515 research outputs found

    ํ•€ํŽซ ์†Œ์ž์—์„œ์˜ ํ•ซ์บ๋ฆฌ์–ด ์‹ ๋ขฐ์„ฑ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ์‹ ํ˜•์ฒ .CMOS ๋กœ์ง ์†Œ์ž๋Š” ํผํฌ๋จผ์Šค๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ง€์†์ ์œผ๋กœ ์ถ•์†Œํ™” ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ตฌ์กฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ์ถ•์†Œํ™”์— ๋น„ํ•ด ๋™์ž‘ ์ „์••์€ ์ถฉ๋ถ„ํžˆ ๊ฐ์†Œํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ์†Œ์ž ๋‚ด ์ˆ˜์ง ์ „๊ณ„๋‚˜ ์˜จ๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ์ถ”์„ธ์ด๊ธฐ ๋•Œ๋ฌธ์— ์‹ ๋ขฐ์„ฑ์€ ๊ณ„์†ํ•ด์„œ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ 3D ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋งŽ์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ์ง€๋งŒ empirical ๋ชจ๋ธ๋ง๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์ œ ์ธก์ •์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ ๋ฌผ๋ฆฌ์  ์ด๋ก  ์ค‘์‹ฌ์œผ๋กœ ๋กœ์ง ์†Œ์ž์˜ ํ•ซ์บ๋ฆฌ์–ด ์‹ ๋ขฐ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋จผ์ € ํ•ซ์บ๋ฆฌ์–ด ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— electron-electron scattering์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ 3D FinFET์˜ ์ธก์ • ๋ฐ์ดํ„ฐ์™€ calibration์„ ์ง„ํ–‰ํ•˜์—ฌ ๋ชจ๋ธ์˜ ์ •ํ•ฉ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. calibration ๊ณผ์ •์—์„œ๋Š” ๋ชจ๋“  scattering ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ „์••๊ณผ ์˜จ๋„ ์กฐ๊ฑด์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ์ „์•• ์กฐ๊ฑด์— ๋”ฐ๋ฅธ HCD๋ฅผ ๋ถ„์„ํ•˜๊ณ , calibration์„ ์ง„ํ–‰ํ•˜์—ฌ HCD ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ „์•• ์กฐ๊ฑด์— ๋”ฐ๋ฅธ HCD์˜ ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. oxide trap๊ณผ ๋‹ฌ๋ฆฌ interface trap์€ ์ „์•• ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ interface trap์„ 3๊ฐ€์ง€ ์„ฑ๋ถ„์œผ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ฐ ์„ฑ๋ถ„์˜ ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. Multiple particle process(MP)๊ณผ field enhanced thermal degradation process(FP)๋Š” ์ „์•• ์กฐ๊ฑด๊ณผ ์ƒ๊ด€์—†์ด ์ผ์ •ํ•œ ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋ฐ˜๋ฉด Single particle process(SP)๋Š” scattering์˜ ์˜ํ–ฅ์„ ๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์€ ์ „์•• ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง„๋‹ค. ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ ๋ถ„์„ ๊ณผ์ •์—์„œ๋„ calibration์„ ์ง„ํ–‰ํ•˜๋ฉฐ ์—ฌ๋Ÿฌ ๋ฒˆ์˜ iteration์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ „์•• ๋ฐ ์˜จ๋„๊ฐ€ ๊ณ ๋ ค๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ถ”์ถœ๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ ์šฉํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ๋ชจ๋ธ๋ณด๋‹ค ๋” ์ •ํ™•ํ•˜๊ฒŒ HCD ์ธก์ • ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ฌผ๋ฆฌ์  ์ด๋ก ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ ๊ตฌ์ถ•ํ•จ์œผ๋กœ์จ HCD ๋ถ„์„์˜ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ํ•˜์ง€๋งŒ ๊ฐ€์† ์กฐ๊ฑด๊ณผ ๋™์ž‘ ์กฐ๊ฑด์˜ self-heating ํšจ๊ณผ๊ฐ€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์†Œ์ž๊ฐ€ ์‹ค์ œ CMOS ํšŒ๋กœ์˜ ๋™์ž‘ ์กฐ๊ฑด์—์„œ interface trap์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” ๋™์ž‘ ์˜์—ญ์—์„œ์˜ ๊ฐ ์„ฑ๋ถ„์˜ ๋น„์œจ๊นŒ์ง€ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์šฐ๋ฆฌ๋Š” 10 nm node ์†Œ์ž์—์„œ nFinFET์— ๋น„ํ•ด pFinFET์—์„œ ๋†’์€ ์—ดํ™”๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์›์ธ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. pFinFET์€ ์†Œ์Šค/๋“œ๋ ˆ์ธ ๋ฌผ์งˆ๋กœ SiGe๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— nFinFET์— ๋น„ํ•ด self-heating ํšจ๊ณผ๊ฐ€ ์‹ฌํ•˜์—ฌ ์†Œ์ž ์˜จ๋„๊ฐ€ ๋„ ๋†’๋‹ค. ์ด๋ก ์ ์œผ๋กœ MP ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ lifetime์€ ์˜จ๋„๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๊ฐ์†Œํ•˜๊ธฐ ๋•Œ๋ฌธ์— MP์— ์˜ํ•œ ์—ดํ™” ๋˜ํ•œ ๊ฐ์†Œํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์†Œ์ž ์˜จ๋„๊ฐ€ ๋” ๋†’์€ pFinFET์—์„œ nFinFET์— ๋น„ํ•ด ๋” ๋งŽ์€ MP๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ํ•˜์ง€๋งŒ nFinFET ๊ณผ ๋‹ฌ๋ฆฌ pFinFET์—์„œ๋Š” Si-H bond์˜ electron๊ณผ hole์ด ๋ฐ˜์‘ํ•˜์—ฌ interface trap์„ ์ƒ์„ฑ์‹œํ‚ค๋Š” RD ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ RD๋Š” ์˜จ๋„๊ฐ€ ๋†’์„์ˆ˜๋ก ๋” ๋งŽ์€ ์—ดํ™”๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์—, pFinFET์—์„œ nFinFET๋ณด๋‹ค ๋” ๋งŽ์€ ์—ดํ™”๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” HCD ์กฐ๊ฑด์ด์ง€๋งŒ ์†Œ์ž ์˜จ๋„๊ฐ€ ๋†’์€ pFinFET์—์„œ ์ถ”๊ฐ€์ ์ธ RD ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ์ „์•• ์กฐ๊ฑด์—์„œ์˜ ์ „๋ฅ˜ ์—ดํ™”์œจ์„ ํ†ตํ•ด ์ฃผ์š” ์—ดํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ pFinFET์—์„œ๋Š” RD๊ฐ€ ์ฃผ์š”ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ HCD ์กฐ๊ฑด์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” RD๋ฅผ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ RD๋ฅผ ์ œ์™ธํ•œ ์ˆœ์ˆ˜ hot carrier ์„ฑ๋ถ„์€ pFinFET๋ณด๋‹ค nFinFET์—์„œ ๋” ๋งŽ์ด ๋ฐœ์ƒํ•œ๋‹ค.CMOS logic devices have been scaled down to improve performance. However, the operating voltage is not sufficiently reduced compared to the scale down in physical dimensions. Therefore, since the electric field and temperature of the device gradually increase, reliability is still a critical issue in logic devices. Recently, many studies on the reliability of 3D devices are being conducted, but most of the studies are related to empirical modeling. Therefore, in this study, based on the actual measurement results, the hot carrier degradation(HCD) reliability of the logic device was analyzed focusing on the physical theory using Technology computer-aided design (TCAD) simulation. First, electron-electron scattering(EES) was applied to the TCAD simulation to improve the accuracy of the hot carrier model. Additionally, calibration between the measurement data of 14 nm node FinFET and the model was performed to confirm the consistency. The calibration process required various voltage and temperature conditions to account for all scattering mechanisms. Therefore, HCD was analyzed according to various voltage conditions, and the parameters of the HCD model were extracted by calibration process. Next, temperature dependence under various HCD conditions was analyzed. Unlike oxide traps, interface traps show different temperature dependence depending on HCD voltage conditions. Therefore, the interface traps were separated into three components and the temperature dependence was analyzed for each component. Multiple particle process (MP) and Field enhanced thermal degradation process (FP) have a constant temperature dependence regardless of voltage conditions. On the other hand, the temperature dependence of Single particle process (SP) varies depending on the voltage condition because SP is affected by scattering. In the process of temperature dependence analysis, calibration is also performed and parameters considering various voltages and temperatures were extracted through several iterations. The improved model to which the extracted parameters were applied showed more precise prediction of degradation compared to that of the previous model. As a results, accuracy of the HCD analysis was improved by establishing the HCD simulation framework based on physical theories. However, since the self-heating effect of the acceleration condition and the operation condition are different, the HCD mechanism that occurs in the actual CMOS circuit may also be different. Therefore, we predicted the ratio of each component under operating condition. Finally, in 10 nm node devices, we analyzed the cause of higher HCD in pFinFETs than in nFinFETs. Self-heating effect is severe in pFinFETs because SiGe is used as the source/drain material which makes the device temperature higher than nFinFETs. Theoretically, because the lifetime of multiple particle(MP) mechanism decreases as temperature increases, degradation due to MP decreases. Therefore, it is difficult for the HCD mechanisms to occur more in pFinFETs which has higher temperature than nFinFETs. However, in pFinFETs unlike nFinFETs, reaction-diffusion (RD) mechanism can occur in which holes react with the electrons of Si-H bonds to generate interface traps. Also, since RD deteriorates more as the temperature increases, the phenomenon that more degradation occurs in pFinFET than nFinFET can be explained by the RD mechanism. Therefore, we propose an additional RD mechanism that is caused by high device temperature in pFinFETs even in HCD condition. Main components were investigated through measurements of current degradation rate in various voltage conditions, and it was found that RD is dominant in pFinFETs. Also, RD that can occur in HCD condition was predicted through TCAD simulation. As a results, degradation due to pure hot carriers without RD occurs more in nFinFETs than in pFinFETs.Abstract i Chapter 1. Introduction 1 Chapter 2. Hot Carrier Degradation Model 4 2.1. Physical theory 4 2.2. TCAD simulation 8 2.3. Calibration process 14 2.4. Summary 22 Chapter 3. Analysis on Temperature Dependence of HCD 25 3.1. Introduction 25 3.2. Temperature dependence according to acceleration conditions 26 3.3. Calibration process 30 3.4. Mechanism separation 33 3.5. HCD prediction in the nominal voltage 35 3.6. Summary 36 Chapter 4. Comparative Analysis of HCD in nMOS/pMOS FinFET 39 4.1. Introduction 39 4.2. Comparison of HCD in the long/short channel FinFET 40 4.3. Self-heating effect in n/pFinFET 44 4.4. Bias Temperature Instability(BTI) in n/pFinFET 47 4.5. Summary 59 Chapter 5. Conclusion 64 Abstract in Korean 66 List of Publications 69Docto

