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Abstract Emphasis on effective demand management is becoming increasingly
recognized as an important factor in operations performance. Operations models that
account for supply costs and constraints as well as a supplier’s ability to influence
demand characteristics can lead to an improved match between supply and demand.
This paper presents a class of optimization models that allow a supplier to select,
from a set of potential markets, those markets that provide maximum profit when
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production/procurement economies of scale exist in the supply process. The resulting
optimization problem we study possesses an interesting structure and we show that
although the general problem is NP-complete, a number of relevant and practical spe-
cial cases can be solved in polynomial time. We also provide a computationally very
efficient and intuitively attractive heuristic solution procedure that performs extremely
well on a large number of test instances.

Keywords Lot-sizing · Market selection · Complexity

Mathematics Subject Classification (2000) 68Q25 · 90B30 · 90C39 · 90C59

1 Introduction

Production/procurement planning problems are among the most well studied problems
in the operations literature. The majority of research in this area focuses on managing
the supply side of the problem when capacities and/or nonlinear cost structures lead
to problems containing a combinatorial structure. Much of this past research provides
efficient solution methods for minimizing the supply cost incurred in order to meet
forecasted demand. Recent research recognizes the importance of accounting for the
levers suppliers have for managing or shaping demand in order to ensure the most
profitable match between supply and demand (see, e.g., [21] and [9]). Spurred on
by the development of research in the area of revenue management in the past 20
years (see [24] for a thorough discussion of this field), a number of recent papers
have considered the pricing lever that suppliers can use to help shape demand within
procurement planning contexts (see, e.g., [2–5,7,13,15,16,29]). We note that these
more recent works built on the foundations provided by [11,26,27,31], and [20]. For
a review on coordinating pricing and production/procurement decisions we refer to
[33].

While pricing can be viewed as a (partial) determinant of the demands a supplier
implicitly selects for a product, a supplier must often first make an explicit selection
of the set of markets or sales channels in which it will offer the item. The model we
consider focuses on this higher level demand shaping decision, and its role in deter-
mining the best match between supply and demand when the production/procurement
process involves economies of scale in output. The class of problems we consider can
be stated simply and concisely: Given a set of potential markets (or customers) for
an item and the sales (and revenue) levels implied by each market in every period
over a finite horizon, determine a subset of markets that maximizes net profit, given
that all demand for each selected market must be satisfied. Clearly, when supply costs
are linear, each market’s profitability can be determined in isolation, and the resulting
problem is easily solved. However, economies of scale in production/procurement for
an item can lead to a high degree of combinatorial complexity in determining a subset
of markets that maximizes a supplier’s net profit from sales. In particular, we will use
a supply cost structure that is consistent with the well-known Wagner-Whitin problem
[32].
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The resulting integrated market selection and production planning problem (which
we will refer to as the market selection problem (MSP)) was first proposed in [14],
while [22] developed a constant-factor polynomial-time approximation algorithm for
a related class of market rejection problems in cost-minimization form.

Despite this prior work, this problem’s complexity has to date remained open. In this
paper, we will not only show that the MSP is NP-hard, but also that no constant-factor
polynomial-time approximation algorithm exists (unless P = NP).

The MSP has a particularly interesting structure, as a number of its practical special
cases are polynomially solvable. For instance, given a set of M markets that must be
served, then the resulting problem is equivalent to a standard uncapacitated lot sizing
problem, which can be solved in O(T log T ) in general (where T is the planning hori-
zon length) and O(T ) under time-invariant costs (see, e.g., [30]). On the other hand,
given a prescribed set of procurement periods, it is straightforward to determine, for
each market, whether the average revenue per unit of demand exceeds the minimum
average cost per unit (which, after a preprocessing step in which these average costs
per demand unit are determined in O(MT ) time, can be done in O(M) time, where
M is the number of potential markets).

Despite the fact that MSP is NP-hard in general, we will explore a number of spe-
cial cases of the problem that may occur in practice and can be solved in polynomial
time. Moreover, we provide a new heuristic solution approach for the problem and
demonstrate the effectiveness of this approach on a large number of test instances.
Thus, the contributions of this paper include (i) characterization of the worst-case
complexity of an interesting and relevant problem class; (ii) identification of a num-
ber of polynomially solvable special cases; and (iii) providing an intuitively attractive
heuristic solution method for the problem with excellent performance results.

The remainder of this paper is organized as follows. Section 2 formally defines
and formulates the integrated market selection and procurement planning problem.
Section 3 demonstrates the NP-hardness of this problem and shows that there does
not exist a polynomial-time approximation algorithm that guarantees a solution within
some given percentage of the optimal profit unless P = NP . Furthermore, it shows
the relation between the MSP and a class of games that has recently been proposed in
the literature: economic lot-sizing games. Section 4 provides polynomial-time solu-
tion approaches for a number of special cases of the problem. In Sect. 5 we propose a
new heuristic and present a heuristic previously proposed in the literature. In Sect. 6
we perform a computational study which shows that the heuristic works very well. We
provide brief concluding remarks and directions for future work in Sect. 7.

