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Summary 

 

 

 

Gait analysis is emerging as an effective tool to detect an incipient neurodegenerative 

disease or to monitor its progression. It has been shown that gait disturbances are an 

early indicator for cognitive impairments and can predict progression to 

neurodegenerative diseases. Furthermore, gait performance is a predictor of fall status, 

morbidity and mortality.  

Instrumented gait analysis provides quantitative measures to support the 

investigation of gait pathologies and the definition of targeted rehabilitation programs. 

In this framework, technologies such as inertial sensors are well accepted, and 

increasingly employed, as tools to characterize locomotion patterns and their 

variability in research settings. The general aim of this thesis is the evaluation, 

comparison and refinement of methods for gait characterization using magneto-

inertial measurement units (MIMUs), in order to contribute to the migration of 

instrumented gait analysis from state of the art to state of the science (i.e.: from research 

towards its application in standard clinical practice). 

At first, methods for the estimation of spatio-temporal parameters during straight gait 

were investigated. Such parameters are in fact generally recognized as key metrics for 

an objective evaluation of gait and a quantitative assessment of clinical outcomes. 

Although several methods for their estimate have been proposed, few provided a 

thorough validation. Therefore an error analysis across different pathologies, multiple 

clinical centers and large sample size was conducted to further validate a previously 

presented method (TEADRIP). Results confirmed the applicability and robustness of 



 

ii 

the TEADRIP method. The combination of good performance, reliability and range of 

usage indicate that the TEADRIP method can be effectively adopted for gait spatio-

temporal parameter estimation in the routine clinical practice. 

However, while traditionally gait analysis is applied to straight walking, several 

clinical motor tests include turns between straight gait segments. Furthermore, turning 

is used to evaluate subjects’ motor ability in more challenging circumstances. The 

second part of the research therefore headed towards the application of gait analysis 

on turning, both to segment it (i.e.: distinguish turns and straight walking bouts) and 

to specifically characterize it. Methods for turn identification based on a single MIMU 

attached to the trunk were implemented and their performance across pathological 

populations was evaluated. Focusing on Parkinson’s Disease (PD) subjects, turn 

characterization was also addressed in terms of onset and duration, using MIMUs 

positioned both on the trunk and on the ankles. Results showed that in PD population 

turn characterization with the sensors at the ankles lacks of precision, but that a single 

MIMU positioned on the low back is functional for turn identification.  

The development and validation of the methods considered in these works allowed 

for their application to clinical studies, in particular supporting the spatio-temporal 

parameters analysis in a PD treatment assessment and the investigation of turning 

characteristic in PD subjects with Freezing of Gait. In the first application, comparing 

the pre and post parameters it was possible to objectively determine the effectiveness 

of a rehabilitation treatment. In the second application, quantitative measures 

confirmed that in PD subjects with Freezing of Gait turning 360° in place is further 

compromised (and requires additional cognitive effort) compared to turning 180° 

while walking.  

 

Keywords: Clinical gait analysis; Spatio-temporal parameters; Turn; Inertial sensors; 
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FoG; Validation; Multicentric study; Rehabilitation. 



 

iii 

Acknowledgements 

 

 

 

My sincere gratitude goes to all the people who allowed me to undertake this PhD, and 

to all who helped me getting through it. 

I would like to thank my supervisor Prof. Ugo Della Croce and my co-supervisor 

Andrea Cereatti for all teachings, invaluable support and criticism during my PhD 

experience.  

I am deeply grateful to Martina Mancini for the chance to work in the Balance Disorder 

Laboratory at OHSU. 

I should also thank my parents for bearing with me and taking care of me, especially 

before submission deadlines. 

I also thank my lab mates and my friends in Sassari and Turin, and those in GPEM, for 

their advices and support. 

Lastly, I would like to thank all the people who contributed with their advices, their 

collaboration and their support to the development of this thesis. 

 

 

 

 

  



 

iv 

List of publications 

 

 

 

Submitted 

M. Bertoli, U. Della Croce, A. Cereatti, M. Mancini, “Objective Measures to Investigate 

Turning Impairments and Freezing of Gait in people with Parkinson’s disease” – 

Gait&Posture (under review) 

 

 

International Peer-Reviewed Journals 

M. Bertoli, A. Cereatti, D. Trojaniello, L. Avanzino, E. Pelosin, S. Del Din, L. Rochester, 

P. Ginis, E. M. J. Bekkers, A. Mirelman, J. M. Hausdorff, and U. Della Croce, 

"Estimation of spatio-temporal parameters of gait from magneto-inertial measurement 

units: multicenter validation among Parkinson, mildly cognitively impaired and 

healthy older adults," BioMedical Engineering OnLine, vol. 17, no. 1, pp. 58, 2018. 

DOI:10.1186/s12938-018-0488-2. 

 

P. Solla, L. Cugusi, M. Bertoli, A. Cereatti, U. Della Croce, D. Pani, L. Fadda, A. 

Cannas, F. Marrosu, G. Defazio, G. Mercuro, "Sardinian Folk Dance for Individuals 

with Parkinson’s Disease: a Randomized Controlled Pilot Trial," The Journal of 

Alternative and Complementary Medicine, 2019. DOI:10.1089/acm.2018.0413 

 

  



 

v 

Conference Proceedings published on International 

Journals  

M. Bertoli, A. Cereatti, U. Della Croce, and M. Mancini, "The impact of turning and 

dual task on freezing of gait in Parkinson’s disease," Gait & Posture, vol. 66, pp. S3–S4, 

2018 (XIX SIAMOC). DOI: 10.1016/j.gaitpost.2018.07.105. 

 

M. Bertoli, A. Cereatti, U. Della Croce, A. Pica, and F. Bini, “Can MIMUs positioned 

on the ankles provide a reliable detection and characterization of U-turns in gait?,” 

2018 IEEE Int. Symp. Med. Meas. Appl. (IEEE, 2018). DOI: 10.1109/memea.2018.8438723.  

 

M. Bertoli, A. Cereatti, E. Pelosin, E. Bekkers, A. Mirelman, D. Trojaniello, and U. Della 

Croce, "Validating a method for the estimate of gait spatio-temporal parameters with 

IMUs data on healthy and impaired people from two clinical centers," Gait & Posture, 

vol. 57, pp. 7–8, 2017 (XVIII SIAMOC). DOI: 10.1016/j.gaitpost.2017.07.055. 

 

M. Bertoli, A. Cereatti, D. Trojaniello, A. Ravaschio, and U. Della Croce, “The 

identification of multiple U-turns in gait: comparison of four trunk IMU-based 

methods,” Proc. 11th Int. Conf. Body Area Networks (EAI, 2017). DOI: 10.4108/eai.15-12-

2016.2267650. 

 

M. Bertoli, A. Cereatti, U. Della Croce, and M. Mancini, “An objective assessment to 

investigate the impact of turning angle on freezing of gait in Parkinson’s disease,” 2017 

IEEE Biomed. Circuits Syst. Conf. (IEEE, 2017). DOI: 10.1109/biocas.2017.8325122.  

 

M. Bertoli, A. Cereatti, D. Trojaniello, and U. Della Croce, "Identification of multiple 

U-turns using IMUs: Comparative assessment of three methods," Gait & Posture, vol. 

49, pp. S9–S10, 2016 (XVII SIAMOC). DOI: 10.1016/j.gaitpost.2016.07.036. 

 

  



 

vi 

National Conference Proceedings  

 

M. Bertoli, A. Cereatti, and U. Della Croce, Identification of multiple U-turns using 

gyroscopes : comparative assessment of two methods, 2016 (V GNB).  

 

  



 

vii 

Table of contents 

 

SUMMARY I 

ACKNOWLEDGEMENTS III 

LIST OF PUBLICATIONS IV 

TABLE OF CONTENTS VII 

LIST OF FIGURES XI 

LIST OF TABLES XIV 

GLOSSARY XV 

 1 

INTRODUCTION 1 

1.1 GENERAL INTRODUCTION 2 

1.1.1 CLINICAL GAIT ANALYSIS 3 

1.1.1.1 Instrumented mat 5 

1.1.1.2 Magneto-inertial sensors 7 

1.1.2 GAIT SEGMENTATION 10 

1.2 THESIS OBJECTIVES 12 

1.3 OUTLINE OF THE THESIS 14 

REFERENCES 16 

 20 

GAIT SPATIO-TEMPORAL PARAMETERS ESTIMATION IN STRAIGHT WALKING 20 

2.1 INERTIAL SENSORS INSTRUMENTED GAIT: STATE OF THE ART 21 



 

viii 

2.2 ESTIMATION OF SPATIO-TEMPORAL PARAMETERS OF GAIT FROM MAGNETO-INERTIAL MEASUREMENT 

UNITS: MULTICENTER VALIDATION AMONG PARKINSON, MILDLY COGNITIVELY IMPAIRED AND HEALTHY 

OLDER ADULTS 24 

2.2.1 INTRODUCTION 24 

2.2.2 MATERIALS AND METHODS 26 

2.2.2.1 Subjects 26 

2.2.2.2 Instrumentation 26 

2.2.2.3 Experimental protocol 28 

2.2.2.4 Gait events identification and gait temporal and spatial parameters 

estimation 28 

2.2.2.5 Errors associated to the gait events identification and spatio-temporal 

parameters estimation 30 

2.2.3 RESULTS 32 

2.2.3.1 Gait event identification and spatio-temporal parameters estimation errors 34 

2.2.4 DISCUSSION 38 

2.2.5 CONCLUSIONS 40 

REFERENCES 41 

 47 

TURN IDENTIFICATION IN GAIT 47 

3.1 U-TURNS IN CLINICAL EVALUATIONS 48 

3.2 THE IDENTIFICATION OF MULTIPLE U-TURNS IN GAIT: COMPARISON OF FOUR TRUNK MIMU-BASED 

METHODS 49 

3.2.1 INTRODUCTION 49 

3.2.2 MATERIALS AND METHODS 51 

3.2.2.1 Instrumentation 51 

3.2.2.2 Subjects 52 

3.2.2.3 Data acquisition Protocol 52 

3.2.2.4 Methods Description 53 

3.2.2.5 Data Analysis 56 

3.2.3 RESULTS 57 

3.2.4 DISCUSSION 57 



 

ix 

3.3 CAN MIMUS POSITIONED ON THE ANKLES PROVIDE A RELIABLE DETECTION AND CHARACTERIZATION 

OF U-TURNS IN GAIT? 59 

3.3.1 INTRODUCTION 59 

3.3.2 MATERIALS AND METHODS 60 

3.3.2.1 Experimental setup 60 

3.3.2.2 Turn detection and characterization 61 

3.3.2.3 Data analysis 63 

3.3.3 RESULTS 63 

3.3.4 DISCUSSION 66 

REFERENCES 69 

 74 

GAIT SPATIO-TEMPORAL PARAMETERS FOR TREATMENT EVALUATION 74 

4.1 CLINICAL GAIT ANALYSIS IN PARKINSON’S DISEASE 75 

4.2 SARDINIAN FOLK DANCE FOR INDIVIDUALS WITH PARKINSON’S DISEASE 77 

4.2.1 INTRODUCTION 78 

4.2.2 MATERIALS AND METHODS 80 

4.2.2.1 Study design and participants 80 

4.2.2.2 Experimental procedures 82 

4.2.2.3 Motor symptoms and functional outcomes 82 

4.2.2.4 Gait analysis 83 

4.2.2.5 Non-motor symptoms 84 

4.2.2.6 Sardinian folk dance intervention 85 

4.2.2.7 Statistical Analysis 86 

4.2.3 RESULTS 87 

4.2.3.1 Motor symptoms and functional performance 88 

4.2.3.2 Gait analysis 89 

4.2.3.3 Non-motor symptoms 92 

4.2.4 DISCUSSION 94 

4.2.4.1 Study limitations and future perspectives 97 

4.2.5 CONCLUSIONS 98 

REFERENCES 99 



 

x 

 110 

OBJECTIVE MEASURES TO INVESTIGATE TURNING IMPAIRMENTS AND FREEZING OF GAIT IN PEOPLE WITH 

PARKINSON’S DISEASE 110 

5.1 INTRODUCTION 112 

5.2 MATERIAL AND METHODS 115 

5.2.1 PARTICIPANTS 115 

5.2.2 EXPERIMENTAL SETUP 116 

5.2.2.1 Data Analysis 117 

5.3 RESULTS 119 

5.4 DISCUSSION 127 

5.5 CONCLUSION 131 

REFERENCES 133 

 137 

CONCLUSION AND FUTURE DIRECTIONS 137 

REFERENCES 143 

 

 



 

xi 

List of figures 

 

Figure 1-1 Gait cycle and spatio-temporal parameters representative scheme _____________ 5 

Figure 1-2 Instrumented mats ____________________________________________________________ 7 

Figure 1-3 Magneto inertial measurements units___________________________________________ 9 

Figure 1-4 Overview of the thesis project ________________________________________________ 13 

Figure 2-1 Sensor placement (R-MIMU) and its Local Coordinate System axes ______________ 27 

Figure 2-2 TEADRIP and instrumented mat gait events enlargement (left side only). 1 div.= 1s. 

IC identified by the TEADRIP method is depicted as red solid vertical line, while IC identified 

from the instrumented mat is depicted as red dotted vertical line. Black vertical lines 

represents the IC (solid from TEADRIP, dotted from the mat). ______________________________ 29 

Figure 2-3 TEADRIP and instrumented mat gait events representation for the first passage over 

the mat (right side only). GEs identified by the TEADRIP method are depicted as red triangles, 

while GEs identified from the instrumented mat are depicted as vertical line ______________ 29 

Figure 2-4  Difference (Bland-Altman) plots for stride, stance and step durations and for stride 

length. Limits of agreement are, respectively, 27 ms, 56 ms, 31 ms and 60 mm. Red: TASMC; 

green: KULEU; black: NEWCA; blue: UNIGE_______________________________________________ 34 

Figure 3-1 Experimental setup ___________________________________________________________ 52 

Figure 3-2 Turns as identified by method A _______________________________________________ 53 

Figure 3-3 Turns as identified by method B _______________________________________________ 54 

Figure 3-4 Turns as identified by method C _______________________________________________ 55 

Figure 3-5 Turns as identified by method D _______________________________________________ 56 

Figure 3-6 MIMU positioning _____________________________________________________________ 60 

Figure 3-7 Angular displacement in the horizontal plane as obtained from the lb-MIMU and 

ank-MIMUs. The vertical lines represent the turn onsets and endings as determined by 

applying the AD methods to the relative angular displacement. __________________________ 62 

Figure 3-8 Vertical component of the angular velocity as obtained from the lb-MIMU and ank-

MIMUs. The vertical lines represent the turn onsets and endings as determined by applying the 

EG method to the relative angular velocities. ____________________________________________ 62 

file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748230
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748231
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748232
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748233
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748234
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748235
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748235
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748235
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748235
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748236
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748236
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748236
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748237
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748237
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748237
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748238
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748239
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748240
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748241
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748242
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748243
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748244
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748244
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748244
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748245
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748245
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748245


 

xii 

Figure 3-9 Turn mean duration values, as estimated by the EG method applied to the signals 

recorded by the MIMU on the low back, for both groups (red=ELD, blue= PD) and walking 

speeds. _______________________________________________________________________________ 64 

Figure 3-10 Minimum, first quartile, median, third quartile and maximum values for turn onset 

timing mean difference for both groups and walking speeds. In black results from the 

difference between turn onset timing values obtained from the EG method applied to the 

ank-MIMU signals and those obtained from the EG method applied to the lb-MIMU signals, in 

red results from the difference between turn onset timing values obtained from the AD 

method applied to the ank-MIMU signals and those obtained from the EG method applied to 

the lb-MIMU signals. ____________________________________________________________________ 65 

Figure 3-11 Minimum, first quartile, median, third quartile and maximum values for turn 

duration mean difference for both groups and walking speeds. In black results from the 

difference between turn duration values obtained from the EG method applied to the ank-

MIMU signals and those obtained from the EG method applied to the lb-MIMU signals, in red 

results from the difference between turn duration values obtained from the AD method 

applied to the ank-MIMU signals and those obtained from the EG method applied to the lb-

MIMU signals. __________________________________________________________________________ 65 

Figure 3-12 Minimum, first quartile, median, third quartile and maximum values of the mean 

difference between turn onset timing (left) and duration (right) values obtained from the AD 

method applied to the ank-MIMU signals and those obtained from the AD method applied to 

the ank-MIMU signals and those obtained from the AD method applied to the lb-MIMU 

signals, for both groups (red=ELD, blue= PD) and walking speeds. _________________________ 66 

Figure 4-1 CONSORT flow chart for the study design ______________________________________ 81 

Figure 4-2 Individual with PD wearing the MIMUs on the left; MIMU positionings above the 

ankles and at L5 level on the right ______________________________________________________ 84 

Figure 5-1 Time series of trunk angular velocity profiles during the 180 and 360 turning tasks in a 

PD-FoG (upper panel) and a PD+FoG (lower panel). In PD+FoG the time needed to complete 

the turns is longer than in PD-FoG. _____________________________________________________ 118 

Figure 5-2 Mean and SEM of the objective measures in the single task condition for healthy 

controls, non-freezers (PD-FoG) and freezers (PD+FoG) __________________________________ 120 

Figure 5-3 Mean and SEM of the objective measures’ dual task cost for non-freezers (PD-FoG) 

and freezers (PD+FoG) ________________________________________________________________ 123 

Figure 5-4 Spearman correlations (ρ in absolute value) of UPDRS with the turning measures 

during 180° turn while walking (blue, on the right) and 360° turn in place (red, on the left) for 

PD-FoG and PD+FoG. Dashed semi-circle delimit significance (p<0.05). MLJ, APJ: ML, AP Jerk. 

TD: Turn Duration. SN: Number of Steps. PS: Peak Velocity. MLR, APR: ML, AP Range of 

Acceleration. _________________________________________________________________________ 124 

Figure 5-5 Spearman correlations (ρ in absolute value) of MoCA with the turning measures 

during 180° turn while walking (blue, on the right) and 360° turn in place (red, on the left) for 

file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748246
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748246
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748246
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748247
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748247
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748247
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748247
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748247
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748247
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748247
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748248
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748248
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748248
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748248
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748248
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748248
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748248
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748249
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748249
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748249
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748249
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748249
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748250
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748251
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748251
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748252
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748252
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748252
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748253
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748253
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748254
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748254
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748255
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748255
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748255
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748255
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748255
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748256
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748256


 

xiii 

PD-FoG and PD+FoG. Dashed semi-circle delimit significance (p<0.05). MLJ, APJ: ML, AP Jerk. 

TD: Turn Duration. SN: Number of Steps. PS: Peak Velocity. MLR, APR: ML, AP Range of 

Acceleration. _________________________________________________________________________ 125 

Figure 5-6 Spearman correlations (ρ in absolute value) of PIGD with the turning measures 

during 180° turn while walking (blue, on the right) and 360° turn in place (red, on the left) for 

PD-FoG and PD+FoG. Dashed semi-circle delimit significance (p<0.05). MLJ, APJ: ML, AP Jerk. 

TD: Turn Duration. SN: Number of Steps. PS: Peak Velocity. MLR, APR: ML, AP Range of 

Acceleration. _________________________________________________________________________ 125 

file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748256
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748256
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748256
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748257
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748257
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748257
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748257
file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/tesi_rev.docx%23_Toc748257


 

xiv 

List of tables 

 

 

Table 2-1 Algorithms for gait timing estimation from MIMU measurements __________________ 22 

Table 2-2 Subject characteristics for clinical centers. _____________________________________ 26 

Table 2-3 Number of initial contacs and strides analyzed in each clinical center. _______________________ 32 

Table 2-4 Gait spatio-temporal parameters mean values (sd) across subjects for clinical 

centers and walking speeds. ___________________________________________________________ 33 

Table 2-5 Subject mean error, standard deviation and mean absolute error averaged across 

clinical centers for both walking speeds (gait events). ____________________________________ 35 

Table 2-6 Subject mean error, standard deviation, mean absolute error and its relative 

percentage averaged across clinical centers for both walking speeds (spatio-temporal 

parameters). __________________________________________________________________________ 36 

Table 2-7 Group average of the subjects mean absolute errors for the gait events and spatio-

temporal parameters for both walking speeds. __________________________________________ 37 

Table 2-8 ANOVA results for the errors in determining the gait events and the gait spatio-

temporal parameters. __________________________________________________________________ 37 

Table 3-1 Total number of actual U-turns analyzed _______________________________________ 53 

Table 4-1 Demographic and clinical features of PD patients ______________________________ 88 

Table 4-2 PRE to POST changes in motor symptoms and functional performance within- and 

between-subjects _____________________________________________________________________ 90 

Table 4-3 PRE to POST changes in gait analysis parameters within- and between-subjects __ 91 

Table 4-4 PRE to POST changes in non-motor symptoms within- and between-subjects _____ 93 

Table 5-1 Subjects characteristics in Parkinson’s disease freezers (PD+FoG) and non-freezers 

(PD-FoG) and healthy controls (Mean±STD) ____________________________________________ 115 

Table 5-2 Turn objective measures in Parkinson’s Disease subjects with (PD+FoG) and without 

(PD-FoG) freezing of gait during single task condition. ___________________________________ 122 

Table 5-3 Turn objective measures’ dual task cost in Parkinson’s Disease subjects with 

(PD+FoG) and without (PD-FoG) freezing of gait. _______________________________________ 122 

Table 5-4 Turn objective measures in Parkinson’s Disease subjects with freezing of gait: 

comparison across trial with and without actual freezing episode ________________________ 127 

 

  

file:///G:/My%20Drive/PhD_TESI/tesi_Bertoli/rev/capitoli2.docx%23_Toc746553


 

xv 

Glossary 

 

MIMU: Magneto-Inertial Measurement Unit 

PD: Parkinson’s Disease 

MCI: Mild Cognitive Impairment 

ELD: Elderly (older adults) 

GE: Gait Events 

IC/FC: Initial/Final Contact 

LCS/GCS: Local/Global Coordinate System 

NW/FW: Normally/Fast paced Walk 

UNIGE: University of Genova 

KULEU: KU Leuven 

TASMC: Tel Aviv Sourasky Medical Center 

NEWCA: Newcastle University 

OHSU: Oregon Health and Science University 

OFDRI: Optimally Filtered and Direct and Reverse Integration 

TEADRIP: Trusted Events and Acceleration Direct and Reverse Integration along the 

direction of Progression (spatio-temporal parameters estimation method) 

BS: Sardinian folk dance 

FoG: Freezing of gait 

PD+FoG/PD-FoG: PD subject showing/not showing FoG 

U-turn: 180° turn while walking 

ANOVA: analysis of variance statistical test



 

 

 

  

Introduction 

 



Chapter 1 

2 

1.1 General introduction 

Gait analysis aims at gathering quantitative information about the biomechanics of the 

locomotor system during walking [Cappozzo 1984]. The methods for evaluating gait are 

numerous, depending mainly on the instrumentation used, and are constantly 

evolving [Tao 2012; Cappozzo 2014; Horak 2015; Iosa 2016]. Nowadays, instrumented 

gait analysis is a crucial tool for determining gait related impairments and relevant 

treatments [Benedetti 2017]. Technological progress has promoted the development of 

innovative measurement systems that allow investigating the locomotor tasks in 

different conditions and with a high descriptive level. In particular inertial sensors, 

wearable and relatively low cost, are an appealing solution and are gaining great 

interest in this field [Cuesta-Vargas 2010]. In fact, thanks to their versatility, gait (but 

more in general movement) analysis by means of inertial sensors has begun to spread 

outside of the research context into the clinical practice and the everyday life. 

However, if inertial sensors-based gait analysis on healthy subjects in controlled 

conditions is largely used and validated, the same cannot be said about impaired 

populations or unconstrained walking. In fact, pathological gait patterns differ from 

the physiological ones in unpredictable ways (often due to impairments and 

consequent compensatory strategies) and with large variability, and therefore their 

analysis requires great fine tuning efforts for clinical applications. Similarly, walking 

in unrestricted conditions (e.g.: climbing stairs, turning, passing obstacles, ...) 

generates heterogeneous gait patterns that, to be analyzed properly, needs to be 

correctly identified and classified. Currently there is no acclaimed method for such 

evaluation in a robust way, even though several solutions have been proposed [Preece 

2009; Rueterbories 2010; Storm 2016]. Since portability is one of the best inertial sensors 

features, allowing for the measurement of the human motion during daily life 

activities, being able to reliably evaluate gait outside of dedicated settings is of 
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paramount importance. Thus, the validity of clinically suitable gait analysis in 

ecological conditions by means of inertial sensors is still an open issue.  

 

1.1.1 Clinical gait analysis 

Clinical gait analysis focuses on the monitoring and evaluation of individuals with 

conditions affecting their ability to walk, with the goal of providing answers to specific 

clinical questions, assessing the effect of an intervention, limiting motor impairments 

or rehabilitating from traumatic events [Cappozzo 1984; Baker 2006]. Traditionally, the 

measurement systems used in laboratories are stereophotogrammetry, force platforms 

and electromyography (EMG) [Benedetti 2017]. These instrumentations are required in 

order to acquire the kinematic, kinetic and EMG data needed for a comprehensive gait 

analysis.  

Stereophotogrammetric systems provide the kinematic data: by means of passive or 

active markers they can track the movement (i.e.: positions in time) of the subject. The 

markers are attached to specific locations on the subject’s body (usually on bony 

landmarks) and, in order to be able to reconstruct the kinematics of a body segment 

(usually pelvis, thighs, shanks and feet, all considered as rigid bodies), they must be 

at least 3 for each segment. Furthermore, in order to exploit the photogrammetric 

principle, markers must be located in a calibrated measuring volume and captured by 

at least two cameras simultaneously. If these requirements are followed, it is possible 

to accurately reconstruct the instantaneous 3D positions of markers (and therefore 

subject) with respect to a reference coordinate system. 

