40 research outputs found

    Into the Wild: Pushing a Telepresence Robot Outside the Lab

    Get PDF
    Most robotic systems are usually used and evaluated in laboratory setting for a limited period of time. The limitation of lab evaluation is that it does not take into account the different challenges imposed by the fielding of robotic solutions into real contexts. Our current work evaluates a robotic telepresence platform to be used with elderly people. This paper describes our progressive effort toward a comprehensive, ecological and longitudinal evaluation of such robots outside the lab. It first discusses some results from a twofold short term evaluation performed in Italy. Specifically we report results from both a usability assessment in laboratory and a subsequent study obtained by interviewing 44 healthcare workers as possible secondary users (people connecting to the robot) and 10 older adults as possible primary users (people receiving visits through the robot). It then describes a complete evaluation plan designed for a long term assessment to be applied "outside the lab" dwelling on the initial application of such methodology to test sites in Italy

    Long-Term Evaluation of a Telepresence Robot for the Elderly: Methodology and Ecological Case Study

    Get PDF
    Telepresence robotic systems are proposed in different contexts and specifically in the area of social robotics for assisting older adults at home. Similarly to other robotic systems, such robots are often designed and then evaluated in laboratory settings for a limited period of time. Lab-based evaluations present limitations because they do not take into account the different challenges imposed by the fielding of robotic solutions into real contexts for longer periods. In order to perform long-term experiments in real ecological settings it is very important to define a structured approach to assess the impact of a prolonged and constant use of the telepresence robot. This paper proposes a methodology in the area of elderly people support, called MARTA, for M ultidimensional A ssessment of telepresence R obo T for older A dults. It introduces the main variables of interest as well as the instruments and administration timeline for assessing relevant changes that may occur over time. MARTA is also validated in a one year-long case study during which a telepresence robot, called Giraff, has been deployed and iteratively assessed. The paper also provides remarks on the technology readiness and suggestions for its improvements

    Towards a Methodology for Longitudinal Evaluation of Social Robotic Telepresence for Elderly

    Get PDF
    This paper describes a methodology for performing longitudinal evaluations when a social robotic telepresence system is deployed in realistic environments. This work is the core of an Ambient Assisted Living Project called ExCITE, Enabling Social Interaction Through Telepresence. The ExCITE project is geared towards an elderly audience and has as aim to increase social interaction among elderly, their family and healthcare services by using robotic telepresence. The robotic system used in the project is called the Giraff robot and over a three year period, prototypes of this platform are deployed at a number of test-sites in different European countries where user feedback is collected and feedback into the refinement of the prototype. In this paper, we discuss the methodology of ExCITE in particular relation to other methodologies for longitudinal evaluation. The paper also provides a discussion of the possible pitfalls and risks in performing longitudinal studies of this nature particularly as they relate to social robotic telepresence technologies

    Enabling Social Interaction Through Embodiment in ExCITE

    Get PDF
    No abstract availableThe emerging demographic trends toward an aging population involve an unflagging research of ways of assisting elderly people to stay independent for as long as possible. This means to be active at home and in the labour market, to prevent social isolation and promote societal inclusion. Both ICT and robotics technologies can contribute to help achieving these goals. This paper introduces the aims of the Ambient Assisted Living project ExCITE whose main objective is to enhance a robotic platform for telepresence with features enabling social interaction from a domestic environment to the outside world. The whole ExCITE project uses a user-centered approach hence it evolves around an intensive evaluation to be performed in situ, on a PanEuropean scale. An existing prototype, called Giraff, is to be deployed to targeted end-users, and refined taking into account outcome of the evaluation. This paper introduces the objectives of ExCITE and offers a description of its initial activities particularly focused on the user evaluation

    Real-time transmission of panoramic images for a telepresence wheelchair

    Full text link
    © 2015 IEEE. This paper proposes an approach to transmit panoramic images in real-time for a telepresence wheelchair. The system can provide remote monitoring and assistive assistance for people with disabilities. This study exploits technological advancement in image processing, wireless communication networks, and healthcare systems. High resolution panoramic images are extracted from the camera which is mounted on the wheelchair. The panoramic images are streamed in real-time via a wireless network. The experimental results show that streaming speed is up to 250 KBps. The subjective quality assessments show that the received images are smooth during the streaming period. In addition, in terms of the objective image quality evaluation the average peak signal-to-noise ratio of the reconstructed images is measured to be 39.19 dB which reveals high quality of images

    Socially assistive robots for people with dementia: systematic review and meta-analysis of feasibility, acceptability and the effect on cognition, neuropsychiatric symptoms and quality of life

