neuromodulation applications where the ultrasound is triggered by an fMRI pulse 

sequence. The safety timer is configurable from between 400 ms -  2.8 s, and the device 

can be triggered with optical pulses shorter than 1 |is.

A.5 Parts List

The components used to construct the trigger conversion device are detailed in 

Table A.1. Most of the components used are generic enough that equivalent 

components from another manufacturer could be substituted if desired.
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Figure A.7: Rendering of enclosure, PCB, and mounted components.
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Table A.1: Parts list for trigger conversion device

Passive Components

Part Type Part Description Manufacturer Part # Qty
Resistor

(SM)
Resistor

(SM)
Resistor

(SM)
Resistor

(SM)
Resistor

(SM)
Resistor

(SM)

Potentiomet
er

Capacitor
(SM)

Capacitor
(SM)

Capacitor
(SM)

Capacitor
(SM)

2.7 Ohm, 5%, 
0.1W, 0603 

47 Ohm, 1%, 
0.25W, 1206 

750, 1%, 0.125W, 
0805 

2K, 1%, 0.1 W, 
0603 

10K, 1%, 0.1W, 
0603 

22.1K, 1%, 0.1W, 
0603 

200k, 25-Turn, 
PC-Mount, Right- 

Angle 
0.01uF, 5%, 50v, 

MLCC, X7R, 
0603 

0.1uF, 10%, 50v, 
MLCC, X7R, 

0603 
1.0uF, 10%, 50v, 

MLCC, X7R, 
0603 

10uF, 10%, 10v, 
MLCC, X5R, 

0805

Stackpole

Rohm
Semiconductor

Stackpole

Stackpole

Stackpole

Stackpole

Murata

TDK

Kemet

TDK

RMCF0603JT2R70

MCR18EZPF47R0 1

RMCF0805FT750R 2

RMCF0603FT2K00 2

RMCF0603FT10K0 2

RMCF0603FT22K1 1

PV36Z204C01B00

C1608X7R1H103J 2

C0603C104K5RACTU 6

C1608X5R1H105K 3

Murata GRM21BR61A106KE19K 2

1

1

Input/Output Jacks, Switches, & Indicators

BNC Jack

Fiber Optic 
Transmitter

50 Ohm PC- 
Mount, Right 
Angle WHITE 

HOUSING 
Fiber optic 
transmitter, 

PC-Mount, Right 
Angle

Amphenol

Avago

31-54341-10RFX

HFBR-1528Z

2

1
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Table A.1 Continued

Part Type Part Description Manufacturer Part # Qty

Fiber optic
Fiber Optic 

Receiver
receiver, 

PC-Mount, Right 
Angle 

Green, 3 mm (T-1),

Avago HFBR-2528Z 1

LED PC-Mount, Right- 
Angle 

Red, 3mm (T-1),

Kingbright WP934CB/GD 3

LED PC-Mount, Right- Kingbright WP934CB/ID 1
Angle

C&K
ComponentsSlide Switch 1P3T OS103011MA7QP1 2

Slide Switch 2P3T C&K
Components OS203011MA2QP1 1

Push Button 1P Momentary 
Red knob for

ALPS SPPJ311500 2

Knob ALPS SPPJ3 
pushbutton

ALPS UJ206020 2

Power
Switch

Rocker Switch, C&K
ComponentsSPST, Black, 

Snap-In
DA102J12S215HQF 1

Integrated Circuits

Logic-AND Quad-AND gate, 
2-Input

Texas
Instruments SN74F08D 1

Logic-NOT Hex-Schmitt PhillipsTriggered Inverter N74F14D 1

Positive-Edge Texas
InstrumentsFlip-Flop triggered, SN74109D 1

JK Flip-Flop
Negative-Edge

T  pyjiq

Flip-Flop triggered, JK Flip- Instruments SN74112D 1
Flop

Timer 555 Precision Texas TLC555-CDRG4 1Timer 
General Purpose

Instruments

Transistor switching
transistor

Fairchild MMBT-3906 1

Peripheral Dual Hi Current Texas SN75451B 1Driver Peripheral Drivers Instruments
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Table A.1 Continued

