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Abstract

Emphasis on effective demand management is becoming increasingly recognized as an impor-

tant factor in operations performance. Operations models that account for supply costs and

constraints as well as a supplier’s ability to influence demand characteristics can lead to an

improved match between supply and demand. This paper presents a new class of optimiza-

tion models that allow a supplier to select, from a set of potential markets, those markets that

provide maximum profit when production/procurement economies of scale exist in the supply

process. The resulting optimization problem we study possesses an interesting structure and we

show that although the general problem is NP-complete, a number of relevant and practical

special cases can be solved in polynomial time. We also provide a computationally very efficient
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and intuitively attractive heuristic solution procedure that performs extremely well on a large

number of test instances.

1 Introduction

Production/procurement planning problems are among the most well studied problems in the op-

erations literature. The majority of research in this area focuses on managing the supply side of

the problem when capacities and/or nonlinear cost structures lead to problems containing a com-

binatorial structure. Much of this past research provides efficient solution methods for minimizing

the supply cost incurred in order to meet forecasted demand. Recent research recognizes the im-

portance of accounting for the levers suppliers have for managing or shaping demand in order to

ensure the most profitable match between supply and demand (see, e.g., Lapide (2006) and Ettl

et al. (2006)). Spurred on by the development of research in the area of revenue management in

the past 20 years (see Talluri and van Ryzin (2004) for a thorough discussion of this field), a num-

ber of recent papers have considered the pricing lever that suppliers can use to help shape demand

within procurement planning contexts (see, e.g., Gilbert (1999, 2000), Biller et al. (2005), Chen and

Simchi-Levi (2004a,b), Chan et al. (2006), Van den Heuvel and Wagelmans (2006), Geunes et al.

(2006), Deng and Yano (2006)). We note that these more recent works built on the foundations

provided by Thomas (1970, 1974), Florian and Klein (1971), and Kunreuther and Schrage (1973).

Pricing can be considered as a (partial) determinant of the set of demands a supplier implicitly

selects for a given product. That is, if a supplier decides to sell an item in a given market or through

a given sales channel, then the combination of consumer utility functions and reservation prices

in the market determine those consumers who ultimately purchase the item. Thus, pricing serves

as a critical lever that a supplier can use for demand shaping. At a higher level in the decision

hierarchy, however, a supplier must often first make an explicit selection of the set of markets

or sales channels in which it will offer the item. This paper focuses on this higher level demand

shaping decision, and its role in determining the best match between supply and demand when the

production/procurement process involves economies of scale in output.

The class of problems we consider can be stated simply and concisely: Given a set of potential

markets1 for an item and the sales (and revenue) levels implied by each market in every period over
1Note that the term “market” may be used interchangeably with “sales channels” or “customers.”
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a finite horizon, determine a subset of markets that maximizes net profit, given that all demand

for each selected market must be satisfied. Clearly, when supply costs are linear, each market’s

profitability can be determined in isolation, and the resulting problem is easily solved. However,

economies of scale in production/procurement for an item can lead to a high degree of combinatorial

complexity in determining a subset of markets that maximizes a supplier’s net profit from sales.

In fact, we will show that when supply cost structures are consistent with those found in the

often studied and well-solved Wagner-Whitin problem (Wagner and Whitin, 1958), the resulting

integrated market selection and production planning problem is NP-complete. The optimization

problem that results under these supply cost structures serves as the focus of this paper.

This optimization problem has a particularly interesting structure, as a number of its practical

special cases are polynomially solvable. For instance, if we are given a set of M markets that must

be served, then the resulting problem (after a preprocessing step in which the aggregate demand

of all markets is determined in O(MT ) time) takes the form of a standard uncapacitated lot sizing

problem, which can be solved in O(T log T ) in general (where T is the planning horizon length)

and O(T ) under stationary costs (see, e.g., Wagelmans et al. (1992)). On the other hand, if we are

given a prescribed set of procurement periods, then we simply need to determine, for each market,

whether the average revenue per demand unit of the market exceeds the average cost per demand

unit of the procurement plan (which, after a preprocessing step in which these average costs per

demand unit are determined in O(MT ) time, can be done in O(M) time, where M is the number of

potential markets). When the supplier has flexibility in simultaneously determining which markets

to serve and an optimal corresponding procurement plan, however, the resulting problem cannot in

general be solved in polynomial time (unless P = NP). Despite this negative result, we will explore

a number of special cases of the problem that may occur in practice and can be solved in polynomial

time. Moreover, we provide a new heuristic solution approach for the problem and demonstrate

the effectiveness of this approach on a large number of test instances. Thus, the contributions

of this paper include (i) the definition, formulation, and modeling of this new, interesting, and

relevant problem class; (ii) characterization of the worst-case complexity of this problem class; (iii)

identification of a number of polynomially solvable special cases; and (iv) providing an intuitively

attractive heuristic solution method for the problem with excellent performance results.

The remainder of this paper is organized as follows. The following section formally defines and

3



formulates the integrated market selection and procurement planning problem, which serves as the

focus of this paper. Section 3 demonstrates the NP-completeness of this problem, while Section 4

provides polynomial-time solution approaches for a number of special cases of the problem. Section

5 describes our heuristic solution approach, and Section 6 validates the performance of this heuristic

on a broad test set of problem instances. In Section 7 we provide concluding remarks and directions

for future work on this class of problems.

2 Formal problem description

The market selection problem (MSP) can be described as follows. We are given a number of markets

and a revenue associated with each market. Each market has a known (deterministic) demand for

every period of a discrete and finite time horizon. There is a single manufacturer that has the

possibility to either satisfy the demand of a market or to reject a market. If the manufacturer

decides to select a market, the demand of this market has to be satisfied in all periods. If the

manufacturer rejects a market, then no demand from this market needs to be satisfied and the

revenue is lost.

Given a selection of markets, the manufacturer faces a production planning problem. The

cost of a production plan consists of a fixed setup cost for every period with positive production,

production cost for each unit produced, and holding cost for each item in inventory at the end of

a period. The objective of the manufacturer is to maximize total profit, i.e., to make a selection

of markets that maximizes the revenues minus the production cost associated with the demands of

the selected markets.

If we use the following notation:

Data:

M : number of markets,

Rm : revenue of market m (m = 1, . . . , M),

T : number of time periods,

dm
t : demand of market m in period t (m = 1, . . . , M ; t = 1, . . . , T ),

Kt : setup cost in period t (t = 1, . . . , T ),

pt : unit production cost in period t (t = 1, . . . , T ),

ht : holding cost in period t (t = 1, . . . , T ),
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cm
i,t : variable production and holding cost to satisfy demand dm

t by production in period i,

i.e. cm
i,t = dm

t (pi +
∑t−1

j=i hj) (i, t = 1, . . . , T , i ≤ t; m = 1, . . . ,M),

Decision variables:

xm
i,t : proportion of demand dm

t satisfied by production in period i (i, t = 1, . . . , T , i ≤ t;

m = 1, . . . ,M),

yt : 1 if there is a setup in period t, 0 otherwise (t = 1, . . . , T ),

zm : 1 if market m is selected, 0 otherwise, (m = 1, . . . , M),

then the problem can be formulated as the following mixed integer program (MIP):

(P ) max
M∑

m=1

Rmzm −
T∑

t=1

(
Ktyt +

t∑

i=1

M∑

m=1

cm
i,tx

m
i,t

)
(1)

s.t.
t∑

i=1

xm
i,t = zm, t = 1, . . . , T, m = 1, . . . ,M, (2)

xm
i,t ≤ yi, i, t = 1, . . . , T, i ≤ t; m = 1, . . . , M, (3)

xm
i,t ≥ 0, i, t = 1, . . . , T, i ≤ t; m = 1, . . . , M, (4)

yt ∈ {0, 1}, t = 1, . . . , T, (5)

zm ∈ {0, 1}, m = 1, . . . , M. (6)

The objective function maximizes total revenue minus total production cost. The first set of

constraints ensures that demand is satisfied when a market is selected. Constraints (3) are the

setup forcing constraints: production in period i can only occur if there is a setup in that period.

Constraints (4) ensure that production is nonnegative, while constraints (5) and (6) represent the

binary setup and market selection decisions.

