302 research outputs found

    Modelling of reliable service based operations support system (MORSBOSS)

    Get PDF
    Philosophiae Doctor - PhDThe underlying theme of this thesis is identification, classification, detection and prediction of cellular network faults using state of the art technologies, methods and algorithms

    Dynamic user preference parameters selection and energy consumption optimization for smart homes using deep extreme learning machine and bat algorithm

    Get PDF
    The advancements in electronic devices have increased the demand for the internet of things (IoT) based smart homes, where the connecting devices are growing at a rapid pace. Connected electronic devices are more common in smart buildings, smart cities, smart grids, and smart homes. The advancements in smart grid technologies have enabled to monitor every moment of energy consumption in smart buildings. The issue with smart devices is more energy consumption as compared to ordinary buildings. Due to smart cities and smart homes’ growth rates, the demand for efficient resource management is also growing day by day. Energy is a vital resource, and its production cost is very high. Due to that, scientists and researchers are working on optimizing energy usage, especially in smart cities, besides providing a comfortable environment. The central focus of this paper is on energy consumption optimization in smart buildings or smart homes. For the comfort index (thermal, visual, and air quality), we have used three parameters, i.e., Temperature (◦F), illumination (lx), and CO2 (ppm). The major problem with the previous methods in the literature is the static user parameters (Temperature, illumination, and CO2); when they (parameters) are assigned at the beginning, they cannot be changed. In this paper, the Alpha Beta filter has been used to predict the indoor Temperature, illumination, and air quality and remove noise from the data. We applied a deep extreme learning machine approach to predict the user parameters. We have used the Bat algorithm and fuzzy logic to optimize energy consumption and comfort index management. The predicted user parameters have improved the system’s overall performance in terms of ease of use of smart systems, energy consumption, and comfort index management. The comfort index after optimization remained near to 1, which proves the significance of the system. After optimization, the power consumption also reduced and stayed around the maximum of 15-18w

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    An improved dynamic load balancing for virtualmachines in cloud computing using hybrid bat and bee colony algorithms

    Get PDF
    Cloud technology is a utility where different hardware and software resources are accessed on pay-per-user ground base. Most of these resources are available in virtualized form and virtual machine (VM) is one of the main elements of visualization. In virtualization, a physical server changes into the virtual machine (VM) and acts as a physical server. Due to the large number of users sometimes the task sent by the user to cloud causes the VM to be under loaded or overloaded. This system state happens due to poor task allocation process in VM and causes the system failure or user tasks delayed. For the improvement of task allocation, several load balancing techniques are introduced in a cloud but stills the system failure occurs. Therefore, to overcome these problems, this study proposed an improved dynamic load balancing technique known as HBAC algorithm which dynamically allocates task by hybridizing Artificial Bee Colony (ABC) algorithm with Bat algorithm. The proposed HBAC algorithm was tested and compared with other stateof-the-art algorithms on 200 to 2000 even tasks by using CloudSim on standard workload format (SWF) data sets file size (200kb and 400kb). The proposed HBAC showed an improved accuracy rate in task distribution and reduced the makespan of VM in a cloud data center. Based on the ANOVA comparison test results, a 1.25 percent improvement on accuracy and 0.98 percent reduced makespan on task allocation system of VM in cloud computing is observed with the proposed HBAC algorithm

    Swarm Intelligence

    Get PDF
    Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence
    corecore