    Impact of self-heating on the statistical variability in bulk and SOI FinFETs

    Get PDF
    In this paper for the first time we study the impact of self-heating on the statistical variability of bulk and SOI FinFETs designed to meet the requirements of the 14/16nm technology node. The simulations are performed using the GSS โ€˜atomisticโ€™ simulator GARAND using an enhanced electro-thermal model that takes into account the impact of the fin geometry on the thermal conductivity. In the simulations we have compared the statistical variability obtained from full-scale electro-thermal simulations with the variability at uniform room temperature and at the maximum or average temperatures obtained in the electro-thermal simulations. The combined effects of line edge roughness and metal gate granularity are taken into account. The distributions and the correlations between key figures of merit including the threshold voltage, on-current, subthreshold slope and leakage current are presented and analysed

    Technology CAD of Nanowire FinFETs

    Get PDF

    Study of Warm Electron Injection in Double Gate SONOS by Full Band Monte Carlo Simulation

    Full text link
    In this paper we investigate warm electron injection in a double gate SONOS memory by means of 2D full-band Monte Carlo simulations of the Boltzmann Transport Equation (BTE). Electrons are accelerated in the channel by a drain-to-source voltage VDS smaller than 3 V, so that programming occurs via electrons tunneling through a potential barrier whose height has been effectively reduced by the accumulated kinetic energy. Particle energy distribution at the semiconductor/oxide interface is studied for different bias conditions and different positions along the channel. The gate current is calculated with a continuum-based post-processing method as a function of the particle distribution obtained from Monte Carlo. Simulation results show that the gate current increases by several orders of magnitude with increasing drain bias and warm electron injection can be an interesting option for programming when short channel effects prohibit the application of larger drain bias