For a given selection of markets or a market selection for short, i.e., a vector z ∈ {0, 1}M , the

problem boils down to a classical lot-sizing problem (Wagner and Whitin, 1958), where demand in a

period equals the sum of the demands of the selected markets in that period. Federgruen and Tzur

(1991), Wagelmans et al. (1992) and Aggarwal and Park (1993) show that the classical lot-sizing

problem can be solved in O(T log T ) time in case of general cost parameters and in O(T ) time in the

case of non-speculative motives, i.e., pt +ht ≥ pt+1 for t = 1, . . . , T − 1. The polynomial solvability

of the MSP for a given market selection is also captured in model (P ). Namely, for a given market
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selection the associated subproblem of formulation (P ) is equivalent to the so-called plant location

formulation. Krarup and Bilde (1977) show that the linear relaxation of this formulation has integer

y-variables in an optimal solution. This then, in turn, implies that in the presence of the binary

constraints (6), the binary constraints (5) can be relaxed.

On the other hand, given any production plan (i.e., given the y-variables), the problem is also

easy to solve. As the zero-inventory property holds, one can calculate the variable production

and holding cost for every market. Then, only markets for which the revenues exceed the variable

production costs are selected. This implies in addition that, in the presence of the binary constraints

(5), the binary constraints (6) can be relaxed.

In conclusion, the problem is easy to solve if either a selection of markets (the z-variables) or

a production plan (the y-variables) is fixed. Moreover, one of the constraint sets (5) and (6) can

be relaxed. Unfortunately, however, we cannot relax both constraint sets simultaneously, so the

problem is not easily solvable in general.

3 NP-completeness and approximation results

In this section we will show that the market selection problem is strongly NP-complete. Proving

this result requires the following steps:

1. We first construct a special case of the MSP in which costs and revenues have a special

structure and where, in each period, at most one market has positive demand.

2. We will then show that, for this special case of the MSP, a solution with positive profit

exists if and only if a selection of markets exists with the property that all subsequences of

consecutive periods with positive demand are of even length. We will call this property the

even subsequence property.

3. Finally, we will show that the problem of identifying a set of markets satisfying the even

subsequence property is NP-complete through a reduction from the 3SAT problem.

After showing that the MSP is strongly NP-complete, we will end the section with a discussion

of approximation results.
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3.1 A special case of the MSP

The class of instances of the MSP that we employ is based on an instance of the uncapacitated

lot-sizing problem with dt = 1, Kt = 2, ht = 1, and pt = 0 for t = 1, . . . , T .

When the horizon T is infinite, it is optimal to produce 2 units in every odd period, as this

minimizes the average cost per time period. In other words, defining a subplan as an interval

for which demands are satisfied by the same production period, then every subplan in an optimal

solution consists of 2 periods, and the average cost per unit demand equals 3
2 . It is easy to see that

the same solution structure yields an optimal solution when T is finite and even, in which case the

total cost optimal cost is given by C(T ) = 3
2T and the average cost per unit demand by C̄(T ) = 3

2 .

Now consider a problem instance with a finite horizon T which is given by T = 2n + 1 for some

n ∈ N, i.e., T is odd. An optimal solution for this instance consists of n two-period subplans and

1 subplan that supplies demand in a single period. The cost of this solution is

C(T ) =
3
2
T +

1
2
. (7)

(Note that a solution with n − 1 subplans consisting of two periods and 1 subplan consisting of

3 periods has the same cost.) The average cost per unit demand for this instance equals

C̄(T ) =
3
2

+
1

2T
>

3
2
.

Based on this lot-sizing problem, we define the following class of instances of the MSP with

markets M = {1, . . . ,M}:

• the planning horizon T is odd;

• Kt = 2, ht = 1, pt = 0 for t = 1, . . . , T ;

• for each period t there is exactly one market m ∈ M such that dm
t = 1, and dm′

t = 0 for all

m′ 6= m;

• Rm = r
∑T

t=1 dm
t with r = C̄(T ).

For this class of problem instances, we will next show that an optimal solution exists containing

positive profit if and only if a selection of markets exists that satisfies the even subsequence property,

i.e., the property that all subsequences of consecutive periods with positive demand are of even
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length. Now let M′ ⊂ M denote a set of selected markets and Π(M′) the corresponding profit.

Let dM′
be the demand sequence induced by M′, i.e., dM′

t =
∑

m∈M′ dm
t . Then a market selection

M′ satisfies the even subsequence property if, for any s < t with dM′
s = dM′

t+1 = 0 and dM′
i = 1 for

i = s + 1, . . . , t we have that t− s is even (where, for convenience, we let dM′
0 = dM′

T+1 = 0).

We have the following result:

Theorem 1 Consider a problem instance of the market selection problem as described above. Then

a selection of markets has strictly positive profit if and only if it satisfies the even subsequence

property.

Proof Note that all possible solutions for this market selection problem instance fall into one of

the following four categories:

• select no markets, i.e., M′ = Ø:

Clearly, Π(M′) = 0.

• select all markets, i.e., M′ = M:

In this case the profit equals

Π(M′) =
M∑

m=1

Rm − C(T ) =
M∑

m=1

r

T∑

t=1

dm
t − C(T ) = rT − C(T ) = 0.

• M′ 6∈ {Ø,M} and M′ does not satisfy the even subsequence property:

Let k be the number of periods in the selection with unit demand, i.e., k =
∑T

t=1

∑
m∈M′ dm

t .

As there is at least one odd subsequence of unit demands, it follows from (7) that the total

cost C(M′) equals at least 3
2k + 1

2 . Therefore,

Π(M′) =
∑

m∈M′
Rm − C(M′) ≤ rk −

(
3
2
k +

1
2

)
< rT −

(
3
2
T +

1
2

)
= 0.

• M′ 6∈ {Ø,M} and M′ satisfies the even subsequence property:

Again, let k be the number of periods in the selection with unit demand. As we have only

even subsequences of unit demands, the optimal lot-sizing solution is to have only subplans

of 2 periods. This means that the average cost per unit demand equals 3
2 , and the optimal

profit equals:

Π(M′) =
∑

m∈M′
Rm − C(M′) = rk − 3

2
k = k

(
r − 3

2

)
> 0.

This proves the desired result. ¤
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3.2 Reduction from 3SAT

Consider the following decision version of the market selection problem:

Market Selection Decision (MSD) problem: Is there a non-empty set of markets with profit

strictly larger than B?

Note that Theorem 1 implies that when B = 0, for problem instances of the MSP as described

in Section 3.1, solving the MSD problem is equivalent to determining whether a selection of markets

exists that satisfies the even subsequence property. Using a reduction from the 3SAT problem to

this decision problem, we next show the following result:

Theorem 2 MSD is strongly NP-complete.

Proof It is easy to see that MSD ∈ NP since a nondeterministic algorithm needs only guess a

selection of markets and check in polynomial time whether that selection has a profit larger than

B. In the following reduction we set B = 0 and construct a problem instance as described in

Section 3.1. To show that MSD is NP-complete it is sufficient to prove that MSD is NP-complete

for this class of instances. Furthermore, it follows from Theorem 1 that MSD is NP-complete for

this class of instances if the corresponding problem of finding a market selection that satisfies the

even subsequence property is NP-complete.

The classical 3SAT problem is described as follows: Given a collection C = {c1, c2, . . . , cm} of

clauses on a finite set U of variables such that |ci| = 3 for 1 ≤ i ≤ m, is there a truth assignment

for U that satisfies all the clauses in C? This problem is known to be NP-complete (Garey and

Johnson, 1979).

Before we proceed with the reduction, we make the following observations for any instance of

the 3SAT problem. First, note that if u is a variable in U , then u and ū are literals over U , and

we will denote a generic literal by l. Then each clause ci can be represented as a disjunction of 2

subclauses αi and βi, where |αi| = 2 and βi is a literal. Without loss of generality we let αi = li1∨ li2

and βi = li3 for each clause of the form ci = li1∨ li2∨ li3. Therefore, a truth assignment should satisfy

uj ⊕ ūj = 1, j = 1, 2, . . . , |U | (8)

li1 ∨ li2 = αi, i = 1, 2, . . . , |C| (9)

αi ∨ li3 = 1, i = 1, 2, . . . , |C| (10)
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(where the ∨ operator corresponds to the logical “OR” operator, while the ⊕ operator corresponds

to the logical “Exclusive OR” operator).

