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Introduction

The continuous, non-invasive monitoring of machines and
machine-related services can help ensure trouble-free op-
eration and relieve the provider of unnecessary, manual
routine controls. Audio recordings in particular require
no further modifications of the devices or installations
to be monitored and are thus especially convenient to
acquire. We consider the case of the acoustic detection of
flat spots, a sign of wear on the wheels of rail vehicles.

The task can be considered as a special case of acous-
tic scene classification, assigning one of several acoustic
event categories to a given audio recording. Acoustic
scene classification has traditionally been addressed by
extraction of hand-crafted audio features and forwarded
to a general classification algorithm such as a support
vector machine (SVM) [1]. Other classical approaches are
based on the slightly more general mel-frequency cepstral
coefficients (MFCCs) combined with a clustering method
(e.g. Gaussian mixture models) to facilitate multi class
classification [2]. Recent progress in the field has been
stimulated by public data sets and open contests, such as
the widely acknowledged DCASE challenge [3]. Over the
past years convolutional neural networks in conjunction
with log-mel-spectrograms have proven to be promising
building blocks in addressing acoustic recognition tasks
[4].

We have adapted these methods to the specific require-
ments of the acoustic detection of flat spots. This damage
to the shape of railroad wheels can be caused by slip and
slide conditions that causes wheels to lock up while the
train is still moving, by faulty brakes or wheelset bearings.
It is noticeable acoustically through periodic knocking
noises, the frequency of which is determined both by the
speed of the train and the diameter of the wheels.

We have compared different feature representation such
as raw audio data, MFCCs and log-mel-spectrograms,
as well as different classifiers, from a SVM classifier, a
standard convolutional network architecture (CNN) to
encoder-decoder segmentation networks (U-Net). We
have further identified desirable feature invariances and
implement the corresponding acoustic transformations.

Our findings suggest that the task is facilitated by resam-
pling the audio to a virtually constant flat spot beating
frequency. Furthermore, convolutional encoder-decoder
architectures employing spectrogram representations out-
perform other methods with comparable number of pa-
rameters.

Dataset

The data set was provided by Railwatch GmbH, a com-
pany responsible for monitoring and reporting faulty train
wagons. The data has been recorded at three different
sites in close proximity to the rail tracks and displays
minor variations in recording distance and large variations
in ambient noise. Each recording contains the sound of
one full train passing by the recording spot. The dura-
tion of a recording varies from 20 seconds up to several
minutes, depending on the train speed and the number of
wagons it carries. Each individual sample consists of the
raw audio file, as well as measurements of the train speed
and the radii of individual wheels at their corresponding
timestamps. Estimation of speed and wheel radii were
based on video recordings and were provided with the
dataset. The respective labels have been annotated by
experts as they listened to the recordings, indicating a
flat spot by marking the corresponding region of time.
The data set contains 566 train passings, summing to a
joint duration of 7.9 hours (see figure 1).
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Figure 1: Statistics of the audio data set, indicating the
duration of the train passings, the duration of the annotated
flat spots, and the speed of the passing trains

279 train passings exhibit at least one flat spot annota-
tion. A total of 765 flat spot regions have been marked,
summing to a joint duration of 16.2 minutes. We note the
pronounced imbalance of marked to unmarked regions of
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3.5%. Most of the marked regions are of short duration,
typically between 0.5 to 2 seconds. We observe a wide
variability of the speeds per train passing (figure 1) and
note that the perceptual quality of a flat spot also varies
substantially with speed. For low speeds, the ”beating”
sound is clearly noticeable as separate, countable hits.
For very high speeds the beating resembles an amplitude
modulation of a wide-band turbulent noise. In terms
of label precision we note that the flat spot labels have
considerable variations in how much environmental sound
was included before and after the actual sound of the flat
spot.

Representation

We consider the three most common representations in
audio event detection analysis community, namely raw
audio, log-mel spectrograms and MFCCs. These show an
increasing degree of compression, and therefore increasing
associated inductive bias. All extraction was based on the
original audio with a 48000 Hz sampling rate, being sub-
sampled to 8192 Hz and cut into non overlapping frames
of 2 or 5 seconds. For the raw audio data, no further
processing is applied. For the log mel spectrograms, we
apply a short-time Fourier transform (STFT) with a win-
dow size of 512 and a hop size of 128 samples, followed by
a mel filterbank with 40 filters. Finally each element is
being log-compressed with a factor of 7. For the MFCCs
we extracted the first 13 coefficients.