Force platforms (in union with stereophotogrammetric systems) provide the kinetic 

data: they determine ground reaction forces. They consist of load cells that measure 

the 3D components of forces and torques acting on them. Thus, having knowledge of 

the motion of the limbs and external forces, through inverse dynamics it is possible to 
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estimate the internal moments and forces acting within at the joints connecting the 

body segments. 

EMG systems provide the EMG data: they measure the electrical activity of the 

muscles. Depending on how selective (and invasive) a recording needs to be, fine-wire 

or surface EMG can be used. The latter is commonly used for research purposes, with 

either bipolar electrodes or high-density matrices. From surface EMG, given at least 

two electrodes attached to the subject’ skin (and an acquisition system), the activation 

times and magnitude of the underlying muscles can be estimated. 

This entire set of system though is not necessarily required for an effective gait 

analysis: even if the best results are obtained merging kinematics, kinetics and EMG 

together, their individual analysis can still be used to diagnose specific pathologies, 

predict the outcome of treatments, or determine the effectiveness of rehabilitation 

programs. Gait kinematics especially is frequently studied on its own with productive 

results. In particular, inside this field several research studies are focusing on the use 

of spatio-temporal parameters, which are used to characterize the subject’s walking 

pattern. For a visual explanation on how these parameters are defined a representative 

scheme can be seen in Figure 1-1. For each gait cycle (i.e.: the interval between one 

foot-ground contact and the subsequent one from the same side, also ‘stride’) standard 

phases are defined: stance and swing (for the same side) and single support and double 

support (when both sides are considered). These intervals are the primary temporal 

parameters. Other temporal parameters, such as the cadence, can be easily computed 

from them. Spatial parameters such as the stride length and step length are determined 

at foot-ground contact from the distances covered for each gait cycle. Gait speed can 

then be calculated as the ratio of stride length over stride time. Except from 

stereophotogrammetric systems, which are considered the gold standard for gait 

analysis, spatio-temporal parameters can also be determined from a (ever increasing) 

number of other technologies. In the next paragraphs, two of them (the most popular 
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among the portable ones) will be described since directly used in this thesis: the 

instrumented mat and the inertial sensors. 

 

1.1.1.1 Instrumented mat 

The instrumented mat consists of a ‘carpet’ walkway with pressure sensors embedded 

within its length, capable of record and quantify the footstep patterns. Each sensor, 

associated with its own spatial coordinate, provides a value in proportion to the 

pressure detected. Irrespectively of the source of the pressure, sensors are activated for 

every external contact. In the majority of these systems, data from the activated sensors 

are collected by a series of on-board processors and transferred via cable in real-time 

Figure 1-1 Gait cycle and spatio-temporal parameters representative scheme 
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to the acquiring computer. Proper spatio-temporal parameters can then be computed 

in post-processing, usually by a dedicated software in a semi-automatic way. The 

acquisition frequency can be up to hundreds of Hertz; a typical value being 120Hz, 

sufficient for most clinical applications. Temporal resolution is therefore in the order 

of magnitude of few milliseconds, while spatial resolution ranges from 10mm to 1cm. 

Walkway dimension usually do not exceed a one-meter width and a 7-meter length. 

The advantages of this system are definitely multiple: high accuracy and repeatability 

of measurements, reduced costs, and fast (or no) preparation of the subject to the 

measure (no markers placement). But most importantly, it is a portable tool that, with 

a quick set-up, can be positioned on every flat surface, either inside a laboratory or 

outside. Furthermore, it is not affected by electromagnetic disturbances (like inertial 

sensors) or sensing artifacts and occlusions (like stereophotogrammetric systems). 

Subjects can freely walk over the carpet without the encumbrance of wires or markers 

and data can be quickly obtained for each step within the passage. In the last decade, 

instrumented mats usage has highly increased, not only for research [Lebold 2010; 

Almeida 2010; Tseng 2012], but also for clinical purposes.  

A major limitation though, is that only steps that fall within the walkway are recorded, 

and therefore only straight gait on a restricted path can be analyzed; no turnings or 

obstacle negotiation tasks can be directly studied with these systems. Furthermore, 

they can be relatively expensive (tens of thousands of euros). 

As an example, three representative models, among the several types available on the 

market, are illustrated in Figure 1-2. The GAITRite (CIR Systems, Inc.) and Zeno 

(Protokinetics) are two commonly used mats, both featuring accepted validity and 

reliability of the spatio-temporal parameters measured in normal and pathological 

gait[Bilney 2003; Beijer 2013]. The Strideway System (Tekscan), also validated from the 

literature [Zammit 2010; Coda 2014], instead is an example of baropodometric platform 
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(of which instrumented mats can be considered a sub-category) which, on top of 

spatio-temporal parameters, returns also the foot plantar pressure distributions.  

It also worth to mention that another technology, based on optical sensors but similar 

in principle and with analogous advantages and disadvantages, was recently 

proposed (OptoGait). This system measures the same parameters as the instrumented 

mat, but with a different detection approach. The OptoGait is made by a transmitting 

and a receiving infrared LED bar, within which the subject walks. It detects the 

interruptions of the communication between the bars and calculates the duration and 

position with an accuracy of 1 ms in time and 1 cm in space.  

 

1.1.1.2 Magneto-inertial sensors 

Magneto-inertial sensors, or -in this thesis- magneto inertial measurement units 

(MIMUs), use the principle of inertia of a mass to measure linear acceleration and 

angular velocity, and the magnetoresistive effect to determine local magnetic field. 

MIMUs therefore embody the integration of multiple sensors: accelerometers, 

gyroscopes and magnetometers. Since the measures are attainable along a single 

Figure 1-2 Instrumented mats 



Chapter 1 

8 

sensing axis, typically each sensor is mounted in a three-axial configuration 

(orthogonally arranged) in order to form a proper 3D sensor. Measures are therefore 

provided with respect to the reference frame of the sensor, which is not fixed, but 

typically corresponds to the axes of a Cartesian coordinate system aligned with the 

unit [Cereatti 2015]. 

The most interesting solution that MIMUs can offer though is the estimation of their 

orientation in the 3D space with respect to a global reference system. In static 

conditions, in order to obtain the sensor orientation, the accelerometer can be used as 

an inclinometer: since it senses only the acceleration due to gravity (which is 

proportional to the inclination with respect to gravity direction), it can determine the 

deviation of its sensitive axis from the vertical direction (for each of the three axis) and 

by simple trigonometry orientation can directly be calculated [Luczak 2006]. While a 

three-axial accelerometer is sufficient in static conditions, in dynamic conditions 

MIMU orientation estimate is not straightforward. A basic approach consist in using 

the gyroscope to directly measure the angular velocity and, by computing its 

numerical integration, given an initial reference, obtain an estimation of the rotated 

angle and actual orientation. This approach though is prone to errors due to gyroscope 

bias drifts that grow unbounded over time (the signals measured by the inertial 

sensors are characterized by an unpredictable low-frequency red noise) and furtherly 

propagates in the numerical integration process [Sabatini 2011; Picerno 2017]. A more 

comprehensive approach consist in achieving orientation estimates by sensor fusion 

algorithms, which combine the complementary characteristics of the integrated 

sensors [Bergamini 2014]. The orientation computed from the angular velocity 

integration can be adjusted by means of the accelerometers, but the correction applies 

only with respect to the vertical (obtaining corrected pitch and roll angles, or, jointly, 

attitude or inclination). Reference information about the sensor’s orientation in the 

horizontal plane are then needed to correct the orientation estimate about the vertical 
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direction (yaw angle or heading). To this purpose, readings from the magnetometer 

(which senses the local magnetic north as absolute reference) can be used, so that a full 

3D orientation of the sensor in space can be obtained. Since the global coordinate 

system definition is based only on gravity and local magnetic north, its origin results 

undefined. Therefore only MIMU’s pose, but not position, can be estimated in the 3D 

space. Given an initial position though, its movement over time can be tracked [Zhou 

2008]. 

MIMUs are gaining popularity among the several other technologies for motion 

tracking thanks to their advantages of being small, portable, and with limited power 

consumption, thus allowing for unconstrained motion monitoring [Rueterbories 2010; 

Tao 2012; Bergamini 2014]. As illustrated in Figure 1-3, MIMUs are small sized (few 

centimeters) and neither cumbersome nor heavy (weight of few tens of grams). The 

acquisition frequency mostly ranges between 100 and 500 Hertz, and they are 

appropriate for real-time applications. MIMUs are generally embedded with 

Bluetooth/wireless modules or SD cards for data streaming or on-board logging, 

respectively. They can be used either as a stand-alone device, or, in a combination of 

Figure 1-3 Magneto inertial measurements units 
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synchronized units, as a wearable system. Often sensor fusion algorithms are already 

implemented in commercially available MIMUs, and various manufacturers also offer 

software suites for the gait spatio-temporal parameters estimation. Furthermore, 

MIMUs are completely self-contained, since they don’t require an external source to 

measure the physical quantities related to their motion (and therefore the motion of 

the objects to which the sensors are fixed)[Sabatini 2011]. In addition, thanks to recent 

technological advances and high market demands (these sensors are in fact largely 

used in the consumer electronics), their cost drops while their performance improves. 

However, some limitations are yet to be overcome in orientation estimate accuracy. 

An open problem is the so called “gravity removal”: the difficulty of correctly 

determining, in the acceleration signals, the component due to the gravity from the 

component related to the motion of the sensor [Rampp 2015]. As a consequence, the 

vertical reference can be considered reliable only for static or constant velocity 

conditions [Veltink 1996]. Most importantly, the local magnetic north (and therefore the 

horizontal reference) can be distorted by nearby ferromagnetic materials or electrical 

appliances, which critically disturbs the signals sensed by the magnetometer 

[Bachmann 2004]. This problem becomes especially apparent within man-made indoor 

environments and justifies the fact that the estimation of the heading is often regarded 

as more critical than that of the attitude [Roetenberg 2005]. 

 

1.1.2 Gait segmentation 

As explained in the previous section, the main advantage of inertial sensors is that they 

enable performing gait analysis in daily-living conditions, where the subject walks 

casually. In fact, moving from laboratory settings to more ecological conditions allows 

to reduce the influence exercised by the environment (i.e. the lab) and by the presence 

of the healthcare professionals and to collect realistic data continuously over an 
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extended period of time and long distances. However, while protocols and definitions 

for the estimate of gait spatio-temporal parameters are well delineated and validated 

on straight bouts, they lack of standardization in some variants of gait encountered in 

real life, such as stairs and/or turns [Huxham 2006]. Gait analysis in unsupervised 

settings is therefore appealing but challenging. 

An intuitive approach to solve the problem is to identify the straight walking bouts in 

such variants of gait and estimate the traditional spatio-temporal parameters on those 

intervals only. To do so, a valuable help comes from body of literature focusing on 

‘activity recognition’ [Preece 2009; Mannini 2013; Wullems 2017]. Being aware of what 

kind of gait is being analyzed (i.e.: classifying it) is of paramount importance for two 

reasons: first, trivially, it allows to avoid errors due to a misrepresented movement 

and second, it allows to select the most appropriate and explicative measures that 

describe the specific gesture. An example of the need for this classification comes from 

the turn analysis. Considering the first reason (avoiding errors), a problematic topic is 

the stride detection during turning. Several spatio-temporal parameters estimation 

methods detect a gait cycle by detecting the swing of the leg from the mediolateral 

angular velocity [Salarian 2004; Sabatini 2005; Catalfamo 2010; Greene 2010; Mannini 

2012]. While this is correct in straight gait, it may not be applicable during turning 

where, in the swing phase, angular velocity mediolateral component is reduced and 

there is a greater vertical component. This would lead to a stride missed detection 

during turning not because of a failure of the method, but because of its improper 

application on another motor gesture. Considering the second reason (appropriate 

measure), an example is the usage of the symmetry index. The symmetry index is 

derived from right and left spatio-temporal parameters to quantify gait symmetry and 

it is used to evaluate gait functionality. During turning the measure itself can be 

computed, but since turning is an intrinsic asymmetric gesture its analysis would not 
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lead to meaningful results. Instead, other measures specific for the turning task are to 

be considered. 

 

1.2 Thesis objectives 

An overview of the research project is reported in Figure 1-4. The three main research 

questions to which this work tries to answer are reported in bold. 

The broad scope of the research conducted and reported in this PhD thesis regards the 

development, application and testing of MIMU based methods for assessing gait 

quantitative measures across straight walking bouts and turnings in clinical contexts. 

Specifically, as illustrated in Figure 1-4, the aim of this thesis is twofold: 

characterization of straight gait by means of traditional spatio-temporal parameters 

(straight gait analysis) and characterization of gait during turning (turn analysis). 

The first part of the research project focused on the fine tuning of a proposed method 

to estimate gait spatio-temporal parameters using two MIMUs positioned on the 

ankles. This operation was done so that the method could be applied on a large cohort 

of healthy and pathological subjects acquired in different clinical centers. The 

estimates obtained were then validated against the spatio-temporal parameters 

acquired by an instrumented mat. Such a validation is in fact required to answer the 

question “can parameters be estimated ubiquitously?” and allows to declare the 

method robust across facilities and therefore usable in different context.  

A preliminary step for the method application required the automatic segmentation of 

the gait data acquired into straight bouts and turns. This posed a research question on 

which turn identification method was to be used, and lead to the turn studies that were 

performed in parallel to the straight gait analysis. First, methods for turn identification 

based on a single MIMU positioned on the trunk were compared among each other  
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 Figure 1-4 Overview of the thesis project 
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and to reference data provided by the instrumented mat and their performance was 

evaluated (“which is better in identifying turns?”). Then, their capability of 

determining the beginning and ending instants of turns was investigated. Finally, a 

novel method to determine such instants based on two MIMUs on the ankles was 

proposed (“can turn be characterized?”). The reason for applying the method at the 

ankles (where traditional spatio-temporal parameters are better estimated) comes 

from the wish of using the most unobtrusive instrumental setup.  

The results of these works allowed to migrate the acquired knowledge to applications 

in clinical studies. Spatio-temporal parameters were analyzed in a pre-post 

Parkinson’s Disease (PD) treatment assessment to determine its validity, and turning 

characteristics in PD subjects with Freezing of Gait were analyzed to investigate their 

specific motor deficit. 

 

1.3 Outline of the thesis 

The thesis is organized as follows. 

Chapter 1 (current chapter) introduces the topic of this thesis through the presentation 

of characteristics of clinical gait analysis. The technologies commonly employed to 

determine gait quantitative measures are briefly introduced. The motivations of the 

research work, as well as the methodology applied, are presented together with the 

objectives and outline of the thesis. 

Chapter 2 elaborates on gait spatio-temporal parameters and, for reference context, 

glides on parameters estimation using MIMUs. An estimation method using shank 

worn MIMUs is validated on a large cohort of pathological subjects. Results of the 

technical validation of the proposed method are reported against a gold standard for 

two walking speed and across four clinical centers that provided the gait data. 
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Chapter 3 illustrates why 180° turns are important in clinics and presents a 

comparative evaluation of different methods for turn identification using a single 

MIMU unit attached to the trunk on healthy and pathological subjects. A further study 

concerning ankle based methods is presented extending the previous results. 

Chapter 4 explains how the methods presented in chapter 2 and 3 can be applied in a 

clinical gait analysis. In this study gait spatio-temporal parameters are analyzed along 

clinical outcome measures to assess the effects of a dance treatment on functional 

performance in individuals with Parkinson’s Disease (PD). 

Chapter 5 describes a study that exploit quantitative measures computed during 

turnings to investigate differences in PD subjects with and without freezing of gait. 

Chapter 6 discusses the achievements of the research performed during the PhD 

program and an outlook for future research. 

 



Chapter 2 

16 

References 

 

Almeida Q J, Lebold C A (2010), “Freezing of gait in Parkinson’s disease: a perceptual 

cause for a motor impairment?,” J. Neurol. Neurosurg. Psychiatry, vol. 81, no. 5, pp. 513–

518, doi:10.1136/jnnp.2008.160580. 

Bachmann E R, Yun X, Peterson C W (2004), “An investigation of the effects of 

magnetic variations on inertial/magnetic orientation sensors,” in IEEE International 

Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 2, p. 1115–

1122 Vol.2, doi:10.1109/ROBOT.2004.1307974. 

Baker R (2006), “Gait analysis methods in rehabilitation,” J. Neuroeng. Rehabil., vol. 3, 

pp. 1–10, doi:10.1186/1743-0003-3-4. 

Beijer T R, Lord S R, Brodie M A D (2013), “Comparison of handheld video camera and 

GAITRite(R) measurement of gait impairment in people with early stage Parkinson’s 

disease: a pilot study.,” J. Parkinsons. Dis., vol. 3, no. 2, pp. 199–203, doi:10.3233/JPD-

130179. 

Benedetti M G, Beghi E, De Tanti A, Cappozzo A, Basaglia N, Cutti A G, Cereatti A, 

Stagni R, Verdini F, Manca M, Fantozzi S, Mazzà C, Camomilla V, Campanini I, 

Castagna A, Cavazzuti L, Del Maestro M, Croce U Della, Gasperi M, Leo T, Marchi P, 

Petrarca M, Piccinini L, Rabuffetti M, Ravaschio A, Sawacha Z, Spolaor F, Tesio L, 

Vannozzi G, Visintin I, Ferrarin M (2017), “SIAMOC position paper on gait analysis in 

clinical practice: General requirements, methods and appropriateness. Results of an 

Italian consensus conference,” Gait Posture, vol. 58, no. August, pp. 252–260, 

doi:10.1016/j.gaitpost.2017.08.003. 

Bergamini E, Ligorio G, Summa A, Vannozzi G, Cappozzo A, Sabatini A M (2014), 

“Estimating orientation using magnetic and inertial sensors and different sensor 

fusion approaches: Accuracy assessment in manual and locomotion tasks,” Sensors 

(Switzerland), vol. 14, no. 10, pp. 18625–18649, doi:10.3390/s141018625. 

Bilney B, Morris M, Webster K (2003), “Concurrent related validity of the GAITRite 

walkway system for quantification of  the spatial and temporal parameters of gait.,” 

Gait Posture, vol. 17, no. 1, pp. 68–74. 

Cappozzo A (1984), “Gait analysis methodology,” Hum. Mov. Sci., vol. 3, no. 1–2, pp. 

27–50, doi:10.1016/0167-9457(84)90004-6. 



Chapter 2 

17 

Cappozzo A, Cereatti A, Camomilla V, Mazzà C, Vannozzi G (2014), “Grieve’s Modern 

Musculoskeletal Physiotherapy,” 4th editio., Elsevier, pp. 1–7. 

Catalfamo P, Ghoussayni S, Ewins D (2010), “Gait Event Detection on Level Ground 

and Incline Walking Using a Rate Gyroscope,” Sensors , vol. 10, no. 6. , 

doi:10.3390/s100605683. 

Cereatti A, Trojaniello D, Croce U Della, Della Croce U (2015), “Accurately measuring 

human movement using magneto-inertial sensors: Techniques and challenges,” 2nd 

IEEE Int. Symp. Inert. Sensors Syst. IEEE ISISS 2015 - Proc., no. May, pp. 1–4, 

doi:10.1109/ISISS.2015.7102390. 

Coda A, Carline T, Santos D (2014), “Repeatability and reproducibility of the Tekscan 

HR-Walkway system in healthy children,” Foot, vol. 24, no. 2, pp. 49–55, 

doi:10.1016/j.foot.2014.02.004. 

Cuesta-Vargas A I, Galán-Mercant A, Williams J M (2010), “The use of inertial sensors 

system for human motion analysis,” Phys. Ther. Rev., vol. 15, no. 6, pp. 462–473, 

doi:10.1179/1743288X11Y.0000000006. 

Greene B R, McGrath D, O&apos;Neill R, O&apos;Donovan K J, Burns A, Caulfield B 

(2010), “An adaptive gyroscope-based algorithm for temporal gait analysis,” Med. Biol. 

Eng. Comput., vol. 48, no. 12, pp. 1251–1260, doi:10.1007/s11517-010-0692-0. 

Horak F, King L, Mancini M (2015), “Role of Body-Worn Movement Monitor 

Technology for Balance and Gait Rehabilitation,” Phys. Ther., vol. 95, no. 3, pp. 461–

470, doi:10.2522/ptj.20140253. 

Huxham F, Gong J, Baker R, Morris M, Iansek R (2006), “Defining spatial parameters 

for non-linear walking,” Gait Posture, vol. 23, no. 2, pp. 159–163, 

doi:10.1016/j.gaitpost.2005.01.001. 

Iosa M, Picerno P, Paolucci S, Morone G (2016), “Wearable inertial sensors for human 

movement analysis,” Expert Rev. Med. Devices, vol. 13, no. 7, pp. 641–659, 

doi:10.1080/17434440.2016.1198694. 

Lebold C A, Almeida Q J (2010), “Evaluating the contributions of dynamic flow to 

freezing of gait in Parkinson’s disease.,” Parkinsons. Dis., vol. 2010, p. 732508, 

doi:10.4061/2010/732508. 

Luczak S, Oleksiuk W, Bodnicki M (2006), “Sensing Tilt With MEMS Accelerometers,” 

IEEE Sens. J., vol. 6, no. 6, pp. 1669–1675, doi:10.1109/JSEN.2006.881433. 



Chapter 2 

18 

Mannini A, Intille S S, Rosenberger M, Sabatini A M, Haskell W (2013), “Activity 

recognition using a single accelerometer placed at the wrist or ankle.,” Med. Sci. Sports 

Exerc., vol. 45, no. 11, pp. 2193–2203, doi:10.1249/MSS.0b013e31829736d6. 

Mannini A, Sabatini A M (2012), “Gait phase detection and discrimination between 

walking-jogging activities using hidden Markov models applied to foot motion data 

from a gyroscope,” Gait Posture, vol. 36, no. 4, pp. 657–661, 

doi:10.1016/j.gaitpost.2012.06.017. 

Picerno P (2017), “25 years of lower limb joint kinematics by using inertial and 

magnetic sensors: A review of methodological approaches,” Gait Posture, vol. 51, pp. 

239–246, doi:10.1016/j.gaitpost.2016.11.008. 

Preece S J, Goulermas J Y, Kenney L P J, Howard D, Meijer K, Crompton R (2009), 

“Activity identification using body-mounted sensors—a review of classification 

techniques,” Physiol. Meas., vol. 30, no. 4, p. R1. 

Rampp A, Barth J, Schülein S, Gaßmann K G, Klucken J, Eskofier B M (2015), “Inertial 

Sensor-Based Stride Parameter Calculation From Gait Sequences in Geriatric Patients,” 

IEEE Trans. Biomed. Eng., vol. 62, no. 4, pp. 1089–1097, doi:10.1109/TBME.2014.2368211. 

Roetenberg D, Luinge H J, Baten C T M, Veltink P H (2005), “Compensation of 

magnetic disturbances improves inertial and magnetic sensing of human body 

segment orientation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13, no. 3, pp. 395–405, 

doi:10.1109/TNSRE.2005.847353. 

Rueterbories J, Spaich E G, Larsen B, Andersen O K (2010), “Methods for gait event 

detection and analysis in ambulatory systems,” Med. Eng. Phys., vol. 32, no. 6, pp. 545–

552, doi:10.1016/j.medengphy.2010.03.007. 

Sabatini A M, Martelloni C, Scapellato S, Cavallo F (2005), “Assessment of walking 

features from foot inertial sensing,” IEEE Trans. Biomed. Eng., vol. 52, no. 3, pp. 486–

494, doi:10.1109/TBME.2004.840727. 

Sabatini A M (2011), “Estimating three-dimensional orientation of human body parts 

by inertial/magnetic sensing,” Sensors, vol. 11, no. 2, pp. 1489–1525, 

doi:10.3390/s110201489. 

Salarian A, Russmann H, Vingerhoets F J G, Dehollain C, Blanc Y, Burkhard P R, 

Aminian K (2004), “Gait assessment in Parkinson’s disease: Toward an ambulatory 

system for long-term monitoring,” IEEE Trans. Biomed. Eng., vol. 51, no. 8, pp. 1434–



Chapter 2 

19 

1443, doi:10.1109/TBME.2004.827933. 

Storm F A, Buckley C J, Mazzà C (2016), “Gait event detection in laboratory and real 

life settings: Accuracy of ankle and waist sensor based methods,” Gait Posture, vol. 50, 

pp. 42–46, doi:10.1016/j.gaitpost.2016.08.012. 

Tao W, Liu T, Zheng R, Feng H (2012), “Gait analysis using wearable sensors,” Sensors, 

vol. 12, no. 2, pp. 2255–2283, doi:10.3390/s120202255. 

Tseng I-J, Jeng C, Yuan R-Y (2012), “Comparisons of forward and backward gait 

between poorer and better attention capabilities in early Parkinson’s disease.,” Gait 

Posture, vol. 36, no. 3, pp. 367–371, doi:10.1016/j.gaitpost.2012.03.028. 

Veltink P H, Bussmann H J, de Vries W, Martens W J, Van Lummel R C (1996), 

“Detection of static and dynamic activities using uniaxial accelerometers,” IEEE Trans. 

Rehabil. Eng., vol. 4, no. 4, pp. 375–385, doi:10.1109/86.547939. 

Wullems J A, Verschueren S M P, Degens H, Morse C I, Onambele G L (2017), 

“Performance of thigh-mounted triaxial accelerometer algorithms in objective 

quantification of sedentary behaviour and physical activity in older adults.,” PLoS One, 

vol. 12, no. 11, p. e0188215, doi:10.1371/journal.pone.0188215. 

Zammit G V., Menz H B, Munteanu S E (2010), “Reliability of the TekScan 

MatScan®system for the measurement of plantar forces and pressures during barefoot 

level walking in healthy adults,” J. Foot Ankle Res., vol. 3, no. 1, pp. 1–9, 

doi:10.1186/1757-1146-3-11. 