Now suppose we are given an instance of the 3SAT problem. We will construct an instance

of the MSD problem that uses the cost and revenue parameters provided in Section 3.1. The

construction of this instance of the MSD will create a market for each literal and subclause in

the 3SAT problem, where the selection of a market corresponds to a truth assignment for the

corresponding literal or subclause. In addition, we will also create two “dummy markets” that are

needed to ensure equivalence with 3SAT. More formally, we create the following markets:

(i) Create 2 markets for each variable in U and its negation, i.e., muj and mūj (j = 1, . . . , |U |).

(ii) Create 1 market that corresponds to a subclause α of each clause in C, i.e., mαi (i =

1, . . . , |C|).

(iii) Create 2 markets ms and mn. (We will later show that ms must be selected and mn must

not be selected in a market selection with the even subsequence property.)

Given these markets, we construct a specially structured demand matrix such that a truth as-

signment exists for the instance of 3SAT if and only if the MSD problem we construct contains

a profitable selection of markets (i.e., satisfying the even subsequence property). Note that, since

in each period there is exactly one market with positive (unit) demand, we can characterize all

demands through a vector of market indices that indicate the market that has positive demand in

the corresponding period.

(i) For the first 3 periods introduce unit demands for markets

[mn ms ms], (11)

i.e., dmn
1 = 1, dms

2 = 1, dms
3 = 1 (and the remaining demands in periods 1, 2, and 3 are zero).

(ii) For each variable uj , j = 1, 2 . . . , |U |, add 4 periods with a unit demand for markets

[muj ms mūj mn], (12)

(iii) For each clause ci, i = 1, 2 . . . , |C|, add 8 periods with a unit demand for markets

[mli1
mαi mli2

mli1
mαi mli2

mn mn], (13)

10



and 8 additional periods with a unit demand for markets

[mαi ms mli3
mαi ms mli3

mn mn]. (14)

We next need to show that, given the instance of MSD we have defined, a selection of markets

satisfying the even subsequence property exists if and only if a truth assignment exists for the

corresponding 3SAT problem. With this in mind, we call a market selection feasible if and only

if it satisfies the even subsequence property. Initially, we assume that ms is selected and mn

is not selected for any feasible solution, and later verify that this must indeed hold. Under this

assumption, observe that the demand pattern in (12) satisfies a feasible market selection if and only

if the exclusive disjunction requirement in (8) is satisfied. The pattern in (13) then ensures that

mαi is selected if and only if mli1
or mli2

or both are selected, which corresponds to the requirement

in (9). Similarly, the pattern in (14) guarantees a feasible market selection if and only if (10) is

satisfied by either selecting mαi or mli3
or both. Therefore, we can conclude that, assuming ms

must be selected and mn must not be selected for any feasible solution, the MSD problem instance

has a feasible market selection if and only if the 3SAT instance has a “true” assignment.

It remains to show that ms must be selected and mn must not be selected for any feasible

solution.

• Assume that mn is selected. From (11), mn appears in the first period followed by a demand

from ms, therefore ms has to be selected as well. Selection of mn and ms together forces all

introduced markets to be selected as a result of (12), (13) and (14). However, this solution is

infeasible because the total number of periods is not even.

• Assume that neither ms nor mn is selected. Then (12), (13) and (14) require that none of

the markets are selected and the result is an empty set, which is also infeasible.

In conclusion, if 3SAT has a “true” assignment, then only ms must be selected among these two

markets and the MSD problem results with a feasible market selection. The presented reduction is

polynomial and hence the decision version of the market selection problem is NP-complete. ¤

An example of the demand matrix resulting from the above reduction for a single clause is

given in Table 1. Note that the cost parameters are time-invariant in the proof. This means that
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we are considering the least general case for the cost parameters in terms of time-dependency.

Furthermore, the market revenue per demand unit rm is also constant for all markets (i.e., rm =

r = Rm/
∑T

t=1 dm
t ).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

u1 1 1 1

ū1 1

u2 1 1 1

ū2 1

u3 1 1 1

ū3 1

α1 1 1 1 1

ds 1 1 1 1 1 1 1

dn 1 1 1 1 1 1 1 1

Table 1: Demand matrix resulting from the clause u1 ∨ u2 ∨ u3 = α1 ∨ u3.

The NP-completeness proof of Theorem 2 is based on instances of the MSP in which the

demand matrix is very sparse. However, by making a slight modification to the proof, it can be

shown that the MSP is also NP-complete if we restrict ourselves to problem instances in which

each market has positive demand in each period. In particular, for the class of problem instances

of Section 3.1, replace the zero demands by a positive value ε > 0. It can be verified that a market

selection has a strictly positive profit if and only if the following properties are satisfied: (i) the

selection has a unit demand in period 1, (ii) the selection satisfies the even subsequence property,

and (iii) ε is sufficiently small (for example, ε = (r − 3
2)/(MT 2)). In the reduction, we then add

two other time periods at the start of the planning horizon with unit demands for market ms. This

is necessary because we do not want to have a setup in period 1 to satisfy a demand of ε, as this

causes a negative profit for a market selection satisfying the even subsequence property. With this

modification, the problem instance preserves the property that any feasible truth assignment for the

3SAT instance corresponds to a market selection that satisfies the even subsequence property (and

vice versa). Furthermore, because only market selections with properties (i)–(iii) have a strictly

positive profit and ms has a unit demand in period 1, the class of problem instances with only

strictly positive demands is NP-complete.
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3.3 Approximation results

As we will show next, the proof of Theorem 2 in fact implies that it is unlikely that the solution to

the MSP can be approximated efficiently. An algorithm is called an (1−ε)-approximation algorithm

if, for any problem instance, the algorithm finds a solution with profit ΠA that satisfies

ΠA ≥ (1− ε)Π∗,

where Π∗ ≥ 0 is the optimal profit and ε > 0.

Theorem 3 There exists no polynomial-time (1−ε)-approximation algorithm for the MSP for any

0 < ε < 1 unless P = NP.

Proof Consider a problem instance for the MSP reduced from a 3SAT instance as described

in the proof of Theorem 2. Recall that any solution for the MSP instance with profit Π > 0

corresponds to a feasible truth assignment for the 3SAT instance and that a solution with Π ≤ 0

corresponds to an infeasible truth assignment. Assume there exists a polynomial-time (1 − ε)-

approximation algorithm A for some 0 < ε < 1. If Π∗ = 0, then the 3SAT instance is unsatisfiable

and the profit found by algorithm A satisfies ΠA ≥ (1 − ε)Π∗ = 0 and hence ΠA = 0. If Π∗ > 0,

then the 3SAT instance is satisfiable and the profit of the solution found by algorithm A satisfies

ΠA ≥ (1− ε)Π∗ > 0. But this means that algorithm A determines in polynomial time whether the

3SAT instance is satisfiable, which is a contradiction unless P = NP. ¤

Theorem 3 shows that the problem is inapproximable for any 0 < ε < 1. Note that the

algorithm that selects the empty set of markets has profit Π = 0 and hence is a 0-approximation.

The inapproximability result is in contrast with the result of Levi et al. (2005). They consider a

number of inventory and facility location models with market selection which includes the MSP.

However, instead of maximizing profit, they minimize the following cost function:

M∑

m=1

Rm(1− zm) +
T∑

t=1

(
Ktyt +

t∑

i=1

M∑

m=1

cm
i,tx

m
i,t

)
. (15)

In this objective function the lost revenue of a non-selected market is considered an opportunity

cost. Levi et al. (2005) develop a polynomial-time 1.582-approximation algorithm for the MSP.

At first sight, this approximation result seems to be inconsistent with the inapproximability

result of Theorem 3. However, this is not the case. Let Γ(M′) be the cost for a market selection
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M′ ⊂ M using (15) and let Π(M′) be the profit for this market selection using (1). Then the

relationship

Γ(M′) + Π(M′) =
M∑

m=1

Rm

holds. Assume there exists a (1 + ε)-approximation for the minimization problem for some ε > 0.

For a given MSP instance let MA be the market selection found by this algorithm and let M∗ be

the optimal market selection. Then

Γ(MA)
Γ(M∗)

≤ 1 + ε ⇔ Π(MA)
Π(M∗)

≥ (1 + ε)− ε

∑M
m=1 Rm

Π(M∗)
.

