336 research outputs found

    A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults

    Get PDF
    Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait) based on magneto-inertial sensors, both in normal weight (NW) and overweight/obese (OW) subjects. The validation is performed against a reference multichannel recording system (STEP32), providing direct measurements of gait timings (through foot-switches) and joint angles in the sagittal plane (through electrogoniometers). Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW). After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW) and for the knee (by 4.1° for NW, and 1.8° for OW). More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW). NW and OW showed significant differences considering STEP32 (p = 0.0004), but not H-Gait (p = 0.06). In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min) and a lower hip ROM (23.0° vs. 27.3°) than normal weight subjects. Conclusions: The two systems can be considered interchangeable for what concerns joint kinematics, except for the hip, where discrepancies were evidenced. Differences between normal and overweight/obese subjects were statistically significant using STEP32. The same tendency was observed using H-Gait

    Gait measurements in the transverse plane using a wearable system: An experimental study of test-retest reliability

    Get PDF
    3D gait analysis comprises the study of kinematics in the sagittal, coronal, and transverse planes. The transverse plane measurements are usually less used and generally show the lowest reliability. Nevertheless, the knee and ankle joint center trajectories, in the transverse plane, provide new parameters that may be important in clinical gait analysis. The aim of this study is to analyze the test-retest variability of these parameters. Gait measurements were performed using H-Gait, a wearable system based on magnetic and inertial sensors. A normal weight and an overweight subject were recruited and were asked to walk at their preferred speed for 6 trials. For both of them, the angle between the right and left knee and ankle joint center trajectories were analyzed. Overall, results showed a standard deviation across trials always lower than 2°. This small standard deviation was found also in the overweight subject, for whom it is usually challenging to obtain reliable gait measurements. In addition, a greater knee angle between the right and left joint center trajectories was found in the overweight subject compared to the normal weight. The promising results of this study suggest that the new parameters introduced might be suitable to assess gait of subjects with different anthropometric characteristics

    Mobility recorded by wearable devices and gold standards: the Mobilise-D procedure for data standardization

    Get PDF
    Wearable devices are used in movement analysis and physical activity research to extract clinically relevant information about an individual's mobility. Still, heterogeneity in protocols, sensor characteristics, data formats, and gold standards represent a barrier for data sharing, reproducibility, and external validation. In this study, we aim at providing an example of how movement data (from the real-world and the laboratory) recorded from different wearables and gold standard technologies can be organized, integrated, and stored. We leveraged on our experience from a large multi-centric study (Mobilise-D) to provide guidelines that can prove useful to access, understand, and re-use the data that will be made available from the study. These guidelines highlight the encountered challenges and the adopted solutions with the final aim of supporting standardization and integration of data in other studies and, in turn, to increase and facilitate comparison of data recorded in the scientific community. We also provide samples of standardized data, so that both the structure of the data and the procedure can be easily understood and reproduced

    Gait characterization using wearable inertial sensors in healthy and pathological populations