Zhou H, Hu H (2008), “Human motion tracking for rehabilitation-A survey,” Biomed. 

Signal Process. Control, vol. 3, no. 1, pp. 1–18, doi:10.1016/j.bspc.2007.09.001. 

 

 



 

 

 

  

Gait spatio-temporal parameters estimation in 

straight walking* 

 

                                                 
* This chapter is based on M. Bertoli, A. Cereatti, D. Trojaniello, L. Avanzino, E. Pelosin, S. Del Din, L. 

Rochester, P. Ginis, E. M. J. Bekkers, A. Mirelman, J. M. Hausdorff, and U. Della Croce, "Estimation of 

spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation 

among Parkinson, mildly cognitively impaired and healthy older adults," BioMedical Engineering 

OnLine. 



Chapter 2 

21 

2.1 Inertial sensors instrumented gait: State of the art 

Since walking is the most efficient form of locomotion on level terrain, most humans 

have a very similar gait pattern, constituted by repetitive sequential gait cycles. Key 

element for spatio-temporal parameters estimation is therefore the segmentation of 

inertial sensors derived gait data into gait cycles, usually by the identification of the 

initial contact (IC) of the foot with the ground. Thanks to their huge repeatability, 

distinctive traits can be recognized in acceleration and angular velocity data to identify 

ICs. However, depending on MIMU positioning on the human body, a high variability 

in magnitude and frequency of raw inertial data have been extensively reported. As a 

consequence, a multitude of different methods for gait cycle extraction have been 

proposed [Aminian 2002; Zijlstra 2003; Salarian 2004; Sabatini 2005; Jasiewicz 2006; Greene 

2010; Catalfamo 2010; Mariani 2010; González 2010; McCamley 2012; Pham 2017]. Among 

these, two main approaches in sensor configurations can be outlined: single, with the 

sensor usually attached to the trunk, and bilateral, with sensors attached to either feet 

or shanks. Indeed, MIMU positioning plays a primary role in the robustness and 

accuracy of the ICs detection. An attractive solution is to attach only one MIMU at the 

waist level so that ICs of both feet can be detected, while minimally conditioning the 

subject. On the other hand, as a general rule, the closer the sensor to the ground (point 

of contact), the better the possibility of precisely detecting the IC. Therefore, single 

MIMU approach methods present an increased difficulty in robust and accurate IC 

detection and, consequently, gait temporal parameters estimation [Trojaniello 2014a; 

Trojaniello 2015]. In bilateral MIMU approach, attaching the MIMUs to the shanks may 

offer some advantages over the feet, since it provides a more rigid positioning. In fact, 

throughout the gait cycle the foot undergoes large deformations. Moreover, inertial 

data were found to be less variable between subjects for shank-attached MIMUs than 

from foot-attached MIMUs [Trojaniello 2014b].  
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Table 2-1 Algorithms for gait timing estimation from MIMU measurements 

Algorithms 
Sensor 

position 
Target 

Variable 
Computational 

Approach 
Analysed subjects 

Bugané  
2012 

Trunk Acceleration 
‘peak identification’ 

(IIR) 
Healthy 

Lee  
2010 

Trunk Acceleration 
‘peak identification’ 

(FIR) 
Healthy, Hemiplegic  

after stroke 

McCamley 
2012 

Trunk Acceleration 
‘peak identification’ 

(WT) 
Healthy 

Gonzaléz 
2010 

Trunk Acceleration ‘zero crossing’ (FIR) Healthy 

Shin 
2011 

Trunk Acceleration ‘zero crossing’ (Raw) Healthy 

Zijlstra 
2003 

Trunk Acceleration ‘zero crossing’ (IIR) Healthy 

Lee 
2010 

Shank Acceleration 
‘peak identification’ 

(IIR) 
Healthy 

Trojaniello 
2014 

Shank Acceleration 
‘peak identification’ 

(Raw) 
Healthy, Choreic, 
Hemiparetic, PD 

Khandelwal 
2014 

Shank Acceleration 
‘peak identification’ 

(WT) 
Healthy 

Catalfamo 
2010 

Shank 
Angular 
velocity 

‘peak identification’ 
(IIR) 

Healthy 

Greene 
2010 

Shank 
Angular 
velocity 

‘peak identification’ 
(Raw) 

Healthy 

Salarian 
2004 

Shank 
Angular 
velocity 

‘peak identification’ 
(Raw) 

Healthy 
Parkinson’s disease 

Aminian 
2002 

Shank 
Angular 
velocity 

‘peak identification’ 
(WT) 

Healthy 

Jasiewicz 
2006 

Foot Acceleration 
‘peak identification’ 

(Raw) 
Healthy 

Spinal-cord injured 

Sabatini 
2005 

Foot 
Angular 
velocity 

‘peak identification’ 
(IIR) 

Healthy 

Ferrari 
2016 

Foot 
Angular 
velocity 

‘peak identification’ 
(Raw) 

Healthy 
Parkinson’s disease 

Mariani 
2013 

Foot 
Angular 
velocity 

‘zero crossing’ (IIR) 
Healthy 

Parkinson’s disease 

 

Regardless of MIMUs configuration, methods for IC, as well as final contacts (FC), 

identification often exploit a signal analysis based approach: fixed or adaptive 

thresholds and peaks detection in both the time and/or frequency domain. However, 

standard methods are negatively influenced by inter-subject variability. Interestingly, 
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machine learning methods based on Markov models showed to have less dependence 

on inter subject variability [Mannini 2012]. 

A systematic review of the most relevant solutions for gait events (GE: ICs and FCs) 

identification in terms of experimental protocol adopted, computational approach and 

performance can be found in [Pacini Panebianco 2018] and summarized in Table 2-1. 

While methods for GE detection provide sufficient information for computing 

temporal parameters, for the spatial parameters anthropometric data or an estimate of 

the sensor position are needed in addition. To determine spatial parameters using 

MIMUs, three main approaches can be applied: human gait models, machine learning 

methods or direct integration [Yang 2012]. However, all of these methods present some 

limitations. Human gait models, for instance those exploiting the inverted pendulum 

[Allseits 2017], have been developed based on healthy gait, and thus their application 

to pathological gait patterns could be problematic. Thanks to advances in deep 

learning and dataset availability, machine learning methods are recently gaining 

popularity [Hannink 2017a], but often require some level of customization, and the 

performance of such methods depends on the completeness and homogeneity of the 

training data set used to build them. Direct integration (i.e.: gravity-free linear 

acceleration double integration) main setbacks, as anticipated in the previous chapter, 

are the drift in MIMU signals and the need for an initial velocity estimate, but several 

technical measures to overcome them have been devised [Cereatti 2015; Picerno 2017]. 

Among those, a great aid comes from the cyclical nature of gait: drift introduced errors 

can in fact be reduced by restricting the time interval of integration to a single gait 

cycle [Skog 2010]. It is then still required to identify an instant of known velocity to be 

used as initial condition value for the acceleration integration. To this purpose, for 

sensors positioned on the foot Peruzzi and co-workers [Peruzzi 2011] suggested to 

apply the Zero Velocity Update (ZUPT) in correspondence of the foot flat phase. For 

sensors positioned on the shanks instead, an expedient consist in estimating the sensor 

initial velocity using the inverted pendulum model [Yang 2012]. Alternatively, for drift 
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compensation advanced filtering integration techniques [Köse 2012b] or de-drifting 

functions can be used [Veltink 2003; Sabatini 2005; Mariani 2010; Chang 2016]. Yet, it is 

important to remember that the accuracy in GE detection plays a fundamental part 

since errors in determining the gait cycle or the known velocity instants propagate in 

spatial parameters estimation. 

In conclusion, spatio-temporal parameters estimation methods achieve an acceptable 

level of accuracy when applied to healthy gait, while in severe pathological gait 

conditions there is still room for improvement. In the next section a thorough error 

analysis across different pathologies, multiple clinical centers and on large sample size 

is presented. A previously presented method [Trojaniello 2014b] for the estimate of 

spatio-temporal parameters, named Trusted Events and Acceleration Direct and 

Reverse Integration along the direction of Progression (TEADRIP), was applied on a 

large cohort (236 patients) including Parkinson, mildly cognitively impaired and 

healthy older adults collected in four clinical centers. Data were collected during 

straight-line gait, at normal and fast walking speed, by attaching two MIMUs on the 

shanks. The parameters stride, step, stance and swing durations, as well as stride 

length and gait velocity, were estimated for each gait cycle. The TEADRIP 

performance was validated against data from an instrumented mat. 

 

2.2 Estimation of spatio-temporal parameters of gait 

from magneto-inertial measurement units: multicenter 

validation among Parkinson, mildly cognitively 

impaired and healthy older adults 

2.2.1 Introduction 

Objective measures of the temporal and spatial parameters of gait allow to define the 

level of impairment and to characterize functional gait performance, which can serve 

as a biomarker of mobility [Mirelman 2011; Horak 2015; Della Croce 2017]. Magneto-
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inertial measurement units (MIMUs) have been frequently presented as an affordable 

solution to assess gait parameters in a variety of environments [Horak 2015; Iosa 2016; 

Chen 2016; Della Croce 2017]. However, the accuracy of the gait spatio-temporal 

parameters obtained using MIMUs can vary remarkably depending on the algorithms 

used to detect ICs and FCs and estimate distances [Cereatti 2015]. Moreover, methods 

developed and validated on healthy gait are not guaranteed to be effective in assessing 

parameters for specific pathological gaits [Trojaniello 2014b]. So far, no study addressed 

the robustness of the detection algorithm across data coming from multiple clinical 

centers, despite its value for further supporting clinical use. Finally, and probably most 

importantly, the majority of the studies in the literature validated MIMU-based 

methods for the estimation of the gait spatio-temporal parameters only on limited 

sample sizes [Salarian 2004; Trojaniello 2014b; Chang 2016; Bötzel 2016; Visi 2017; Pham 

2017]. 

A promising method for the automatic GEs detection and spatio-temporal parameters 

was presented by Trojaniello et al. [Trojaniello 2014b] and tested in real life settings in 

successive work by Storm et al. [Storm 2016]. The method, here named TEADRIP 

(Trusted Events and Acceleration Direct and Reverse Integration along the direction 

of Progression), was validated on four different gait conditions (i.e. healthy elderly, 

hemiparetic, Parkinson and choreic gait) and two different walking speeds, and it was 

shown that its performance was comparable or better than other methods proposed 

[Storm 2016; Hannink 2016]. 

The aim of the present study was to further extend TEADRIP validation for the spatio-

temporal parameters estimation to gait inertial data recorded in a multicenter trial 

(four clinical centers) on a very large sample size of participants (two-hundred-thirty-

six) including patients with Parkinson’s Disease (PD), mild cognitive impairment 

(MCI) and healthy older adults. 
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2.2.2 Materials and Methods 

2.2.2.1 Subjects 

Two-hundred-thirty-six community-living older adults who self-reported two or more 

falls within the previous six months were enrolled in the study across four clinical 

centers in four countries (Belgium, Israel, Italy, and the UK). The subjects were part of 

the randomized controlled trial performed within the EU funded V-Time project and 

the study was approved by the medical ethics review committee at each site [Mirelman 

2013]. Eligible individuals were enrolled if they were aged 60−90 years, on stable 

medication for the past month and able to walk for at least five minutes unassisted 

(refer to Mirelman et al. [Mirelman 2016] for additional eligibility criteria). Individuals 

who agreed to participate in the study were asked to sign informed written consent. 

Participants were divided into three groups: older adults with no cognitive 

impairment (ELD), older adults with mild cognitive impairment (MCI) and people 

with Parkinson’s disease (PD). Population characteristics for each clinical center are 

detailed in Table 2-2. 

Table 2-2 Subject characteristics for clinical centers. 

Clinical 
Center 

N Females Males 
Age 

mean±sd 
[years] 

ELD PD MCI 

UNIGE 52 35 17 73±5 16 28 8 

KULEU 58 40 18 74±7 27 14 17 

TASMC 75 37 38 73±7 20 53 2 

NEWCA 51 26 25 74±8 17 30 4 

Total 236 138 98 74±7 80 125 31 
N: total number, ELD: healthy older adults, PD: Parkinson's disease subjects, MCI: mild cognitive impaired 
subjects. 
(Subjects between centers were age matched) 

 

2.2.2.2 Instrumentation 

Two synchronized MIMUs (Opal, APDM Inc), featuring a tri-axial accelerometer, 

gyroscope and magnetometer (unit mass 22 g, unit size 48.5 mm × 36.5 mm × 13.5 mm) 
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were used. Inertial data were streamed wirelessly to a laptop (“robust synchronized 

streaming mode”) and stored for offline analysis. Sampling frequency was set at 128 

Hz and the accelerometer range at ±6 g. The MIMUs were attached with velcro straps 

to the subject ankles, laterally, about 30 mm above the malleoli. The sensors were 

aligned approximately along the three anatomical directions with X, Y and Z axes 

pointing downward, forward and to the right, respectively, for the MIMU on the right 

ankle (R-MIMU), and downward, backward and to the left for the MIMU on the left 

ankle (L-MIMU) (Figure 2-1).  

An estimate of the MIMUs local coordinate system (LCS) orientation with respect to 

the global coordinate system (GCS) was provided by the manufacturer's proprietary 

software. A spot check of the MIMU performance was performed according to the 

guidelines proposed previously [Picerno 2011]. The GEs and spatio-temporal 

parameters resulting from the processing of the recordings of an instrumented 7-meter 

instrumented mat acquiring data at 120 Hz (Zeno Walkway, ProtoKinetics LLC) and 

analyzed with a dedicated software (PKMAS, ProtoKinetics LLC) were used for 

validation purposes. The instrumented mat measurements had a temporal accuracy of 

±1 sample (about 8 ms) and spatial resolution accuracy of ±12.7 mm. The MIMU and 

the instrumented mat were synchronized via hardware (~8 ms). A custom-made cable 

was used to apply an external trigger generated by the instrumented mat to the access 

point controlling the MIMUs. 

 

Figure 2-1 Sensor placement (R-MIMU) and its Local 

Coordinate System axes 
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2.2.2.3 Experimental protocol 

The data acquisition took place in the following laboratories: the Center for the Study 

of Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Israel 

(TASMC); the Neuromotor Rehabilitation Research Group, KU Leuven, Belgium 

(KULEU); the Clinical Ageing Research Unit, Newcastle University and Newcastle 

upon Tyne Hospitals NHS Foundation Trust, UK (NEWCA); the laboratory of the 

Department of Neurosciences, University of Genoa, Italy (UNIGE). 

Recordings started with subjects standing still for a few seconds at three meters from 

the instrumented mat and then walking back and forth for about one minute at a 

comfortable speed (normally paced walk, NW) along a 12-meter walkway which 

included the instrumented mat in its central portion. The same protocol was repeated 

at a higher walking speed (fast paced walk, FW). Subjects wore their own shoes and 

they could rest in between acquisitions if needed. Walking aids such as canes or 

tripods were allowed if used in daily life. 

 

2.2.2.4 Gait events identification and gait temporal and spatial parameters 

estimation 

A preliminary analysis was performed to eliminate operator-dependent swap between 

right and left MIMUs. 

A first approximate segmentation of MIMU signals into gait cycles was performed by 

detecting the peaks in the medio-lateral (Z) component of the angular velocity. These 

peaks usually occur during the leg swing motion. Gait cycles not detected or 

erroneously detected in this processing phase lead to missed or extra GEs, respectively. 

Both ICs and FCs were then identified as in [Trojaniello 2014b], although the FC search 

interval was made to begin at the minimum Z angular velocity rather than the 

maximum Y acceleration, being the former easier to identify. An example of IC and FC 

identification during a passage on the instrumented mat is depicted in Figure 2-2 and 
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Figure 2-3. Once the ICs and FCs were identified from both R-MIMU and L-MIMU 

signals, the following gait temporal parameters were calculated per gait cycle for both 

sides: Stride Time, Step Time, Swing Time and Stance Time. 

Figure 2-3 TEADRIP and instrumented mat gait events representation for the first passage over 

the mat (right side only). GEs identified by the TEADRIP method are depicted as red triangles, 

while GEs identified from the instrumented mat are depicted as vertical line 

Figure 2-2 TEADRIP and instrumented mat gait events enlargement (left side only). 1 div.= 

1s. IC identified by the TEADRIP method is depicted as red solid vertical line, while IC 

identified from the instrumented mat is depicted as red dotted vertical line. Black vertical 

lines represents the IC (solid from TEADRIP, dotted from the mat). 

9 10
time [s]

 

 

ML Angular Velocity

AP Acceleration
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The stride length was also estimated as described by Trojaniello et al. [Trojaniello 

2014b]. For each stride, ankle acceleration components were expressed in the GCS and, 

after gravity removal, optimally filtered and direct and reverse integrated (OFDRI 

technique [Köse 2012a]). The direction of progression was found by rotating the axes 

on the horizontal plane until one component of the velocity resulting from the above-

mentioned integration was maximized. The MIMU acceleration was reoriented 

accordingly. The acceleration component along the direction of progression was 

integrated by means of the OFDRI, using as initial integration value the MIMU 

estimated forward linear velocity, given by the product of the Z angular velocity at 

mid-stance and the MIMU distance from the malleolus [Peruzzi 2011]. A further simple 

integration provided the forward displacement during a stride cycle (Stride Length). 

Gait Velocity was calculated for each cycle as Stride Length divided by Stride Time.  

Temporal and spatial parameters resulting from TEADRIP were discarded when a 

stride was not fully included in the instrumented mat. Spatial parameters were 

discarded when the estimate of the MIMU GCS orientation as provided by the 

manufacturer's software failed. In case of freezing of gait for the PD subjects, the 

relevant portion of the trial was excluded from the analysis. 

 

2.2.2.5 Errors associated to the gait events identification and spatio-

temporal parameters estimation 

To estimate the accuracy of the TEADRIP method, only gait data recorded while the 

participant walked on the instrumented mat (straight walking without turns) were 

considered. This gait data selection was made by excluding, for each passage over the 

mat, MIMU data recorded before the first IC and after the last FC as identified by the 

instrumented mat. 

A GEs matching procedure was implemented to ensure that an unexpected additional 

time delay between MIMUs and instrumented mat would not compromise the 
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comparison of their outputs. To match a TEADRIP estimated IC with the 

corresponding IC measured with the instrumented mat, a search interval around the 

latter was defined, which spanned from the FC preceding the IC to the FC following 

the IC. The TEADRIP estimated IC that fell in the interval was selected as the matching 

IC. If more than one TEADRIP estimated IC was found in the search interval, the 

farthest from the IC measured by the instrumented mat was counted as an extra IC, 

while if none fell in the interval a missed IC was counted. If an extra TEADRIP 

estimated IC was found between two subsequent mat-measured FCs further apart 

than 1.3s (which is approximately the average higher limit for PD stride duration, 

[Hass 2012]), then the entire gait cycle was discarded (mat measure failure). The same 

procedure was applied to match TEADRIP estimated FCs to the corresponding FCs 

measured by the instrumented mat. 

For each gait cycle, the stride-by-stride errors affecting the TEADRIP estimations of 

the GEs and the spatio-temporal parameters were computed as differences with 

respect to the relevant measurements obtained from the instrumented mat. Difference 

plots (Bland-Altman) were used to visually check the distributions of the spatio-

temporal parameters errors between the two measurement systems.  

For each subject, the mean error (me) and mean absolute error (mae) values for the 

estimated GEs and gait spatio-temporal parameters were calculated by averaging 

stride-by-stride errors computed over the entire gait trial (left and right sides were not 

differentiated). The standard deviation of the stride-by-stride error (sde) was also 

determined for each recorded trial. The TEADRIP estimations of the gait temporal and 

spatial parameters were also evaluated using the ratio between the mae and the mean 

value of the parameter as measured by the instrumented mat (%mae). 

A three-way repeated measures analysis of variance (ANOVA) was performed on the 

mae for both GEs and spatio-temporal parameters to investigate the difference in the 

errors between subject groups (ELD, MCI, PD), between clinical centers (UNIGE, 

KULEU, TASMC, NEWCA) and within imposed walking speed (NW, FW). Since GEs 
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mae were found not to be normally distributed (as resulted from a Shapiro-Wilk test), 

they were transformed to a logarithmic scale in order to ensure a normal distribution 

before undergoing ANOVA. Where a significant difference was found, post hoc tests 

for subject groups and clinical centers were performed with Bonferroni correction. All 

data were analyzed using SPSS v.24 (IBM Corporation) at a 5% level of significance. 

 

2.2.3 Results 

Over 15,000 gait cycles (see Table 2-3) were selected from the instrumented mat and 

compared to those identified using the TEADRIP. 

 

Table 2-3 Number of initial contacs and strides analyzed in each clinical center. 

Clinical 

Center 

Initial 

Contacts 

Stride Time 

Estimates 

Stride Length 

Estimates 

UNIGE 5818 3512 3387 

KULEU 5405 4156 4072 

TASMC 7168 5824 5759 

NEWCA 3632 2636 2585 

Total 22068 16167 15840 
(note that the number of Stride Length estimates differs from that of Stride 
Time since Stride Length values were not computed for those trials in which 
the estimate of the MIMU GCS orientation failed). 

 

The mean and standard deviation values of the mean trial values of the spatio-

temporal parameters as determined by the instrumented mat in each clinical center at 

the two gait speeds are reported in Table 2-4. 
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Table 2-4 Gait spatio-temporal parameters mean values (sd) across subjects for clinical centers and walking speeds. 

Clinical 

Center 

Stride Time [s] Stance Time [s] Swing Time [s] Step Time [s] Stride Length [m] Gait velocity [m/s] 

NW FW NW FW NW FW NW FW NW FW NW FW 

UNIGE 1.09 (0.09) 0.99 (0.09) 0.72 (0.07) 0.64 (0.07) 0.38 (0.03) 0.36 (0.03) 0.55 (0.04) 0.50 (0.05) 1.11 (0.16) 1.21 (0.16) 1.02 (0.17) 1.23 (0.21) 

KULEU 1.13 (0.20) 1.02 (0.16) 0.73 (0.18) 0.64 (0.14) 0.40 (0.04) 0.38 (0.03) 0.57 (0.10) 0.51 (0.08) 1.19 (0.21) 1.31 (0.24) 1.09 (0.29) 1.33 (0.33) 

TASMC 1.13 (0.14) 1.00 (0.13) 0.74 (0.11) 0.64 (0.10) 0.40 (0.07) 0.36 (0.04) 0.56 (0.07) 0.50 (0.07) 1.12 (0.25) 1.25 (0.23) 1.01 (0.26) 1.27 (0.29) 

NEWCA 1.09 (0.08) 0.98 (0.10) 0.71 (0.07) 0.63 (0.08) 0.38 (0.03) 0.35 (0.03) 0.54 (0.04) 0.49 (0.05) 1.16 (0.19) 1.26 (0.23) 1.07 (0.20) 1.30 (0.29) 

Values averaged across subjects of the measures from the instrumented mat. NW normal paced trials, FW fast paced trials 
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2.2.3.1 Gait event identification and spatio-temporal parameters 

estimation errors 

The Difference plots of Stride, Stance and Step Time and Stride Length are reported in 

Figure 2-4. The estimated limits of agreement were 27 ms (2.6%) for Stride Time, 56 ms 

(8.5%) for Stance Time, 31 ms (5.8%) for Step Time and 60 mm (5.3%) for Stride Length. 

 

 

Figure 2-4  Difference (Bland-Altman) plots for stride, stance and step durations and for stride length. 

Limits of agreement are, respectively, 27 ms, 56 ms, 31 ms and 60 mm. Red: TASMC; green: KULEU; 

black: NEWCA; blue: UNIGE 
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The values of the 𝑚𝑒̅̅ ̅̅ , 𝑠𝑑𝑒̅̅ ̅̅ ̅, 𝑚𝑎𝑒̅̅ ̅̅ ̅̅  for IC and FC, averaged across the subjects of each 

clinical center, are reported for both for NW and FW trials in Table 2-5. The GEs errors 

for the participants from Newcastle could not be assessed due to a non-constant delay 

between MIMUs and instrumented mat signals across data acquisition sessions. 

However, being the delay constant within any acquisition session, this did not affect 

the estimation of the errors related to temporal parameters. The same descriptive 

statistics in addition to the %𝑚𝑎𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅ are presented in Table 2-6 for each clinical center 

(both for NW and FW trials) for Stride Time, Stance Time, Swing Time, Step Time, 

Stride Length and Gait Velocity. Table 2-7 reports the subjects mae averaged across 

each group for both NW and FW trials. 

 

Table 2-5 Subject mean error, standard deviation and mean absolute error averaged 

across clinical centers for both walking speeds (gait events). 

Parameter 
Clinical 

Center 

𝑚𝑒̅̅ ̅̅  𝑠𝑑𝑒̅̅ ̅̅ ̅ 𝑚𝑎𝑒̅̅ ̅̅ ̅̅  

NW FW NW FW NW FW 

Initial 

Contact 

[ms] 

UNIGE 9 9 10 11 15 14 

KULEU 3 4 9 9 11 10 

TASMC 5 8 10 11 12 13 

NEWCA n.a. n.a. n.a. n.a. n.a. n.a. 

Final 

Contact 

[ms] 

UNIGE -9 -9 13 13 20 20 

KULEU -8 -7 12 14 21 19 

TASMC -3 -2 12 14 19 17 

NEWCA n.a. n.a. n.a. n.a. n.a. n.a. 
𝑚𝑒̅̅ ̅̅ : subject mean error averaged across centers; 𝑠𝑑𝑒̅̅ ̅̅ ̅: subject error standard deviation averaged across 
centers; 𝑚𝑎𝑒̅̅ ̅̅ ̅̅ : subject mean absolute error averaged across centers. 
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Table 2-6 Subject mean error, standard deviation, mean absolute error and its relative 

percentage averaged across clinical centers for both walking speeds (spatio-temporal 

parameters). 