2 Formal problem description

The MSP can be described as follows. We are given M potential markets and a revenue
Rm associated with market m (m = 1, . . .,M). Market m has a known demand dm

t in
each period t of a discrete and finite time horizon of length T . A supplier may choose
to either satisfy the demand of a market or to reject a market. If the supplier selects a
market, the market’s demand must be satisfied in all periods. If the supplier rejects a
market, then none of the market’s demand is satisfied and the revenue is lost.
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Given a selection of markets, the supplier faces a production planning problem.
The cost of a production plan consists of a fixed setup cost Kt in period t if and only
if production is positive in period t , a production cost pt for each unit produced in
period t , and a holding cost of ht for each item in inventory at the end of period t ,
for t = 1, . . .,T . The objective of the manufacturer is to maximize total profit, i.e.,
to select a set of markets that maximizes revenues less the production and holding
costs associated with satisfying the selected market demands. For convenience, we

define cm
i,t = dm

t (pi + ∑t−1
j=i h j ) as the cost of satisfying market m demand in period

t using production in period i , and let xm
i,t denote the decision variable for the pro-

portion of demand dm
t satisfied using production in period i (i, t = 1, . . . , T, i ≤ t ;

m = 1, . . . , M). We define the binary variables yi = 1 if there is a setup in period i
(0 otherwise) for i = 1, . . . , T , and zm = 1 if market m is selected (0 otherwise) for
m = 1, . . . , M .

Then the MSP can be formulated as the following mixed integer program (MIP):

max
∑M

m=1 Rm zm−
T∑

t=1

(

Kt yt +
t∑

i=1

M∑

m=1

cm
i,t x

m
i,t

)

(1a)

s.t.
∑t

i=1 xm
i,t = zm, t = 1, . . . , T, m = 1, . . . , M, (1b)

xm
i,t ≤ yi , i, t = 1, . . . , T, i ≤ t; m = 1, . . . , M, (1c)

xm
i,t ≥ 0, i, t = 1, . . . , T, i ≤ t; m = 1, . . . , M, (1d)

yi ∈ {0, 1}, i = 1, . . . , T, (1e)

zm ∈ {0, 1}, m = 1, . . . , M. (1f)

The objective function maximizes total revenue minus total production cost. The first
set of constraints ensures that demand is satisfied when a market is selected. Con-
straints (1c) are setup forcing constraints: production in period i can only occur if
there is a setup in that period. Constraints (1d) ensure that production is nonnega-
tive, while constraints (1e) and (1f) represent the binary setup and market selection
decisions.

For a given selection of markets or a market selection for short, i.e., a vector z ∈
{0, 1}M , the problem boils down to a classical lot-sizing problem [32], where demand
in a period equals the sum of the demands of the selected markets in that period.
Federgruen and Tzur [10], Wagelmans et al. [30], and Aggarwal and Park [1] show
that the classical lot-sizing problem can be solved in O(T log T ) time in the case of
general cost parameters and in O(T ) time in the case of non-speculative motives, i.e.,
when pt +ht ≥ pt+1 for t = 1, . . .,T −1. The polynomial solvability of the MSP for a
given market selection is also captured in (1). Namely, for a given market selection the
associated subproblem of formulation (1) is equivalent to the so-called plant location
formulation. Krarup and Bilde [19] show that the linear relaxation of this formulation
has integer y-variables in an optimal solution. This then, in turn, implies that in the
presence of the binary constraints (1f), the binary constraints (1e) can be relaxed.

On the other hand, given any production plan (i.e., given the y-variables), the
problem is also easy to solve. As the zero-inventory property holds, i.e., production
only occurs in a period with no incoming inventory, one can calculate the variable
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production and holding cost for every market. Then, only markets for which the rev-
enues exceed the variable production costs are selected. Formally, one can show that
for fixed y-variables, the problem decomposes in M subproblems and the coefficient
matrix of every subproblem is totally unimodular. This implies in addition that, in
the presence of the binary constraints (1e), the binary constraints (1f) can be relaxed.
Thus, the problem is easy to solve if either a selection of markets (the z-variables) or
a production plan (the y-variables) is fixed. Moreover, one of the constraint sets (1e)
and (1f) can be relaxed. Unfortunately, however, we cannot relax both constraint sets
simultaneously, so the problem is not easily solvable in general.

3 Complexity results

In this section we will show that the market selection problem is strongly NP-hard.
Proving this result requires the following steps:

1. We first construct a special case of the MSP in which costs and revenues have
a special structure and where, in each period, at most one market has positive
demand.

