68 research outputs found

    Humanization of robots: is it really such a good idea?

    Get PDF
    The aim of this review was to examine the pros and cons of humanizing social robots following a psychological perspective. As such, we had six goals. First, we defined what social robots are. Second, we clarified the meaning of humanizing social robots. Third, we presented the theoretical backgrounds for promoting humanization. Fourth, we conducted a review of empirical results of the positive effects and the negative effects of humanization on human–robot interaction (HRI). Fifth, we presented some of the political and ethical problems raised by the humanization of social robots. Lastly, we discussed the overall effects of the humanization of robots in HRI and suggested new avenues of research and development.info:eu-repo/semantics/publishedVersio

    The power of affective touch within social robotics

    Get PDF
    There have been many leaps and bounds within social robotics, especially within human-robot interaction and how to make it a more meaningful relationship. This is traditionally accomplished through communicating via vision and sound. It has been shown that humans naturally seek interaction through touch yet the implications on emotions is unknown both in human-human interaction and social human-robot interaction. This thesis unpacks the social robotics community and the research undertaken to show a significant gap in the use of touch as a form of communication. The meaning behind touch will be investigated and what implication it has on emotions. A simplistic prototype was developed focusing on texture and breathing. This was used to carry out experiments to find out which combination of texture and movement felt natural. This proved to be a combination of synthetic fur and 14 breaths per minute. For human’s touch is said to be the most natural way of communicating emotions, this is the first step in achieving successful human-robot interaction in a more natural human-like way

    Lovotics: Human - Robot Love and Sex Relationships

    Get PDF
    Intimate relationships, such as love and sex, between human and machines, especially robots, has been one of the topics in science fiction. However, this topic has never been treated in the academic area until recently. The topic was first raised and discussed by David Levy in his book titled “Love and Sex with Robotics” published in 2007. As a result, the subject of human-robot romantic and intimate relationships rapidly developed into an academic research discipline in its own right. Since then, researchers have come up with many implementations of robot companions like sex robots, emotional robots, humanoid robots, and artificial intelligent systems that can simulate human emotions. This book chapter presents a summary of significant activity in this field during the recent years, predicts how the field is likely to develop, and its ethical and legal background. We also discuss our research in physical devices for human-robot love and sex communication

    Creating robotic characters for long-term interaction

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 177-181).Researchers studying ways in which humans and robots interact in social settings have a problem: they don't have a robot to use. There is a need for a socially expressive robot that can be deployed outside of a laboratory and support remote operation and data collection. This work aims to fill that need with DragonBot - a platform for social robotics specifically designed for long-term interactions. This thesis is divided into two parts. The first part describes the design and implementation of the hardware, software, and aesthetics of the DragonBot-based characters. Through the use of a mobile phone as the robot's primary computational device, we aim to drive down the hardware cost and increase the availability of robots "in the wild". The second part of this work takes an initial step towards evaluating DragonBot's effectiveness through interactions with children. We describe two different teleoperation interfaces for allowing a human to control DragonBot's behavior differing amounts of autonomy by the robot. A human subject study was conducted and these interfaces were compared through a sticker sharing task between the robot and children aged four to seven. Our results show that when a human operator is able to focus on the social portions of an interaction and the robot is given more autonomy, children treat the character more like a peer. This is indicated by the fact that more children re-engaged the robot with the higher level of autonomy when they were asked to split up stickers between the two participants.by Adam Setapen.S.M

    Mutual Recognition in Human-Robot Interaction: a Deflationary Account

    Get PDF
    Mutually adaptive interaction involves the robot as a partner as opposed to a tool, and requires that the robot is susceptible to similar environmental cues and behavior patterns as humans are. Recognition, or the acknowledgement of the other as person, is fundamental to mutually adaptive interaction between humans. We discuss what embodied recognition involves and its behavioral manifestations, and describe the benefits of implementing it in HRI

    Touching a mechanical body: tactile contact with body parts of a humanoid robot is physiologically arousing

    Get PDF
    A large literature describes the use of robots’ physical bodies to support communication with people. Touch is a natural channel for physical interaction, yet it is not understood how principles of interpersonal touch might carry over to human-robot interaction. Ten students participated in an interactive anatomy lesson with a small, humanoid robot. Participants either touched or pointed to an anatomical region of the robot in each of 26 trials while their skin conductance response was measured. Touching less accessible regions of the robot (e.g., buttocks and genitals) was more physiologically arousing than touching more accessible regions (e.g., hands and feet). No differences in physiological arousal were found when just pointing to those same anatomical regions. Social robots can elicit tactile responses in human physiology, a result that signals the power of robots, and should caution mechanical and interaction designers about positive and negative effects of human-robot interactions

    Differences in the Optimal Motion of Android Robots for the Ease of Communications Among Individuals With Autism Spectrum Disorders

    Get PDF
    Android robots are employed in various fields. Many individuals with autism spectrum disorders (ASD) have the motivation and aptitude for using such robots. Interactions with these robots are structured to resemble social situations in which certain social behaviors can occur and to simulate daily life. Considering that individuals with ASD have strong likes and dislikes, ensuring not only the optimal appearance but also the optimal motion of robots is important to achieve smooth interaction and to draw out the potential of robotic interventions. We investigated whether individuals with ASD found it easier to talk to an android robot with little motion (i.e., only opening and closing its mouth during speech) or an android robot with much motion (i.e., in addition to opening and closing its mouth during speech, moving its eyes from side to side and up and down, blinking, deeply breathing, and turning or moving its head or body at random). This was a crossover study in which a total of 25 participants with ASD experienced mock interviews conducted by an android robot with much spontaneous facial and bodily motion and an android robot with little motion. We compared demographic data between participants who answered that the android robot with much motion was easier to talk to than android robot with little motion and those who answered the opposite. In addition, we investigated how each type of demographic data was related to participants\u27 feeling of comfort in an interview setting with an android robot. Fourteen participants indicated that the android robot with little motion was easier to talk to than the robot with much motion, whereas 11 participants answered the opposite. There were significant differences between these two groups in the sensory sensitivity score, which reflects the tendency to show a low neurological threshold. In addition, we found correlations between the sensation seeking score, which reflects the tendency to show a high neurological threshold, and self-report ratings of comfort in each condition. These results provide preliminary support for the importance of setting the motion of an android robot considering the sensory traits of ASD

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers
    • 

    corecore