Parameter 
Clinical 

Center 

𝑚𝑒̅̅ ̅̅  𝑠𝑑𝑒̅̅ ̅̅ ̅ 𝑚𝑎𝑒̅̅ ̅̅ ̅̅  𝑚𝑎𝑒 %̅̅ ̅̅ ̅̅ ̅̅ ̅ 

NW FW NW FW NW FW NW FW 

Stride 

Time 

[ms] 

UNIGE <1 <1 15 14 12 11 1 1 

KULEU <1 <1 12 11 9 9 1 1 

TASMC <1 <1 14 13 10 10 1 1 

NEWCA -1 <1 15 15 12 11 1 1 

Stance 

Time 

[ms] 

UNIGE -20 -18 17 17 29 27 3 3 

KULEU -11 -11 17 15 25 22 2 2 

TASMC -8 -10 17 16 24 23 2 2 

NEWCA -11 -12 17 15 24 23 3 4 

Swing 

Time 

[ms] 

UNIGE 20 18 17 17 29 27 3 3 

KULEU 11 11 17 16 25 23 2 2 

TASMC 8 10 18 16 24 23 2 2 

NEWCA 12 13 17 15 25 23 2 3 

Step Time 

[ms] 

UNIGE <1 <1 16 15 13 12 1 1 

KULEU <1 <1 14 13 11 11 1 1 

TASMC <1 <1 16 15 12 12 1 1 

NEWCA <1 <1 15 14 13 12 2 2 

Stride 

Length 

[mm] 

UNIGE -1 -3 22 27 21 22 2 2 

KULEU -8 -5 19 21 22 25 2 2 

TASMC -14 -15 19 22 26 28 2 2 

NEWCA -4 -6 19 30 19 27 2 2 

Gait 

Velocity 

[mm/s] 

UNIGE -2 -4 23 30 21 24 2 2 

KULEU -7 -5 20 25 21 27 2 2 

TASMC -13 -16 20 25 25 30 3 2 

NEWCA -4 -5 18 36 19 31 2 2 
𝑚𝑒̅̅ ̅̅ : subject mean error averaged across centers; 𝑠𝑑𝑒̅̅ ̅̅ ̅: subject error standard deviation averaged across centers; 𝑚𝑎𝑒̅̅ ̅̅ ̅̅ : 
subject mean absolute error averaged across centers; %𝑚𝑎𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅: mean absolute error referred to parameter estimate averaged 
across centers. 
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Table 2-7 Group average of the subjects mean absolute errors for the gait events and spatio-

temporal parameters for both walking speeds. 

Parameter 
ELD MCI PD 

NW FW NW FW NW FW 

Initial Contact [ms] 10 11 10 10 14 14 

Final Contact [ms] 21 20 20 19 20 18 

Stride Time [ms] 10 9 10 10 11 11 

Stance Time [ms] 24 23 23 23 26 24 

Swing Time [ms] 24 23 23 23 27 25 

Step Time [ms] 11 10 11 10 13 12 

Stride Length [mm] 21 25 19 23 23 25 

Gait Velocity [mm/s] 21 29 18 25 22 28 
ELD: healthy older adults, PD: Parkinson's disease subjects, MCI: mild cognitive impaired subjects. 

 

Table 2-8 summarizes the ANOVA results; significant differences are indicated in bold. 

The analysis across clinical centers for the GE errors were performed only between 

UNIGE, TASMC and KULEU since NEWCA GE errors were not available. 

 

Table 2-8 ANOVA results for the errors in determining the gait events and the gait spatio-

temporal parameters. 

 
Initial 

Contact 

Final 

Contact 

Stride 

Time 

Stance 

Time 

Swing 

Time 

Step 

Time 

Stride 

Length 

Gait 

Velocity 

Walking 

Speed 

F-value 0.12 3.30 0.10 1.78 1.59 2.93 4.78 27.32 

p-value 0.73 0.07 0.76 0.18 0.21 0.09 0.03 0.00 

Clinical 

Center 

F-value 1.97 0.56 2.40 0.60 0.50 0.53 1.66 1.59 

p-value 0.14 0.57 0.07 0.61 0.68 0.66 0.18 0.19 

Subject 

Group 

F-value 5.21 0.64 3.61 0.81 1.02 4.61 0.01 0.13 

p-value 0.01a 0.53 0.03b 0.45 0.36 0.01c 0.99 0.88 
Significant post hoc results: a) ELD-PD (p=0.01); b) ELD-PD (p=0.01); c) ELD-PD (p=0.01). Underlined results are from the 
comparison of UNIGE,TASMC and KULEU only. 

 

A significant group main effect was found for IC identification. Post hoc analyses 

revealed that for IC errors there was a significant difference between ELD and PD 

(p=0.01), with larger errors for the PD group. 
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While no temporal parameter error showed any center effect, Stride Time and Step 

Time errors were significantly different across groups. Post hoc analyses revealed that 

there was a significant difference for errors between ELD and PD (p=0.01 for Stride 

Time and p=0.01 for Step Time), with larger errors for the PD group. 

Group did not have a significant effect on the error of spatial parameters, while there 

was a significant effect for walking speed. 

 

2.2.4 Discussion 

The tested method was successfully applied on a total of more than 20,000 ICs and FCs 

collected on 236 older adults (healthy, Parkinsonian and MCI participants). In 

performing the validation, additional care had to be taken to deal with limitations of 

the instrumented mat measurements used as reference values for the TEADRIP 

estimations of the gait parameters, such as steps outside the instrumented surface and 

unexpected failures. 

The average values of the spatio-temporal parameters estimated by the instrumented 

mat showed a homogeneity across the clinical centers and values consistent with the 

literature.  

The IC 𝑚𝑒̅̅ ̅̅  showed, in all centers and at both walking speeds, an average delay of up 

to 10 ms as identified by TEADRIP with respect to that identified by the instrumented 

mat, while the opposite holds for the FC. The amplitude of the subjects 𝑠𝑑𝑒̅̅ ̅̅ ̅  was 

slightly higher for the FC confirming the higher uncertainty in detecting FCs as 

opposed to ICs encountered in most validation studies. Similar conclusions can be 

drawn by looking just at the 𝑚𝑎𝑒̅̅ ̅̅ ̅̅  values. The opposite delays for IC and FC TEADRIP 

estimates reflected in a slight underestimation of the stance phase and an 

overestimation of the swing phase, but did not have any detrimental effect on the 

estimation of either Stride Time or Step Time, which showed extremely low 𝑚𝑒̅̅ ̅̅  values. 

All temporal parameters exhibited a 𝑠𝑑𝑒̅̅ ̅̅ ̅ for each clinical center between 10 and 20 ms, 
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confirming a limited variability of the errors within the trials at both walking speeds 

and in all clinical centers. The spatial parameters 𝑚𝑒̅̅ ̅̅  in all clinical centers and for both 

walking speeds showed a global slight underestimation performed by TEADRIP. 

Overall, the %𝑚𝑎𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅  of both temporal and spatial parameters was often below and, 

except NEWCA Stance Time at FW, never over 3% which is an excellent result, 

although a thorough comparison with the results obtained in studies proposing other 

methods is not straightforward [Salarian 2004; Sabatini 2015; Sijobert 2015; Zhuang 2016; 

Chang 2016; Ferrari 2016; Kong 2016; Hannink 2017a; Agostini 2017; Visi 2017; Song 2017]. 

Regarding the estimation of the spatial parameters, it has been shown in the study 

conducted by Hannink et al. [Hannink 2017b], that the OFDRI technique was the best 

performing among the double integration methods for mobile gait analysis tested in 

their study.  

Even more importantly, all results of TEADRIP estimations were extremely consistent 

across all clinical centers and with the previous results obtained in a single center on 

much smaller population samples [Trojaniello 2014b]. Since the mae, as opposed to the 

me, is not affected by a potential cancellation due to cycle-differences of opposite signs, 

it was chosen as the quantity to investigate with the ANOVA, which showed minimal 

statistical difference in the performance of the TEADRIP across subject groups, clinical 

centers and gait speeds. In particular, only spatial parameters errors were significantly 

different between walking speeds. The difference is probably the result of a more 

difficult estimation of a correct initial constant value needed to estimate velocity from 

acceleration when the task is performed at higher speed. 

Consistently with the results of the previous study employing TEADRIP [Trojaniello 

2014b], estimates of ICs for PD subjects were affected by errors significantly different 

from those obtained in the ELD subject group. In partial disagreement with the results 

of the previous study, a different error between ELD and PD was also found for Stride 

Time and Step Time estimations. However, this difference may be a consequence of 

the above mentioned difference between IC timing errors. These results therefore 
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provide a clear insight of the margin of tolerance associated to the estimation of the 

different temporal parameters for different populations. For instance, when estimating 

the IC, an average uncertainty error of 10 ms is expected for ELD and MCI subjects, 

while slightly higher errors (14 ms) should be considered when analyzing PD subjects.  

Overall, the results obtained in this study extend the validity of the TEADRIP method, 

originally employed in [Trojaniello 2014b] on four smaller subject groups, and 

combined with the findings of the work of Storm et al. [Storm 2016], who applied the 

same gait parameter estimation method to free-living gait, make TEADRIP a well-

validated gait parameter estimation method. 

 

2.2.5 Conclusions 

TEADRIP, the gait parameter estimation method employed in this study, was 

effectively validated on a large number of subjects recorded in four different clinical 

centers. Not only was the performance comparable to that of the instrumented mat 

used as a reference, but it was also characterized by a greater amount of recorded data 

(longer and more diversified walks can be instrumented). Furthermore, as 

demonstrated in earlier work [Storm 2016], these results hold also for outdoor straight 

line walking. The TEADRIP is therefore a valuable candidate for becoming a standard 

for the estimation of gait spatio-temporal parameters with MIMUs placed on the 

ankles.
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Turn identification in gait* 

 

                                                 
* This chapter is based on M. Bertoli, A. Cereatti, D. Trojaniello, A. Ravaschio, and U. Della Croce, “The 

identification of multiple U-turns in gait: comparison of four trunk IMU-based methods,” Proc. 11th 

Int. Conf. Body Area Networks (2017) and on M. Bertoli, A. Cereatti, U. Della Croce, A. Pica, and F. Bini, 

“Can MIMUs positioned on the ankles provide a reliable detection and characterization of U-turns 

in gait?,” IEEE Int. Symp. Med. Meas. Appl. (2018) 
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3.1 U-turns in clinical evaluations 

In clinical evaluations, to perform an effective gait analysis a large number of steps is 

usually required in order to be able to analyze not only the spatio-temporal parameters 

mean values, but also their variability [Hausdorff 2005]. Typically though, a long 

enough hallway where to test the subjects without traffic or distractions is not 

available. Therefore a “walk back and forth” approach is commonly used, where the 

subject is asked to walk straight, reverse direction with a U-turn (i.e.: 180° turn) and 

walk back. One of the most standardized among these procedures is the 2 minutes 

walking test (2MWT) (or its longer version, the 6 minutes walking test), where the 

subject continuously walk back and forth on a 7 m straight walkway for 2 minutes 

[Katzel 2012; Fang 2018]. Considering a walking speed of 1 m/s, that implies at least 10 

turns per trial. It is therefore evident that if only straight gait data needs to be analyzed, 

the turns must be identified and removed. Instead, if the entire trial is being evaluated, 

it needs to be segmented in straight bouts and turns, in order to analyze them 

separately. In fact, recently also the analysis of the turning phase itself has gained 

attention, also thanks to the widespread use of the timed up and go test (TUG) 

[Podsiadlo 1991; Shumway-Cook 2000; Whitney 2004; Stegemöller 2014]. The TUG is a 

simple technique for evaluating competence in its sub phases: get up from a chair, 

walk straight (3 m), turn around (180°), walk back, turn around again and sit down. A 

shortcoming of the traditional TUG test is that it relies only on one measure (i.e.: time) 

to evaluate the overall performance of a sequence of motor tasks. Several studies 

therefore suggested to augment the TUG by using inertial sensors to obtain 

quantitative measures specific to each task [Giansanti 2006; Higashi 2008; Salarian 2010]. 

An extensive review ([Sprint 2015]) summarizes the benefits and limitations of 

technologies utilized for TUG instrumentation, and the main findings using each 

approach. Benefits from the instrumented TUG include additional performance 

parameters, generated reports, and more importantly the ability to be self-
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administered in the home, designating it a valid tool for the future of automating 

clinical assessments. 

Thanks to their low invasiveness, inertial sensors have been extensively employed for 

instrumenting the TUG test, and increasing evidence shows that quantitative measures 

from the TUG (in particular for the turning phase) provide additional information 

relevant for clinical assessments. In fact, the instrumented TUG is frequently used in 

longitudinal assessment of older people as a screening tool to identify aging effects 

([Vervoort 2016; Smith 2016]) and cognitive decline ([Greene 2012]). Moreover, it is 

widely used in fall risks assessments ([Weiss 2011]) and in mobility assessments in 

Parkinson’s Disease ([Zampieri 2011; Reinfelder 2015; Van Uem 2016]). 

In conclusion, 180 degrees is a common amplitude for turns in clinics and, either to 

remove it from straight gait data or to focus on its analysis, a robust method for its 

identification is needed. In the next paragraphs a comparative evaluation of such 

methods in walking tasks with multiple 180° turns is presented. Methods robustness 

was evaluated by recording MIMU data on healthy and pathological subjects (healthy 

elderly, stroke survivors, patients with Parkinson’s Disease and choreic patients) 

walking at two different speeds. 

 

3.2 The identification of multiple U-turns in gait: 

comparison of four trunk MIMU-based methods 

3.2.1 Introduction 

Numerous clinical motor tests may include one or more turns between straight gait 

segments, either due to space constraints or to analyze the subject’s motor ability under 

more challenging tasks. In fact, it has been observed that in pathologic subjects turning 

can pose more difficulties in goal-directed locomotion. For instance, functional turning 

is a common problem in people with Parkinson’s disease (PD), who take more steps to 
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turn than those without PD [Morris 2001]. Similarly, hemiparetic post-stroke subjects 

tend to struggle with sensory and neuromotor organization and so with controlling 

movement: it has been demonstrated a relationships between physical impairments, 

locomotor capacities and frontal plane gait parameters [De Bujanda 2003].  

Such difficulties can be revealed by a widely used clinical test: the Time-Up-and-Go 

(TUG), where a 180 degrees turn (U-turn) is expected approximately in the middle of 

the trial followed by a second one toward the end. U-turns were therefore chosen to 

be studied in this work, since they are commonly employed in such clinical 

examinations [Higashi 2008; Salarian 2010; Weiss 2011; Coulthard 2015; Smith 2016]. 

The correct U-turn identification is the primary step to segment a walking trial. The 

gait bout can thus be segmented into straight walks and turns, so that the standard 

gait parameters can be computed from the isolated portions of straight walk, and 

peculiar traits of the U-turns can be described.  

Identifying turns during walking is of great interest also in remote monitoring 

applications aiming at describing activities during daily life, including straight 

walking and turns. 

In the literature, two main approaches have been employed to identify and analyze 

turns in gait. One consists in segmenting the gait into steps, defining a direction of 

progression (DoP) for each step, and identifying as turns those steps whose DoP shows 

an angle with the previous one [Mariani 2010]. This methodology is mostly used in 

pedestrian navigation applications [Bebek 2010; Alvarez 2012]. The second approach 

identifies a turn from the analysis of the MIMU signals characteristics, and works 

independently from step detection [Fleury 2007; El-Gohary 2013; Novak 2014; Nguyen 

2015]. 

The objective of the present study is to perform a comparative evaluation of four 

automated methods to be used in a clinical context during a walking trial to identify 

U-turns. The algorithms were designed to segment a gait bout into straights and turns 
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without the preliminary determination of the gait cycles. Furthermore, the selected 

methods distinguish multiple U-turns without the a-priori knowledge of their number 

and timing in the walking bout, contrary to others [Salarian 2009; Weiss 2011; Fino 2015]. 

The selected methods have shown satisfactory performance when applied to the 

specific pathological populations, however their applicability over a variety of 

different pathological gait conditions or different gait speeds has not been 

systematically explored. 

 

3.2.2 Materials and methods 

3.2.2.1 Instrumentation 

Data were recorded by an MIMU (OpalTM, APDM, Inc,) positioned on the low back 

between L4 and S2 [Trojaniello 2014a]. The performance of the MIMU was tested 

according to the guidelines proposed by [Picerno 2011]. The MIMU recorded linear 

accelerations, angular velocities and local magnetic field with respect to the axes of a 

local frame (LF: xyz, z pointing upwards) aligned to the edges of the unit housing. The 

MIMU was positioned so that its reference axes were oriented approximately along 

the three anatomical directions. An estimate of the LF orientation with respect to the 

global frame (GF: XYZ, Z coinciding with the gravity direction) was provided by an 

on-board Kalman filter. The signals from the MIMU were recorded at 128 Hz, streamed 

wirelessly to a laptop and stored for offline analysis. A gait pressure mat (GAITRite 

Electronic Walkway, CIR System Inc) acquiring at 120 Hz was used for validation 

purposes. The instrumented mat returned the timing of all foot contacts, in particular 

initial and final ones for every passage on it. The MIMU and the instrumented mat 

were synchronized (±1 sample). 
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3.2.2.2 Subjects 

Ten healthy elderly (ELD), ten PD subjects, ten stroke survivors (ST) and ten subjects 

with a choreic movement disorder (COR) were enrolled. Their sex and range age were 

6F(4M), 61÷79 ELD; 5F(4M), 68÷79 PD; 2F(8M), 38÷76 ST; 5F(5M), 29÷79 COR. The ST 

group was equally divided into subjects with left or right most affected side. The 

Declaration of Helsinki was respected, all subjects provided informed written consent, 

and local ethic committee approval was obtained. 

 

3.2.2.3 Data acquisition Protocol 

Subjects were asked to walk along a pre-designed loop made of two U-turns, as 

depicted in Figure 3-1. At the beginning of each acquisition, subjects were asked to 

stand still for a few seconds. Subjects wore their own shoes, and walking aids such as 

canes or tripods were allowed if used routinely. Subjects could rest in between 

acquisitions if requested. 

Two gait conditions were recorded for each subject: self-selected, comfortable velocity 

(Normal Walk, NW) and higher velocity (Fast Walk, FW). Each data acquisition lasted 

about one minute. The total number of U-turns performed for each group for both 

walking speeds is reported in Table 3-1. 

 

Figure 3-1 Experimental setup 
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3.2.2.4 Methods Description 

Method A 

In the work of El-Gohary and colleagues, data were collected by an MIMU positioned 

on the lumbar spine of 19 healthy subjects and 21 patients with PD [El-Gohary 2013]. 

As a first step, exploiting orientation estimates in the quaternion form, body frame 

sensor measurements were expressed in the GF. Angular velocity vertical component 

ωZ was extracted and low pass filtered (Butterworth, 1.5 Hz cutoff frequency). 

Candidate turns were isolated for each ωZ maximum higher than 15°/s, and their 

duration was set based on 5°/s threshold. Additional controls were performed to 

reduce false positives. First of all, candidate turns in the same direction separated by 

less than 50ms were merged. Then, turns lasting less than 0.5s or more than 10s were 

discarded.  
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Figure 3-2 Turns as identified by method A 

Table 3-1 Total number of actual U-turns analyzed 

 ELD PD ST COR 

NW 48 41 30 47 

FW 63 49 38 72 

 



Chapter 3 

54 

Finally, the relative turn angle was computed integrating ωZ over the turn duration 

and, when resulting less than 45°, lead to the turn elimination. The remaining ones 

were detected as U-turns. The method is illustrated in Figure 3-2. 

 

Method B 

In the work of Nguyen and colleagues, data were collected from 16 ELD by MIMUs 

mounted on a motion capture suit [Nguyen 2015]. Among other sensors locations, they 

determined that the MIMU on the back was the best suited for identifying turns. A 

band pass filter was first applied to the raw z-component of the angular velocity (zero-

phase, second-order Butterworth filter, low and high cut off frequencies set at 0.0025 

Hz and 0.7 Hz, respectively). The filtered signal was then de-trended and normalized 

for uniformity across subjects. A U-turn was detected for each peak higher than 0.6 

(absolute value). In addition, in our implementation when the time distance between 

two or more peaks was less than four seconds, they were associated to a single turn. 

The method is illustrated in Figure 3-3. 

 

Method C 

In the work of Novak and colleagues, data were collected by nine MIMUs placed on 

the entire body of ten healthy subjects and one above-knee amputee [Novak 2014]. 
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Figure 3-3 Turns as identified by method B 
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Comparing different sensor locations, they found that using a sensor on the back yields 

the best results. Their work is based upon previous research by Mariani et al. and El-

Gohary et al. ([Mariani 2010; El-Gohary 2013]), and it combines the analysis of the 

orientation around the Z axis (Kalman filter output, angular displacement) and of the 

angular velocity (raw gyroscope output, ωz). The U-turn is detected by optimizing 

parameters of empirically-defined rules. Orientation angles were derived directly 

from the quaternions (estimated by the sensor through the Kalman filter). In our 

implementation, the Z-angular displacement was then filtered (zero-phase, second-

order Butterworth filter with high cut-off frequency set at 1 Hz) and smoothed by 

means of mobile average windows two seconds long. The ωz was also filtered (zero-

phase, second-order Butterworth filter, 1.5 Hz high cut-off frequency). A U-turn is 

detected when a heuristically determined threshold is exceeded in the Z-angular 

displacement (90° in 3 s), or in the ωz (45°/s). The method is illustrated in Figure 3-4. 
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Figure 3-4 Turns as identified by method C 
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Method D 

In the work of Fleury and colleagues, data were collected by a tri-axial magnetometer 

located on the upper trunk of eight healthy subjects [Fleury 2007]. They pre-processed 

the raw signal filtering in the bandwidth [0.5Hz; 2Hz] with a three order bandstop 

digital filter, and then low-pass filtering with a 4Hz cutoff frequency. “Activity 

windows” were then defined using the standard deviation computed on 2s windows. 

The turn was identified by measuring the change of the local magnetic field as 

measured in the magnetometer LF (plane xy). The Euclidean norm of the difference of 

the local magnetic field vector measured in two instants (2s apart) of the gait trial was 

computed over the entire signal. A U-turn is detected for each peak in the norm higher 

than empirically-fixed threshold. The method is illustrated in Figure 3-5. 

 

3.2.2.5 Data Analysis 

To facilitate the comparison between methods and avoid misinterpretation, those gait 

trials ending while the subject was performing a turn were truncated in order to 

eliminate the last turn. 
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Figure 3-5 Turns as identified by method D 
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Number of Missed and Extra U-turns 

The number of actual U-turns was provided by the mat. The number of U-turns 

detected was determined for each tested method. From actual and detected U-turns, 

missed U-turns and extra U-turns could be determined for each tested method, group 

and walking speed [Trojaniello 2015]. 

 

3.2.3 Results 

All four methods showed neither extra nor missed U-turns in the ELD and PD groups 

at both speeds. 

Method A was the only method to detect two extra U-turns in the NW trials of the 

COR group, and one in the FW. 

Method B showed no missed U-turns in the NW trials for all groups. For the FW trials, 

one and two missed U-turns were observed in the ST and COR groups, respectively. 

Method C missed only a single U-turn in the NW trials of ST group. 

Method D showed neither extra nor missed U-turns. 

 

3.2.4 Discussion 

The aim of the present study was to test different methods for the identification of U-

turns on various pathological groups walking at different speeds. In the original 

works, all the tested methods, except for method A, were applied and tested on the 

gait of healthy subjects. 

When applied to the ELD group, none of the methods missed any U-turns or detected 

any extra ones, thus confirming their adequacy as long as physiological gait is 

analyzed. Interestingly, the same consideration applies to the PD group. 
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The results obtained indicate that the tested methods are more likely to fail when 

applied to the gait of stroke survivors and the choreic subjects, which is characterized 

by irregular walking patterns. 

Method A only failed when applied to the gait of choreic subjects (three extra U-turns 

out of 109 total actual U-turns), probably due to the increased variability of the 

gyroscopic signals associated to the jerky nature of choreic motion.  

Method B missed a few U-turns at fast walking speed, probably because the 

thresholds, defined on the normalized signal recorded at comfortable speed, resulted 

to be too high (scaled peaks below threshold were missed). 

Methods C and D were the best performing on our dataset. Method C may take 

advantage of the combined analysis of the angular velocity and orientation angle, 

possibly reducing the probability of detecting extra U-turns. 

Method D is the only one based on magnetometer signals, and it appeared to be 

extremely robust with respect to the location of the MIMU. In fact, while its original 

version requires the MIMU to be placed on the upper chest, we obtained excellent 

results from signals recorded by an MIMU placed on the lower back. A limitation of 

this method though is the intrinsic low reliability of the magnetometer due to possible 

ferromagnetic disturbances. 

Additional work will be necessary to test methods that identify and characterize turns 

other than 180 degrees. In fact, the use of the magnetometer might not be as successful 

as it was shown for U-turns identification. 

In this study, we have shown that a single MIMU located on the low back can better 

identify U-turns. However, as shown by [Trojaniello 2014b], gait events and all the 

derived spatio-temporal parameters can be best detected with MIMUs attached to the 

lower limbs. As a consequence, three MIMU configuration (two MIMUs on the lower 

limbs and one on the lower back) may effectively describe crucial features of both 

straights and turns in both healthy and pathological gait at different walking speeds. 
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3.3 Can MIMUs positioned on the ankles provide a 

reliable detection and characterization of U-turns in 

gait?  

3.3.1 Introduction 

Several methods have been proposed to identify and/or characterize turns during 

locomotion using MIMUs ([Salarian 2009; Mariani 2010; El-Gohary 2013; Fino 2015; 

Bertoli 2016]). They vary in terms of MIMUs number and location, types of signals 

analyzed and most importantly on the definition of “turn” during gait. 