As
(∑M

m=1 Rm

)
/Π(M∗) can be arbitrarily large, the (1 + ε)-approximation algorithm for the cost

minimization problem does not provide any performance guarantee for the profit maximization

problem.

4 Polynomially solvable cases

Although the general MSP is NP-hard, in this section we will present some practical special cases

for which the MSP can be solved in polynomial time. We will use different techniques and results

from the literature to solve these cases. For example, one case can be solved by finding a maximum-

flow/minimum-cut in an appropriately defined network, while other cases will be solved through

dynamic programming (DP).

4.1 Seasonal demand

Consider a set of markets that only differ in demand volume but that experience the same seasonal

demand fluctuations, i.e., dm
t = σtdm where σt is the seasonal coefficient for period t and dm

represents the demand volume of market m. We will call this the seasonal demand case and we

will show that this case can be solved in polynomial time.

To this end, consider the following parametric lot-sizing problem. First, let the base demand

vector be given by σ = (σ1, . . . , σT ). Then let CS(d) be the cost of a lot-sizing problem with

demand vector σd. It is not difficult to see that the lot-sizing cost increases linearly in d for a given

production plan. Because CS(d) is the lower envelope of the cost functions of all production plans,

it is piecewise linear and concave.
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This means that for the seasonal case we can rewrite the MSP as

(PS) max
M∑

m=1

Rmzm − CS

(
M∑

m=1

dmzm

)

s.t. zm ∈ {0, 1}, m = 1, . . . , M.

Huang et al. (2005) show that for any concave function CS , the optimal solution to (PS) can be

found in polynomial time. In particular, they show that if we re-order the markets in nonincreasing

order of the ratio Rm/dm, an optimal solution to (PS) can be found among the market selections

{1, . . . ,m} for m = 0, . . . ,M . Since the ordering of the markets takesO(M log M) time and because

we have to solve M lot-sizing problems, the total running time to solve the seasonal demand case

is O(M(log M + T log T )).

4.2 Market-specific prices

We next consider instances of the MSP where the demand for market m in period t is given by

dm
t = αt − βtpm

where αt and βt are time-dependent coefficients of a linear price-demand response curve and pm is

the price in market m. Note that we consider each of the market prices to be fixed, i.e., they are not

themselves decision variables in our problem. Note also that, more generally, pm could represent

any market-dependent but stationary function of price, allowing for more general price-demand

response curves than the linear one presented above.

The aggregate demand in period t corresponding to a given market selection z is given by

M∑

m=1

(αt − βtpm) zm = αt

M∑

m=1

zm − βt

M∑

m=1

pmzm.

Once again we consider a parametric lot-sizing problem, in this case one where the demand in period

t is given by αtk − βtp, and where the parameters are k and p. Let CP (k, p) be the corresponding

lot-sizing cost function. The MSP can then be written as

(PP ) max
M∑

m=1

Rmzm − CP

(
M∑

m=1

zm,
M∑

m=1

pmzm

)

s.t. zm ∈ {0, 1}, m = 1, . . . , M.
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Now suppose that we know that, in the optimal solution to (PP ), exactly k̄ markets are selected.

The problem then reduces to

(PP (k̄)) max
M∑

m=1

Rmzm − CP

(
k̄,

M∑

m=1

pmzm

)

s.t.
M∑

m=1

zm = k̄,

zm ∈ {0, 1}, m = 1, . . . , M.

As in Section 4.1, it is easy to see that CP (k̄, ·) is a concave function. The algorithm of Sharkey et al.

(2007) now solves this problem in O (
M2(log M + T log T )

)
time (where the term T log T represents

the time required to solve a lot-sizing problem). This result immediately implies that, by solving

(PP (k̄)) for k̄ = 1, . . . , M , we can find the optimal solution to (PP ) in O (
M3(log M + T log T )

)

time.

However, we can reduce the running time of this algorithm by a factor of M by employing the

similarities between the M problems of the form (PP (k̄)) that need to be solved. This yields a

generalization of the approach of Sharkey et al. (2007) to solve (PP ). This result is summarized in

the following theorem:

Theorem 4 The MSP with market-specific prices can be solved in O (
M2(log M + T log T )

)
time.

Proof See the Appendix. ¤

4.3 Infinite holding cost

Assume that the manufacturer does not want to or cannot hold inventory, for example because

holding costs are high or there is no storage space available. We will call this case the infinite

holding cost case. For a given selection of markets, the setups will occur in the periods where at

least one of the selected markets has a strictly positive demand. Furthermore, for each market, the

variable production cost can be subtracted from the revenue because any demand is satisfied from

the period in which it occurs and hence the variable cost is known. This means that a problem

instance only consists of demand, revenue and setup cost parameters. The profit Π(M′) for some

subset of markets M′ ⊂M equals

Π(M′) =
∑

m∈M′
Rm −

∑

{t:dm
t >0,m∈M′}

Kt.
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It turns out that the class of infinite holding cost problems is equivalent to a class of selection

problems in the literature (see Hochbaum (2004) for a survey on this class of problems). This class

of selection problems can be described as follows. We are given a set of items I and a collection

of subsets Sj ⊂ I with j ∈ J . There is a cost ci associated with each item i ∈ I and a benefit bj

associated with each subset Sj (j ∈ J ). The items corresponding to some subcollection J ′ ⊂ J
are {i ∈ Sj : j ∈ J ′}. The profit of subcollection J ′ equals the benefits of the subsets minus the

cost of the items in the subsets, i.e.,

∑

j∈J ′
bj −

∑

{i∈Sj :j∈J ′}
ci.

The objective is to find a subcollection J ′ that maximizes the profit.

We will show that an infinite holding cost instance of the MSP corresponds to an instance from

the class of selection problems. First, the time periods form the set I and the markets form the set

J . Second, the cost ci is set to the setup cost of the period corresponding to i and the benefit bj is

set to the revenue of the market corresponding to j. Finally, the set Sj consists of the periods for

which the market corresponding to j has strictly positive demands. So every infinite holding cost

instance can be transformed to an instance from the class of selection problems. It is not difficult

to see that the reverse also holds.

The class of selection problems can be solved in polynomial time by solving a max-flow/min-cut

problem on an appropriately defined network. When applied to the infinite holding cost case, the

network consists of O(M + T ) nodes and O(MT ) arcs. As the max-flow/min-cut problem can be

solved in polynomial time, the infinite horizon MSP can be solved in polynomial time. For more

details on the class of selection problems we refer to Hochbaum (2004) and its references.

4.4 Selection of orders spanning up to two consecutive periods

Geunes et al. (2006) consider a joint pricing and lot-sizing model where, in each period, the demand

to be satisfied depends on the price level. The goal is to find a sequence of prices and a production

plan that maximize total profit. They assume that the revenue function in each period is piecewise-

linear and concave, and show that the problem can be interpreted as an order selection problem.

In turn, this means that this model is a special case of the MSP where each market (or order)

has exactly one period with positive demand. Geunes et al. (2006) solve this problem using DP
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by using the fact that an optimal solution consists of a series of subplans. For a given subplan,

only the orders for which the revenue per demand unit exceeds the variable cost per demand unit

are satisfied. The total running time of this approach is O(MT 2). This of course immediately

implies that that the MSP with exactly one positive demand period for each market can be solved

in O(MT 2) time.

An interesting extension of this case allows for orders to span two consecutive periods. That

is, in this case each “order” corresponds to a market with positive demand in two consecutive

periods. Let tm1 be the first period with positive demand for market m and let tm2 = tm1 + 1. Let

1 ≤ s < t ≤ T for the remainder of this section. We will consider two types of subplans: (i) a

“classical” subplan (s, t) consisting of periods [s, t] with a setup in period s and no other setup,

and (ii) a subplan (s, t) consisting of periods [s, t] with a setup in period s and in period t. (We

use [s, t] as a shorthand notation for {s, . . . , t}.)
Let

M1
s,t = {m ∈M : s ≤ tm1 < tm2 ≤ t} and M2

t = {m ∈M : tm2 = t}

be the markets that may be selected for a type 1 subplan (s, t) and the markets that have their

second positive demand in period t, respectively. A market m ∈M1
s,t is selected for a type 1 subplan

(s, t) if πm,1
s,t ≡ Rm − (dm

tm1
cs,tm1

+ dm
tm2

cs,tm2
) > 0 and a market m ∈ M2

s,t is selected for a type 2

subplan if πm,2
s,t ≡ Rm − (dm

tm1
cs,tm1

+ dm
tm2

ct,t) > 0. If we let π1
s,t (π2

s,t) be the profit corresponding to

a type 1 (type 2) subplan (s, t), then

π1
s,t =

∑

m∈M1
s,t

(πm,1
s,t )+ −Ks

and

π2
s,t =

∑

m∈M1
s,t−1

(πm,1
s,t−1)

+ +
∑

m∈M2
t

(πm,2
s,t )+ −Ks.