2. We then show that, for this special case, a solution with positive profit exists if and
only if a selection of markets exists with the property that all maximal nonempty
subsequences of consecutive periods with positive demand are of even length. We
will call this the even subsequence property.

3. Finally, we will show that the problem of identifying a set of markets satisfying the
even subsequence property is NP-complete through a reduction from the 3SAT
problem.

After showing that the MSP is strongly NP-hard, we will end the section with a
discussion of approximation results and show the implication of our complexity result
for a class of cooperative games.

3.1 A special case of the MSP

The class of instances of the MSP that we employ is based on an instance of the
uncapacitated lot-sizing problem with dt = 1, Kt = 2, ht = 1, and pt = 0 for
t = 1, . . .,T .

When the horizon T is infinite, it is optimal to produce 2 units in every odd period,
as this minimizes the average cost per time period. Define a subplan as an interval
for which demands are satisfied by the same production period. Then the optimality
property implies that every subplan in an optimal solution consists of 2 periods, and the
average cost per demand unit equals 3

2 . It is easy to see that the same solution structure
yields an optimal solution when T is finite and even, in which case the optimal cost is
given by C(T ) = 3

2 T and the average cost per demand unit by C̄(T ) = 3
2 .

Now consider a problem instance with a finite horizon T where T = 2n+1 for some
n ∈ N, i.e., T is odd. An optimal solution for this instance consists of n two-period
subplans and 1 subplan that supplies demand in a single period.
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The cost of this solution is

C(T ) = 3

2
T + 1

2
. (2)

(Note that a solution with n − 1 subplans consisting of two periods and 1 subplan
consisting of 3 periods has the same cost.) The average cost per unit of demand for
this instance equals

C̄(T ) = 3

2
+ 1

2T
>

3

2
.

Based on this lot-sizing problem, we define the following class of instances of the
MSP with markets M = {1, . . .,M}:
• the planning horizon T is odd;
• Kt = 2, ht = 1, pt = 0 for t = 1, . . .,T ;
• in each period t there is exactly one market m ∈ M with dm

t = 1, and dm′
t = 0 for

all m′ �= m;
• Rm = r

∑T
t=1 dm

t with r = C̄(T ).

For this class of problem instances, we will next show that an optimal solution exists
containing positive profit if and only if a selection of markets exists that satisfies
the even subsequence property, i.e., the property that all subsequences of consecutive
periods with positive demand are of even length. Now let M′ ⊂ M denote a set
of selected markets and �(M′) the corresponding profit. Let dM′

be the demand
sequence induced by M′, i.e., dM′

t = ∑
m∈M′ dm

t . Then a market selection M′ sat-
isfies the even subsequence property if, for any s < t with dM′

s = dM′
t+1 = 0 and

dM′
i = 1 for i = s + 1, . . .,t we have that t − s is even (where, for convenience, we

let dM′
0 = dM′

T +1 = 0). We then have the following result:

Lemma 1 Consider a problem instance of the MSP as described above. Then a selec-
tion of markets has strictly positive profit if and only if it satisfies the even subsequence
property.

Proof Note that all possible solutions for this market selection problem instance fall
into one of the following four categories:

• select no markets, i.e., M′ = Ø:
Clearly, �(M′) = 0.

• select all markets, i.e., M′ = M:
In this case the profit equals

�(M′) =
M∑

m=1

Rm − C(T ) =
M∑

m=1

r
T∑

t=1

dm
t − C(T ) = rT − C(T ) = 0.

• M′ �∈ {Ø,M} and M′ does not satisfy the even subsequence property:
Let k be the number of periods in the selection with unit demand, i.e., k =∑T

t=1
∑

m∈M′ dm
t . As there is at least one odd subsequence of unit demands,
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it follows from (2) that the total cost C(M′) equals at least 3
2 k + 1

2 . Therefore,

�(M′) =
∑

m∈M′
Rm − C(M′) ≤ rk −

(
3

2
k + 1

2

)

< rT −
(

3

2
T + 1

2

)

= 0.

• M′ �∈ {Ø,M} and M′ satisfies the even subsequence property:
Again, let k be the number of periods in the selection with unit demand. As we have
only even subsequences of unit demands, the optimal lot-sizing solution has only
subplans of 2 periods. This means that the average cost per unit demand equals 3

2 ,
and the optimal profit equals:

�(M′) =
∑

m∈M′
Rm − C(M′) = rk − 3

2
k = k

(

r − 3

2

)

> 0.

This proves the desired result. �	

3.2 Reduction from 3SAT

Consider the following decision version of the market selection problem:
Market Selection Decision (MSD) problem: Is there a non-empty set of markets

with profit strictly larger than B?
Note that Lemma 1 implies that when B = 0, for problem instances of the MSP as

described in Sect. 3.1, solving the MSD problem is equivalent to determining whether
a selection of markets exists that satisfies the even subsequence property. Using a
reduction from the 3SAT problem to this decision problem, we next show the follow-
ing result:

Theorem 1 MSD is strongly NP-complete.