In general, two different approaches may be used to identify and characterize turns: 

a) by defining a direction of progression (DoP) on a step-by-step basis and determining 

its changes ([Mariani 2010; Barrois 2017]) or b) by computing the rotational 

displacement about a vertical axis within a given interval of time ([Higashi 2008; 

Salarian 2010; Weiss 2013; Nguyen 2015; Beyea 2017]). The first approach is convenient 

if MIMUs are located distally (feet or ankles), which is often the case when analyzing 

gait parameters [Trojaniello 2014b]. This approach requires a preliminary 

determination of the steps during the turns, which in some cases could be critical. The 

second approach is particularly advantageous when the MIMUs are located more 

proximally (pelvis, low back or trunk) and it does not rely on the identification of steps 

to characterize turns. However, such MIMU location may not be optimal for the 

estimation of the gait parameters [Trojaniello 2014a].  

In this study we wanted to investigate the possibility of detecting and characterizing 

turns during walking with the purpose of segmenting the walking trials into straight 

walking bouts and turns. Specifically, the objective of this study was twofold: a) to 

determine if, in analyzing the gait of healthy elderly (ELD) and individuals with 

Parkinson Disease (PD), a popular method for turn detection and characterization 

based on gyroscopic signals recorded at the low back could be successfully applied to 

signals recorded by MIMUs located near the ankles, and b) if unsuccessful, to revise it 
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so that turns could be characterized regardless of the proximal or distal location of the 

MIMUs.  

 

3.3.2 Materials and methods 

3.3.2.1 Experimental setup 

The study included 10 ELD and 10 PD. The Declaration of Helsinki was respected, all 

subjects provided informed written consent, and local ethic committee approval was 

obtained 

Two MIMUs (OpalTM, APDM, Inc.) were attached just above the malleoli (ank-MIMUs) 

and a third one to the low back between L4 and S2 (lb-MIMU), as depicted in Figure 

3-6 [Trojaniello 2014b]. The MIMUs were positioned so that their reference axes were 

oriented approximately along the three anatomical directions during upright posture. 

The performance of the MIMUs was tested according to the guidelines proposed in 

[Picerno 2011]. The MIMUs recorded linear accelerations, angular velocities and local 

magnetic field with respect to the axes of a local frame aligned to the edges of the unit 

housing. The signals from the MIMUs were recorded at 128 Hz, streamed wirelessly 

to a laptop and stored for offline analysis.  

Subjects walked back and forth for one minute along a 12-m walkway starting from a 

still standing position, and performing a U-turn at each end of the walkway. For each 

subject, two gait conditions were tested: normal walk (NW – self-selected, comfortable 

 

Figure 3-6 MIMU positioning 
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speed) and fast walk (FW – walking as fast as possible). The turn direction was not 

imposed. The total number of turns recorded during the one minute acquisition 

varied. 

 

3.3.2.2 Turn detection and characterization  

Turns were detected and characterized using the method proposed by El-Gohary and 

colleagues [El-Gohary 2013] from lb-MIMU signals (EG). The EG method was chosen 

being probably the most widely used method to be applied to lb-MIMU signals. The 

method can be applied to a walking trial with multiple turns, without the need of a-

priori knowledge of neither the number nor the direction of turns. It provides turn 

onsets and durations. Candidate turns were detected from the peaks of the recorded 

vertical component of the angular velocity higher than 15°/s. The 5°/s threshold 

crossing preceding and that following each peak were set as instants of turn onset and 

ending. Candidate turns in the same direction separated by less than 500 ms were 

merged, and candidate turns lasting less than 0.3s or more than 10s were discarded. 

Finally, the relative turn angle was computed integrating the vertical angular velocity 

over the turn duration and, if it resulted less than 45°, the candidate turn was 

discarded. 

Since the amplitude of the above mentioned peaks measured with ank-MIMUs was 

about twice as large as those measured at the low back, the EG method was modified 

by setting a higher angular velocity threshold. Candidate turns were detected for each 

peak in the vertical component of the angular velocity higher than 30°/s. Two 

candidate turns were merged if closer than 100 ms, and the minimum turn angle 

amplitude to discard a candidate turn was set to 30°. A turn onset value and a turn 

ending value resulted from the EG method applied to each ank-MIMU. The smallest 

of the two onset values was selected as turn onset and the largest of the two ending 

values was set as turn ending. An example of the results obtained from an ELD NW 

trial is represented in Figure 3-7. 
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An original method based on the estimation of the angular displacement (AD) was 

introduced in this work to investigate the possibility of limiting the potential 

downsides of forcing the application of the EG method to MIMU signals originated 

from a body location different form that it was designed for. After de-trending the 

gyroscopic output and removing the offset, the vertical angular velocity component 

was integrated (to obtain an estimate of the angular displacement) and filtered (zero-

phase, second-order Butterworth filter with high cut-off frequency set at 0.5 Hz). A 

two seconds sliding window was applied (moving one sample per step). For each 

window, the initial value of the angular displacement was subtracted from all values 

in the window and then the average value over the window was computed. U-turns 

were detected for each peak larger than 45° (threshold value empirically set) of the 

resulting curve. The timings of the crossings of a 10° threshold before and after each 

peak were recorded for both sides. Turn onsets were identified as the average value 

between left and right threshold crossing timings before the peak, while turn endings 

were identified as the average between left and right crossing timings after the peak. 

An example of the method applied to an ELD NW trial is depicted in Figure 3-8. 

 

Figure 3-8 Angular displacement in the 

horizontal plane as obtained from the lb-MIMU 

and ank-MIMUs. The vertical lines represent the 

turn onsets and endings as determined by 

applying the AD methods to the relative angular 

displacement. 

 

Figure 3-78Vertical component of the angular 

velocity as obtained from the lb-MIMU and 

ank-MIMUs. The vertical lines represent the 

turn onsets and endings as determined by 

applying the EG method to the relative angular 

velocities. 
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3.3.2.3 Data analysis 

First, turns were detected and relevant onset timing and duration values determined 

using the EG method applied to the ank-MIMU signals, and their difference from the 

values obtained by applying the EG method to the lb-MIMU signals on the ank-MIMU 

signals was calculated. Next, the difference of the turns onset timing and duration as 

determined using the AD method applied to the ank-MIMUs and those obtained with 

the EG method applied to the lb-MIMU signals were calculated. Finally, to assess the 

AD method robustness with respect to the MIMU location the difference of the turns 

onset and duration values obtained by applying the AD method to ank-MIMU signals 

and those obtained by applying the AD method to lb-MIMU signals was calculated. 

All above mentioned differences were averaged across each trial to obtain ‘mean 

difference’ and ‘mean absolute difference’ values. 

3.3.3 Results 

The descriptive statistics of the turn duration values, as estimated by the EG method 

from the lb-MIMU, are represented in the five-number summary plots in Figure 3-9. 

Mean turn duration was 354 ms for ELD NW, 327 ms for ELD FW, 416 ms for PD NW 

and 394 ms for PD FW. 

The number of U-turns detected by the EG method applied to the ank-MIMU signals 

was equal to that resulting from the EG method applied to the lb-MIMU signals (48 

ELD NW, 63 ELD FW, 41 PD NW, 49 PD FW). 
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Figure 3-10 shows the five-number summary plots for turn onset mean difference 

between the values obtained from the EG method applied to ank-MIMU signals and 

those obtained from the original EG method applied to lb-MIMU signals and between 

the values obtained from the AD method applied to ank-MIMU signals and those 

obtained from the original EG method applied to lb-MIMU signals for both walking 

speeds and both groups. The turn onsets estimated using the EG method applied to 

the ank-MIMU signals were on average 130 ms delayed (200 ms mean absolute 

difference) for the ELD group and 160 ms (340 ms mean absolute difference) for the 

PD group. From the comparison of the AD method applied to the ank-MIMU signals 

and the original EG method on lb-MIMU signals, on average the turn onset mean 

difference and mean absolute difference were respectively -20 ms and 210 ms for the 

ELD group and 60 ms and 280 ms for the PD group. 

The mean difference between turn duration values obtained from the EG method 

applied to ank-MIMU signals and those obtained using the original EG method 

applied to lb-MIMU signals and between the turn duration values obtained from the 

AD method applied to ank-MIMU signals and the original EG method applied to lb-

MIMU signals were computed for both walking speeds and both groups and the 

relevant five-number summary plots reported in Figure 3-11. The turn durations  

 
Figure 3-9 Turn mean duration values, as estimated by the EG 

method applied to the signals recorded by the MIMU on the low 

back, for both groups (red=ELD, blue= PD) and walking speeds. 
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Figure 3-10 Minimum, first quartile, median, third quartile and maximum values for turn onset 

timing mean difference for both groups and walking speeds. In black results from the difference 

between turn onset timing values obtained from the EG method applied to the ank-MIMU 

signals and those obtained from the EG method applied to the lb-MIMU signals, in red results 

from the difference between turn onset timing values obtained from the AD method applied to 

the ank-MIMU signals and those obtained from the EG method applied to the lb-MIMU signals. 
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Figure 3-11 Minimum, first quartile, median, third quartile and maximum values for turn 

duration mean difference for both groups and walking speeds. In black results from the 

difference between turn duration values obtained from the EG method applied to the ank-MIMU 

signals and those obtained from the EG method applied to the lb-MIMU signals, in red results 

from the difference between turn duration values obtained from the AD method applied to the 

ank-MIMU signals and those obtained from the EG method applied to the lb-MIMU signals.  

The ELD FW AD outlier observed appears in the corresponding mean turn duration (Figure 3-9) 

and it is due a longer turn duration estimated by the EG method. 
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estimated using the EG method applied to the ank-MIMU signals were on average 300 

ms shorter for both ELD and PD groups (mean absolute difference equal to 390 ms and 

580 ms, respectively). Similarly, the turn durations estimated using the AD method 

applied to the ank-MIMU signals were on average 90 ms shorter (mean absolute 

difference equal to 310 ms) for the ELD group and 180 ms shorter (mean absolute 

difference equal to 390 ms) for the PD group.  

The five-number summary plots for turn onset and duration mean difference between 

values obtained from the AD method applied to ank-MIMUs signals and to lb-MIMU 

signals are reported in Figure 3-12 for both walking speeds and both groups. On 

average, the turn onset mean absolute difference was 30 ms for the ELD group and 60 

ms for the PD group. On average, the turn duration mean absolute difference was 70 

ms for the ELD group and 110 ms for the PD group. 

 

3.3.4 Discussion 

In this study we evaluated if the use of a common algorithm for the detection and 

characterization of U-turns from data normally recorded with a MIMU located in the 

 
Figure 3-12 Minimum, first quartile, median, third quartile and maximum values of the 

mean difference between turn onset timing (left) and duration (right) values obtained 

from the AD method applied to the ank-MIMU signals and those obtained from the AD 

method applied to the ank-MIMU signals and those obtained from the AD method 

applied to the lb-MIMU signals, for both groups (red=ELD, blue= PD) and walking 

speeds. 
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lower back (EG method) [El-Gohary 2013] could be extended to the recordings of 

MIMUs located just above the ankles. In addition, to limit the potential downsides of 

such use of the algorithm, we introduced a method that could be applied either to 

signals of a MIMU applied on the low back or to signals of MIMUs located just above 

the ankles. Two groups of subjects and two gait speeds were included in the 

comparison to evaluate the robustness of the various methods implementations. None 

of the methods missed a U-turn nor detected an extra one. 

On average, only for the PD group at both walking speed the turn onset timings 

estimated by the EG method applied to the ank-MIMUs were delayed, with respect to 

those estimated by the original EG method, more than those estimated by the AD 

method applied to the ank-MIMUs signals. Therefore, the AD method provided a 

limited improvement in assessing the turn onsets. 

Conversely, in estimating the time duration for the ELD group, the AD method 

showed lower differences from the estimates obtained with the original EG method 

than the EG method applied to the ank-MIMUs signals, while for the PD group only a 

smaller variability of such differences is observed. These results imply that the AD 

method provided a limited improvement also in estimating the turn duration. 

Therefore, the AD method reduced the downsides of the EG method applied to the 

ank-MIMUs, although only partially and at different levels depending on the group 

and walking speed. 

On the other hand, the AD method showed a much higher robustness to MIMU 

location choice than the GE method. This circumstance highlights that the approach 

used in the AD method is promising. However, more work needs to be done to further 

reduce the differences with respect to the turn characterization provided by the 

original GE method. Specifically, more robust criteria to set the parameters of the AD 

method than the heuristic settings used in this study may improve its performance 

further.  
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Some of the delay observed in determining the turn onset when both methods were 

applied to the ank-MIMU signals can be associated to the findings of several studies 

([Patla 1999; Fuller 2007; Lamontagne 2009; Hollands 2010]) that demonstrated that the 

sequencing of body segment reorientation in turning starts from the head and 

propagates down. The temporal sequence of axial segment reorientation could 

therefore explain why turn onsets are identified first on the low back. 

Our results are confirmed by the results presented in [Novak 2014] in which the authors 

tested a method to detect the turn onset on various MIMU positions (foot, shank, thigh, 

lower and upper back and head). Their method combined the analysis of the 

orientation around the vertical axis (angular displacement) and of the yaw angular 

velocity (raw gyroscope output). The MIMUs on the legs compared to those on the 

trunk consistently produced worse onset detection with respect to reference turn 

onsets as determined by a stereo-photogrammetric systems. 

However, the goal of our work was not to describe the way people turn while walking 

but rather detect and characterize turns in terms of turn onset and duration with the 

sole purpose of segmenting walking trials into straight walking bouts and turns. In 

this context we attempted to identify a method applicable to MIMU signals recorded 

either at the low back or at the ankles and able to determine turn onsets and durations 

similarly to an established method applicable only to low back MIMU recordings. In 

this respect, the method introduced can be used as a starting point for a robust 

characterization of turns during gait. 
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4.1 Clinical gait analysis in Parkinson’s disease 

Walking may seem an effortless ability, but actually being able to adapt one’s gait to a 

range of different environments is a highly developed motor skill, easily disrupted by 

motor impairments [Morris 2001a]. Among the most common movement disorders 

there is Parkinson’s Disease (PD), which is also the second most frequent degenerative 

disease of the central nervous system [Tysnes 2017]. A recent review by Hirsch and 

colleagues estimated PD overall prevalence as 38 per 100,000 person-years in females 

and 61 in males [Hirsch 2016]. Their analysis underlines these numbers increase with 

aging: annual incidence in people over 80 years is reported as 103 for females and 258 

in males. Converted to gender-specific incidence proportions, they report 37 in females 

and 44 in males, with an increase to 66 in females and 110 in males at age 80+, 

confirming the higher prevalence in men than in women. Generalizing, a commonly 

accepted occurrence is approximately in 1-2 % of the population over 65 years, with 

an increase to 3 % to 5 % in people 85 years and older [Alves 2008].  

Characteristic features of Parkinson disease include neuronal loss in specific areas of 

the substantia nigra and widespread intracellular protein (α-synuclein) accumulation 

[Poewe 2017]. Loss of dopaminergic neurons in the pars compacta of the substantia 

nigra leads to reduced facilitation of voluntary movements [Tysnes 2017]. PD is 

therefore most commonly associated with motor symptoms, such as rest tremor, 

rigidity, and gait disorders, even though there are numerous non-motor symptoms 

such as cognitive impairment (including frontal executive dysfunction, memory 

retrieval deficits and dementia), hyposmia, anxiety, and depression [Kadastik-Eerme 

2015]. Motor deficits reflected in gait are hypokinesia (or bradykinesia), diskinesia and 

akinesia. Hypokinesia, the most common movement disorder in PD, refers to reduced 

movement speed and size [Morris 1994]. Akinesia (absent movement) [Giladi 1992; 

Burleigh-Jacobs 1997] and dyskinesia (involuntary choreiform movements) [Hagell 1999; 

Morris 2000] are less common causes of gait disturbance.  
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To assess motor impairment and its progression, clinically the most commonly used 

score is the Unified Parkinson’s Disease Rating Scale (UPDRS) (and the MDS-UPDRS, 

its revised form) [Goetz 2008]. In research settings, a steadily increasing number of 

studies is exploiting quantitative gait analysis to evaluate spatio-temporal parameters 

in PD [Salarian 2004; Moore 2007; Hass 2012a; Horak 2015; El-Gohary 2016; Del Din 2016; 

Schlachetzki 2017]. In fact, individuals with PD progressively lose flexibility and 

adaptability in their locomotor responses and typically walk with a short stepped 

shuffling gait. Short steps, and a higher double support time, have been hypothesized 

to be a strategy to control faulty balance on one leg during a long step [Morris 1994]. 

In fact, postural instability is also associated to PD. In walking, this is reflected by 

larger step-to-step variability compared to healthy subjects: steps duration, length, and 

width over multiple gait cycles vary more in PD subjects compared to healthy controls 

[Hausdorff 2005].  

Although pharmacological treatment is the primary therapy for PD, non-

pharmacological interventions have become increasingly recognized in the 

management of PD [Smulders 2016]. A growing body of evidence documents the 

beneficial effects of physical activity on both motor and non motor symptoms [Alves 

da Rocha 2015]. The usefulness of various exercise-based strategies is supported in 

terms of classic motor outcomes (such as the UPDRS), specific parameters (such as gait 

speed, balance control and muscle strength) or global measures (e.g.: Quality of Life) 

[Bergen 2002; Keus 2009; Seppi 2011; Bloem 2015]. These findings are flanked by the 

potential role of physical activity in promoting neuroplasticity and repair in 

Parkinson’s disease (PD) [Xu 2010; Petzinger 2013]. 

In conclusion, Parkinson disease mainly affects older people, leading to difficulty in 

the performance of skilled motor tasks such as walking. Given the rapid population 

ageing, the biomechanics and motor control of gait in PD subjects is a topic of growing 

interest for researchers and clinicians. Furthermore, beyond motor and cognitive 

impairments, quality of life in PD also deteriorated significantly with increasing 
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disease severity particularly in those aspects related to physical and social functioning 

[Schrag 2000] In order to evaluate the role of physical activity as treatment for both 

motor and non-motor aspects of PD, further studies should address its enhanced 

therapeutic potential. 

 

4.2 Sardinian Folk Dance for Individuals with 

Parkinson’s Disease 

Among different exercise models proposed for individuals with Parkinson’s Disease 

(IwPD), the popularity of traditional forms of dance is increasing. The aim of the study 

presented in this chapter was to evaluate the effects of Sardinian folk dance (Ballu 

Sardu, BS) on functional performance and motor and non-motor symptoms in IwPD. 

Twenty IwPD (13M, 7F; 67.4±6.1 years) were randomly assigned to BS (n=10) or usual 

care (n=10). The dance program consisted of two sessions/week, 90-minutes/class, for 

12-weeks. 

Motor and non-motor symptoms, as well as functional performance, were evaluated 

using different questionnaires and tests such as the Unified Parkinson’s Disease Rating 

Scale Part–III (UPDRS-III), Six-Minute Walking Test (6MWT), Berg Balance Scale 

(BBS), Timed Up-and-Go Test (TUG), Five Times Sit-to-Stand Test (FTSST), Back 

Scratch Test (BST), Sit and Reach Test (SRT), instrumented gait analysis, Parkinson’s 

Disease Fatigue Scale (PFS-16), Beck Depression Inventory (BDI-II), Starkstein Apathy 

Scale (SAS), and Montreal Cognitive Assessment Scale (MOCA). 

Repeated-measures ANOVA revealed significant Time*Group interactions for 

UPDRS-III and functional variables such as the 6MWT, BBS, FTSST, TUG (all, p<0.001), 

BST (p=0.04), and gait analysis parameters (Stride length, p=0.031; Gait speed, p=0.049 

and gait fatigue index (GFI), p=0.005). For non-motor symptoms, significant 
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Time*Group interactions for depression (p<0.001), apathy (p=0.016), and MOCA scores 

(p=0.012), were observed.  

BS is an enjoyable activity which has been proved to be superior to usual care alone in 

inducing changes in different motor and non-motor symptoms associated with PD. 

Results show that BS can be considered a safe tool for contrasting impairments 

observed in IwPD due to the intrinsic nature of the neurodegenerative disease. 

 

4.2.1 Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative condition comprising a 

spectrum of functional, motor and non-motor symptoms [Hughes 1992; Chaudhuri 

2006]. Treatment for PD has traditionally been based on the use of dopaminergic 

medications, even though non-pharmacological approaches such as exercise-based 

activities are gaining attention for managing its complex symptomatology [Goodwin 

2008; Tomlinson 2014]. In this regard, there is evidence that conventional physical 

activities such as treadmill training [Fisher 2008; Kurtais 2008; Goetz 2008], resistance 

exercise [Dibble 2009; Hass 2012b; Corcos 2013] and adapted physical activity programs 

can have positive effects in improving functional mobility [Cugusi 2014], static and 

dynamic balance, as well as non-motor disturbances in individuals with PD (IwPD). 

Recently, several non-conventional physical activities have been proposed for IwPD 

to improve functional mobility and enhance well-being, social inclusion and quality of 

life (QOL) [Alves da Rocha 2015; Kwok 2016]. Among these, Tai Chi [Corcos 2012; Li 2012], 

boxing [Combs 2011], Nordic walking [Cugusi 2015b; Bang 2016; Cugusi 2017], aquatic-

based exercise programs [Volpe 2014; Carroll 2017] and dance-based approaches have 

been investigated thoroughly[Hackney 2009b; Duncan 2011a; Delextrat 2016; Shanahan 

2017; dos Santos Delabary 2017]. 

In particular, the use of different forms of dance as a strategy to manage PD-induced 

disability is gaining popularity among IwPD, for whom social relations and 
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participation in group activities have been reported  to play a key role in the 

achievement of health goals [Kiepe 2012]. 

Dance activity is an accessible and appealing form of fitness workout. The supportive, 

social nature of dance classes and the guide of a dance teacher are important features 

that may help IwPD to overcome psychological barriers, which often prevent them 

from participating in exercise programs [Ellis 2013; Baig 2015]. Dance allows a 

multisensory experience and is therefore more than a set of single movements driven 

by music, because it not only involves physical domains but also emotional, cognitive, 

cultural and socio-ethnocoreutic aspects. Indeed, the traditional folk dance has been 

described as a form of dance that “may stimulate selective, deep limbic neuronal circuits 

and cause an emotional involvement, binding the subjective experience of individuals with a 

dynamic, objective reality of the community, also involving the motor side in the dance rhythm, 

in what could be construed as a symbolic and therapeutic function” [Sironi 2015]. Previous 

experiences have demonstrated that social and community forms of cultural dance, 

such as Irish dance or Argentine tango, can improve functional mobility and increase 

socialization, also promoting the adherence to exercise programs in IwPD [Volpe 2013; 

Foster 2013; Shanahan 2015; Rios Romenets 2015; McNeely 2015; Shanahan 2016; Shanahan 

2017; dos Santos Delabary 2017]. 

One of the most ancient Mediterranean dances is Sardinian folk dance, commonly 

referred to as Ballu Sardu (BS). This traditional form of dance is still very popular in 

Sardinia, embodying not only an enjoyable social moment but also the cultural 

expression of the community [Carta Mantiglia 1999; Cugusi 2015a]. BS is typically 

danced in a closed or open circle by couples who are holding hands, palm-to-palm. The 

movements of the dancers change with the music’s rhythms, generally characterized 

by a first component, which is slow and quiet, and a second more lively and rhythmic 

component which includes steps and jumps. Due to its natural characteristics which 

address both motor and cognitive functions (i.e., coordination, balance, cardiovascular 

endurance, visual memory, mobility and posture) and social aspects such as group 
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activities, emotional response to the music, historical re-enactment, and physical 

contact [Cugusi 2015a], BS dance may be a valuable and feasible therapeutic approach 

for managing several movement disorders, including PD. 

Therefore, the purpose of the present study was to evaluate the effects of participation 

in a BS dance program on functional and gait performance, motor symptoms, and on 

specific cognitive and affective non-motor symptoms in IwPD with mild to moderate 

disability. 

 

4.2.2 Materials and Methods 

4.2.2.1 Study design and participants 

The study is a single-blind, randomized controlled pilot trial. Consecutive subjects 

with a definite diagnosis of PD were recruited from patients attending the outpatient 

Movement Disorders Clinic of the University of Cagliari. Inclusion criteria for the 

study included a clinical diagnosis of PD according to Gelb’s criteria [Gelb 1999], a 

score ≤ 3 on the Hoehn and Yahr (H&Y) scale [Hoehn 1967], ability to walk without 

walking aids, stable medication regimen in the four weeks prior to the study, and a 

score ≥ 24 on the Mini-Mental State Examination [Folstein 1975]. Exclusion criteria for 

the study were: H&Y stage > 3, diagnosis of dementia according to DSM-5 criteria, 

atypical parkinsonism, pharmacological treatment with drugs not approved for PD, 

the presence of any complementary disability or autonomic problems that precluded 

the training program, or any specific health condition for which exercise was 

contraindicated. A history of falls in the previous three-month period, as well as the 

presence of dyskinesias, freezing, and static-dynamic postural instability, was also 

verified prior to enrollment. 

As reported in Figure 4-2, twenty patients meeting eligibility criteria (13M, 7F; mean 

age 67.4 ± 6.1 years) were randomly allocated into two groups using a random number 

program generator (Research Randomizer 4.0 software).  
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The exercise group received usual care (medical therapy) plus a 12-week BS dance 

program, while individuals in the control group did not perform any type of specific 

exercise program, maintained their habitual activities, and continued their usual care 

involving medical therapy alone. All participants were informed on the aims of the 

study and its procedures prior to enrolment and written informed consent was 

obtained from all subjects. The study was approved by the Institutional Review Board 

 

Figure 4-1 CONSORT flow chart for the study design 
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at the University of Cagliari (Registration number: NP/3339) and was performed in 

accordance with the Declaration of Helsinki. 

