1,278 research outputs found

    Joint 1D and 2D Neural Networks for Automatic Modulation Recognition

    Get PDF
    The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O\u27Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of these architectures and integrated the models to perform joint detection and classification. To our knowledge, the present research is the first to study and successfully combine a lD ResNet classifier and Yolo v3 object detector to fully automate the process of AMR for parameter estimation, pulse extraction and waveform classification for non-cooperative scenarios. The overall performance of the joint detector/ classifier is 90 at 10 dB signal to noise ratio for 24 digital and analog modulations

    Detection and analysis of heartbeats in seismocardiogram signals

    Get PDF
    This paper presents an unsupervised methodology to analyze SeismoCardioGram (SCG) signals. Starting from raw accelerometric data, heartbeat complexes are extracted and annotated, using a two-step procedure. An unsupervised calibration procedure is added to better adapt to different user patterns. Results show that the performance scores achieved by the proposed methodology improve over related literature: on average, 98.5% sensitivity and 98.6% precision are achieved in beat detection, whereas RMS (Root Mean Square) error in heartbeat interval estimation is as low as 4.6 ms. This allows SCG heartbeat complexes to be reliably extracted. Then, the morphological information of such waveforms is further processed by means of a modular Convolutional Variational AutoEncoder network, aiming at extracting compressed, meaningful representation. After unsupervised training, the VAE network is able to recognize different signal morphologies, associating each user to its specific patterns with high accuracy, as indicated by specific performance metrics (including adjusted random and mutual information score, completeness, and homogeneity). Finally, a Linear Model is used to interpret the results of clustering in the learned latent space, highlighting the impact of different VAE architectural parameters (i.e., number of stacked convolutional units and dimension of latent space)

    A Contextual Study of Semantic Speech Editing in Radio Production

    Get PDF
    Radio production involves editing speech-based audio using tools that represent sound using simple waveforms. Semantic speech editing systems allow users to edit audio using an automatically generated transcript, which has the potential to improve the production workflow. To investigate this, we developed a semantic audio editor based on a pilot study. Through a contextual qualitative study of five professional radio producers at the BBC, we examined the existing radio production process and evaluated our semantic editor by using it to create programmes that were later broadcast. We observed that the participants in our study wrote detailed notes about their recordings and used annotation to mark which parts they wanted to use. They collaborated closely with the presenter of their programme to structure the contents and write narrative elements. Participants reported that they often work away from the office to avoid distractions, and print transcripts so they can work away from screens. They also emphasised that listening is an important part of production, to ensure high sound quality. We found that semantic speech editing with automated speech recognition can be used to improve the radio production workflow, but that annotation, collaboration, portability and listening were not well supported by current semantic speech editing systems. In this paper, we make recommendations on how future semantic speech editing systems can better support the requirements of radio production

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed

    Speech Enhancement for Automatic Analysis of Child-Centered Audio Recordings

    Get PDF
    Analysis of child-centred daylong naturalist audio recordings has become a de-facto research protocol in the scientific study of child language development. The researchers are increasingly using these recordings to understand linguistic environment a child encounters in her routine interactions with the world. These audio recordings are captured by a microphone that a child wears throughout a day. The audio recordings, being naturalistic, contain a lot of unwanted sounds from everyday life which degrades the performance of speech analysis tasks. The purpose of this thesis is to investigate the utility of speech enhancement (SE) algorithms in the automatic analysis of such recordings. To this effect, several classical signal processing and modern machine learning-based SE methods were employed 1) as a denoiser for speech corrupted with additive noise sampled from real-life child-centred daylong recordings and 2) as front-end for downstream speech processing tasks of addressee classification (infant vs. adult-directed speech) and automatic syllable count estimation from the speech. The downstream tasks were conducted on data derived from a set of geographically, culturally, and linguistically diverse child-centred daylong audio recordings. The performance of denoising was evaluated through objective quality metrics (spectral distortion and instrumental intelligibility) and through the downstream task performance. Finally, the objective evaluation results were compared with downstream task performance results to find whether objective metrics can be used as a reasonable proxy to select SE front-end for a downstream task. The results obtained show that a recently proposed Long Short-Term Memory (LSTM)-based progressive learning architecture provides maximum performance gains in the downstream tasks in comparison with the other SE methods and baseline results. Classical signal processing-based SE methods also lead to competitive performance. From the comparison of objective assessment and downstream task performance results, no predictive relationship between task-independent objective metrics and performance of downstream tasks was found

    Acoustic Identification of Flat Spots On Wheels Using Different Machine Learning Techniques

    Get PDF
    BMBF, 01IS18049B, ALICE III - Autonomes Lernen in komplexen Umgebungen 3 (Autonomous Learning in Complex Environments 3
    • …
    corecore