To prevent “double counting” the setup cost in the recursion, the setup cost in period t for a type 2

subplan is not contained in π2
s,t.

Note that a type 1 subplan (s, t) can be followed by a type 1 subplan (t + 1, u) or a type 2

subplan (t+1, u) with t+1 < u, and that a type 2 subplan (s, t) can be followed by a type 1 subplan

(t, u) or a type 2 subplan (t, u) with t < u. By defining the variables Π1
t (Π2

t ) as the maximum
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profit for periods [1, t] with the last subplan of type 1 (type 2), the recursion formulas become

Π1
t = max

{
max
1≤s<t

{Π1
s−1 + π1

s,t}, max
1≤s<t

{Π2
s + π1

s,t}, 0
}

for t = 1, . . . , T

and

Π2
t = max

{
max
1≤s<t

{Π1
s−1 + π2

s,t}, max
1≤s<t

{Π2
s + π1

s,t}
}

for t = 1, . . . , T,

where the recursion is initialized by Π1
0 = Π2

0 = 0. The optimal solution equals Π∗ = max{Π1
T ,Π2

T −
KT }. It is not difficult to verify that all values π1

s,t and π2
s,t can be calculated in O(MT 2) time. As

the double recursion takes O(T 2) time, the total running time is O(MT 2).

A natural question is whether the above approach can be generalized to the case where every

market has a fixed number of consecutive positive demand periods, say k. Unfortunately, when

k > 2 the demands of a given market (or order) may be satisfied with more than 2 subplans, which

is in contrast to the cases where k = 1 or k = 2 discussed above. We leave the question of whether

the extension to general (but fixed) k can be solved in polynomial time as an issue for further

research.

4.5 Staircase demand matrix

The final special case that we will consider deals with a situation in which, in each period, there is

positive demand in only one market, and each market has positive demand in a consecutive sequence

of periods. (Note that this is a special case of the class of instances for which the corresponding

MSP was shown to be NP-complete.) This situation may occur, for example, if we face demands in

a single market only, but the planning horizon is partitioned into a collection of time intervals with

the property that if we satisfy demand in a period we have to satisfy demand in all periods that are

in the same interval. These intervals could correspond to seasons, so that this constraint would,

for example, say that we should either satisfy demand for the entire summer season or not satisfy

demand in any of the summer months. Now if we view each time interval as a distinct “market”,

we obtain the more general situation sketched above. This class of problems has the attractive

property that, in contrast with the general MSP, there is a natural ordering for the markets based

on the demands.

More formally, let market m have positive demand in periods tm1 , . . . , tm2 . Furthermore, assume

that tm2 < tm+1
1 for m = 1, . . . , M − 1. This ensures that for two different markets the positive
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demand periods do not have any “overlap” and the positive values in the demand matrix form a

“staircase.” As in the previous sections we will solve this problem by DP. Define Π(m, t) (m =

1, . . . , M , t = 1, . . . , tm2 ) as the maximum profit when markets 1, . . . , m are considered, and where

the last setup occurs in period t. To develop the recursion, we will need some more notation.

Let cV
q (s, t) be the variable production and holding cost to satisfy demand in periods [s, t] from

production in period q and let cLS(s, t) the optimal lot-sizing cost for the problem consisting of

periods [s, t].

Consider the following two cases to calculate Π(m, t):

• 1 ≤ t < tm1 :

In this case we only have to determine whether the variable costs are less than the revenue

for the market as the setup cost is already taken into account. Therefore,

Π(m, t) = Π(m− 1, t) +
(
Rm − cV

t (tm1 , tm2 )
)+

.

• tm1 ≤ t ≤ tm2 :

Let s be the first setup in [tm1 , tm2 ]. Furthermore, let q be the last setup period before this

interval (q = 0 if it does not exist). With this information we can calculate all relevant costs:

the variable cost to satisfy demand in periods [tm1 , s − 1], the cost of the lot-sizing problem

in periods [s, t− 1], and the variable cost to satisfy demand in periods [t, tm1 ]. Therefore, the

recursion becomes

Π(m, t) = max
0≤q<tm1 ,tm1 ≤s≤t

{Π(m−1, q)+(Rm−(cV
q (tm1 , s−1)+cLS(s, t−1)+cV

t (t, tm2 )))+−Kt}.

The recursion is initialized by Π(0, t) = −∞ (t = 1, . . . , T ) and Π(m, 0) = 0 (m = 0, . . . ,M).

Furthermore, for the recursion to be valid, we let cV
s (t, t− 1) = cLS(t, t− 1) = 0 (t = 1, . . . , T ) and

cV
0 (s, t) = ∞ for s 6= tm1 (m = 1, . . . , M). The optimal profit equals

Π∗ = max
t=0,...,T

{Π(M, t)}.

Note that we can calculate the values cV
q (s, t) (1 ≤ q ≤ s ≤ t) and cLS(s, t) (1 ≤ s ≤ t) in O(T 3)

and O(T 2 log T ), respectively. Given these values and given a fixed m and t, the calculation of

Π(m, t) for 1 ≤ t < tm1 and for 1 ≤ t < tm1 takes O(1) and O(T 2) time, respectively. Therefore, the

total running time of the DP is O(MT 3).
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5 Heuristics

Because the MSP is NP-complete, it is very unlikely that there exist efficient algorithms to solve

the problem to optimality. Moreover, the inapproximability result of Theorem 3 shows that we

cannot hope for a polynomial time approximation algorithm. Therefore, to find good solutions for

large instances in a reasonable amount of time we have to restrict ourselves to heuristics. In the

following sections we propose two heuristics.

5.1 An iterative algorithm

Recall from Section 2 that given a selection of markets, the MSP is easy to solve, and given a

production plan, the MSP is also easy to solve. This suggests the following iterative algorithm

(IA). Start with an initial production plan y. Given this production plan, find the optimal set of

markets, say z = z(y). Given this selection of markets, determine the optimal production plan,

say y = y(z). Repeat this procedure until it converges. The idea of iterating between two types of

variables is based on Kunreuther and Schrage (1973) and Van den Heuvel and Wagelmans (2006),

who developed an algorithm that iterates between prices and production plans for a joint lot-sizing

and pricing model.

Note that in each iteration the profit strictly improves until identical production plans are found

in two consecutive iterations. As the total number of production plans and market selections are

finite, the algorithm terminates after a finite number of iterations. In a single iteration we have to

find the optimal selection of markets given a production plan and an optimal production plan given

a selection of markets. Given a production plan, a market m is selected if the variable production

and holding cost are less than the revenue. For a single market, this takes O(T ) time and hence

O(MT ) in total. Given a selection of markets, we have to solve a lot-sizing problem, which can be

done in O(T log T ) time. Therefore, each iteration takes O(T (M + log T )) time.

It is not clear in advance how many iterations the IA will take. Clearly, this depends on

the starting production plan y (among other factors). In the implementation we used T initial

production plans y(n) (n = 1, . . . , T ) where plan y(n) has n subplans (approximately) equally

spaced over the periods. Formally, plan y(n) has setups in periods t = 1 +
⌊

i−1
n T

⌋
for i = 1, . . . , n.

Furthermore, for instances with zero demands, we include some additional starting production

plans. If t is the first non-zero demand period for some market m, then we add starting production
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plans with the first setup in t, and T − t− i+1 (for i = 0, . . . , T − t) setups evenly distributed over

periods t, . . . , T as described before. These production plans may be good starting points because

an optimal solution will not have a setup period before the first non-zero demand period (in the

case of time-independent cost parameters). So for an instance with only non-zero demands we have

T starting points and for instances with zero demands we have O(MT ) starting points.

