6,442 research outputs found

    Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

    Get PDF
    We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization problem. Our technique preserves constant factor approximation ratios, as well as ratios that depend only on certain problem parameters, and exact algorithms yield exact algorithms. Using our technique, we obtain a new 1.61-approximation algorithm for the concave cost facility location problem. For inventory problems, we obtain a new exact algorithm for the economic lot-sizing problem with general concave ordering costs, and a 4-approximation algorithm for the joint replenishment problem with general concave individual ordering costs

    Integrated market selection and production planning: Complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to influence demand characteristics can lead to an improved match between supply and demand. This paper presents a class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP -complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very efficient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    A Decomposition Algorithm for Nested Resource Allocation Problems

    Full text link
    We propose an exact polynomial algorithm for a resource allocation problem with convex costs and constraints on partial sums of resource consumptions, in the presence of either continuous or integer variables. No assumption of strict convexity or differentiability is needed. The method solves a hierarchy of resource allocation subproblems, whose solutions are used to convert constraints on sums of resources into bounds for separate variables at higher levels. The resulting time complexity for the integer problem is O(nlog⁥mlog⁥(B/n))O(n \log m \log (B/n)), and the complexity of obtaining an Ï”\epsilon-approximate solution for the continuous case is O(nlog⁥mlog⁥(B/Ï”))O(n \log m \log (B/\epsilon)), nn being the number of variables, mm the number of ascending constraints (such that m<nm < n), Ï”\epsilon a desired precision, and BB the total resource. This algorithm attains the best-known complexity when m=nm = n, and improves it when log⁥m=o(log⁥n)\log m = o(\log n). Extensive experimental analyses are conducted with four recent algorithms on various continuous problems issued from theory and practice. The proposed method achieves a higher performance than previous algorithms, addressing all problems with up to one million variables in less than one minute on a modern computer.Comment: Working Paper -- MIT, 23 page

    Integrated market selection and production planning: complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to in°uence demand characteristics can lead to an improved match between supply and demand. This paper presents a new class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP-complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very effcient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    Using Geometric Techniques to Improve Dynamic Programming Algorithms for the Economic Lot-Sizing Problem and Extensions

    Get PDF
    In this paper we discuss two basic geometric techniques that can be used to speed up certain types of dynamic programs. We first present the algorithms in a general form, and then we show how these techniques can be applied to the economic lot-sizing problem and extensions. Furthermore, it is illustrated that the geometric techniques can be used to give elegant and insightful proofs of structural results, like Wagner and Whitin's planning horizon theorem. Finally, we present results of computational experiments in which new algorithms for the economic lot-sizing problem are compared with each other, as well as with other algorithms from the literature

    Meta-Heuristics for Dynamic Lot Sizing: a review and comparison of solution approaches

    Get PDF
    Proofs from complexity theory as well as computational experiments indicate that most lot sizing problems are hard to solve. Because these problems are so difficult, various solution techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu search, genetic algorithms and simulated annealing, have become popular and efficient tools for solving hard combinational optimization problems. We review the various meta-heuristics that have been specifically developed to solve lot sizing problems, discussing their main components such as representation, evaluation neighborhood definition and genetic operators. Further, we briefly review other solution approaches, such as dynamic programming, cutting planes, Dantzig-Wolfe decomposition, Lagrange relaxation and dedicated heuristics. This allows us to compare these techniques. Understanding their respective advantages and disadvantages gives insight into how we can integrate elements from several solution approaches into more powerful hybrid algorithms. Finally, we discuss general guidelines for computational experiments and illustrate these with several examples

    Separable Convex Optimization with Nested Lower and Upper Constraints

    Full text link
    We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which uses monotonicity arguments to generate valid bounds from the recursive calls, and eliminate linking constraints based on the information from sub-problems. This algorithm does not need strict convexity or differentiability. It produces an Ï”\epsilon-approximate solution for the continuous problem in O(nlog⁥mlog⁥nBÏ”)\mathcal{O}(n \log m \log \frac{n B}{\epsilon}) time and an integer solution in O(nlog⁥mlog⁥B)\mathcal{O}(n \log m \log B) time, where nn is the number of decision variables, mm is the number of constraints, and BB is the resource bound. A complexity of O(nlog⁥m)\mathcal{O}(n \log m) is also achieved for the linear and quadratic cases. These are the best complexities known to date for this important problem class. Our experimental analyses confirm the good performance of the method, which produces optimal solutions for problems with up to 1,000,000 variables in a few seconds. Promising applications to the support vector ordinal regression problem are also investigated

    Lot Sizing Heuristics Performance

    Get PDF
    Each productive system manager knows that finding the optimal trade‐off between reducing inventory and decreasing the frequency of production/ replenishment orders allows a great cut‐back in operations costs. Several authors have focused their contributions, trying to demonstrate that among the various dynamic lot sizing rules there are big differences in terms of performance, and that these differences are not negligible. In this work, eight of the best known lot sizing algorithms have been described with a unique modelling approach and have then been exhaustively tested on several different scenarios, benchmarking versus Wagner and Whitin’s optimal solution. As distinct from the contributions in the literature, the operational behaviour has been evaluated in order to determine which one is more suitable to the characteristics of each scenario
    • 

    corecore