    Get PDF
    Gait analysis is emerging as an effective tool to detect an incipient neurodegenerative disease or to monitor its progression. It has been shown that gait disturbances are an early indicator for cognitive impairments and can predict progression to neurodegenerative diseases. Furthermore, gait performance is a predictor of fall status, morbidity and mortality. Instrumented gait analysis provides quantitative measures to support the investigation of gait pathologies and the definition of targeted rehabilitation programs. In this framework, technologies such as inertial sensors are well accepted, and increasingly employed, as tools to characterize locomotion patterns and their variability in research settings. The general aim of this thesis is the evaluation, comparison and refinement of methods for gait characterization using magneto-inertial measurement units (MIMUs), in order to contribute to the migration of instrumented gait analysis from state of the art to state of the science (i.e.: from research towards its application in standard clinical practice). At first, methods for the estimation of spatio-temporal parameters during straight gait were investigated. Such parameters are in fact generally recognized as key metrics for an objective evaluation of gait and a quantitative assessment of clinical outcomes. Although several methods for their estimate have been proposed, few provided a thorough validation. Therefore an error analysis across different pathologies, multiple clinical centers and large sample size was conducted to further validate a previously presented method (TEADRIP). Results confirmed the applicability and robustness of the TEADRIP method. The combination of good performance, reliability and range of usage indicate that the TEADRIP method can be effectively adopted for gait spatio-temporal parameter estimation in the routine clinical practice. However, while traditionally gait analysis is applied to straight walking, several clinical motor tests include turns between straight gait segments. Furthermore, turning is used to evaluate subjects’ motor ability in more challenging circumstances. The second part of the research therefore headed towards the application of gait analysis on turning, both to segment it (i.e.: distinguish turns and straight walking bouts) and to specifically characterize it. Methods for turn identification based on a single MIMU attached to the trunk were implemented and their performance across pathological populations was evaluated. Focusing on Parkinson’s Disease (PD) subjects, turn characterization was also addressed in terms of onset and duration, using MIMUs positioned both on the trunk and on the ankles. Results showed that in PD population turn characterization with the sensors at the ankles lacks of precision, but that a single MIMU positioned on the low back is functional for turn identification. The development and validation of the methods considered in these works allowed for their application to clinical studies, in particular supporting the spatio-temporal parameters analysis in a PD treatment assessment and the investigation of turning characteristic in PD subjects with Freezing of Gait. In the first application, comparing the pre and post parameters it was possible to objectively determine the effectiveness of a rehabilitation treatment. In the second application, quantitative measures confirmed that in PD subjects with Freezing of Gait turning 360° in place is further compromised (and requires additional cognitive effort) compared to turning 180° while walking

    Orientation Estimation Through Magneto-Inertial Sensor Fusion: A Heuristic Approach for Suboptimal Parameters Tuning

    Get PDF
    Magneto-Inertial Measurement Units (MIMUs) are a valid alternative tool to optical stereophotogrammetry in human motion analysis. The orientation of a MIMU may be estimated by using sensor fusion algorithms. Such algorithms require input parameters that are usually set using a trial-and-error (or grid-search ) approach to find the optimal values. However, using trial-and-error requires a known reference orientation, a circumstance rarely occurring in real-life applications. In this article, we present a way to suboptimally set input parameters, by exploiting the assumption that two MIMUs rigidly connected are expected to show no orientation difference during motion. This approach was validated by applying it to the popular complementary filter by Madgwick et al. and tested on 18 experimental conditions including three commercial products, three angular rates, and two dimensionality motion conditions. Two main findings were observed: i) the selection of the optimal parameter value strongly depends on the specific experimental conditions considered, ii) in 15 out of 18 conditions the errors obtained using the proposed approach and the trial-and-error were coincident, while in the other cases the maximum discrepancy amounted to 2.5 deg and less than 1.5 deg on average

    Methods and good practice guidelines for human joint kinematics estimation through magnetic and inertial wearable sensors