5.2 A rounding procedure

As mentioned in Section 3.3, Levi et al. (2005) developed a polynomial-time approximation algo-

rithm for the MSP with (15) as the objective function. The approximation algorithm works as

follows. First, the LP relaxation of (P ) is solved (with (15) as the objective function). We then

sort the markets in nondecreasing order of their z-value in the optimal solution of the LP relax-

ation, say zLP
m , m = 1, . . . , M . In a similar spirit as the algorithm for solving the seasonal demand

case (Section 4.1), this algorithm then chooses the best among the market selections {1, . . . , m}
for m = 0, . . . , M . Levi et al. (2005) show that this is a 1.582-approximation algorithm in terms

of the cost of the solution. Although, as we mentioned before, this procedure does not provide a

worst-case performance guarantee for the maximization version of the MSP, we will nevertheless

apply the rounding procedure and empirically test its performance. Since, for each of the O(M)

candidate solutions, we effectively round the market selection variables to 0 or 1 according to some

threshold, we will refer to this algorithm as the rounding procedure (RP). Note that in the RP we

have to solve one LP, sort M numbers, and solve at most M lot-sizing problems, and hence the RP

takes polynomial time.

6 Computational study

In this section we present the results of a computational study that tests the performance of the

heuristics in terms of solution quality and computation time. Since Theorem 2 shows that the MSP

is hard even when the cost parameters are time-invariant, we restrict ourselves to such instances;

in particular, we set pt = p = 0 and ht = h = 1 throughout. We tested the heuristics on three sets

of problem instances with randomly generated demands according to a

A. stationary demand distribution;
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B. demand distribution that follows a seasonal pattern;

C. demand distribution that allows for a high proportion of periods with zero demand.

All computations were performed on a 3.4 GHz Pentium IV desktop computer with 2.0 Gb RAM

and the Windows XP operating system. Furthermore, we used CPLEX 10.1 with default settings

to solve (P ) and its LP-relasation. As we mentioned before, we can relax one of the sets of binary

constraints (5) and (6). Based on preliminary tests, we concluded that CPLEX could solve (P )

most efficiently when constraints (5) are relaxed for instances in which T > M and when constraints

(6) are relaxed when M ≥ T .

6.1 Problem set A: Stationary demands

In Set A, the demands are generated from an integer uniform distribution over the interval [0, 2d̄],

which we denote by U[0, 2d̄]. To obtain comparable problem instances for different values of M and

T , we let the parameters Kt and Rm depend on M and T . In particular, we set Kt = K = αMd̄,

where α is a parameter that characterizes the class of problem instances. We next discuss the

implications of this choice of α on the total cost in the case that all markets are selected. The

average demand per period equals Md̄. In an EOQ model environment the optimal solution has

a setup in every n =
√

2α periods. In turn, a subplan of n periods in a discrete environment has

inventory and setup costs equal to

1
2
n(n− 1)Md̄ + αMd̄.

As there are T
n subplans and α = 1

2n2, the total cost equals approximately 1
2MTd̄(2n − 1) if all

markets are selected. Finally, revenues are generated from U[0, 2R̄] with R̄ = 1
2T d̄(2n − 1). By

using these parameters the profit will be approximately equal to zero when all markets are selected

(and exactly zero when no market is selected).

We generated 25 instances with α ∈ {2, 5, 8, 11} and (M,T ) ∈ {(40, 40), (80, 40), (40, 80)}. The

most important statistics on the quality of the heuristic solutions can be found in Table 2. Column

‘NS’ presents the number of times the optimal solution consists of a “non-straightforward” market

selection, i.e., neither the empty selection nor the selection that includes all markets. The columns

under ‘IG’ provide the average (avg) and maximum (max) integrality gap (which is defined as the

difference between the optimal values of the LP relaxation and the IP as a fraction of the optimal
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IG avg dev (%) max dev (%) non-opt

M T α NS LP avg max IA RP IA RP IA RP IA-RP

40 40 2 17 2 5.99 85.2 0.01 17.3 0.14 100.0 1 16 16 - 0

5 20 2 0.44 2.7 0.00 5.4 0.00 82.9 0 11 11 - 0

8 19 1 0.23 1.1 0.00 1.1 0.00 11.2 0 9 9 - 0

11 24 0 0.52 3.5 0.00 0.6 0.00 5.3 0 10 10 - 0

80 40 2 19 3 0.74 3.6 0.00 26.8 0.00 100.0 0 19 19 - 0

5 24 0 1.16 12.9 0.00 11.9 0.00 100.0 0 24 24 - 0

8 19 2 0.69 4.3 0.00 0.5 0.00 4.7 0 12 12 - 0

11 21 0 0.37 2.4 0.00 1.0 0.00 6.1 0 15 15 - 0

40 80 2 14 5 0.19 1.1 0.00 9.2 0.00 75.3 0 13 13 - 0

5 19 2 10.06 212.2 0.00 7.7 0.00 100.0 0 16 16 - 0

8 18 4 0.32 1.9 0.00 0.1 0.03 1.7 1 4 3 - 0

11 18 4 0.40 2.4 0.04 0.6 0.97 10.3 1 8 7 - 0

Table 2: Set A: Performance of the IA and RP heuristic.

value of the IP). The columns ‘avg dev’ and ‘max dev’ gives the average and maximum relative

deviation from the optimal profit (in %). Finally, the columns under ‘non-opt’ present the number

of instances for which each of the heuristics does not find an optimal solution. Finally, a cell with

value a - b in column ‘IA-RP’ means that there are a instances for which the IA finds a strictly

better solution than the RP and b instances for which the RP finds a strictly better solution than

the IA.

Table 2 shows that the instances vary in terms of optimal solution characteristics. Most of the

instances have an optimal solution that is a “non-straightforward” market selection. However, the

integrality gap varies widely: in some instances the LP relaxation is tight (and gives the optimal

solution), while in other instances the integrality gap is very large. Overall, Table 2 shows that

the IA performs extremely well on problem instances in Set A. Only in 3 out of 300 instances does

it fail to find the optimal solution, and the the maximum deviation is less than 1%. It clearly

outperforms the RP, especially on instances with lower values of α. For some instances, the RP

finds a solution whose deviation from optimality is 100%, which means that the RP finds a solution
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with profit zero while there does exist a profitable solution. Finally, we see that the RP never finds

a better solution than the IA.

Table 3 presents the running times of the heuristics and CPLEX. The last two columns present

the average and maximum number of iterations that the IA takes for a single starting point (i.e.,

for a single initial production plan). We see that the average and maximum number of iterations

for the IA increases slightly as the size of the instances increases. With respect to running time,

the IA finds a solution within 0.1 s for all instances, while the RP takes more than 20 minutes in

the worst case. Furthermore, the optimal solutions are found within 10 minutes by solving the MIP

for (M, T ) = (40, 40), but for (M,T ) = (80, 40) and (M, T ) = (40, 80) there are instances for which

solving the MIP takes more than half an hour and almost 12 hours, respectively. Overall, we can

conclude that the IA outperforms the RP both in terms of solution quality and running time for

this set of instances.

Finally, Table 4 shows the consequence of using (15) instead of (1) as the objective function.

We see that both the integrality gap and the deviation from optimality are much smaller in Table 4

avg time (s) max time (s) IA It

M T α IA RP MIP IA RP MIP avg max

40 40 2 0.013 9.9 140 0.016 11.0 475 2.91 9

5 0.013 14.5 159 0.032 17.7 376 3.10 7

8 0.016 18.0 170 0.016 20.9 519 3.18 6

11 0.013 20.3 202 0.016 24.3 478 3.02 6

80 40 2 0.017 47 571 0.032 59 1,673 2.90 10

5 0.020 69 1,182 0.032 73 2,150 3.19 7

8 0.020 92 994 0.032 180 2,114 3.20 8

11 0.019 151 982 0.032 410 1,843 3.14 6

40 80 2 0.054 196 2,907 0.078 264 16,734 3.08 9

5 0.062 274 6,711 0.094 327 36,473 3.34 8

8 0.063 286 4,337 0.093 1024 16,400 3.40 8

11 0.064 319 7,357 0.094 1303 43,154 3.36 8

Table 3: Set A: Running time of the IA and RP heuristic.
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IG avg dev (%) max dev (%)