    Get PDF
    BACKGROUND: There is increasing interest in using robots to support dementia care but little consensus on the evidence for their use. The aim of the study is to review evidence about feasibility, acceptability and clinical effectiveness of socially assistive robots used for people with dementia. METHOD: We conducted a systematic review and meta-analysis. We searched MEDLINE, EMBASE, PsychINFO, CINHAL, IEEE Xplore Digital Library, and EI Engineering Village from inception to 04 -02-2022 - included primary studies assessing feasibility, acceptability, or effectiveness of socially assistive robots for people with dementia. Two independent reviewers screened studies for eligibility, and assessed quality. Narrative synthesis prioritized higher quality studies, and random-effect meta-analyses compared robots with usual care (UC) or active control (AC) immediately after the intervention (short-term; ST) or long-term (LT) on cognition, neuropsychiatric symptoms, and quality of life. FINDINGS: 66 studies and four categories of robots were eligible: Companion robots (Pet and humanoid companion robots), telepresence communication robots, homecare assistive robots and multifunctional robots. PARO (companion robot seal) was feasible and acceptable but limited by its weight, cost, and sound. On meta-analysis, PARO had no ST or LT compared to UC or AC over 5-12 weeks on agitation (ST vs UC, 4 trials, 153 participants: pooled standardized mean difference (SMD) 0.25; -0.57 to 0.06; LT vs UC; 2 trials, 77 participants, SMD =-0.24; -0.94, 0.46), cognition (ST vs UC, 3 trials, 128 participants: SMD= 0.03; -0.32, 0.38), overall neuropsychiatric symptoms (ST vs UC, 3 trials, 169 participants: SMD= -0.01; -0.32, 0.29; ST vs AC, 2 trials, 145 participants: SMD =0.02, -0.71, 0.85), apathy (ST vs AC, 2 trials, 81 participants: SMD= 0.14; 0.29, 0.58), depression (ST vs UC, 4 trials, 181 participants; SMD= 0.08; -0.52, 0.69; LT vs UC: 2 trials, 77 participants: SMD =0.01; -0.75, 0.77), anxiety (ST vs UC: 2 trials, 104 participants, SMD= 0.24; -0.85, 1.33) and quality of life (ST vs UC, 2 trials, 127 participants: SMD=-0.05; -0.52, 0.42; ST vs AC: 2 trials, 159 participants, SMD =-0.36, -0.76, 0.05). Robotic animals, humanoid companion robots, telepresence robots and multifunctional robots were feasible and acceptable. However, humanoid companion robots have speech recognition problems, and telepresence robots and multifunctional robots were often difficult to use. There was mixed evidence about the feasibility of homecare robots. There was little evidence on any of these robots' effectiveness. CONCLUSION: Although robots were generally feasible and acceptable, there is no clear evidence that people with dementia derive benefit from robots for cognition, neuropsychiatric symptoms, or quality of life. We recommend that future research should use high quality designs to establish evidence of effectiveness

    Architecture de contrôle d'un robot de téléprésence et d'assistance aux soins à domicile

    Get PDF
    La population vieillissante provoque une croissance des coûts pour les soins hospitaliers. Pour éviter que ces coûts deviennent trop importants, des robots de téléprésence et d’assistance aux soins et aux activités quotidiennes sont envisageables afin de maintenir l’autonomie des personnes âgées à leur domicile. Cependant, les robots actuels possèdent individuellement des fonctionnalités intéressantes, mais il serait bénéfique de pouvoir réunir leurs capacités. Une telle intégration est possible par l’utilisation d’une architecture décisionnelle permettant de jumeler des capacités de navigation, de suivi de la voix et d’acquisition d’informations afin d’assister l’opérateur à distance, voir même s’y substituer. Pour ce projet, l’architecture de contrôle HBBA (Hybrid Behavior-Based Architecture) sert de pilier pour unifier les bibliothèques requises, RTAB-Map (Real-Time Appearance-Based Mapping) et ODAS (Open embeddeD Audition System), pour réaliser cette intégration. RTAB-Map est une bibliothèque permettant la localisation et la cartographie simultanée selon différentes configurations de capteurs tout en respectant les contraintes de traitement en ligne. ODAS est une bibliothèque permettant la localisation, le suivi et la séparation de sources sonores en milieux réels. Les objectifs sont d’évaluer ces capacités en environnement réel en déployant la plateforme robotique dans différents domiciles, et d’évaluer le potentiel d’une telle intégration en réalisant un scénario autonome d’assistance à la prise de mesure de signes vitaux. La plateforme robotique Beam+ est utilisée pour réaliser cette intégration. La plateforme est bonifiée par l’ajout d’une caméra RBG-D, d’une matrice de huit microphones, d’un ordinateur et de batteries supplémentaires. L’implémentation résultante, nommée SAM, a été évaluée dans 10 domiciles pour caractériser la navigation et le suivi de conversation. Les résultats de la navigation suggèrent que les capacités de navigation fonctionnent selon certaines contraintes propres au positionement des capteurs et des conditions environnementales, impliquant la nécessité d’intervention de l’opérateur pour compenser. La modalité de suivi de la voix fonctionne bien dans des environnements calmes, mais des améliorations sont requises en milieu bruyant. Incidemment, la réalisation d’un scénario d’assistance complètement autonome est fonction des performances de la combinaison de ces fonctionnalités, ce qui rend difficile d’envisager le retrait complet d’un opérateur dans la boucle de décision. L’intégration des modalités avec HBBA s’avère possible et concluante, et ouvre la porte à la réutilisabilité de l’implémentation sur d’autres plateformes robotiques qui pourraient venir compenser face aux lacunes observées sur la mise en œuvre avec la plateforme Beam+

    Probability and Common-Sense: Tandem Towards Robust Robotic Object Recognition in Ambient Assisted Living

    Get PDF
    The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Real-time video streaming with multi-camera for a telepresence wheelchair

    Full text link
    © 2016 IEEE. This paper presents a new approach for telepresence wheelchairs equipped with multiple cameras. The aim of this system is to provide effective assistance for the elderly and people with disabilities. The work explores the integration of the Internet of Things, such as multimedia, wireless Internet communication, and automation control techniques into a powered wheelchair system. In particular, multiple videos are streamed in real-time from an array of cameras mounted on the wheelchair, allowing wide visualization surrounding the wheelchair. By using video communication and interaction, remote users can assist to navigate a wheelchair via the Internet through wireless connections in a distant location. The experimental results show that video streaming can achieve high-quality video with the streaming rate up to 30 frames per second (fps) in real-time. The average round-trip time is under 27 milliseconds (ms). The results confirmed the effectiveness of the proposed system for tele-monitoring and remote control to achieve safer navigation tasks for wheelchair users
    corecore