'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
In this paper for the first time we study the impact
of self-heating on the statistical variability of bulk and SOI
FinFETs designed to meet the requirements of the 14/16nm
technology node. The simulations are performed using the GSS
‘atomistic’ simulator GARAND using an enhanced
electro-thermal model that takes into account the impact of the
fin geometry on the thermal conductivity. In the simulations we
have compared the statistical variability obtained from full-scale
electro-thermal simulations with the variability at uniform room
temperature and at the maximum or average temperatures
obtained in the electro-thermal simulations. The combined effects
of line edge roughness and metal gate granularity are taken into
account. The distributions and the correlations between key
figures of merit including the threshold voltage, on-current,
subthreshold slope and leakage current are presented and
analysed