M T α avg max IA RP IA RP

40 40 2 0.027 0.051 0.000 0.478 0.009 1.968

5 0.019 0.034 0.000 0.155 0.000 0.972

8 0.018 0.036 0.000 0.100 0.000 0.759

11 0.019 0.035 0.000 0.055 0.000 0.440

80 40 2 0.025 0.046 0.000 0.964 0.000 2.192

5 0.028 0.038 0.000 0.318 0.000 0.808

8 0.020 0.036 0.000 0.029 0.000 0.167

11 0.020 0.028 0.000 0.049 0.000 0.389

40 80 2 0.017 0.042 0.000 0.636 0.000 2.466

5 0.026 0.048 0.000 0.180 0.000 0.710

8 0.018 0.039 0.000 0.009 0.002 0.178

11 0.021 0.043 0.003 0.025 0.070 0.226

Table 4: Set A: Performance of the IA and RP heuristic for the minimization MSP.

compared to Table 2. This can be explained by the fact that Γ(M′) =
∑M

m=1 Rm − Π(M′). This

relation implies that, in the minimization problem, the deviation from optimality equals

Γ(MH)− Γ(M∗)
Γ(M∗)

=
Π(M∗)−Π(MH)∑M

m=1 Rm −Π(M∗)
≤ Π(M∗)∑M

m=1 Rm −Π(M∗)
,

where MH is the set of markets selected by some heuristic that considers the empty set as a

candidate solution (hence Π(MH) ≥ 0). As (in general)
∑M

m=1 Rm is large relative to Π(M∗), the

deviation from optimality will be small for the minimization problem. For example, the instances

in the NP-completeness proof satisfy Π(M∗) ≤ 1
2 and

∑M
m=1 Rm = 3

2T + 1
2 . Hence, the deviation

from optimality is smaller than 1
3T and tends to zero as T →∞.

6.2 Problem set B: Seasonal demands

The good performance of the IA may be caused by the choice of the initial production plans. Note

that in the prior test set, expected demand is constant over the time periods for any selection

of markets. The optimal solution for a lot-sizing problem with time-invariant demand and cost
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parameters consists of subplans that differ at most one period in length, and the initial production

plans we use exactly have this property. To see whether the IA still performs well for problems where

the expected demand is not constant over time, we generate demands with a seasonal component

in Set B. The parameters are the same as in Set A, except for demand which is generated by

dm
t = bεm

t + a(1 + cos(2π(t + km)/c))e , (16)

where εm
t ∼ U[0, 2d̄], a is the amplitude of the seasonal component, km is the starting period of the

cycle for market m, c is the cycle length, and bxe is the integer closest to x. In the experiments

we set d̄ = 5, a = 5 and c = 10. Furthermore, we generated one set with km = 0 and one set with

km ∼ U[0, c− 1] (m = 1 . . . , M). In the first case the seasonal patterns of the different markets are

aligned, while this does not hold for the second case. Finally, we also generated a set of instances

with stationary demands from U[5, 15], the distribution obtained after removing the deterministic

component in (16).

Tables 5 and 6 show the performance of the heuristics for Set B with (M, T ) = (40, 40) and

IG avg dev (%) max dev (%) non-opt

type α NS LP avg max IA RP IA RP IA RP IA - RP

Stat 2 14 2 0.62 6.7 0.000 15.3 0.000 100.0 0 14 14 - 0

5 20 2 2.24 42.4 0.000 9.0 0.000 100.0 0 16 16 - 0

8 19 2 0.28 1.7 0.000 1.2 0.000 24.9 0 8 8 - 0

11 24 0 0.40 2.4 0.000 0.5 0.000 8.6 0 9 9 - 0

Seas 2 17 2 0.992 6.0 0.000 18.0 0.000 100.0 0 16 16 - 0

Fixed 5 20 2 1.664 30.0 0.000 5.9 0.000 100.0 0 12 12 - 0

Peak 8 22 3 0.725 8.8 0.000 0.3 0.000 2.7 0 6 6 - 0

11 18 5 0.175 1.0 0.000 0.1 0.000 1.2 0 4 4 - 0

Seas 2 19 0 0.417 1.9 0.000 16.2 0.000 52.7 0 18 18 - 0

Rnd 5 21 2 0.540 7.1 0.000 0.8 0.000 10.0 0 10 10 - 0

Peak 8 22 1 0.297 3.9 0.000 0.9 0.000 4.9 0 9 9 - 0

11 25 0 0.211 2.1 0.006 0.7 0.147 16.2 1 4 4 - 1

Table 5: Set B: Performance of the IA and RP heuristic.

27



avg time max time IA It

type α IA RP MIP IA RP MIP avg max

Stat 2 0.004 10.6 220 0.016 12.5 925 2.54 8

5 0.008 14.5 284 0.016 18.3 668 2.97 6

8 0.006 18.1 236 0.016 20.0 694 3.02 6

11 0.004 22.3 268 0.016 43.8 634 2.50 7

Seas 2 0.007 9.3 181 0.016 12.4 943 2.75 9

Fixed 5 0.011 12.0 286 0.016 15.6 1178 2.96 7

Peak 8 0.011 14.1 216 0.016 19.2 608 2.98 8

11 0.011 15.2 178 0.016 19.3 549 2.82 5

Seas 2 0.004 10.9 104 0.016 13.4 193 2.77 6

Rnd 5 0.008 12.1 148 0.016 16.0 296 2.72 7

Peak 8 0.008 13.1 94 0.016 16.2 231 2.84 8

11 0.007 14.5 102 0.016 20.0 177 2.39 7

Table 6: Set B: Running time of the IA and RP heuristic.

with each row the result of 25 instances. The column ‘type’ shows the demand type, where ‘Stat’

is the stationary case, ‘Seas Fixed Peak’ is the seasonal case with km = 0, and ‘Seas Rnd Peak’

is the seasonal case with km chosen randomly. Table 5 shows that there is not much difference in

solution quality between the stationary and seasonal demand case for both the IA and the RP. The

IA still performs very well: only in 1 out of 300 instances it does not find the optimal solution.

Interestingly, the RP finds a better solution for this particular instance. As in Table 2, the deviation

from optimality for the RP is high for low values of α. Table 6 shows that the running times of

the RP are lower for the two seasonal cases than for the stationary case. This also holds for the

running time to solve the MIP.

6.3 Problem set C: Sparse demand matrix

The last set of instances has the property that, for each market, there is a high fraction of periods

with zero demand, motivated by the fact that the NP-completeness proof of the MSP is based

on instances with a sparse demand matrix. We obtain Set C from Set A by replacing a market’s
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demand in a period by zero with some probability ρ, and with probability 1−ρ it is generated from

U [0, 2d̄]. We generated 100 instances with the cost parameters as in Sets A and B, (M,T ) = (40, 40),

and ρ ∈ {0.5, 0.75, 0.9}. The results of the tests can be found in Tables 7 and 8.

First, we see that the IA still performs quite well in terms of average deviation from optimality.

However, there is a single instance (with ρ = 0.9 and α = 8) for which the IA cannot find a

profitable solution while one exists. Furthermore, we see that the performance of the IA worsens

as ρ increases, both in terms of deviation from optimality and in terms of number of non-optimal

solutions. The RP shows a decrease in performance as ρ increases from 0.5 to 0.75, but there is no

clear difference between the cases ρ = 0.75 and ρ = 0.9. Finally, we see that for most cases the IA

finds better solutions than the RP, but for ρ = 0.9 there is also a significant number of instances

for which the RP finds a better solution.