Proof It is easy to see that MSD ∈ NP since a nondeterministic algorithm needs only
guess a selection of markets and check in polynomial time whether that selection has a
profit larger than B. In the following reduction we set B = 0 and construct a problem
instance as described in Sect. 3.1. To show that MSD is NP-complete it is sufficient
to prove that MSD is NP-complete for this class of instances. Furthermore, it follows
from Lemma 1 that MSD is NP-complete for this class of instances if the correspond-
ing problem of finding a market selection that satisfies the even subsequence property
is NP-complete.

The classical 3SAT problem is described as follows: Given a collection C =
{c1, c2, . . . , cm} of clauses on a finite set U of variables such that |ci | = 3 for
1 ≤ i ≤ m, is there a truth assignment for U that satisfies all the clauses in C?
This problem is known to be NP-complete [12].

Before we proceed with the reduction, we make the following observations for any
instance of the 3SAT problem. First, note that if u is a variable in U , then u and ū
are literals over U , and we will denote a generic literal by l. Then each clause ci can
be represented as a disjunction of 2 subclauses αi and βi , where |αi | = 2 and βi is a
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literal. Without loss of generality we let αi = li
1 ∨ li

2 and βi = li
3 for each clause of

the form ci = li
1 ∨ li

2 ∨ li
3. Therefore, a truth assignment should satisfy

u j ⊕ ū j = 1, j = 1, 2, . . . , |U | (3)

li
1 ∨ li

2 = αi , i = 1, 2, . . . , |C | (4)

αi ∨ li
3 = 1, i = 1, 2, . . . , |C | (5)

(where the ∨ operator corresponds to the logical “OR” operator, while the ⊕ operator
corresponds to the logical “Exclusive OR” operator).

Now suppose we are given an instance of the 3SAT problem. We will construct an
instance of the MSD problem that uses the cost and revenue parameters provided in
Sect.3.1. The construction of this instance of the MSD will create a market for each
literal and subclause in the 3SAT problem, where the selection of a market corresponds
to a truth assignment for the corresponding literal or subclause. In addition, we will
also create two “dummy markets” that are needed to ensure equivalence with 3SAT.
More formally, we create the following markets:

• Create 2 markets for each variable in U and its negation, i.e., mu j and mū j ( j =
1, . . . , |U |).

• Create 1 market corresponding to a subclause α of each clause in C , i.e., mαi

(i = 1, . . . , |C |).
• Create 2 markets ms and mn . (We will later show that ms must be selected and mn

must not be selected in a market selection with the even subsequence property.)

Given these markets, we construct a specially structured demand matrix such that a
truth assignment exists for the instance of 3SAT if and only if the MSD problem we con-
struct contains a profitable selection of markets (i.e., satisfying the even subsequence
property). Note that, since in each period there is exactly one market with positive
(unit) demand, we can characterize all demands through a vector of market indices
that indicates the market that has positive demand in the corresponding period.

• For the first 3 periods we introduce unit demands for markets

[mn ms ms], (6)

i.e., dmn
1 = 1, dms

2 = 1, dms
3 = 1 (and the remaining demands in periods 1, 2, and

3 are zero).
• For each variable u j , j = 1, 2 . . . , |U |, add 4 periods with a unit demand for

markets

[mu j ms mū j mn], (7)

• For each clause ci , i = 1, 2 . . . , |C |, add 8 periods with a unit demand for markets

[mli
1

mαi mli
2

mli
1

mαi mli
2

mn mn], (8)
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and 8 additional periods with a unit demand for markets

[mαi ms mli
3

mαi ms mli
3

mn mn]. (9)

We next need to show that, given the instance of MSD we have defined, a selec-
tion of markets satisfying the even subsequence property exists if and only if a truth
assignment exists for the corresponding 3SAT problem. With this in mind, we call
a market selection feasible if and only if it satisfies the even subsequence property.
Initially, we assume that ms is selected and mn is not selected for any feasible solution,
and later verify that this must indeed hold. Under this assumption, observe that the
demand pattern in (7) satisfies a feasible market selection if and only if the exclusive
disjunction requirement in (3) is satisfied. The pattern in (8) then ensures that mαi

is selected if and only if mli
1

or mli
2

or both are selected, which corresponds to the
requirement in (4). Similarly, the pattern in (9) guarantees a feasible market selection
if and only if (5) is satisfied by either selecting mαi or mli

3
or both. Therefore, we can

conclude that, assuming ms must be selected and mn must not be selected for any
feasible solution, the MSD problem instance has a feasible market selection if and
only if the 3SAT instance has a “true” assignment.