During feature extraction, we also include the train speed
estimations provided. By standardization to a virtual
identical speed we aim to diminish the variance introduced
by the train speed to our input representation, so that the
detection task becomes more homogeneous and thus easier
to solve. Normalization to a common virtual pass-by
speed sc can be performed by scaling the audio playback
rate, which is essentially an audio resampling operation.
For the speed si of a train i, the scaling factor ti is then
given by:

ti =
sc
si

(1)

In order to keep the amount of resampling small we choose
sc to be the median over all si. To further refine the
normalization with the information about the speed of
the train si and the radius of the wheel ri, we can compute
the expected frequency of the beating and standardize the
individual playback speeds to a common beating frequency
bc, using a scaling factor bi given by

bi = bc
2πri
si

(2)

Models

We considered three machine learning models: First,
we applied support vector machines with Gaussian
kernel, a standard method well documented for acoustic
scene classification and providing a baseline for small to
medium-sized data sets.

Secondly, we used a classical convolutional neural net-
work [5]. For the log mel spectrogram as an input to the
algorithm, we take five convolutional (2D) and two fully
connected blocks applying batch normalization through-
out. When working with raw audio we use eight convo-
lutional (1D) inverted residual blocks [6] with squeeze
excitation, followed by one fully connected layer. Each
convolution block ends with a pooling operation of kernel
size three and stride three as presented in SampleCNN [7].
The choice of the inverted residual blocks was based on
memory considerations, as we anticipated the use of the
network as the encoder backend to the following U-Net
architecture. Finally, we employed a U-Net like con-
volutional network [8], i.e., a encoder decoder network
of convolutional blocks with additional skip connections
between encoder to decoder layers of matching sizes. For
the mel-spectrogram representation we took the original
2D design and trimmed its number of filters and depth.
The encoder part of the network is then identical to the
feature extractor of the mel-CNN. The base U-Net out-
puts a 2D segmentation mask, we therefore appended
a convolutional layer of 1D over frequencies and then
average pool. The model thus outputs a 1D segmenta-
tion mask corresponding to the flat spot regions to be
predicted. For the raw audio representation we employed
the SampleCNN as an encoder and built the correspond-
ing mirrored decoder similar to the mel-filtered variant.
In literature, the architecture closest to ours is found in
Stoller et al. [9].

Model regularization is achieved by weight decay and
drop out as well as data augmentations. In particular
we apply mixup augmentation [10], which is performed
by taking a weighted sum of two randomly selected data
points as

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj

where xi are the features of item i, yi its respective tar-
gets and λ ∼ Beta(α,α) the random variable describ-
ing the distribution over weighting factors. We choose
α ∈ [0.1, 0.4], as most augmentations are then only slight
perturbations of the original samples and 50/50 overlaps
are especially rare. We also consider random shifts in
pitch [11] but this did not lead to considerable perfor-
mance gains, as was the case with random addition of
low variance Gaussian noise. 1 For the mel spectrogram
representation we additionally apply random cut outs of
the mel axis (2 %) as well as the time axis (10 %) [12].

All models were trained on a cross entropy loss. A frame
had to reported to contain a flat spot when at least 5 %
of it’s content overlaps with an annotated flat spot region.
For two second frames this corresponds to at least 100 ms
of flat spot annotation, whereas for five second frames
at least 250 ms must be annotated. 250 ms is also the

1The signals at hand are rarely of clear pitched harmonic content
but more of stochastic and percussive nature. Pitch shift augmen-
tation, although highly regarded in other domains is of limited use
here, as tested experimentally.
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shortest duration of flat spot annotations and therefore
is the hard limit which should not be exceeded. For the
segmentation models, we add the criterion of a per sample
classification to support the creation of accurate flat spot
location masks.

We report the F1 score, i.e., the geometric mean of pre-
cision and recall, for classification performance, since
classification accuracy is less insightful for settings of high
class imbalance.

Results

The data set was set up for three fold cross validation with
splits retaining grouping of individual train passings. That
is, frames extracted from one passing are only allowed to
appear in one and only one of train, develop or test set.
Training hyper-parameters such as learning rate, weight
decay and drop out were determined during a pre run of
randomized search. The training data set was balanced
by oversampling the minority class.
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Figure 2: SVM model with MFCCs as input.
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Figure 3: CNN model with mel-spectrogram as input.