Part Type Part Description Manufacturer Part # Qty

Diode
General Purporse 

Diode, Surface 
mount

NXP BAS16,235 1

Power

Battery
Holder

DC Jack 

DC Adapter

1xAA Holder, PC- 
Mount 

DC power jack, 
shielded, 

ID=2.1mm, 
OD=5.5mm 

7.5 V, 6W, 0.8A, 
AC-DC adapter, 

ID=2.1mm, 
OD=5.5mm

MPD

CUI

Mean Well

BHAA-3 5 

PJ-047A 1

GS06U-11P1J 1

Structural

Screw

Screw

Screw

Thread
Insert

Hex Nut

4-40, 1/2”, 
Machine Screw, 

Pan-Head, 
Phillips, Brass 

4-40, 1/4”, 
Machine Screw, 

Flat-Head, 
Phillips, Brass 

2-56, 1/4”, 
Machine Screw, 
Flat-Head, Slot, 

Brass 
4-40 Thread Insert 
w /o Flange, 3/16” 

Thread length, 
Brass 

2-56 Hex Nut, 
3/16” Width, 
1/16” Height, 

Brass

94070A110

92480A106

92451A077

92395A112

92671A003

10

10

8

1

9
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Table A.1 Continued

Part Type Part Description Manufacturer Part # Qty

Quick- Female 0.187
Connect Quick Connect 2
Terminal terminal

Rubber feet for 0.250” (1/4”) 4Dia. Hole



APPENDIX B

DESIGN AND CONSTRUCTION OF A DEVICE 

FOR THE REMOVAL OF DISSOLVED 

OXYGEN FROM WATER

B.1 Motivation

It is common for the ultrasound beam to be coupled to the target tissue via a 

water bath; however, any oxygen dissolved in the water bath will scatter the beam and 

reduce the beam power delivered to the target. Dissolved oxygen can also cause 

cavitation which has the potential to be dangerous, for example, if bubbles were to 

accumulate on the patient’s skin. Consequently, ensuring the water bath contains low 

amounts of dissolved oxygen is critical for performing safe, high quality, focused 

ultrasound studies. Unfortunately, water normally contains large amounts of dissolved 

oxygen. Additional gases are also likely to be dissolved in water, however, dissolved 

oxygen content is a good indicator of overall gas levels and so monitoring other gases 

is of secondary concern. While, commercially available systems for degassing water 

exist, they are prohibitively expensive, costing approximately $4,000 -  $10,000, and 

do not meet all our performance goals. This chapter discusses the design, construction, 

and testing of an automated device for removing dissolved oxygen from water that is 

economical and highly effective.



B.2 Design Targets

Our target design criteria are summarized in Table B.1. A target dissolved 

oxygen content of 1 ppm (or 1 mg/liter) was selected based on common industry 

standards. For instance, to sell an ultrasound device in Canada, Health Canada 

requires that the ultrasound device have its performance quantified in water that starts 

<= 2 ppm at 22 ± 3°C [1]. Furthermore, water below 4 ppm is absolutely required to 

avoid cavitation, and so to ensure that the water bath is sufficiently degassed for the 

duration of the experiment, even after multiple transfer steps, the initial dissolved 

oxygen content should be < 2 ppm. As a worst-case scenario, we assumed that the de­

ionized water available begins at a dissolved oxygen content of 7 ppm.

A target goal of degassing a water volume of 40 L (approximately 10 gallons) 

to a dissolved oxygen content of 1 ppm within 4 hours was selected. This goal enables 

us to replace the transducer’s water bath multiple times during an experiment as well 

as make phantoms, etc. with water to spare. A 4 hour timeline ensures same-day access 

to degassed water so we can always run sound experiments.