It remains to show that ms must be selected and mn not selected for any feasible
solution.

• Assume that mn is selected. From (6), mn appears in the first period followed by
a demand from ms , and therefore ms must be selected as well. Selection of mn

and ms together forces all introduced markets to be selected as a result of (7), (8)
and (9). However, this solution is infeasible because the total number of periods
is not even. (Selection of mn and ms together, along with the first sequence of the
form of (7) imply that the only way to achieve an even subsequence among the first
seven periods is if we select both mu1 and mū1 . Similar reasoning implies that each
market mu j and mū j must be selected. Finally, each market mαi must be selected
as well to avoid a subsequence of size 3 (see columns 21–23 in Table 1) because
of the market demands defined in (8) and (9).)

• Assume that neither ms nor mn is selected. Then (7), (8) and (9) require that none
of the markets are selected and the result is an empty set, which is also infeasible.
(If neither mn nor ms is selected, then we cannot select any mu j or mū j , or by (7)
we would have a sequence of length 1. Finally, given that no market is selected so
far, we cannot select any mαi either, because again we would have a sequence of
length 1 by (8) and (9).)

In conclusion, if 3SAT has a “true” assignment, then only ms must be selected
among these two markets and the MSD problem results with a feasible market selec-
tion. The presented reduction is polynomial and the largest number involved is O(T ).
Hence, the decision version of the market selection problem is strongly NP-complete.

�	

An example of the demand matrix resulting from the above reduction for a single
clause is given in Table 1. Note that the cost parameters are time-invariant in the proof,

123



W. Van den Heuvel et al.

Table 1 Demand matrix resulting from the clause u1 ∨ u2 ∨ u3 = α1 ∨ u3

Every block indicated by the vertical lines corresponds to a sequence of market demands defined in (6), (7),
(8) or (9)

i.e., we are considering the least general case for the cost parameters in terms of time-
dependency. Furthermore, the market revenue per demand unit rm is also constant for
all markets (i.e., rm = r = Rm/

∑T
t=1 dm

t ).
The proof of Theorem 1 is based on instances of the MSD in which the demand

matrix is very sparse. However, by making a slight modification to the proof, we
can show that the MSD is also NP-complete if we restrict ourselves to problem
instances in which each market has positive demand in each period. In particular, for
the class of problem instances of Sect.3.1, replace the zero demands by a positive value
δ > 0. Furthermore, we add two time periods at the start of the planning horizon with
unit demands for market ms and δ demands for the other markets. This is necessary
because we do not want to setup in period 1 to satisfy a demand of δ, as this causes
a negative profit for any market selection. Finally, the revenue of market m becomes
Rm = r

∑T
t=1�dm

t  with r = 3/2 + 1/(2T ) (so δ demands do not contribute to the
summation).

It can be verified that a market selection has a strictly positive profit if and only if
the following properties are satisfied: (i) the selection has at least a unit demand in
period 1, (ii) the selection satisfies a modified even subsequence property where all
subsequences of consecutive periods with demand at least 1 are of even length, and (iii)
δ is sufficiently small (for example, δ = (r − 3/2)/(MT 2)). With the above modifi-
cation, the problem instance preserves the property that any feasible truth assignment
for the 3SAT instance corresponds to a market selection that satisfies the modified
even subsequence property (and vice versa). Furthermore, because only market selec-
tions with properties (i)–(iii) have a strictly positive profit and ms has a unit demand
in period 1, the class of problem instances with only strictly positive demands is
NP-complete.

3.3 Approximation results

As we will show next, the proof of Theorem 1 in fact implies that it is unlikely that
the solution to the MSP can be approximated efficiently. An algorithm is called a
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(1 − ε)-approximation algorithm if, for any problem instance, the algorithm finds a
solution with profit �A that satisfies

�A ≥ (1 − ε)�∗,

where �∗ ≥ 0 is the optimal profit and ε > 0.

Theorem 2 There exists no polynomial-time (1−ε)-approximation algorithm for the
MSP for any 0 < ε < 1 unless P = NP .

Proof Consider a problem instance for the MSP reduced from a 3SAT instance as
described in the proof of Theorem 1. Recall that any solution for the MSP instance
with profit � > 0 corresponds to a feasible truth assignment for the 3SAT instance
and that a solution with � ≤ 0 corresponds to an infeasible truth assignment. Assume
there exists a polynomial-time (1−ε)-approximation algorithm A for some 0 < ε < 1.
If �∗ = 0, then the 3SAT instance is unsatisfiable and the profit found by algorithm A
satisfies �A ≥ (1 − ε)�∗ = 0 and hence �A = 0. If �∗ > 0, then the 3SAT
instance is satisfiable and the profit of the solution found by algorithm A satisfies
�A ≥ (1−ε)�∗ > 0. But this means that algorithm A determines in polynomial time
whether the 3SAT instance is satisfiable, which is a contradiction unless P = NP .