Table 8 shows that the running time of the RP and the time to solve the MIP drop dramatically

as ρ increases. This can be explained by the fact that, if dm
t = 0, then xm

i,t = 0 for i = 1, . . . , t,

which means that the number of variables and constraints in the MIP decreases considerably as

IG avg dev (%) max dev (%) non-opt

ρ α NS LP avg max IA RP IA RP IA RP IA - RP

0.50 2 76 14 0.47 15.6 0.00 7.41 0.00 100.0 0 56 56 - 0

5 81 5 0.77 28.1 0.03 3.48 3.05 60.9 1 52 52 - 0

8 86 9 0.28 2.4 0.04 1.27 3.68 17.2 2 50 50 - 0

11 83 10 0.22 2.5 0.00 2.19 0.30 48.3 1 51 50 - 0

0.75 2 90 9 0.26 3.0 0.19 10.01 8.43 100.0 7 65 65 - 1

5 89 9 0.27 6.7 0.09 5.00 3.27 100.0 6 67 67 - 1

8 90 10 0.30 4.2 0.22 5.23 5.76 100.0 9 65 65 - 1

11 91 15 0.21 4.9 0.06 4.14 3.90 73.7 3 58 57 - 0

0.90 2 100 15 0.08 1.3 1.35 6.05 11.63 90.9 43 67 55 - 18

5 100 20 0.09 0.8 1.01 4.78 12.06 54.5 30 66 59 - 9

8 99 21 0.28 20.6 1.71 7.53 100.00 100.0 23 66 61 - 6

11 100 22 0.10 1.4 0.58 5.44 9.57 72.1 19 64 58 - 4

Table 7: Set C: Performance of the IA and RP heuristic.
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avg time (s) max time (s) IA It

ρ α IA RP MIP IA RP MIP avg max

0.50 2 0.04 2.66 19.42 0.09 3.55 124 3.34 10

5 0.04 3.61 32.71 0.06 5.17 113 3.32 10

8 0.04 3.85 28.25 0.06 5.52 90 3.35 8

11 0.04 4.17 29.03 0.08 5.42 111 3.33 8

0.75 2 0.06 0.93 5.62 0.13 1.17 11.6 3.17 10

5 0.06 1.09 7.66 0.08 1.55 33.8 3.21 10

8 0.06 1.17 7.63 0.09 1.67 25.5 3.17 9

11 0.06 1.17 6.45 0.11 1.67 24.0 3.07 8

0.90 2 0.08 0.48 1.22 0.14 0.59 3.08 2.71 8

5 0.08 0.50 1.35 0.11 0.64 3.23 2.80 8

8 0.08 0.51 1.35 0.14 0.63 3.39 2.77 7

11 0.08 0.52 1.37 0.11 0.63 3.67 2.72 8

Table 8: Set C: Running time of the IA and RP heuristic.

ρ increases. Although neither heuristic performs very well for instances with high values of ρ, the

good news is that these instances can be solved to optimality by CPLEX. For example, it takes

only a couple of seconds to solve an instance with ρ = 0.9.

7 Summary and concluding remarks

In this paper, we studied a new class of production planning problems with demand flexibility

in the form of market selection decisions. We showed that, in general, the class of problems

is NP-complete and, in addition, that it is highly unlikely that there exists a polynomial-time

algorithm with a constant worst-case guarantee. We provide polynomial-time solution approaches

for several special cases that may occur in practice. In addition, we introduce a heuristic for

solving the problem and perform extensive computational tests to compare its performance with

a rounding procedure from the literature and with a commercial MIP solver. These results show

that our heuristic finds near-optimal solution extremely fast, except when the demand patterns are
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unrealistically small. Our future research will focus on identifying additional classes of problem

instances that are polynomially solvable, as well as the development of models and algorithms for

problems in which production planning is integrated with market selection and pricing.
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Appendix

Theorem 4 The MSP with market-specific prices can be solved in O (
M2(log M + T log T )

)
time.

Proof We will employ the similarities between the M problems (PP (k)) (k = 1, . . . , M) that need

to be solved to specialize the approach of Sharkey et al. (2007). First, note that all extreme points

of the continuous relaxation of the feasible region of each of these problems is integral, and applying

the approach of Sharkey et al. (2007) to the relaxation of (PP (k)) for some fixed k yields an integral

solution. Therefore, we can, without loss of optimality, relax the integrality constraints; we will

refer to the relaxed problems as (RP (k)). Sharkey et al. (2007) construct a collection of candidate

solutions indexed by

∆ = {(i, j) : i < j and pi 6= pj}
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and denoted by x(i,j) ((i, j) ∈ ∆) that is guaranteed to contain an optimal solution to (RP (k)). In

particular, for each (i, j) ∈ ∆, they use the complementary slackness conditions of a linear program

associated with (RP (k)) to first construct partial solutions as follows. Denote the solution to the

system

λ + γpi = ri

λ + γpj = rj

by

γ(i,j) =
ri − rj

pi − pj
and λ(i,j) =

rjpi − ripj

pi − pj
.

Then a corresponding partial solution is given by

x
(i,j)
` = 0 if r` < λ(i,j) + γ(i,j)p`

x
(i,j)
` = 1 if r` > λ(i,j) + γ(i,j)p`.

Finally, set

I
(i,j)
0 = {` : x

(i,j)
` = 0}

I(i,j) = {` : r` = λ(i,j) + γ(i,j)p`}

I
(i,j)
1 = {` : x

(i,j)
` = 1}.

Interestingly, these partial candidate solutions are independent of the value of k, and (as is shown

in Sharkey et al. (2007)), the time required to determine the sets I
(i,j)
0 , I(i,j), and I

(i,j)
1 for all

(i, j) ∈ ∆ is O(M2 log M).

It now remains to complete the candidate solutions for each value of k by determining the values

of the variables in I(i,j); we will refer to the corresponding solutions as x(i,j)(k). These solutions

can be found by solving the subproblems

(SPP (k)) max
∑

`∈I
(i,j)
1

r` +
∑

`∈I(i,j)

r`x` − CP


k,

∑

`∈I
(i,j)
1

p` +
∑

`∈I(i,j)

p`x`




s.t.
∑

`∈I(i,j)

x` = k − |I(i,j)
1 | (17)

0 ≤ x` ≤ 1 ` ∈ I(i,j).
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It is shown in Sharkey et al. (2007) that (SP(i,j)(k)) can be solved by first solving two linear

knapsack problems, namely,

(KP(k)) max (or min)
∑

`∈I(i,j)

p`x`

s.t.
∑

`∈I(i,j)

x` = k − |I(i,j)
1 |

0 ≤ x` ≤ 1 ` ∈ I(i,j)

and selecting the solution of these two problems with the best objective function value to (SPP (k)).

It is important to note that (SP(i,j)(k)) only has a feasible solution, and thus only needs to be

considered, for |I(i,j)
1 | ≤ k ≤ |I(i,j)

1 |+ |I(i,j)|. We will proceed by first adapting the algorithm from

Sharkey et al. (2007) by, for each (i, j) ∈ ∆, solving for all relevant solutions x(i,j)(k) consecutively,

i.e., for k = I
(i,j)
1 |, . . . , |I(i,j)

1 | + |I(i,j)|. Suppose now that we have found a solution for some value

|I(i,j)
1 | ≤ k < |I(i,j)

1 | + |I(i,j)| and consider the value k + 1. Assuming that we have recorded the

sorting of the variables in the linear knapsack problems (KP(k)) that led to their optimal solutions,

then we need to only add in the next highest (or next lowest) value in the sorting in order to

determine the solutions to (KP(k + 1)). We therefore conclude that, for a fixed (i, j) ∈ ∆, we can

solve for all candidate solutions x(i,j)(k) in O (|I(i,j)| log |I(i,j)|+ |I(i,j)|T log T
)

time, which follows

from the fact that (i) we need to sort the variables in I(i,j) to solve all problems of the form (KP(k)),

and (ii) we need to evaluate the objective function value to (SPP (k)) for O(|I(i,j)|) solutions, each

of which requires the solution of a lot-sizing problem.

Typically, we can expect to have |I(i,j)| = 2 for all (i, j) ∈ ∆. If this is the case, we obtain the

desired result immediately from the fact that |∆| = O(M2). If, however, we may have |I(i,j)| > 2

the situation may be more complex. In general, let us define the sets ∆i = {j : (i, j) ∈ ∆} for

i = 1, . . . , M . Now if, for a given i, no variable occurs in I(i,j) for more than one j ∈ ∆i we have

that

O

 ∑

j∈∆i

|I(i,j)|

 = O(M)

so that the desired result would follow again. Finally, Sharkey et al. (2007) show that, for a given

i, the only variables that can occur in more than one of the sets I(i,j) are the ones for which the

revenue/price pair is identical to that of market i. Denoting, for each i, the set of such markets by
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Di, we obtain
∑

j∈∆i

|I(i,j)| = O (M + M |Di|)

and, since it is easy to see that the sets Di are disjoint, we obtain the desired result:

O



M∑

i=1

∑

j∈∆i

(
|I(i,j)| log |I(i,j)|+ |I(i,j)|T log T

)

 = O


(log M + T log T )

M∑

i=1

∑

j∈∆i

|I(i,j)|



= O (
M2(log M + T log T )

)
.
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