    Get PDF
    According to the World Health Organization, the ability to move is recognized as a key factor for the human well-being. From the wearable Magnetic and Inertial Measurement Units (MIMUs) signals it is possible to extract several digital mobility outcomes including the joint kinematics. To this end, it is first required to estimate the orientation of the MIMUs by means of a sensor fusion algorithm (SFA). After that, the relative orientation is computed and then decomposed to obtain the joint angles. However, the MIMUs do not provide a direct output of the physical quantity of interest which can be only determined after an ad hoc processing of their signals. It follows that the joint angle accuracy mostly depends on multiple factors. The first one is the magnitude of the MIMU measurements errors and up to date there is still a lack of methods for their characterization. A second crucial factor is the choice of the SFA to use. Despite the abundance of formulations in the literature, no-well established conclusions about their accuracy have been reached yet. The last factor is the biomechanical model used to compute the joint angles. In this context, unconstrained methods offer a simple way to decompose the relative orientation using the Euler angles but suffer from the inherent issues related to the SFA. In contrast, constrained approaches aim at increasing the robustness of the estimates by adopting models in which an objective function is minimized through the definition of physiological constraints. This thesis proposed the methods to accurately estimate the human joint kinematics starting from the MIMU signals. Three main contributions were provided. The first consisted in the design of a comprehensive battery of tests to completely characterize the sources of errors affecting the quality of the measurements. These tests rely on simple hypotheses based on the sensor working principles and do not require expensive equipment. Nine parameters were defined to quantify the signal accuracy improvements (if any) of 24 MIMUs before and after the refinement of their calibration coefficients. The second contribution was focused on the SFAs. Ten among the most popular SFAs were compared under different experimental conditions including different MIMU models and rotation rate magnitudes. To perform a “fair” comparison it was necessary to set the optimal parameter values for each SFA. The most important finding was that all the errors fall within a range from 3.8 deg to 7.1 deg thus making it impossible to draw any conclusions about the best performing SFA since no statistically significant differences were found. In addition, the orientation accuracy was heavily influenced by the experimental variables. After that, a novel method was designed to estimate the suboptimal parameter values of a given SFA without relying on any orientation reference. The maximum difference between the errors obtained using optimal and suboptimal parameter values amounted to 3.7 deg and to 0.6 deg on average. The last contribution consisted in the design of an unconstrained and a constrained methods for estimating the joint kinematics without considering the magnetometer to avoid the ferromagnetic disturbances. The unconstrained method was employed in a telerehabilitation platform in which the joint angles were estimated in real time. Errors collected during the execution of a full-body protocol were lower than 5 deg (considered the acceptability threshold). However, this method may be inaccurate after few minutes since no solutions can be taken to mitigate the drift error. To overcome this limitation a constrained method was developed based on a robotic model of the upper limb to set appropriate constraints. Errors relative to a continuous robot motion for twenty minutes were lower than 3 deg at most suggesting the feasibility of employing these solutions in the rehabilitation programs to properly plan the treatment and to accurately evaluate the outcomes

    Wearables for independent living in older adults: Gait and falls

    Get PDF
    Solutions are needed to satisfy care demands of older adults to live independently. Wearable technology (wearables) is one approach that offers a viable means for ubiquitous, sustainable and scalable monitoring of the health of older adults in habitual free-living environments. Gait has been presented as a relevant (bio)marker in ageing and pathological studies, with objective assessment achievable by inertial-based wearables. Commercial wearables have struggled to provide accurate analytics and have been limited by non-clinically oriented gait outcomes. Moreover, some research-grade wearables also fail to provide transparent functionality due to limitations in proprietary software. Innovation within this field is often sporadic, with large heterogeneity of wearable types and algorithms for gait outcomes leading to a lack of pragmatic use. This review provides a summary of the recent literature on gait assessment through the use of wearables, focusing on the need for an algorithm fusion approach to measurement, culminating in the ability to better detect and classify falls. A brief presentation of wearables in one pathological group is presented, identifying appropriate work for researchers in other cohorts to utilise. Suggestions for how this domain needs to progress are also summarised

    A machine learning approach for stride speed estimation based on a head-mounted IMU

    Get PDF
    Walking speed in real-life conditions is typically estimated through wearable inertial sensors mounted on waist, lower limbs, or wrists. Very recently, head-mounted inertial sensors are emerging for gait assessment. The present study explores the feasibility of measuring the stride speed with a head-mounted inertial sensor in both laboratory and real-world settings. The developed algorithm exploits a Temporal Convolutional Network for the detection of the gait events and a Gaussian Process Regression for the stride speed estimation. The experimental evaluation was carried out on healthy young participants during both standardised indoor and real-world walking trials. For indoor trials, errors were smaller than previous studies (0.05 m/s). As expected, errors increased at lower speed regimes due to a reduced signals amplitude. During 2.5-hours real-world evaluation, errors were slightly larger but acceptable (0.1 m/s). Reported results are encouraging and show the feasibility of estimating gait speed with a single head-worn inertial sensor

    Human Gait Model Development for Objective Analysis of Pre/Post Gait Characteristics Following Lumbar Spine Surgery

    Get PDF
    Although multiple advanced tools and methods are available for gait analysis, the gait and its related disorders are usually assessed by visual inspection in the clinical environment. This thesis aims to introduce a gait analysis system that provides an objective method for gait evaluation in clinics and overcomes the limitations of the current gait analysis systems. Early identification of foot drop, a common gait disorder, would become possible using the proposed methodology
    • …
    corecore