 

4.2.2.2 Experimental procedures 

Participants in both groups were instructed to continue with their usual care and 

advised not to change their daily activities during the trial. Assessments were 

performed by three experienced evaluators (a neurologist for PD motor and non-motor 

symptoms, a physiotherapist for functional outcomes, and a bioengineer for gait 

analysis). Evaluators were blinded to group allocation and not involved in routine 

clinical follow-up. All outcomes in both groups were assessed at baseline (within two 

weeks prior to starting the dance program) and after the completion of the 12-week 

intervention (at week 13). Assessments were carried out when participants were in the 

“on” phase (i.e., when medications were working and symptoms were controlled). 

Participants' anti-parkinsonian medications were monitored by using a self-report 

measure. 

 

4.2.2.3 Motor symptoms and functional outcomes 

All participants received a structured clinical evaluation which included evaluation of 

their clinical history, the presence and severity of any motor complications related to 

use of dopaminergic treatment (both motor fluctuations and dyskinesias), and the 

presence of non-motor disturbances. 

Motor disability was assessed using the motor component of Unified Parkinson's 

Disease Rating Scale (UPDRS-III) [Fahn 1987], and the modified H&Y scale [Hoehn 

1967]. Functional performance was evaluated using a set of standardized tests, 

including the Six-Minute Walking Test (6MWT) to evaluate cardiovascular fitness 

[Garber 2003] and the Five Times Sit-to-Stand Test (FTSST) to estimate dynamic 

strength in the lower limbs [Duncan 2011b]. Neuromotor performance was assessed 
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using the Timed Up-and-Go Test (TUG) for functional mobility [Morris 2001b] and 

using the Berg Balance Scale (BBS) to evaluate static balance [Qutubuddin 2005]. 

Participants’ lower body joint mobility was assessed by the Sit-and-Reach Test (SRT) 

[Bozic 2010] and the Back Scratch Test (BST) was used to assess the upper body joint 

mobility [Rikli 1999]. 

 

4.2.2.4 Gait analysis 

During the assessments, each subject was instrumented with a wearable gait analysis 

system composed of three synchronized magneto-inertial measurement units 

(MIMUs) (Opal, APDM, sample frequency=128 Hz). As illustrated in Figure 4-2, two 

MIMUs were attached to the participant’s ankles (2 cm above the left and right 

malleolus) and one on the back approximately at the level of the fifth lumbar vertebrae 

(L5). Participants were instructed to perform a 2-Minute Walking Test (2MWT) at a 

self-selected speed, walking back and forth in a loop composed by a 7-meter straight 

path and two 180° turns. 

Inertial data from the 2MWT were segmented and turnings were discarded [Bertoli 

2017]. For each remaining gait cycle, spatio-temporal parameters such as stride length 

(m), gait speed (m/s), cadence (steps/min), number of straight walks, and straight 

walking time (s) were estimated [Trojaniello 2014; Bertoli 2018]. In addition, during the 

2MWT a gait fatigue index (GFI) (Eq.1) based on any decrease in gait speed observed 

during the test, adapting the equations used previously in repeated-sprint studies 

[Oliver 2009], was calculated, as follows: 

 

GFI %: 
𝑴𝑮𝑺𝑩−𝑴𝑮𝑺𝑨

𝑴𝑮𝑺𝑨
× 𝟏𝟎𝟎        (1) 
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where MGSB = gait speed over a straight path from the second to the last lap, and MGSA 

= gait speed over straight paths of the second lap (negative values indicated the 

presence of fatigue: -50% indicated a one third reduction in participant’s initial speed, 

while a value of -100% indicated participant’s initial speed had reduced by half). Data 

obtained from the gait examination were exported to SPSS, Version 18 (SPSS, Chicago, 

USA) for further analyses. 

 

4.2.2.5 Non-motor symptoms 

The Parkinson’s Disease Fatigue Scale (PFS-16) was used to evaluate fatigue. The PFS 

is a 16-item scale which asks subjects to assess physical aspects of fatigue and its 

influence on their daily functioning. Items on the PFS-16 are rated on a scale from 1 to 

5. Total PFS-16 scores are the average of item scores across the 16 items, with higher 

scores representing more fatigue [Brown 2005]. The Beck Depression Inventory (BDI-

II) was used to estimate depressive symptoms. This questionnaire contains 21 items 

Figure 4-2 Individual with PD wearing the 

MIMUs on the left; MIMU positionings above 

the ankles and at L5 level on the right 
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evaluating the presence and severity of depressive symptoms at the time of completion 

and during the previous two weeks, with higher total scores indicating more severe 

depressive symptoms [Beck 1996]. Analysis of apathy symptoms was performed using 

the short version of the Starkstein Apathy Scale (SAS). The scale consists of 14 items, 

with lower total scores indicating less severe apathy levels [Pedersen 2012]. The 

Montreal Cognitive Assessment Scale (MOCA) [Kletzel 2017] was used to evaluate 

cognitive deficits. The MOCA scale allows users to identify cognitive impairments in 

domains such as attention, concentration, executive functions, memory, visual-spatial 

skills, calculation, and orientation. Total scores on the MOCA range from 0 to 30, with 

scores above 26 being considered to be in normal range. 

 

4.2.2.6 Sardinian folk dance intervention 

The ten participants assigned to the BS group underwent a Sardinian folk dance 

program based on an adapted form of BS. The training program consisted of 24, 90-

minute class sessions, performed twice per week for twelve weeks. Adherence to the 

training sessions, including attendance at classes and any adverse effects, were 

recorded. The exercise protocol was performed in close collaboration with the 

Adapted Physical Activity (APA) Master’s Degree Course of the University of Cagliari 

and with a sports association that promotes exercise therapy (Team Kayak Sardegna). 

Each 90-minute BS session involved three phases. During the initial 30 minutes, warm-

up exercises, balance training, coordination, mobilization, ankle control exercises, 

proprioception and breathing exercises were performed. During the following 50 

minutes, a Sardinian folk dance teacher conducted the dance supported by traditional 

records (based on launeddas rhythms). The BS sessions comprised different forms of 

Sardinian folk dance beginning with the mono-structured forms and progressing to 

the bi-structured ones. Mono-structured forms combine rhythmic and homogeneous 

movements which are more suitable to the needs of BS beginners with PD. The mono-
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structured and bi-structured BS forms are differentiated by the use of two alternating 

rhythms, slow and fast (in Sardinian language: seriu and alligru, respectively). During 

the BS sessions, subjects held hands or arms to form a circle that rotated clockwise. The 

dynamics of BS include steps and small jumps, with stop on the right foot. In BS 

dancing, movements of the legs are performed from predominantly the mid-thigh 

down. During the dance, the knees were kept slightly bent to ensure a uniform 

springing of the forefoot. The different types of mono-structured dances (characterized 

by slow and gentle rhythms) and bi-structured dances (characterized by a slow and a 

more lively rhythmic music component) employed in our study included the Ballu 

Seriu (The Slow Dance), the Passu Torrau (The Returned Step), and the Ballu Tundu (The 

Circle Dance) [Carta Mantiglia 1999; Cugusi 2015a]. The final 10 minutes of the 90-

minute session consisted of deep breathing and static stretching exercises. All 24 

training sessions were entirely supervised by a physiotherapist assisted by two APA 

specialists. Other subjects (relatives, friends and caregivers) were also allowed to 

participate in BS sessions not only to support their relatives but also to create an 

opportunity for them to enjoy the dance with subjects as well. 

 

4.2.2.7 Statistical Analysis 

Data were analyzed using Statistical Software for the Social Sciences (SPSS Inc., 

Version 18, Chicago, IL, USA). Descriptive statistics were calculated for all the 

variables considered. For our sample size calculations, we considered previous studies 

that employed other forms of non-conventional exercise-based activities for IwPD that 

reported large effect sizes (ESs) for UPDRS-III scores ranging from 1.38 ([Bang 2016]) 

to 1.46 ([Carroll 2017]). In addition, during our calculations, we considered studies that 

specifically focused on the effects of dance-based therapy in this population in which 

moderate ESs were observed (0.65 in [Hackney 2009a] and 0.68 in [Duncan 2011a]). We 

then carried out an a priori power analysis (G*Power 3.1 software, Germany) assuming 

a moderate ES (Cohen’s d =0.7) and an alpha level of 0.05; based on these assumptions, 



Chapter 4 

87 

the software indicated that we would need 10 subjects per group to achieve at least 

80% statistical power. Equality of variance was analyzed using Levene’s test. Data 

sphericity was evaluated using Mauchly’s test. In the case of non-spherical data, a 

Greenhouse-Geisser correction was applied. Kolmogorov-Smirnov and the Shapiro-

Wilks tests were used to test the normality of distributions. Main effects (Time, Group) 

and two-way interactions (Time*Group) were analyzed using repeated measures 

analysis of variance (RM-ANOVA). In case of significant differences, Bonferroni-

adjusted pairwise comparisons were used to identify differences. Statistical 

significance for all tests was set at p < 0.05. The clinical relevance of the intervention-

induced changes was estimated by calculating ES using Cohen’s d (small ES ≤ 0.5; 

moderate ES = 0.51-0.79; large ES ≥ 0.8) [Cohen 1988], according to the formula by 

Hedges and Olkin, which corrects for bias arising from the use of pooled standard 

deviations [Hedges 1985; Lakens 2013]. 

 

4.2.3 Results 

At baseline, no significant differences were identified between the groups for any of 

the demographic and clinical characteristics reported in Table 1. In addition, the two 

groups showed no significant differences in any of the variables analyzed. No changes 

in medication administration or loading doses occurred during the 12 weeks of BS 

training, and no adverse effects were recorded during the protocol. Participant 

attendance at the dance classes during the program was 92.9%. Reasons for lack of 

attendance at dance classes included concomitant illness and individual conditions 

unrelated to PD. Data from one participant in the control group were discarded after 

initial review as severe dyskinesia and freezing significantly altered the registration of 

gait patterns during analyses. 
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Table 4-1 Demographic and clinical features of PD patients 

Sample 

characteristics 
BS group Control group p Value 

Age (years) 67.8±5.9 67.1±6.3 p=0.80 

Males (%) 6/10 (60) 7/10 (70) p=0.66 

PD duration (years) 4.4±4.5 5±2.9 p=0.73 

Hoehn & Yahr 2.1±0.6 2.3±0.4 p=0.39 

LEDD (mg/day) 481.1±213.1 487.5±198.5 p=0.95 

Weight (Kg) 67.7±9.4 69.6±10.7 p=0.68 

Height (m) 1.6±0.07 1.6±0.09 p=1 

BMI (Kg/m2) 26.0±3.4 25.9±4.6 p=0.96 

Note. Values are Mean ± SD and percentage (%) 

Abbreviations. BS, Ballu Sardu; PD, Parkinson’s Disease; LEDD, Levodopa Equivalent Daily Dose; BMI, Body 

Mass Index. 

 

4.2.3.1 Motor symptoms and functional performance 

Analysis of UPDRS-III scores revealed that tremor at rest, tremor during action, and 

postural instability were the most common issues reported by participants. RM-

ANOVA showed a significant main effect of Time (F=11.273; p=0.004) on UPDRS-III 

scores, and a significant Time*Group interaction (F=22.191; p<0.001, ES 2.19). Post-hoc 

testing with Bonferroni-corrected pairwise comparisons revealed that following the 

intervention, UPDRS-III scores decreased significantly in the BS group only. Post-hoc 

testing also revealed a statistically-significant 72.4% increase in the distance 

participants in the BS group were able to cover during the 6MWT, with a large 

between-group ES (F=41.124; p<0.001; ES 2.98). 

Analysis of static balance scores from the BBS using RM-ANOVA revealed a 

significant main effect of Time (F=32.184; p<0.001) on BBS scores, and a significant 

Time*Group interaction (F=49.834; p<0.001). Pairwise comparisons revealed significant 

increases in BBS scores in the BS group only, with a large between-group ES (3.51). 

Following the intervention, both groups displayed significant reductions in the 
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amount of time needed to complete the TUG test (BS group: -26.4%; p<0.001; control 

group: -6.5%; p=0.022). Participants in the BS group performed significantly better on 

the TUG test, with a large between-group ES (F=26.014; p<0.001; ES 2.37).  

In our analysis of dynamic strength scores for the lower limbs using the FTSST, 

pairwise comparisons revealed that the amount of time needed by the participants to 

complete the test reduced only in the BS group (-31.6%), while that needed by the 

control group increased significantly (+5.6%; p=0.04), showing a large between-group 

ES (F=95.685; p<0.001; ES 4.54).  

RM-ANOVA testing identified a significant main effect for Time (F=9.130; p=0.01) and 

a significant Time*Group interaction (F=5.152; p=0.04) for the BST. Improved upper-

body flexibility was only observed in individuals in the BS group during the study (BS 

group: +37.2%; p=0.005; control group: +5.4%; p=0.56), resulting in a large ES (1.21). 

Analysis of SRT test data using RM-ANOVA identified no significant differences 

within groups, and no significant Time*Group interactions (p=0.42). 

 

4.2.3.2 Gait analysis 

Analysis of stride length data from the study using RM-ANOVA found a significant 

Time*Group interaction (F=5.608; p=0.03); post-hoc testing using pairwise comparisons 

identified significant improvements in stride length for participants in the BS group 

(+4.7%; p=0.023), with a large between-group ES (1.13). By contrast, in the control 

group, stride length decreased slightly during the study (-1.5%), although these 

changes were not statistically significant (p=0.364).  

Analysis of walking speed using pairwise comparisons found that only participants in 

BS group displayed a statistically significant increase in this variable during the study 

(BS group: +8.1%; p=0.002; control group: +0.8%; p=0.652), with a large between-group 

ES (F=4.524; p=0.049; ES 1.02). 
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Table 4-2 PRE to POST changes in motor symptoms and functional performance within- and between-subjects 

Motor 

symptoms and 

functional 

performance 

BS group CONTROL group BS vs CONTROLS 

PRE POST 
PRE-POST 

Within-subjects 
PRE POST 

PRE-POST 

Within-subjects 

Time*Group 

Interaction 

UPDRS-III 

95% CI 
13.00±7.23 

(8.24 – 17.76) 

7.70±6.70 

(3.37 – 12.03) 

-40.8% 

p<0.001§ 

14.67±7.02 

(9.65 – 19.68) 

15.55±6.25 

(10.99 – 20.12) 

+6% 

p=0.364 

F=22.191 

p<0.001§ 

ES=2.19 

6MWT (m) 

95% CI 

330.7±120.48 

(250.44 – 

410.96) 

570.20±76.59 

(511.19 – 629.21) 

+72.4% 

p<0.001§ 

333.28±120.07 

(248.68 – 417.87) 

331.44±100.12 

(269.24 – 393.65) 

-0.5% 

p=0.947 

F=41.124 

p<0.001§ 

ES=2.98 

BBS 

95% CI 
40.0±3.5 

(36.9 – 43.1) 

46.9±3.6 

(43.4 – 50.4) 

+17.2% 

p<0.001§ 

37.3±5.2 

(34.0 – 40.6) 

36.6±6.0 

(32.9 – 40.3) 

-1.9% 

p=0.36 

F=49.834 

p<0.001§ 

ES=3.51 

TUG (s) 

95% CI 
6.9±1.04 

(6.16 – 7.64) 

5.08±0.78 

(4.41 – 5.74) 

-26.4% 

p<0.001§ 

7.43±1.18 

(6.65 – 8.21) 

6.95±1.19 

(6.25 – 7.65) 

-6.5% 

p=0.022* 

F=26.014 

p<0.001§ 

ES=2.37 

FTSST (s) 

95% CI 
9.69±0.55 

(8.64 – 10.74) 

6.63±0.60 

(5.48 – 7.78) 

-31.6% 

p<0.001§ 

10.88±2.22 

(9.78 – 11.99) 

11.49±2.43 

(10.28 – 12.70) 

+5.6% 

p=0.040* 

F=95.685 

p<0.001§ 

ES=4.54 

BST (cm) 

95% CI 
-13.7±9.4 

(-22.9 – -4.4) 

-8.6±8.5 

(-16.8 – 0.4) 

+37.2% 

p=0.005# 

-14.7±11.1 

(-22.2 – -7.1) 

-13.9±9.7 

(-20.6 – -7.2) 

+5.4% 

p=0.56 

F=5.152 

p=0.04* 

ES=1.21 

 

SRT (cm) 

95% CI 
-5.0±9.4 

(-11.8 – 1.8) 

-1.3±11.1 

(-8.3 – 5.6) 

+74% 

p=0.06 

-7.6±6.1 

(-13.5 – -1.7) 

-5.9±4.1 

(-11.9 – 0.1) 

+22.4% 

p=0.27 

F=0.695 

p=0.42 

ES=0.46 

Note. Values are mean ± SD and percentage (%); * Significant for p<0.05; # Significant for p<0.01; § Significant for p<0.001 

Abbreviations. BS, Ballu Sardu; CI, Confidence Interval; ES: Effect Size (calculated by the Hedges g; small <0.5; moderate 0.51–0.79; large >0.8) (58); 

UPDRS-III, Unified Parkinson's Disease Rating Scale Part III; 6MWT: Six-Minute Walking Test; BBS, Berg Balance Scale; TUG, Timed Up-and-Go Test;  

FTSST, Five Times Sit-to-Stand Test;  BST, Back Scratch Test; SRT, Sit and Reach Test. 
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 Table 4-3 PRE to POST changes in gait analysis parameters within- and between-subjects 

 

Gait analysis 

BS group CONTROL group 
BS vs 

CONTROLS 

PRE POST 
PRE-POST 

Within-subjects 
PRE POST 

PRE-POST 

Within-subjects 

Time*Group 

Interaction 

Stride length 

(m) 

95% CI 

1.27±0.08 

(1.18 – 1.36) 

1.33±0.10 

(1.23 – 1.43) 

+4.7% 

p=0.023* 

1.29±0.18 

(1.19 – 1.39) 

1.27±0.19 

(1.16 – 1.38) 

-1.5% 

p=0.364 

F=5.608 

p=0.031* 

ES=1.13 

Gait speed (m/s) 

95% CI 
1.24±0.13 

(1.11 – 1.36) 

1.34±0.09 

(1.24 – 1.44) 

+8.1% 

p=0.002# 

1.19±0.23 

(1.05 – 1.33) 

1.20 ± 0.20 

(1.09 – 1.31) 

+0.8% 

p=0.652 

F=4.524 

p=0.049* 

ES=1.02 

Cadence 
(step/min) 

95% CI 

133.71±12.21 

(125.40 – 142.03) 

140.60±9.00 

(135.21 – 145.99) 

+5.1% 

p=0.010# 

123.89±12.64 

(114.59 – 133.18) 

129.56±6.59 

(123.54 - 135.59) 

+4.6% 

p=0.046* 

F=0.117 

p=0.736 

ES=0.16 

Number of 

straight walks 

95% CI 

17.10±1.85 

(15.46 – 18.74) 

18.90±1.29 

(17.53 – 20.26) 

+10.5% 

p<0.001§ 

16.12±3.04 

(14.29 – 17.96) 

16.75±2.71 

(15.22 – 18.28) 

+3.9% 

p=0.147 

F=4.572 

p=0.048* 

ES=1.02 

Straight 

walking time (s) 

95% CI 

62.93±4.77 

(58.39 – 67.48) 

61.64±4.06 

(57.59 – 65.69) 

-2% 

p=0.398 

68.93±8.70 

 (63.85 – 74.01) 

67.13±7.88 

(62.61 –71.66) 

-2.6% 

p=0.298 

F=0.050 

p=0.827 

ES=0.11 

Gait fatigue 

index (%) 

95% CI 

-7.24±3.88 

(-10.40 – -4.09) 

-3.83±6.08 

(-8.56 – 0.90) 

+47.1% 

p=0.085 

-5.70±5.06 

(-9.23 – -2.17) 

-11.46±8.14 

(-16.75 – -6.17) 

-101.05% 

p=0.014* 

F=10.797 

p=0.005# 

ES=7.72 

Note. Values are mean ± SD and percentage (%); * Significant for p<0.05; # Significant for p<0.01; § Significant for p<0.001 

Abbreviations. BS, Ballu Sardu; CI, Confidence Interval; ES: Effect Size (calculated by the Hedges g; small <0.5; moderate 0.51–0.79; large >0.8) (58). 
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Analysis of walking cadence data from the study showed that walking cadence 

increased for both groups (BS group: +5.1%; p=0.01; control group: +4.6%; p=0.046), but 

no Time*Group interaction was observed, and the between-group ES was very small 

(0.16). However, pairwise comparisons revealed a statistically significant increase in 

the number of straight walks participants in the BS group were able to perform 

(+10.5%; p<0.001), while participants in control group showed a non-significant, +3.9% 

increase. A large between-group ES was observed (F=4.572; p=0.048; ES 1.02).  

Analysis of gait-fatigue data (GFI) revealed a significant Time*Group interaction 

(F=10.797; p=0.005). Pairwise comparisons revealed a significant worsening of gait-

fatigue for the control group, while participants in the BS group showed a trend 

towards improvement, although the trend failed to reach statistical significance 

(p=0.085). A very large ES was calculated between the groups (F=10.797; p=0.005; ES 

7.72). 

 

4.2.3.3 Non-motor symptoms 

Following the intervention, no differences were found in perceived fatigue (PFS-16) 

between the two groups, while a main effect of Time (F=44.788; p<0.001) and a 

Time*Group interaction (F=47.957; p<0.001) were detected for the depressive 

symptoms, as assessed by the BDI-II. BDI-II score improved only in the BS group, 

displaying a large between-group ES (3.22). A significant Time*Group interaction with 

a large between-group ES (F=7.106; p=0.016; ES 1.24) was detected for apathy 

symptoms, which remained unchanged in the BS group (p=0.276), while SAS scores 

worsened significantly in the control group (p=0.018).  
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Table 4-4 PRE to POST changes in non-motor symptoms within- and between-subjects 

 

 

Non-

motor 

symptoms 

BS group CONTROL group BS vs CONTROLS 

PRE POST 
PRE-POST 

Within-subjects 
PRE POST 

PRE-POST 

Within-subjects 

Time*Group 

Interaction 

PFS-16 

95% CI 
33.10±12.74 

(23.52 – 42.68) 

33.30±14.69 

(23.95 – 42.65) 

+0.6% 

p=0.917 

34.11±15.98 

(24.01 – 44.21) 

37.67±13.23 

(27.81 – 47.53) 

+10.4% 

p=0.093 

F=1.487 

p=0.239 

ES=0.57 

BDI-II 

95% CI 
14.10±3.45 

(11.46 – 16.74) 

7.60±2.06 

(5.42 – 9.78) 

-46.1% 

p<0.001§ 

13.67±4.47 

(10.88 – 16.45) 

13.78±4.24 

(11.48 – 16.08) 

+0.8% 

p=0.874 

F=47.957 

p<0.001§ 

ES=3.22 

SAS 

95% CI 
9.20±3.46 

(6.33 – 12.07) 

7.70±1.89 

(5.23 – 10.17) 

-16.3% 

p=0.276 

10.11±5.08 

(7.09 – 13.14) 

13.78±5.02 

(11.17 – 16.38) 

+36.3% 

p=0.018* 

F=7.106 

p=0.016* 

ES=1.24 

MOCA 

95% CI 
25.00±3.97 

(22.68 – 27.32) 

26.40±3.47 

(24.31 – 28.48) 

+5.6% 

p=0.006# 

25.67±2.83 

(23.22 – 28.11) 

25.22±2.68 

(23.02 - 27.42) 

-1.7% 

p=0.363 

F=7.913 

p=0.012* 

ES=1.31 

Note. Values are mean ± SD and percentage (%); * Significant for p<0.05; # Significant for p<0.01; § Significant for p<0.001 

Abbreviations. BS, Ballu Sardu; CI, Confidence Interval; ES: Effect Size (calculated by the Hedges g; small <0.5; moderate 0.51–0.79; large >0.8) (58); 

PFS-16, Parkinson’s Disease Fatigue Scale; BDI-II, Beck Depression Inventory; SAS, Starkstein Apathy Scale; MOCA, Montreal Cognitive Assessment 

Scale. 
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For cognitive impairments (MOCA), a significant Time*Group interaction with a large 

between-group ES was observed (F=7.913; p=0.012; ES 1.31). Pairwise comparisons 

revealed a significant improvement in cognitive impairment scores for participants in 

the BS group only, while cognitive impairment scores for the control group showed a 

slight, non-significant worsening (p=0.363). 

 

4.2.4 Discussion 

Previous research has shown that the use of dance-based therapies is associated with 

improved motor function and balance capacity in IwPD [dos Santos Delabary 2017], 

particularly Argentine tango [Foster 2013; Rios Romenets 2015; McNeely 2015], and Irish 

set dancing [Volpe 2013; Shanahan 2015; Shanahan 2016; Shanahan 2017]. These studies 

focused on motor performance, with only a limited number of investigations [Hackney 

2009c; McKee 2013; Hashimoto 2015; de Natale 2017] also appraising the effects of dance-

based activities on non-motor symptoms such as affective or cognitive impairments. 

Results of our study indicate BS as a safe and feasible form of physical exercise that is 

likely to have positive effects on functioning and non-motor symptoms in IwPD. 

Indeed, in line with previous reports which have focused on other types of dance-

based activities [Shanahan 2017], overall attendance at BS classes in our study was 

excellent, and no safety issues or adverse effects were reported. 

However, given the design of the present study, which compared participants 

undergoing dance-based therapy to a non-active control group, the interpretation of 

these findings need to take the neurodegenerative nature of PD into proper 

consideration. In fact, if left untreated, IwPD tend to display a worsening of motor- 

and non-motor symptoms [Poewe 2010], which was the case for our control group, 

where a significant decline was observed in 3 out of 17 outcome measures (FTSST, GFI, 

SAS) we evaluated. In this context, non-active controls may not prove to be a stable 

reference for evaluating the effectiveness of exercise-based interventions and may 
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require a comprehensive appraisal of not only between-group, but also within-group 

results to quantify the net changes obtained after the BS program. 