Lastly, the degassing system should require as little human interaction as 

possible while remaining safe and efficient.

B.3 Degassing Methods

Several methods exist for degassing water. The following expanded 

descriptions of each degassing method include paraphrased material available from 

Health Canada and Precision Acoustics [1], [2].
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Table B.1: Target design criteria for the water degassing device

Target Value

Initial dissolved oxygen content 7.0 ppm

Final dissolved oxygen content 1.0 ppm

Volume to be degassed 40 L /  ~10 Gallons

Max time to degas volume 4 hours

Cost $2000

B.3.1.1 Boiling

This is a simple and effective way of degassing water. While boiling periods as 

short as 5 -  15 minutes are sufficient to reduce oxygen levels below 2 ppm, it can take 

a long time to boil a sufficiently large volume of water. Furthermore, the water will 

need to cool before it can be used. During the extended cooling duration, the water is 

regassing, and thus undoing the work that was just done.

B.3.1.2 Vacuum

When subjected to hard vacuums, dissolved oxygen levels can be reduced 

below the 1 ppm. This method of degassing is suited to small volumes of water, but 

can be difficult to implement for larger volumes.

B.3.1.3 Reduced Pressure Recirculation

The system comprises of a high volume pump connected to a standing body of 

water by rigid walled tubing. A pressure restrictor is fitted to the inlet tube, such that 

the pump is attempting to draw water through the tube faster than water is allowed in.



This creates a partial vacuum within the rigid walled tube and any dissolved gas 

bubbles increase in size, and eventually nucleate to form larger bubbles which 

eventually escape to the surface. Oxygen levels of 2-3 ppm can be achieved.

B.3.1.4 Addition of Sodium Sulphite

Sodium sulphite reacts with the dissolved oxygen in the water. Sodium sulphite 

concentrations as low as 4 g/liter will keep oxygen levels below 2 ppm for at least 40 

hours. However, this technique introduces significant ionic content, and can increase 

the water’s conductivity above allowed limits. Furthermore, sodium sulphite solution 

is alkaline and will result in corrosion of many metals including aluminum and nickel, 

and may not be safe for contact with skin.

B.4 Selected Design and Rationale

The boiling method was ruled out because it is impractical for degassing the 

large 40 L target volume. Due to the difficulty of heating such a large volume, the 

water must boiled in batches, and each batch can take 2-3 hours once heating and 

cooling time is accounted for. This method also requires constant human monitoring 

to ensure safety and efficient throughput. Vacuum degassing was also ruled out for 

being too slow and requiring multiple batches, which requires human interaction. 

Adding sodium sulphite risks damaging the transducer and could possibly harm the 

patient.

The selected design combines the vacuum method with the reduced pressure 

recirculation method to provide a device capable of degassing large volumes of water 

without human interaction and without altering the chemistry of the water bath. A

149



schematic of the degasser components is shown in Figure B.1, and the final 

constructed device is shown in Figure B.2. The design uses Liqui-Cel Contactors made 

by Membrana -  Charlotte, a division of Celgard LLC. These modules consist of a 

hydrophobic porous membrane that allow water to pass through the contactor while a 

vacuum pump pulls gas through the membrane and out of the water. Flow rates up to 

3 L/min are achievable using their “MiniModules.” These modules are the second 

most expensive component of the system, and require a vacuum pump that is sold 

separately.

Several types of vacuum pumps exist including oil lubricated rotary pumps, dry 

vane pumps, rotary screw dry pumps, liquid ring pumps, and diaphragm pumps. For 

this application, a diaphragm pump was selected due to its immunity to water vapor 

and low maintenance costs (no oil or filters to clean/replace). The KNF USA Inc. 