�	
Theorem 2 shows that the problem is inapproximable for any 0 < ε < 1. Note that

the algorithm that selects the empty set of markets has profit � = 0 and hence is a
0-approximation. The inapproximability result is in contrast with the result of [22].
They consider a number of inventory and facility location models with market selec-
tion which includes the MSP. However, instead of maximizing profit, they minimize
the following cost function:

M∑

m=1

Rm(1 − zm) +
T∑

t=1

(

Kt yt +
t∑

i=1

M∑

m=1

cm
i,t x

m
i,t

)

. (10)

In this objective function the lost revenue of a non-selected market is considered an
opportunity cost. Note that from an optimization point of view, minimizing (10) is
equivalent to maximizing (1a). Levi et al. [22] develop a polynomial-time 1.582-
approximation algorithm for the MSP.

At first sight, this approximation result seems inconsistent with the inapproxima-
bility result of Theorem 2. However, this is not the case. Let �(M′) be the cost for
a market selection M′ ⊂ M using (10) and let �(M′) be the profit for this market
selection using (1a). Then the relationship

�(M′) + �(M′) =
M∑

m=1

Rm

holds. Assume there exists a (1 + ε)-approximation for the minimization problem for
some ε > 0. For a given MSP instance let MA be the market selection found by this
algorithm and let M∗ be the optimal market selection. Then
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�(MA)

�(M∗)
≤ 1 + ε ⇔ �(MA)

�(M∗)
≥ (1 + ε) − ε

∑M
m=1 Rm

�(M∗)
.

As
∑M

m=1 Rm/�(M∗) can be arbitrarily large, the (1 + ε)-approximation algorithm
for the minimum cost problem does not provide any performance guarantee for the
maximum profit problem.

3.4 Implication for economic lot-sizing games

In this section we show the implication of the complexity result for economic lot-sizing
(ELS) games (see [28] for the details). In the ELS game we have a set of players M,
where every player m ∈ M faces a lot-sizing problem. That is, every player m has a
demand dm

t in period t = 1, . . .,T and it is assumed that setup costs Kt , production
costs pt and holding costs ht are player independent. Note that we reuse some notation
of the previous section to show the relation between the MSP and ELS games. If a
coalition M′ ⊂ M cooperates, then the cost of this coalition C(M′) is equal to the
optimal cost of the lot-sizing problem with demands dM′

t = ∑
m∈M′ dm

t and cost
parameters Kt , pt and ht (t = 1, . . .,T ). Because of economies of scale, all players
have an incentive to cooperate in a single coalition M, the so-called grand coalition.

The main question in a cooperative game is whether there exists a fair cost alloca-
tion among the players. The core of a game is often used as a solution concept, i.e.,
an allocation of the costs to the players, in cooperative game theory.

The core of the ELS game is defined as

{

R ∈ R
M :

∑

m∈M
Rm = C(M),

∑

m∈M′
Rm ≤ C(M′) for all M′ ⊂ M

}

,

where we let C(Ø) = 0. Note that no coalition M′ has an incentive to leave the grand
coalition for a cost allocation R that is in the core. In the next paragraph it will be
clear why we use the notation R to represent the cost allocation, while it was used to
represent revenues in Sect. 2. Several interesting questions are: (i) is the core of the
game non-empty?, (ii) can a core element be found in polynomial time?, and (iii) can
we check in polynomial time whether a cost allocation is in the core? [28] show that
the core of an ELS game is non-empty. Using a very different approach, [25] answered
(i) and (ii) affirmatively for a class of games defined on location problems. Since the
ELS problem can be viewed as a specially structured facility location problem (see
[19]), these results apply to the ELS games as well.

It is still an open question (see [6]) whether core membership of a cost allocation
can be determined in polynomial time for the ELS games. We will provide a negative
answer to this question. To this end, define a problem instance of the ELS game with
the demand and cost parameters as in the problem instance of Sect. 3.1. Furthermore,
consider the cost allocation R with Rm (m ∈ M) equal to the revenue of market m
in the problem instance of Sect. 3.1. Note that R is a cost allocation of the ELS game
because

∑
m∈M Rm = C(M). In fact, every instance of the MSP problem with the
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property
∑

m∈M Rm = C(M) corresponds to an instance of the ELS game with an
associated cost allocation R and vice versa. Clearly, the allocation R is not in the
core if there exists a coalition M′ such that

∑
m∈M′ Rm > C(M′). Finding such a

coalition is one of the subproblems in [8], who develop a row generation procedure to
determine a core element of the ELS game. Using the relation to the MSP instances
of Sect. 3.1, it is clear that finding such a coalition is equivalent to finding a market
selection with a strictly positive profit, which is strongly NP-complete by Theorem 1.
This leads to the following corollary:

Corollary 1 It is strongly NP-complete to determine whether a cost allocation of
the ELS game is in the core of the game.