Analysis of UPDRS-III scores showed a significant improvement in PD motor 

symptoms following participation in the BS program. UPDRS-III scores decreased by 

5.3 points for participants in the BS group, which is likely to be clinically relevant since 

it exceeds the threshold for a clinically-important difference (CID) for IwPD, which 

has previously been defined as a change in UPDRS–III scores between 2.5 and 5.2 

points [Shulman 2010]. These findings are comparable to those of previous studies on 

dance-based activities where the dance group exhibited a reduction in the UPDRS-III 

that exceeded the abovementioned CID [Sharp 2014]. 

Following the intervention, significant improvements in cardiovascular fitness were 

observed in the BS group. The distance that participants in the BS groups could cover 

during the 6MWT increased by 239.5 meters, greatly exceeding the cut-off for a 

minimal detectable change (MDC) for this outcome, which has been previously 

established as a change of at least 82 meters [Steffen 2008]. Improved fitness and aerobic 

capacity are expected findings when reconditioning protocols such as treadmill 

training [Mehrholz 2015; Bryant 2016] or Nordic walking programs [van Eijkeren 2008] 

are employed, but improvements in fitness and aerobic capacity were a novel finding 

following a dance protocol. Significant improvements in postural stability (+6.9 points 

on the BBS score) which surpassed the MDC for IwPD (+5.9 points) [Steffen 2008] were 

also observed in the BS group. This finding is in line with results from a previous study 

depicting a close relationship between increased walking distance and decreased risk 

of falls [Falvo 2009]. 

Spatio-temporal dimensions of gait such as gait speed, stride length, and cadence 

improved following participation in the BS intervention. In particular, walking speed 

(which is regarding by many experts as the best predictor of disability severity and 

functional decline in PD [Middleton 2015]), increased significantly during the dance 

intervention. Clinically, the degree to which walking speed changed during the 
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intervention (+0.10 m/s) can be interpreted as a small- to moderate-change according 

to cut-points outlined by Hass et al. (small= +0.06 m/s; moderate= +0.14 m/s; large= 

+0.22 m/s) [Hass 2014]. Analysis of gait in our study also included an assessment of gait 

fatigue index (GFI), which is widely recognized as an integral part of the spectrum of 

motor impairments associated with PD, reflecting both central and peripheral 

impairments, along with the functional deterioration induced by the disease 

[Chaudhuri 2004]. Accordingly, while GFI worsened in the control group, GFI showed 

a trend towards improvement following the BS training. However, given that the 

differences in GFI were only statistically significant in the control group (who 

worsened), the role that dance-based activities may have had in countering the 

neuromuscular fatigue observed in IwPD warrants careful interpretation. 

Results of the study found that dynamic strength in the lower limbs increased 

significantly following participation in the BS dance program, while the control group, 

which was not given the dance-based intervention, exhibited significant worsening, 

reflecting the neurodegenerative nature of PD [Poewe 2010], which impacts muscle 

strength as well [Yazar 2018]. In addition, participants in the BS group showed 

significant improvements in mobility in the upper body (assessed by BST), displaying 

a significant Time*Group interaction, while no difference was detected in participant’s 

lower body flexibility (assessed by SRT). This finding likely suggests the need to 

integrate additional phases of stretching for the lower body into the BS dance 

intervention, which are targeted specifically by this form of dance. Walking ability and 

functional mobility also improved following BS, with potential practical implications 

in reducing falls, although results of the TUG test did not reach the MDC recognized 

for this outcome (-1.82 s against a MDC of -4.85 s) [Dal Bello-Haas 2011]. Several studies  

have highlighted how physical activity and structured exercise programs can improve 

non-motor symptoms [Nocera 2013; Cusso 2016] , as we also previously observed 

following Nordic walking and adapted physical activity programs [Cugusi 2015b; 

Cugusi 2017]. In this line and in addition to our previous research, this study revealed 
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a significant reduction of depressive symptoms at large ESs, suggesting a possible 

clinical relevance. With regards to apathy score (which we assessed using the SAS), we 

only observed a trend towards improvement in participants who took part in the BS 

program, while apathy scores in the control group worsened significantly. This, in 

turn, resulted in significant between-group differences which likely inflated our 

findings and require cautious interpretation. 

Finally, findings from this study are in line with previous evidence showing how 

practicing non-conventional forms of dance-based activity may lead to enhanced 

cognitive performance [Hashimoto 2015; de Natale 2017]. Indeed, in the study by De 

Natale et al. [de Natale 2017] found that a 10-week program of Argentine tango had a 

positive impact on cognitive domains and improved executive function (assessed by 

the Trail Making Test), while Hashimoto et al. [Hashimoto 2015] found that after 12 

weeks of dance-based exercise, participants displayed significant improvements in 

task switching and mental flexibility (assessed by the Frontal Assessment Battery and 

the Mental Rotation Task response time), supporting the concept that non-

conventional dance-based activities may influence higher cortical functions as well. 

Taken together, all these factors may help explain the global effects that the physical 

workout of BS exerted on our cohort of IwPD. 

 

4.2.4.1 Study limitations and future perspectives 

Considering the exploratory nature of this pilot trial, the findings presented here 

should be interpreted carefully, especially in relation to the type of control group that 

was utilized here. Indeed, our controls did not perform any specific type of exercise 

program and maintained their usual medical therapy and habitual activity during the 

entire intervention protocol. 

In future studies, BS dance may be compared to already established exercise training 

programs and other dance-based activities such as the Argentine tango, for which a 
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considerable body of knowledge is available regarding its effects on disability, 

independence, and QOL for IwPD. In addition, these results open the door for new 

comparisons between different exercise-based programs and innovative social-

engagement activities, which would be intriguing to pursue. 

 

4.2.5 Conclusions 

Results of our study showed that IwPD who participated in a dance-based BS program 

displayed significant improvements in a variety of domains, ranging from clinical and 

functional performance to gait and non-motor symptoms. Incorporating socially-

engaging forms of exercise into the clinical management of PD may improve 

participation and compliance with exercise-based interventions among IwPD, 

benefiting their overall functioning and, subsequently, QOL. In addition, since in our 

study, the control group experienced significant changes (worsening in the majority of 

cases) due to the natural progression of PD, the BS intervention may be also viewed as 

an enjoyable and safe tool for contrasting the impairments observed in the PD 

population due to the intrinsic neurodegenerative nature of the disease. 
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Abstract 

Turning is impaired in Parkinson’s Disease subjects (PD) and it is a common trigger 

for freezing of gait (FoG). FoG is often described as a sudden inability to continue the 

forward walking progression. Recent evidence suggests that PD subjects who freeze, 

i.e. freezers (PD+FoG), have worse turning performance than non-freezers (PD-FoG), 

and this is exacerbated by increasing the turn angular amplitude. 

We therefore investigated the difference in objective measures for turning 180 degrees 

while walking (U-turn) versus turning 360 degrees in place in PD+FoG compared to 

PD-FoG, and how this difference was affected by a dual task. Quantitative turning 

measures and their dual task cost were computed, and differences were investigated 

between groups (PD+FoG/PD-FoG) and within turning tasks (180° while walking/360° 

in place) using ANOVA. Objective measures in PD+FoG were compared across turns 

with actual FoG episodes and those without. Associations between turn measures and 

clinical scales were examined with Spearman correlations. 

Turn duration and number of steps were greater, and peak angular velocity slower, in 

freezers compared to non-freezers (p<0.001). Turn duration, number of steps and jerk 

were greater, and anteroposterior range smaller, in the 360° turn in place compared to 

the 180° turn while walking in both groups. Turn duration and number of steps 

showed significant interaction (p<0.01). Dual task costs were similar across groups, but 

turn duration showed significant interaction (p=0.03). Turning characteristics in trials 

with observed FoG were similar to trials with no FoG when turning while walking, 

but not for turning in place. PIGD subscore in non-freezers was correlated with all turn 

measures; whereas in freezers PIGD was correlated with turn measures in turning 

while walking but only with turn duration for turning in place. UPDRS III in non-

freezers was correlated with turn duration and number of steps in turning in place, 

while in freezers it was correlated with turn duration, peak velocity and jerk in turning 

while walking. 
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Turn measures (duration and number of steps) revealed quantitative differences for 

freezers, who, with respect to non-freezers, showed more impairments in 360 degrees 

turning in place but not in 180 degrees turning while walking. However, as the turning 

challenges were increased by adding a dual-task, results from freezers were similar to 

those from non-freezers. 

Significant differences between the two groups across the two turning tasks validated 

the hypothesis that sharper turns might cause higher instability in freezers compared 

to non-freezers. 

 

5.1 Introduction 

Freezing of gait (FoG), a sudden and transient failure to initiate or maintain locomotion 

[Nutt 2011], is one of the most disabling features in Parkinson’s Disease (PD). FoG can 

be described as the “absence or marked reduction of the forward progression of the 

feet, despite the intention to walk” [Nutt 2011]. It is associated with increased risk of 

falls, it interferes with daily activities and it substantially affects quality of life [Moore 

2007]. FoG is an episodic phenomenon of still controversial pathophysiology, and the 

episodes are usually triggered by specific situations, for example turning, walking 

through narrow passages, crossing busy streets, initiating walking, approaching a 

destination [Giladi 2008; Snijders 2012]. In particular, it has been shown that turning 

may be the most effective task in provoking FoG [Snijders 2008]. In fact, turning is a 

challenging motor task, requiring a coupling between anticipatory postural 

adjustments and scaling of walking [Nutt 2011]. 

Besides specific motor tasks, another common trigger for FoG is the presence of a 

concurrent cognitive task while walking or turning, often referred as dual-tasking 

(DT). In fact, the addition of a concurrent cognitive task has been found to further 

impair the motor performance in PD subjects with FoG (PD+FoG) compared to PD 

subjects who do not experience FoG (PD-FoG) [Morris 2001]. In this respect, recent 
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studies showed that the DT cost for stride length, cadence and gait speed during 

straight walking was significantly increased in PD+FoG compared to PD-FoG. 

[Camicioli 1998; Spildooren 2010; Earhart 2013; Peterson 2016; de Souza Fortaleza 2017]. 

However, the impact of DT on turning in PD+FoG is still controversial.  

Spildooren et al. [Spildooren 2010] found a significant effect of DT on the number of 

FoG episodes only in PD+FoG during a 360 degrees turning task, while DeSouza et al. 

[de Souza Fortaleza 2017] did not find any significant interaction between condition 

(ST/DT) and group (PD+FoG/PD-FoG) for duration and peak speed during a 180 

degrees turn.  

Since in laboratory settings FoG episodes occur more rarely [Jankovic 2008; Nutt 2011; 

Snijders 2012], motor tasks including turning while walking or turning in place are 

often used in the clinic to elicit FoG episodes. Specifically, it has been described that 

while walking sharper turns characterized by smaller turning radii and greater 

angular amplitude tend to elicit more freezing episodes compared to turns at smaller 

angles [Spildooren 2010; Bhatt 2013]. Specifically, Snijders and colleagues, and Mancini 

and colleagues, showed that repeated 360 degrees turns in place were more effective 

in eliciting FoG compared to 180 degrees turns during walking [Snijders 2012; Mancini 

2017]. A recent systematic review focusing on the differences in turning between 

PD+FoG and PD-FoG highlighted that PD+FoG in general tend to turn with longer 

turn duration, slower turn peak velocity, increased number of steps and higher 

cadence compared to PD-FoG [Spildooren 2018]. In addition, the review also 

highlighted that differences in turning between PD+FoG and PD-FoG are exacerbated 

by increasing the turning angular amplitude [Spildooren 2018]. However, due to 

differences in set-up among studies, it is still unclear whether a 360° turn in place 

would increase FoG occurrences compared to a 180° turn while walking. Furthermore, 

small evidence exists on which characteristics of turning and which kind of turn would 

differ the most among PD+FoG and PD-FoG.  
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Wearable inertial sensors have increasingly been used for instrumented clinical 

evaluations to gather additional insights on motor control. In this context, the 

assessment of turning tasks by means of inertial sensors allows obtaining quantitative 

outcomes and investigating complex locomotor patterns [Della Croce 2017]. 

Several studies ([Visser 2007; Zampieri 2010; Bhatt 2013; Bengevoord 2016; Mancini 2017]) 

demonstrated that objective measures from a turning task can differentiate between 

PD patients and healthy controls, and highlighted the need for further research to 

focus on the clinical relevance of such measures. In particular, as also suggested in 

Visser et al., it would be interesting to correlate yaw angular velocity during turning 

to clinical measures as those for FoG, as this approach might be useful to evaluate the 

outcome of intervention studies aimed at improving FoG [Visser 2007]. Furthermore, 

investigating the underlying mechanism of FoG is important to advice an effective 

rehabilitation intervention. 

To this purpose, we developed and applied a method, based on the use of inertial 

sensors, to perform a quantitative gait analysis in presence of 180° and 360° turns in 

PD+FoG and PD-FoG, and compared the outcome across turning task and 

populations. 

As turning is thought to require more coupling of posture and stepping, and more 

cognitive control compared to straight ahead gait [Herman 2011; King 2012; Peterson 

2016], we hypothesize that turning in place at a large angular amplitude with a 

cognitive challenge would be more difficult for PD+FoG than for PD-FoG, and in the 

PD+FoG group it would elicit more FoG. Therefore, our aims were: 1) to quantify how 

turning characteristics change between 180° turning while walking and 360° turning 

in place in PD+FOG and PD-FOG, 2) to determine whether a concurrent dual task 

similarly impacts the two different turning tasks in PD+FoG and PD-FoG.  
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5.2 Material and Methods 

5.2.1 Participants 

Forty-two subjects with PD and 43 healthy elderly controls were recruited through the 

Parkinson’s Center of Oregon clinic at Oregon Health & Science University (OHSU). 

Based on the first question of the New FoG Questionnaire (NFOG-Q) [Nieuwboer 2009] 

-“Have you experienced FoG in the past month?”- PD subjects were divided in two 

groups. Twenty-four (19M, 5F) answered ‘yes’ and were classified as freezers 

(PD+FoG), while eighteen (14M, 4F) answered no, and were assigned to the non-

freezers (PD-FoG) group. Subjects’ characteristics and clinical scores are reported in 

Table 5-1. 

Table 5-1 Subjects characteristics in Parkinson’s disease freezers 

(PD+FoG) and non-freezers (PD-FoG) and healthy controls (Mean±STD) 

 Controls PD-FOG PD+FOG 

Age (years) 68.8±6.2 70.3±6.8 69.2±7.1 

Gender 33M 10F 14M 4F 19M 5F 

NFoG - Q (score)  - 16.5±6.0 

Disease Duration (years)  7.7±4.3 8.7±6.2 

MDS-UPDRS III  43.6±11.3 45.8±12.1 

PIGD subscore  3.8±2.5 7.6±3.7 

MoCA  26.2±3.3 24.9±4.9 

 

Inclusion criteria were: diagnosis of idiopathic PD with sensitivity to levodopa and 

off-medication Hoehn & Yahr scores of II-IV. Exclusion criteria: Other factors affecting 

gait (hip replacement, musculoskeletal disorder, uncorrected vision or vestibular 

problem), or an inability to stand or walk for 2 minutes at a time. Individuals were also 

excluded if they could not safely walk 20 feet without walking aids, or if they had 

dementia, severe tremor, or metal in their bodies (another aspect of this study included 

neuroimaging). 

All participants provided informed written consent to a protocol approved by OHSU’s 

Institutional Review Board.  
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5.2.2 Experimental Setup 

All the participants with PD were tested in the practically defined OFF state (after 

withdrawing their antiparkinsonian medication for at least 12 hours). A trained 

examiner administered the motor section (III) of the MDS-UPDRS [Goetz 2008] to rate 

disease severity. The Posture Instability and Gait Disability (PIGD) subscore was also 

calculated from the MDS-UPDRS Part III [Stebbins 2013]. The Montreal Cognitive 

Assessment (MoCA) was used to assess general cognition [Nasreddine 2005], and the 

perceived severity of FoG was recorded by means of the NFOG-Q [Nieuwboer 2009]. 

Participants performed a series of motor tasks while wearing three inertial sensors 

(Opals - APDM, Inc.) positioned on both feet (dorsally) and on the back 

(approximately at the level of L5). Each individual was asked to perform the following 

two motor tasks:  

- 180° turning while walking (U-turn), as part of a two minutes long walk. The subjects 

walked straight for 7 meters at a comfortable speed, turned back and kept walking in 

the opposite direction. No indications were given about direction of turning or 

strategy. 

 - 360° turning in place. Starting from a standing position, subjects turned 360° 

clockwise, and then 360° counter-clockwise, repeating this sequence for one minute. 

The two turning tasks were then repeated in a dual task (DT) condition, i.e.: with an 

added concurrent cognitive task. The concurrent dual task consisted in repeating the 

alphabet skipping one letter (A, C, E, etc.) during the turning while walking, and in 

serial subtractions by 3 s for the turning in place. In the DT condition, no instructions 

were given on whether to pay more attention to the motor or cognitive task. 

The reference frame of the inertial sensor was oriented approximately along the three 

human body anatomical directions. An estimate of its orientation with respect to the 

global frame was provided by an on-board Kalman filter. The signals from the Opal 



Chapter 5 

117 

sensors were recorded at 128 Hz, streamed wirelessly to a laptop and stored for 

subsequent offline analysis with Matlab (MathWorks. R2016a). 

 

5.2.2.1 Data Analysis 

Inertial sensor data were automatically segmented to detect turns. To this purpose, 

two different algorithms were implemented to identify the 180° and 360° turns. 

For the 180° turns, the algorithm was based on previous work from [El-Gohary 2013]. 

The angular velocity was expressed in the global coordinate system and its vertical 

component low pass filtered (Butterworth, 1.5 Hz cutoff frequency). The offset was 

then removed (by subtracting the mean of the signal during the first 3 seconds, during 

which the subject was standing still). Candidate turns were detected as vertical angular 

velocity peaks higher than 15°/s, and for each peak the preceding and following 5°/s 

threshold crossing were set as instants of turn beginning and ending. Additional 

checks were performed on the candidate turns in order to isolate the 180° turn. First of 

all, turns in the same direction separated by less than 0.1 s were merged. Then, turns 

lasting less than 0.5 s or more than 10 s were discarded. Finally, the relative turn angle 

was computed integrating the vertical angular velocity over the turn duration and, 

when resulting less than 45°, lead to the turn elimination. 

For the 360° turns, a novel algorithm was implemented based on an approach 

exploiting local magnetic field inversion and angular velocity [Bertoli 2016]. The two 

planar components (AP and ML) of the magnetometer signals were low pass filtered 

(Butterworth, 1 Hz cutoff frequency), and their sum was computed. The mean value 

computed during the first 3 s from this composed signal was removed, and a moving 

average (windows length 0.5 s) was used for smoothing. Prototype turns were detected 

as peaks higher than 70% of the signal max value and further apart than 3 s, and for 

each peak the preceding and following 20% threshold crossing were used to isolate the 

turn. For each prototype turn, the zero-crossings of the filtered, offset-free vertical 
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angular velocity were used as turn beginning and ending instants. An additional 

control was performed in case of an incorrect merging of two consecutive turns: the 

turning angle was computed integrating the vertical angular velocity absolute value 

over the turn duration and, when resulting greater than 400°, lead to the turn division. 

For the first turn in each trial (see example in Figure 5-1), the following quantitative 

measures were computed: Turn Duration, Peak angular Velocity, Number of Steps, 

Jerk and Range of Acceleration. Specifically, turn duration (s) was measured as the 

time interval from the beginning to the ending of the turn. Turn peak velocity (°/s) was 

defined as the vertical angular velocity maximum peak amplitude. Number of steps 

was computed from peaks in the vertical acceleration recorded at the feet. Turn jerk 

(integrated squared jerk, m2/ s5), integral of the squared time derivative of the linear 

acceleration, was used to quantify fluidity of turning in both anteroposterior (AP) and 

mediolateral (ML) directions. Turn range (m/s2) was also computed for both ML and 

AP accelerations.  

 

Figure 5-1 Time series of trunk angular velocity profiles during the 180 and 

360 turning tasks in a PD-FoG (upper panel) and a PD+FoG (lower panel). 

In PD+FoG the time needed to complete the turns is longer than in PD-FoG. 
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The dual-task cost (DT cost) was calculated as DT cost [%] = 100* (DT turning measure 

– ST turning measure)/ST turning measure.  

The video recordings of the trials were reviewed by an expert examiner to determine 

the occurrence of freezing episodes during turning.  

The data from the 43 healthy controls were used as reference and not statistically 

compared with the two PD groups.  

A two-way (groups×turn) repeated measures analysis of variance (ANOVA) was used 

to investigate the difference in the measures between groups (PD+FoG/PD-FoG) and 

within turning tasks (180° while walking/360° in place). Since turn jerk, turn duration 

and step number distributions were not normal, for the ANOVA analysis they were 

transformed into logarithmic scale. Similarly, a two-way ANOVA was used to 

investigate the difference in the measures DT cost between groups (PD+FoG/PD-FoG) 

and within turn tasks (180° while walking/360° in place). In addition, turning measures 

obtained in trials with observed FoG were compared to those obtained in trials without 

FoG episodes by means of a t-test (for all turning tasks except for 360° in place dual 

task condition, due to unbalanced distributions). 

Non-parametric (Spearman) correlations were performed to investigate the 

associations between objective measures of turning and clinical scales. Statistical 

significance was set at p<0.05. SPSS (IBM V.23) was used to run statistical analyses. 

 

5.3 Results 

Figure 5-2 and Figure 5-3 represent the mean and SEM of the objective measures in the 

single task condition and of their dual task cost. 

Table 5-2 and Table 5-3 summarizes the ANOVA results for the turn measures, 

significant differences (p<0.05) are indicated in bold. 
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The increase in turn duration and number of steps for turning in place compared to turning 

while walking was significantly larger in freezers compared to non-freezers.  

Turn duration was longer for the 360° turning in place compared to the 180° turning 

while walking in both PD+FoG and PD-FoG (significant turn effect: F=159.22, p<0.001). 

PD+FoG took a longer time to complete both the turnings compared to PD-FoG (group 

effect: F=18.62, p<0.001). In addition, the turn duration increase from turning while 

walking to turning in place was larger for PD+FoG compared to PD-FoG with a 

significant interaction effect (F=6.68, p=0.01).  

The number of steps showed similar significant results: - there was a significant 

difference between groups (F=19.38, p<0.001) with PD+FoG taking more steps 

compared to PD-FoG; - a significant difference in turning task (F=159.23, p<0.001), with 

the turning in place requiring more steps than that while walking; and – an interaction 

effect (F=9.37, p<0.001), PD+FoG required significantly more steps in the 360° turning 

in place than that while walking compared to PD-FoG. 

Figure 5-2 Mean and SEM of the objective measures in the single task condition for 

healthy controls, non-freezers (PD-FoG) and freezers (PD+FoG) 
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Turn peak velocity was similar for the turning in place compared to the turning while walking, 

however it was significantly slower in freezers compared to non-freezers.  

In general, turn peak velocity was higher for controls and lower for PD+FoG. PD+FoG 

used a lower peak velocity to perform both the turnings compared to PD-FoG (group 

effect: F=14.67, p<0.001).  

The range of acceleration while turning showed difference on the type of turn, but not between 

groups. 

The anteroposterior range of acceleration while turning was similar in PD-FoG and 

PD+FoG (F=2.69, p=0.11), however it was significantly lower for the turning in place 

compared to that while walking (F=7.87, p=0.01). Similarly, the mediolateral range of 

acceleration while turning was similar in PD-FoG and PD+FoG and, even if for 

PD+FoG it was larger in turning in place than while walking, there was no statistically 

significant interaction (F=0.30, p=0.59).  

Turn jerk was higher for turning in place compared to turning while walking, but was similar 

among freezers and non-freezers.  

Turn jerk was similar across groups, but increased from turning 180° while walking to 

turning 360° in place both in anteroposterior (F=5.08, p=0.03) and mediolateral 

direction (F=29.12, p<0.001). A greater increase from turning while walking to turning 

in place in PD+FoG compared to PD-Fog almost reaches statistical significance for 

anteroposterior (F=3.62, p=0.07) jerk, but not for mediolateral (F=1.17, p=0.29) jerk. 

 

 

 



Chapter 5 

122 

Table 5-2 Turn objective measures in Parkinson’s Disease subjects with (PD+FoG) and 

without (PD-FoG) freezing of gait during single task condition. 

  180° turn while 
walking 

360° turn  
in place 

Group Turn Interaction 

  Mean±sd Mean±sd F-value p-value F-value p-value F-value p-value 

Turn Duration 
(s) 

PD-FOG 2.55±0.58 5.33±3.88 
18.62 0.00 159.22 0.00 6.68 0.01 

PD+FOG 3.20±0.75 8.45±4.22 

Number of 
Steps (N) 

PD-FOG 5.24±1.18 9.92±3.40 
19.38 0.00 159.23 0.00 9.37 0.00 

PD+FOG 6.41±1.31 19.48±10.00 

Peak Velocity 
(degrees/s) 

PD-FOG 143.87±26.18 140.30±40.87 
14.67 0.00 0.01 0.91 0.28 0.60 

PD+FOG 106.77±26.61 106.03±30.62 

ML Range 
(m/s2) 

PD-FOG 5.31±1.64 5.09±1.81 
0.01 0.94 0.01 0.94 0.30 0.59 

PD+FOG 5.14±1.52 5.45±1.78 

AP Range 
(m/s2) 

PD-FOG 4.49±1.46 3.70±1.34 
2.69 0.11 7.87 0.01 0.41 0.52 

PD+FOG 3.77±1.09 3.48±0.94 

ML Jerk (m2/s5) 
PD-FOG 3.43±2.72 6.05±5.90 

0.80 0.38 29.12 0.00 1.17 0.29 
PD+FOG 4.01±3.74 9.58±9.36 

AP Jerk (m2/s5) 
PD-FOG 2.06±1.80 2.36±2.12 

0.34 0.56 5.08 0.03 3.62 0.07 
PD+FOG 1.71±1.17 4.57±5.60 

 

Table 5-3 Turn objective measures’ dual task cost in Parkinson’s Disease subjects with 

(PD+FoG) and without (PD-FoG) freezing of gait. 