The performance of the baseline SVM can be seen in
Fig. 2. Its best score of F1 = 0.50 was achieved with
a beat frequency standardization on frames of five sec-
onds. The best results in total were achieved with models
based on the log mel spectrogram reported in Figs. 3
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Figure 4: U-Net model with mel-spectrogram as input.

tp fp fn tn f1 cv split filters

90 23 37 616 0.75 0 [16, 32, 64]
91 23 30 662 0.77 1 [16, 32, 64]
116 36 31 603 0.78 2 [16, 32, 64]

Table 1: Performance metrics of mel spectrogram unet
trained with beat frequency normalization on five seconds
frames. The model size amounts to only 72k parameters

and 4. For the models learned on raw audio we had to
increase the capacity significantly to obtain comparable
results. The models were scaled up to 23 M parameters,
but still remained slightly behind their mel-spectrogram
counterparts of 76 K parameters, probably also because
of missing corresponding augmentation and regulariza-
tion techniques, since there is no direct correspondence of
spectral cut out augmentations for raw audio data. The
SampleCNN achieved its best scores of median 0.63 F1,
with a maximum of 0.68 F1. The Sample-UNet achieved
it’s best scores of median 0.73, with a maximum of 0.75
F1. While the mel-U-Net can be easily trained on a com-
modity CPU found in most laptops, the sample-U-Net is
only feasible to train on modern GPUs.

There is a strong tendency in 5 s frames providing better
results than the 2 s frames, which might be due to the
increased context necessary for the solution of the task.
However, one should be aware of the possibility of broader
windows subsuming several flat spots. A case hard to
detect could then hide in a frame with a more prevalent
one that triggers classification and would then stop to
contribute to the error. A quick inspection of the detailed
segmentation masks provided by the melUnet, however,
did not indicate such cases. The detailed segmentation
mask of the melUnet is a key advantage for the usage of
this architecture in practice, since predicting the precise
location of a flat spot is more valuable than just detecting
it’s mere presence.

The normalization to a virtually constant beating fre-
quency turned out useful. With each combination of
representation and network it constantly increased per-
formance significantly.
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We notice a tendency for the false positives and false
negatives to be balanced (Tab. 1). In many applica-
tions, however, the economic cost of false positives and
false negatives may not be symmetric. This imbalance
is best taken into consideration by weighting the respec-
tive loss of the classes, but staying with the balanced
sampling strategy. This allows untangling modelling of
costs (re-weighted loss) and providing proper gradients
for optimization (training with balanced sampling).

Small changes in the amount of frequency cut off and
log compression showed no considerable variations in F1
Score. Learning rate, dropout and weight decay can vary
over wide range for the melccn without degrading per-
formance. The unet architectures are more sensitive to
optimal training parameterization. Replacing the trans-
posed convolution in the upsampling paths of the melUnet
with a simple linear upsampling did not degrade perfor-
mance although being much cheaper to compute. Modest
increases in the width and depth of the melUnet did not
improve performance. Already small models can fit the
training data set very well and thus are in need of strong
regularization. One might interpret this as suggesting a
necessary expansion of the training data set. However,
when training the models on subsets of varying size we
notice a saturation in performance form usage of 70%
of the data set onwards. The combination of sufficient
model complexity to overfit and the lack of improvement
by taking more data into consideration suggests to test for
label noise. There is indeed some arbitrary variation to
the exact starting and stop times of the marked flat spot
regions as well as the difficult per case decision of whether
the prevalence of a wheel beating suffices to report a flat
spot.

Conclusion

In this study, we presented a system for the identification
of wheel flat spots of passing trains based on audio record-
ings. Different preprocessing techniques and machine
learning models have been evaluated. We could show
that convolutional segmentation architectures (U-Net)
employing mel spectrogram representations outperform
other methods with comparable number of parameters.
Further our findings suggest that the task is facilitated
by resampling the recording to a standardized expected
flat spot beating frequency.

Improved performance could be achieved by further in-
vestments in labelling. That is, some flat spots are more
or less pronounced suggesting the use of soft labels. To
speed up labelling and finding relevant unlabeled sections
quickly we suggest using hard negative mining. Also,
more elaborate data augmentation could be applied, such
as including and overlaying samples with characteristic
environmental noises.

For future work, we are planning the direct prediction of
the faulty wagon axles by aligning the audio and other
metadata. A data set that contains annotations of which
axle was in fact defective would side step lossy intermedi-
ate representations as well as the label noise of manual
annotation and could be trained end to end.

Gabriel Dernbach acknowledges partly support by the
German Ministry of Education and Research (BMBF) in
the project ALICE III (01IS18049B).
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