4 Polynomially solvable cases

Although the general MSP is NP-hard, in this section we will present some practical
special cases for which the MSP can be solved in polynomial time. We will use different
techniques and results from the literature to solve these cases. For example, one case
can be solved by finding a maximum-flow/minimum-cut in an appropriately defined
network, while other cases will be solved through dynamic programming (DP).

4.1 Seasonal demand

Consider a set of markets that only differ in demand volume but that experience the
same seasonal demand fluctuations, i.e., dm

t = σt dm where σt is the seasonal coeffi-
cient for period t and dm represents the demand volume of market m. We will call this
the seasonal demand case and we will show that this case can be solved in polynomial
time.

To this end, consider the following parametric lot-sizing problem. First, let the base
demand vector be given by σ = (σ1, . . . , σT ). Then let CS(d) be the cost of a lot-
sizing problem with demand vector σd. For a given production plan (i.e., fixing the
production periods), the lot-sizing cost increases linearly in d, since it is exactly know
from which period a demand is satisfied because of the zero-inventory property.

Because CS(d) is the lower envelope of the cost functions of all production plans,
it is piecewise linear and concave.

This means that for the seasonal case we can rewrite the MSP as

(PS) max
M∑

m=1

Rm zm− CS

(
M∑

m=1

dm zm

)

s.t. zm ∈ {0, 1}, m = 1, . . .,M.

Huang et al. [18] show that for any concave function CS , the optimal solution to (PS)
can be found in polynomial time. In particular, they show that if we re-order the markets
in nonincreasing order of the ratio Rm/dm , an optimal solution to (PS) can be found
among the market selections {1, . . .,m} for m = 0, . . .,M . Since the ordering of the
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markets takes O(M log M) time and because we have to solve M lot-sizing problems,
the total running time to solve the seasonal demand case is O(M(log M + T log T )).

4.2 Market-specific prices

We next consider instances of the MSP where the demand for market m in period t is
given by

dm
t = αt − βtwm

where αt and βt are time-dependent coefficients of a linear price-demand response
curve and wm is the price in market m. Note that we consider each of the market prices
to be fixed, i.e., they are not themselves decision variables in our problem. Note also
that, more generally, wm could represent any market-dependent but stationary function
of price, allowing for more general price-demand response curves than the linear one
presented above.

The aggregate demand in period t corresponding to a given market selection z is
given by

M∑

m=1

(αt − βtwm) zm = αt

M∑

m=1

zm − βt

M∑

m=1

wm zm .

Once again we consider a parametric lot-sizing problem; in this case one where the
demand in period t is given by αt k − βt p, and where the parameters are k and p.
Let CP (k, p) be the corresponding lot-sizing cost function. The MSP can then be
written as

(PP ) max
M∑

m=1

Rm zm− CP

(
M∑

m=1

zm,

M∑

m=1

wm zm

)

s.t. zm ∈ {0, 1}, m = 1, . . .,M.

Now suppose that we know that, in the optimal solution to (PP ), exactly k̄ markets are
selected. The problem then reduces to

(PP (k̄)) max
M∑

m=1

Rm zm− CP

(

k̄,

M∑

m=1

wm zm

)

s.t.
M∑

m=1

zm = k̄,

zm ∈ {0, 1}, m = 1, . . .,M.

As in Sect. 4.1, it is easy to see that CP (k̄, ·) is a concave function. The algorithm
of [23] now solves this problem in O (

M2(log M + T log T )
)

time (where the term
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T log T represents the time required to solve a lot-sizing problem). This result imme-
diately implies that, by solving (PP (k̄)) for k̄ = 1, . . . , M , we can find the optimal
solution to (PP ) in O (

M3(log M + T log T )
)

time.
However, we can reduce the running time of this algorithm by a factor of M by

employing the similarities between the M problems of the form (PP (k̄)) that need to
be solved. This yields a generalization of the approach of [23] to solve (PP ). This
result is summarized in the following theorem:

Theorem 3 The MSP with market-specific prices can be solved in O
(

M2(log M +
T log T )

)
time.

Proof See the Appendix. �	

4.3 Infinite holding cost

Assume that the manufacturer does not want to or cannot hold inventory, for example
because holding costs are high or there is no storage space available. We will call this
case the infinite holding cost case. Since no inventory is carried forward, we only need
the decision variable xm

i,t with i = t in the formulation of Sect. 2, which reduces the
number of variables significantly. For a given selection of markets, the setups will
occur in the periods where at least one of the selected markets has a strictly positive
demand. Furthermore, for each market, the variable production cost can be subtracted
from the revenue because any demand is satisfied from the period in which it occurs
and hence the variable cost is known. This means that a problem instance only consists
of demand, revenue and setup cost parameters. The profit �(M′) for some subset of
markets M′ ⊂ M equals

�(M′) =
∑

m∈M′
Rm −

∑

{t :dm
t >0 ∀m∈M′}

Kt .