LABOPORT N811KVP diaphragm vacuum pump was selected due to its relatively 

low cost and acceptable performance. At a price of $575, the N811KVP pump 

produces a maximum vacuum of 75 Torr. Future systems should consider the 

N816KTP model for $900 which produces a much stronger 15 Torr, vacuum.

To select the appropriate Liqui-Cel Contactor, the performance of four different 

versions was modeled to estimate the time required to reduce 40 L of water with an 

initial dissolved oxygen content of 7 ppm down to the desired target of 1 ppm. 

Membrana provides datasheets that estimate the percentage of oxygen removed at 

various flow rates after one pass through the Liqui-Cel contactor when applying a 

given vacuum. The higher the flow rate, the less oxygen is removed during each pass 

through the contactor; however, the more frequently water is recirculated. The
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Figure B. 1: Schematic diagram of the water degassing device. Repeated passes through 
the Liqui-Cel Contactor extracts dissolved oxygen from the water. PG = Pressure 
Gauge (optional). VG = Vacuum Gauge (optional). FV = Flow control Valve 
(optional). DI-Water = De-ionized water.

Figure B.2: Final version of degasser after construction.



performance of the contactors was derated since the vacuum pump selected can only 

provide a 75 Torr vacuum, and the lowest vacuum strength the contactor datasheets 

gave specifications for was a 50 Torr vacuum. The modeled performance of the four 

Liqui-Cel Modules is summarized in Table B.2. Based on these results, the 

MiniModule 1.7 x 8.75” ($475) was selected since it provides the best opportunity to 

achieve the 4 hour target degassing time while not being significantly more expensive 

than the lower performing models. These estimates also indicate that a flow rate of 

1000 mL /  minute should be sufficient, and this is readily achievable with economical 

water pumps. Many components in Figure B.1, such as the vacuum and pressure 

gauges, are recommended by Membrana for industrial applications, but were omitted 

in this design to reduce cost. Furthermore, some components are readily 

interchangeable with comparable devices. For instance, Membrana instructs users to 

install a 10 |im prefilter to protect the Liqui-Cel Contactor from debris carried in the 

water. A 5 ^m prefilter, normally used for water fountains and refrigerators, was 

selected due to its low cost ($10 -  $15), but other options exist. A DC water pump from 

SHURflo was selected because it allows for easy adjustment of the flow rate. Lastly, it 

was important to use thick-walled tubing for the connection between the contactor and 

the vacuum pump as thin-walled tubing could not withstand the pressure differential 

and collapsed.

B.5 Results and Discussion

To test the degassing device, the 40 L water tank was first filled with deionized 

water. Using a Hanna Instruments HI-9146 (Woonsocket, Rhode Island, USA) 

dissolved oxygen meter, the water tank’s initial dissolved oxygen content was
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Table B.2: Comparison of Liqui-Cel Contactors

MicroModule
0.75x1"

MiniModule 
1.0 x 5.5"

MiniModule 
1.7 x 5.5"

MiniModule
1.7x8.75"

Cost

Max
Flow
Rate

Vacuum 
for Spec

$195

100 mL /min

125 Torr

Flow Rate 
[mL/min]

20
40
60
80
100

Time to 
Target 
[Hours]

46.4 
28.2 
21.6 
17.6
16.4

$290 

500 mL /min

50 Torr

Flow Rate 
[mL/min]

100
200
300
400
500

Time to 
Target 
[Hours]

17.9 
10.6
8.9
7.7
6.8

$400

2000 mL /min

50 Torr

Flow Rate 
[mL/min]

200
600
1000
1400
2000

Time to 
Target 
[Hours]

9.2
3.7
2.8
2.3 
1.9

$475

3000 mL /min

50 Torr

Flow Rate 
[mL/min]

250
500
1000
1500
2500

Time to 
Target 
[Hours]

7.4 
3.9 
2.1 
1.6
1.4



measured to be 6.76 ppm. After starting degasser, measurements of the dissolved 

oxygen content were taken periodically, the results of which are shown in Figure B.3. 