    Transient Analysis of Warm Electron Injection Programming of Double Gate SONOS Memories by means of Full Band Monte Carlo Simulation

    Full text link
    In this paper we investigate "Warm Electron Injection" as a mechanism for NOR programming of double-gate SONOS memories through 2D full band Monte Carlo simulations. Warm electron injection is characterized by an applied VDS smaller than 3.15 V, so that electrons cannot easily accumulate a kinetic energy larger than the height of the Si/SiO2 barrier. We perform a time-dependent simulation of the program operation where the local gate current density is computed with a continuum-based method and is adiabatically separated from the 2D full Monte Carlo simulation used for obtaining the electron distribution in the phase space. In this way we are able to compute the time evolution of the charge stored in the nitride and of the threshold voltages corresponding to forward and reverse bias. We show that warm electron injection is a viable option for NOR programming in order to reduce power supply, preserve reliability and CMOS logic level compatibility. In addition, it provides a well localized charge, offering interesting perspectives for multi-level and dual bit operation, even in devices with negligible short channel effects

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Electrical characterization of high-k gate dielectrics for advanced CMOS gate stacks

    Get PDF
    The oxide/substrate interface quality and the dielectric quality of metal oxide semiconductor (MOS) gate stack structures are critical to future CMOS technology. As SiO2 was replaced by the high-k dielectric to further equivalent oxide thickness (EOT), high mobility substrates like Ge have attracted increasing in replacing Si substrate to further enhance devices performance. Precise control of the interface between high-k and the semiconductor substrate is the key of the high performance of future transistor. In this study, traditional electrical characterization methods are used on these novel MOS devices, prepared by advanced atomic layer deposition (ALD) process and with pre and post treatment by plasma generated by slot plane antenna (SPA). MOS capacitors with a TiN metal gate/3 nm HfAlO/0.5 nm SiO2/Si stacks were fabricated by different Al concentration, and different post deposition treatments. A simple approach is incorporated to correct the error, introduced by the series resistance (Rs) associated with the substrate and metal contact. The interface state density (Dit), calculated by conductance method, suggests that Dit is dependent on the crystalline structure of hafnium aluminum oxide film. The amorphous structure has the lowest Dit whereas crystallized HfO2 has the highest Dit. Subsequently, the dry and wet processed interface layers for three different p type Ge/ALD 1nm-Al2O3/ALD 3.5nm-ZrO2/ALD TiN gate stacks are studied at low temperatures by capacitance-voltage (CV),conductance-voltage (GV) measurement and deep level transient spectroscopy (DLTS). Prior to high-k deposition, the interface is treated by three different approaches (i) simple chemical oxidation (Chemox); (ii) chemical oxide removal (COR) followed by 1 nm oxide by slot-plane-antenna (SPA) plasma (COR&SPAOx); and (iii) COR followed by vapor O3 treatment (COR&O3). Room temperature measurement indicates that superior results are observed for slot-plane-plasma-oxidation processed samples. The reliability of TiN/ZrO2/Al2O3/p-Ge gate stacks is studied by time dependent dielectric breakdown (TDDB). High-k dielectric is subjected to the different slot plane antenna oxidation (SPAO) processes, namely, (i) before high-k ALD (Atomic Layer Deposition), (ii) between high-k ALD, and (iii) after high-k ALD. High-k layer and interface states are improved due to the formation of GeO2 by SPAO when SPAO is processed after high-k. GeO2 at the interface can be degraded easily by substrate electron injection. When SPAO is processed between high-k layers, a better immunity of interface to degradation was observed under stress. To further evaluate the high-k dielectrics and how EOT impacts on noise mechanism time zero 1/f noise is characterized on thick and thin oxide FinFET transistors, respectively. The extracted noise models suggest that as a function of temperatures and bias conditions the flicker noise mechanism tends to be carrier number fluctuation model (McWhorter model). Furthermore, the noise mechanism tends to be mobility fluctuation model (Hooge model) when EOT reduces

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor
    • โ€ฆ
    corecore