  180° turn while 
walking 

360° turn  
in place 

Group Turn Interaction 

  Mean±sd Mean±sd F-value p-value F-value p-value F-value p-value 

Turn Duration 
(s) 

PD-FOG 13.76±22.03 23.69±22.96 
0.85 0.36 16.97 0.00 4.97 0.03 

PD+FOG 8.01±19.06 53.86±70.00 

Number of 
Steps (N) 

PD-FOG 3.84±15.94 20.78±28.71 
0.06 0.81 8.76 0.01 0.47 0.50 

PD+FOG 4.00±27.10 26.24±35.60 

Peak Velocity 
(degrees/s) 

PD-FOG -6.78±13.29 -14.01±11.65 
0.68 0.42 12.19 0.00 3.43 0.07 

PD+FOG -4.42±19.67 -21.84±20.30 

ML Range 
(m/s2) 

PD-FOG -6.47±16.96 -8.71±11.64 
0.41 0.53 2.83 0.10 0.74 0.40 

PD+FOG -8.31±17.65 -14.14±26.55 

AP Range 
(m/s2) 

PD-FOG -6.87±24.47 -8.89±16.74 
0.40 0.53 0.49 0.49 0.20 0.66 

PD+FOG -7.88±36.65 -15.24±18.81 

ML Jerk (m2/s5) 
PD-FOG -0.54±33.45 5.56±52.92 

0.07 0.80 0.01 0.91 0.08 0.77 
PD+FOG 1.73±56.30 3.36±56.60 

AP Jerk (m2/s5) 
PD-FOG -19.54±27.06 5.44±46.87 

0.24 0.63 2.13 0.15 0.01 0.92 
PD+FOG -1.14±92.93 6.62±58.06 
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DT cost was similar in freezers compared to non-freezers.  

The DT cost of turning duration, steps number, and turning peak velocity showed a 

significant condition effect: both PD+FoG and PD-FoG took longer time, a higher 

number of steps, and slower peak velocity for 360° turning in place compared to 180° 

turning while walking (Table 5-3). In addition, only the DT cost of turn duration 

revealed a significant interaction effect (F=4.97, p=0.03), meaning that the increase in 

DT cost from turning while walking to turning in place was larger in PD+FoG 

compared to PD-FoG.  

Disease severity, characterized by the MDS-UPDRS III, showed limited associations with the 

objective measure of turning, while the PIGD subscore was strongly associated with the 

majority of turning measures.  

Figure 5-4, Figure 5-5 and Figure 5-6 summarize the correlation results. 

Figure 5-3 Mean and SEM of the objective measures’ dual task cost for 

non-freezers (PD-FoG) and freezers (PD+FoG) 
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In the PD-FoG group, the MDS-UPDRS III was not correlated to any measure for the 

turning while walking task; while a higher (worse) MDS-UPDRS III was associated 

with longer turn duration and greater number of steps for the turning in place in place 

task (r>0.55, p<0.02). In the PD+FoG group, a higher (worse) MDS-UPDRS III was 

associated with lower turn peak velocity, higher turn duration, lower mediolateral and 

anteroposterior jerk and smaller mediolateral range of acceleration for turning while 

walking (r>0.44, p<0.04); while it was not correlated to any measure in the turning in 

place task.  

 

 

 

 

Figure 5-4 Spearman correlations (ρ in absolute value) of UPDRS with the turning 

measures during 180° turn while walking (blue, on the right) and 360° turn in 

place (red, on the left) for PD-FoG and PD+FoG. Dashed semi-circle delimit 

significance (p<0.05). MLJ, APJ: ML, AP Jerk. TD: Turn Duration. SN: Number of 

Steps. PS: Peak Velocity. MLR, APR: ML, AP Range of Acceleration. 

PD-FoG 
PD+FoG 
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Figure 5-6 Spearman correlations (ρ in absolute value) of PIGD with the turning 

measures during 180° turn while walking (blue, on the right) and 360° turn in 

place (red, on the left) for PD-FoG and PD+FoG. Dashed semi-circle delimit 

significance (p<0.05). MLJ, APJ: ML, AP Jerk. TD: Turn Duration. SN: Number of 

Steps. PS: Peak Velocity. MLR, APR: ML, AP Range of Acceleration. 

PD-FoG 
PD+FoG 

Figure 5-5 Spearman correlations (ρ in absolute value) of MoCA with the turning 

measures during 180° turn while walking (blue, on the right) and 360° turn in 

place (red, on the left) for PD-FoG and PD+FoG. Dashed semi-circle delimit 

significance (p<0.05). MLJ, APJ: ML, AP Jerk. TD: Turn Duration. SN: Number of 

Steps. PS: Peak Velocity. MLR, APR: ML, AP Range of Acceleration. 

PD-FoG 
PD+FoG 
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In the PD-FoG group, the PIGD subscore was correlated to all the turning measures 

(r>0.51, p<0.04) for both the turning tasks; specifically, a higher PIGD subscore was 

associated with longer turn duration, greater number of steps, and lower turn peak 

velocity, jerk and range of acceleration. Instead, in the PD+FoG group, a higher PIGD 

subscore was significantly associated to longer turn duration, greater number of steps, 

lower turn peak velocity, smaller range of anteroposterior and mediolateral 

acceleration and lower mediolateral jerk in the turning while walking task (r>0.44, 

p<0.04); while it was associated with turn duration only for the turning in place (r=0.51, 

p=0.02). 

Finally, in the PD-FoG group, a higher MoCA score was significantly associated with 

a longer turn duration for the turning while walking task (r=0.58, p=0.02); while it was 

not correlated to any measure in the turning in place task. 

The disease duration was not associated to any turning measure. 

Turning characteristics in trials with observed FoG were similar to trials with no FoG when 

turning while walking, but not for turning in place.  

Table 5-4 summarizes the t-test results for the turn measures in PD+FoG with and 

without observed FoG, significant differences (p<0.05) are indicated in bold. 

During the turning while walking task, 6 out of 23 individuals in the PD+FoG group 

showed freezing in the single-task condition and 8 out of 23 showed freezing in the 

dual-task condition. One participant did not allow video recordings, therefore videos 

from that participant were missing.  

The turning measures were similar in the trials with and without observed FoG. 

During turning in place, freezing was observed in 15 PD+FoG in the single-task 

conditions and in 19 for the dual-task. For the single task turning in place, the number 

of steps, but not the turn duration, was significantly larger in trials with observed FoG 

than in trials without FoG episodes (p=0.01). Also the mediolateral range of 



Chapter 5 

127 

acceleration (p=0.02) and the mediolateral and anteroposterior jerk (p=0.02 and p=0.04, 

respectively) were greater for trials with observed FoG.  

 

Table 5-4 Turn objective measures in Parkinson’s Disease subjects with freezing of gait: 

comparison across trial with and without actual freezing episode 

  
180° turn while walking 

Single Task 
180° turn while walking 

Dual Task 
360° turn in place 

Single Task 

 Freez 
episode 

Mean±sd t p Mean±sd t p Mean±sd t p 

Turn Duration (s) 
yes 3.41±1.09 

0.52 0.62 
3.51±0.47 

0.48 0.64 
10.05±4.89 

1.92 0.07 
no 3.14±0.67 3.36±0.90 6.68±2.95 

Number of Steps 
(N) 

yes 7.50±1.58 
1.74 0.14 

7.75±2.52 
1.39 0.21 

24.71±10.82 
3.17 0.01 

no 6.20±0.94 6.18±1.72 13.25±5.18 

Peak Velocity 
(degrees/s) 

yes 99.58±17.24 
-0.89 0.39 

87.49±12.59 
-1.83 0.08 

100.35±35.96 
-0.80 0.43 

no 109.43±30.86 105.08±30.35 111.85±28.04 

ML Range (m/s2) 
yes 5.07±0.85 

0.12 0.91 
4.34±1.07 

-0.24 0.82 
6.05±2.00 

2.50 0.02 
no 5.00±1.79 4.48±1.48 4.33±1.07 

AP Range (m/s2) 
yes 2.96±0.81 

-1.97 0.08 
2.88±0.94 

-1.10 0.29 
3.74±1.02 

1.98 0.06 
no 3.86±1.05 3.42±1.16 2.95±0.77 

ML Jerk (m2/s5) 
yes 3.80±0.70 

-0.10 0.92 
4.13±3.21 

0.83 0.43 
13.53±11.07 

2.63 0.02 
no 3.92±4.65 2.89±2.55 4.12±4.53 

AP Jerk (m2/s5) 
yes 1.45±0.58 

-0.73 0.47 
1.66±2.13 0.31 0.77 6.67±6.97 2.26 0.04 

no 1.77±1.41 1.39±0.84   1.79±2.24   

 

5.4 Discussion 

The aim of this study was to quantitatively characterize, by means of wearable inertial 

sensors, 180° turning while walking and 360° turning in place in subjects with PD to 

investigate the impact of turning on FoG. Also, we investigated the changes in turning 

performance with the addition of a concurrent dual task while turning.  

In both groups, as expected, turning 360° in place required longer time and a higher 

number of steps than turning 180° while walking, but interestingly similar peak 

velocity. The range of acceleration was similar in both turning tasks in the mediolateral 

direction, but greater for turning while walking in the anteroposterior direction 

compared to turning in place. In addition, turning jerk was greater during turning in 
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place compared to turning while walking in both the anteroposterior and mediolateral 

direction. While some of these differences were similar in PD-FoG and PD+FoG, turn 

duration and number of steps showed a significant interaction effect, demonstrating 

that PD+FoG showed further impairments when turning in place compared to turning 

while walking with respect to PD-FoG.  

We also found that turning in place may require a greater cognitive effort compared 

to turning while walking, as indicated by the greater dual task cost for turn duration, 

number of steps and peak velocity performing the turning in place compared to 

turning while walking in both groups. Additionally, the increase in dual-task cost of 

turn duration (and almost in peak velocity) from turning while walking to turning in 

place was greater in PD+FoG compared to PD-FoG (interaction effects). 

When summarizing differences between PD+FoG and PD-FoG we found that PD+FoG 

took generally longer time to turn, turned at slower peak velocity and needed more 

steps to complete a turn, but showed similar range of acceleration during turning and 

a tendency for higher jerk during turning compared to PD-FoG.  

These findings are in keeping with other studies showing that PD+FoG have more 

difficulties during turning in place compared to turning while walking [Spildooren 

2018]. Also, the greater increase in turning duration and number of steps from turning 

180° while walking to turning 360° in place in freezers is consistent with previous 

findings [Spildooren 2010]. Such result may be due to the fact that the PD+FoG group 

showed more freezing episodes in the turning in place with respect to turning while 

walking, resulting in an increased turn duration and number of steps needed to 

complete the task. Turn duration also showed an interaction effect in the dual task cost 

condition, meaning that not only PD+FoG showed a significantly longer turn duration 

for the 360° turn in place compared to the 180° turn while walking compared to PD-

FoG, but this trend was further confirmed when adding a cognitive task. This result 

supports our hypothesis that turning in place with a cognitive challenge would be 

more difficult in PD+FoG compared to PD-FoG.. In line with [de Souza Fortaleza 2017], 
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where for turn duration no interaction was found in turning 180° while walking 

between PD+FoG/PD-FoG groups and within single task/dual task conditions, in our 

results the dual task cost alone did not show a group effect.  

As previously reported by De Souza et al [de Souza Fortaleza 2017], the peak velocity in 

180° turn while walking was significantly lower in PD+FoG compared to PD-FoG. Also 

in 360° turn in place peak velocity was lower in PD+FoG compared to PD-FoG, in 

partial disagreement with [Mancini 2017], where this decrement did not reach 

significance, even though a trend can be observed. In contrast to our hypothesis, in the 

single task condition we did not find any interaction between group and turning task 

for peak velocity. This was rather unexpected, considering a lower turn mean velocity 

due to the longer turn duration, but we did not actually control for actual turn 

amplitude. However, also in [Mancini 2018] there was no significant interaction in peak 

velocity between PD+FoG/PD-FoG and within small-medium (40°-120°)/medium-

large (120°-260°) turning angle amplitudes. Interestingly, we observed a greater 

decrease in turning peak velocity from turning 180° while walking to 360° in place in 

the DT condition in the PD+FoG group compared to the PD-FoG group, almost 

approaching significance for interaction effects (p=0.07). As for turn duration, also for 

peak velocity we did not find a group effect in the dual task cost, similar to [de Souza 

Fortaleza 2017] (no interaction between PD+FoG/PD-FoG and within ST/DT 

conditions).  

Comparing the turning tasks, anteroposterior range of acceleration was greater in 

turning 180° while walking with respect to 360° in place for both groups. This could 

be due the intrinsic characteristics of the turn task, since in the turning while walking 

subjects may be preparing to walk forward exiting from the turn. The range of 

acceleration while turning were similar in the two groups for turning while walking 

and turning in place, as previously found by [Mancini 2018] for ML range. Similarly, 

[Bengevoord 2016] found that during a turning 180° while walking, neither the anterior 

nor the medial center of mass position were different between freezers and non-
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freezers, probably meaning that the overall trajectory is the same in both groups. In 

addition, turning jerk was higher for the turning in place compared to the turning 

while walking task. No group effects were observed, even though, in the mediolateral 

direction, PD+FoG generally showed a higher jerk compared to PD-FoG. Mancini et al. 

[Mancini 2017] obtained a similar result considering the average turn jerk for a 

continuous two minutes turning in place. In [Mancini 2018], where turning in daily life 

was examined, jerk and range of acceleration also did not show any significant group 

x turn amplitude interaction, but an interaction effect emerged when analyzing the 

coefficients of variation. In the present study, we only analyzed the first turn to be 

more consistent across turning tasks, therefore we could not compute the coefficient 

of variation, which could provide further insights.  

Subjects turning in place showed higher jerk compared to turning while walking, with 

a higher jerk in the mediolateral direction with respect to the anteroposterior one. A 

trend for greater increase in freezers from turning 180° while walking to 360° in place 

can be observed, suggesting that particularly freezer needs more adjustments in 

turning in place, having less control of the turn smoothness. 

It has to be pointed out that, while in general dual task cost seems to be greater in 

freezers compared to non-freezers, for turn duration and peak velocity in turning 180° 

while walking it is lower. The lack of significant differences between groups could be 

because non freezers executed both motor and cognitive task with the same attention, 

while freezers instead prioritized the motor task and did worse in the cognitive one 

(not actively dual tasking in turning while walking). 

Results from associations with clinical outcomes highlight that the PIGD – subscore 

that specifically describes the motor performance of gait (and posture) – was correlated 

to the turning measures for the PD-FoG group, but not as much for the PD+FoG one, 

especially in the turning in place task. This may suggest that while turning deficits are 

related to disease progression in PD-FoG, freezing is adding a different component to 

turning deficits not necessarily associated to disease progression. 
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The turning measures for the turning while walking were similar across trials with and 

without freezing episodes. Instead, we would have expected some difference, 

especially for the turn duration that we expected to be longer in those trials where 

freezing was observed. Adding the dual task lead to the same result. Only in the 

turning in place, which as in previous studies [Snijders 2012; Mancini 2017] results more 

provocative for FoG episodes, a difference in the turning measures emerges, 

suggesting that turning in place poses additional difficulties to turning while walking, 

specifically in those people who experience FoG. 

A limitation to the present study is that, since we focused the analysis only on the first 

turn, we couldn’t calculate a cognitive dual task cost for that limited time interval. 

Furthermore, the dual task paradigm employed in the two turning tasks was different, 

and may therefore have engaged subject’s attention to a different extent.  

 

5.5 Conclusion 

Freezing of gait is a challenge to our understanding of the pathogenesis of gait 

disorders in PD patients. Recent evidence showed that freezing related turning deficits 

have both spatiotemporal and rotational motor control components, indicating a 

possible involvement of the vestibular system in freezing of gait. Objective measures 

are critical for investigating how turn performance differs across freezers and non-

freezers, especially because the increasing number of MIMU-instrumented 

assessments of turning, both in the clinic and at home, is gaining attention, allowing 

for the study of complex locomotor patterns and the gathering of additional insights 

on motor control. Results from our study indicated interesting trends across freezers 

for turn measures, confirming their managing of the scaling from U-turn to 360 turn is 

impaired compared to non-freezers in terms of duration and steps utilized. However, 

contrarily to freezers attention disruption hypothesis, the higher motor cost due to an 

added cognitive task while turning was not exacerbated in freezers compared to non-
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freezers. Further research should be undertaken on the dual task effect on postural 

transition, which from our data resulted similar for freezers and non-freezers. 

By comparing the response of freezers and non-freezers in increasingly challenging 

motor task as turns at different angles, different approaches can be highlighted. These 

results emphasize the importance of investigating challenging motor conditions as 

turns in PD subjects suffering of freezing of gait for the study of its underlying 

mechanism.  
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MIMU technology has the potential to measure human gait with a level of accuracy 

and repeatability comparable to instrumented mats, with the added advantage of 

being wearable, with a very low impact on the patient, and capable of long time 

recordings. MIMUs are therefore suitable for continuous monitoring during daily life: 

in fact, advances in technology, along with appropriate methodologies, enable 

performing pervasive and ubiquitous gait data collection. Being an essential part of 

mobility in daily life constituted of straight and turn walking bouts, in this thesis we 

focused on the importance of segmenting and characterizing straight gait and turns. 

In this context, the work reported in this thesis aimed at the development, application 

and testing of MIMU based methods for assessing gait quantitative measures across 

straight locomotion and turnings. Previously proposed methods and their applications 

were analyzed in clinical settings and new methods for gait measures quantification 

were proposed. 

The spatio-temporal parameters estimation method employed in this thesis was 

successfully applied to the straight gait of healthy and pathological older adults 

(Parkinson’s disease and mildly cognitively impaired individuals). Its use was 

effectively validated on a large cohort of subjects walking at different velocities 

(normal and fast) in four different clinical centers. In this work, a strong effort was 

done to implement the method so that it could be applied smoothly on such different 

data. Results showed that the spatio-temporal parameters estimation errors were 

consistent with those found in previous single-center studies with smaller population 

samples. Furthermore, an external work demonstrated that these results hold also for 

outdoor straight line walking. The combination of robustness and range of 

applicability of this ankle-MIMU based method connotes its use for the estimation of 

gait spatio-temporal parameters as suitable in the routine clinical practice. Moreover, 

the parameters estimated from the MIMUs were as accurate as those obtained from 

the instrumented mat used as a reference (limits of agreements were − 27 to 27 ms for 

stride duration, − 68 to 44 ms for stance duration, − 31 to 31 ms for step duration and − 
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67 to 52 mm for stride length), and, in addition, they could be computed for longer 

bouts (extended and diversified walks can be instrumented).  

Addressing the identification of U-turns (180°), the literature was reviewed and trunk-

MIMU based methods were selected. In this part of the work, while consolidating the 

existing state-of-the-art knowledge, an attempt was done to single out a universal 

method to robustly detect U-turns while walking, but a satisfactory solution was not 

found. Four methods were implemented and tested on different pathological groups 

walking at different speeds. The performance of such methods was evaluated in order 

to determine the best one available for straight/turn segmentation. Results showed that 

these methods were more likely to fail when used on stroke survivors and choreic 

subjects, whose gait is characterized by irregular walking patterns. Yet, it was  

demonstrated that a single MIMU positioned on the low back could acceptably 

identify U-turns in Parkinson’s Disease (PD) subjects. However, gait events (and the 

derived spatio-temporal parameters) can be better estimated with MIMUs attached to 

the lower limbs. Therefore, while looking for the least obtrusive solution, the use of 

one of the previously tested methods for U-turns detection with MIMUs positioned on 

the shanks was evaluated. In addition, it was introduced a new method suited to be 

applied either to signals recorded at the low back or at the shanks (just above the 

ankles). Results confirmed that turn characterization with the sensors at the shanks is 

problematic: compared to MIMU on the trunk, those on the lower limbs generated a 

hundred millisecond difference in onset detection. Nevertheless, MIMUs can be 

successfully positioned on the shanks when the goal is characterizing turns in terms of 

onset and duration with the sole purpose of segmenting walking trials into straight 

bouts and turns. In this respect, the method introduced can be used as a starting point 

for a robust characterization of turns during gait. 

Results from these studies were then transferred in clinical applications and practically 

used for PD subjects assessments. 
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In the study with our clinical partner at University of Cagliari, MIMU instrumented 

gait analysis was used to support the assessment of Sardinian folk dance (BS) as non-

conventional treatment in individuals with Parkinson’s disease. The objective spatio-

temporal parameters were used, in combination with clinical scores, to evaluate BS 

effects on functional performance and motor and non-motor symptoms. The main 

contribution of this work is the actual adoption of measures obtained from inertial 

sensors: the objective measures collected in the BS dance exercise group were 

compared against those collected in a control group before and after the BS treatment. 

Results showed that individuals with PD who participated in the BS therapy program 

obtained significant improvements in a variety of domains ranging from the clinical 

and functional performance to gait and non-motor symptoms (both UPDRS-III and 

gait speed significantly decreased and increased, respectively). The use of 

instrumented gait analysis, providing quantitative measures, in this context therefore 

allowed to objectively evaluate the outcome of a novel rehabilitation treatment. 

In the study in collaboration with Portland Health and Science University, the turn 

characterization methods were extended and applied to 180° and 360° turns to 

investigate Freezing of Gait in PD population. This quantitative gait analysis allowed 

to directly compare, using the same set-up, freezers and non-freezers performing a 

180° turn while walking and a 360° turn in place to determine differences in the FoG 

occurrences. Results showed that measure such as turn duration and number of steps 

employed to turn, as well as peak angular velocity, were able to differentiate freezers 

from non-freezers. In the freezer population, out of 23 subjects, 6 showed an actual 

FoG episode in the 180° turn while walking and 15 in the 360° turn in place, confirming 

that 360° turn in place is more effective in triggering FoG. When a concurrent dual task 

was added, FoG episodes were observed in 8 freezers during the 180° turn while 

walking and in 19 freezers during the 360° turn in place, implying that an added dual 

task increases FoG manifestation, but turning type is of greater consequence for FoG 

occurrences. A MIMU instrumented gait analysis including 360° turns is therefore a 
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promising solution for investigating freezing of gait mechanism in PD population. 

Furthermore, the measures obtained can be useful to develop algorithms for 

generating a biofeedback aimed at alleviating or preventing freezing of gait prior 

challenging motor tasks. The findings reported can also be relevant to evaluate the 

outcome of interventions aiming at reducing freezing of gait, or to devise optimal and 

more effective rehabilitation treatments.  

However, at the state of the art and in conclusion of the presented research, the 

methods for gait characterization have been mainly validated during straight walking 

and 180° turn in the confined environment of gait laboratories, and their performance 

in the real-world is still an open issue. In order to improve and overcome these 

limitations, a look to the future challenges should be addressed. The most important 

current need is the consolidation of identifying gait events and turns in ecological 

conditions not only in healthy subjects, but especially in populations with movement 

disorders. The work in this thesis addressed at first the consolidation of gait events 

identification and spatio-temporal parameters estimation and tried to give a 

significant contribution with a multi-centric validation study. It then also contributed 

to the turn identification body of literature, but with a major limitation: only 180° turns 

were analyzed. The focus was on 180° turns mainly for two reason: i) it is a most 

common type of turn employed in clinical contexts, and ii) its definition is quite 

specific. In fact, one of the issues in analyzing turns is the lack of an exact definition 

[Pham 2017]. The same angle can be turned with a larger or smaller curvature, therefore 

with more or less steps. If, for instance, a subject walking straight wants to turn 45° to 

the right, (s)he could do it in a single step or in three consecutive steps, each changing 

the direction of progression by 15° with respect to the previous one. The 

characterization of turns at angles lower than 180° is therefore more delicate and 

remains an open issue, while the notion of reversing the direction of progression in 

180° turns helps in their definition. Furthermore, a precise definition of turn onset is 

fleeting also in 180° turns, because it heavily depends on which segment of the body 
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is under analysis. In fact, it has been shown that a cranio-caudal strategy is adopted 

for body reorientation, meaning that the head will start turning before the feet [Lebel 

2017]. 

Another topic that will need further attention toward a more effective gait 

characterization is the MIMU-based clearance estimation [McGrath 2011; Trojaniello 

2015]. Foot clearance is the vertical distance of the foot from the ground, or any 

underneath obstacle. Its analysis has recently gained attention since it has been 

associated with fall risk in older population and it is a primary indicator to study 

obstacle negotiation. However, it is a parameter that measuring instruments such as 

the instrumented mat cannot assess. It is therefore important, in order to investigate a 

full 3D foot trajectory, to validate a robust method for the MIMU-based clearance 

estimation. 

In conclusion, MIMU-instrumented gait analysis has the potential to detect locomotor 

deficits not yet visible to the clinical eye, and therefore it has an important impact for 

treatment and prevention strategies. Hence, gait analysis under controlled 

environment is a useful tool, but does not reveal functional subject variability in 

everyday activity patterns. This thesis made an effort to illustrate means of performing 

such analyses. One of the currently open issues in clinical gait analysis is in fact the 

possibility to effectively perform ecological assessments in patients with movement 

disorders. The work in this Ph.D. thesis led to promising results and, together with 

numerous studies currently published in the literature about real-world gait analysis 

evaluations, provides evidence to support the development of ecological solutions by 

means of inertial sensors, thus allowing not only the measurement of the gait 

impairment actual extent, but also a close monitoring of rehabilitation programs 

effectiveness. 
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