The predicted time to reach the target dissolved oxygen content of 1.0 ppm was 

approximately 2.1 hours, and the measured dissolved oxygen content at that time was 

approximately 1.4 ppm. Reaching the 1.0 ppm level did not occur until the device had 

been running for approximately 4 hours. There are several reasons for the anticipated 

degassing rate to be higher than the measured rate. First, the vacuum pump selected 

can produce at most a 75 Torr vacuum, while the Liqui-Cel Contactor lists a minimum 

desired vacuum of 50 Torr. It is likely that the vacuum pump only operates at 

maximum capability during limited scenarios, so the effective vacuum is likely weaker 

than the 75 Torr value quoted by the manufacturer. Second, while the Liqui-Cel 

Contactor performance metrics were derated to account for the difference in vacuum 

strength when predicting their performance, it is possible that the derating applied was 

overly optimistic since it is not obvious how the degassing rate varies with vacuum 

strength. Third, as time progresses, the Liqui-Cel Contactor accumulates water on the 

outside of the membrane which may indicate that its performance is degrading over 

time. Fourth, the predicted performance did not account for regassing of the water in 

the water tank, but this is most certainly occurring. In fact, in Figure B.4 the degasser 

was shut off and the effect of regassing was measured. If the water surface of the water 

tank is properly covered from air exposure, regassing can be kept to approximately 

0.11 ppm per hour, but nevertheless, this effect was missing from the predicted 

contactor performance.

Given these results, the choice to target a 1 ppm dissolved oxygen content now
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1.0 2.0 3.0 4.0 5.0
Time [Hours]

Figure B.3: Dissolved oxygen content of 40 L water tank while degasser is running. 
The target dissolved oxygen content of 1 ppm is achieved after approximately 4 hours, 
while 1.25 ppm is achieved after only 2.5 hours.
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Figure B.4: Regassing of 40 L water tank once degasser is disabled. When the water is 
covered in the tank, it regasses at a rate of approximately 0.11 ppm per hour. At this 
rate, after 9 hours the water in the tank would still be below 2 ppm.



seems ambitious. That said, the target was achieved by the target duration of 4 hours, 

and it is important to note that very acceptable dissolved oxygen levels of 

approximately 1.3 ppm were achieved after only 2.5 hours. Finally, choosing the 

highest performing contactor was definitely the best choice given that the performance 

predictions were slightly optimistic.

B.6 Parts List and Cost Estimate

The parts required to construct this device, as well as their estimated cost, are 

shown in Table B.3. The vacuum pump can easily be substituted for another model, 

and a higher performing model could significantly improve the system’s performance.
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Table B.3: Parts list for water degassing device

Part Description Price Estimate

Membrana Liqui-Cel Contactor MiniModule 1.7 x 8.75” $475

Water pump SHURflo 100 series, 24V $50

5 pm Sediment Filter Omnipure CL10PF5 inline 
sediment water filter $15

DC power supply 12V, 10 A $100

Water Tank 

Vacuum Pump

10 Gallon capacity 
RV Supplies 

KNF LABOPORT Mini 
Diaphragm Vacuum Pumps 

Model #: N811KVP (75 Torr)

or

$50

$575

or

Model #: N816KTP (15 Torr) $900
Misc Tubing, Valves, Connectors, etc $50

Total Cost: $1315 - 1640
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B.7 Conclusion

A device for degassing water quickly, efficiently, and effectively has been 

designed, constructed, and tested. This device meets all of the design criteria -  it 

automatically degasses 40 L of water to 1 ppm within 4 hours -  and costs less than 

$1400. This is cheaper and more effective than commercially available systems, and 

eliminates the need for human monitoring. Performance could be improved further by 

investing in a higher performance vacuum pump, optimizing the flow rate through the 

Liqui-Cel Contactor, and investigating more effective methods of preventing 

regassing.
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