It turns out that the class of infinite holding cost problems is equivalent to a class
of selection problems in the literature (see [17] for a survey on this class of problems).
This class of selection problems can be described as follows. We are given a set of
items I and a collection of subsets S j ⊂ I with j ∈ J . There is a cost ci associated
with each item i ∈ I and a benefit b j associated with each subset S j ( j ∈ J ). The
items corresponding to some subcollection J ′ ⊂ J are {i ∈ S j : j ∈ J ′}. The profit
of subcollection J ′ equals the benefits of the subsets minus the cost of the items in
the subsets, i.e.,

∑

j∈J ′
b j −

∑

{i∈S j : j∈J ′}
ci .

The objective is to find a subcollection J ′ that maximizes the profit.
We will show that an infinite holding cost instance of the MSP corresponds to an

instance from the class of selection problems. First, the time periods form the set I
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and the markets form the set J . Second, the cost ci is set to the setup cost of the period
corresponding to i and the benefit b j is set to the revenue of the market corresponding
to j . Finally, the set S j consists of the periods for which the market corresponding
to j has strictly positive demands. So every infinite holding cost instance can be trans-
formed to an instance from the class of selection problems. It is not difficult to see
that the reverse also holds.

The class of selection problems can be solved in polynomial time by solving a
max-flow/ min-cut problem on an appropriately defined network. When applied to the
infinite holding cost case, the network consists of O(M + T ) nodes and O(MT ) arcs.
As the max-flow/ min-cut problem can be solved in polynomial time, the infinite hori-
zon MSP can be solved in polynomial time. For more details on the class of selection
problems we refer to [17] and its references.

4.4 Selection of orders spanning up to k consecutive periods

In this section we begin by considering the special case in which each market has
demand in only one period of the planning horizon; thus, the selection of a market
is equivalent to selecting one customer order in a single period. This means that the
problem decomposes by time period and allows for a polynomial-time solution via
dynamic programming, as shown in [13]. They consider an equivalent pricing and
lot-sizing model where, in each period, demand depends on the price level. The goal
is to find a sequence of prices and a production plan that maximize total profit. They
assume that the revenue function in each period is piecewise-linear and concave in
the demand level, and show that the problem can be interpreted as an equivalent order
selection problem. Geunes et al. [13] solve this problem by using the fact that an
optimal solution consists of a series of subplans. For a given subplan, only the orders
for which the revenue per demand unit exceeds the variable cost per demand unit are
satisfied. The total running time of this approach is O(MT 2). This of course imme-
diately implies that that the MSP with exactly one positive demand period for each
market can be solved in O(MT 2) time.

An interesting generalization of this case allows for a customer’s order to span at
most k consecutive periods for some fixed 1 < k < T . That is, in this case each
“order” corresponds to a market with zero demands except possibly within a sequence
of k consecutive periods. Formally, for every market m ∈ M there exists a time
period tm with dm

i = 0 for i = 1, . . .,tm − 1 and i = tm + k, . . .,T . We next show that
this problem can, for constant k, also be solved in polynomial time using DP.

To this end, let Mt (t = k, . . .,T ) be the set of markets whose first positive demand
period is period t − k + 1 (we use the convention that MT denotes the set of mar-
kets whose first positive demand is in one of the periods T − k + 1, . . .,T ). We
know that demands for markets in the set Mt can only occur within the periods
{t − k + 1, . . .,t} for t ≥ k. Furthermore, let Pt be the set of partial production plans
that span periods i, . . . , t for some i = 1, . . . , t , where i is the last setup period in peri-
ods {1, . . . , t−k+1} and the remaining setups in the partial plan are in {t−k+2, . . . , t}.
Note that we are only considering partial plans here, so that there may be more setups
in periods {1, . . . , t − k + 1} in a final solution that contains a partial plan from Pt .
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Furthermore, observe that if market m ∈ Mt is selected in an optimal solution, it must
be satisfied using the setups from some partial plan P ∈ Pt (observe that if a market
in Mt has demand in period t − k + 1 and we use a partial plan P ∈ Pt , then the only
available setup to satisfy demand in period t −k +1 is the first setup in the partial plan
P ∈ Pt , which is the last setup among periods {1, . . . , t − k + 1}; all other demands
for the market must be satisfied using this setup or using available setups in the partial
plan from periods {t − k + 2, . . .,t}). We let Pτ = 1 if τ is a production period in
partial plan P and Pτ = 0 otherwise; thus P ∈ Pt is a binary vector of length t − i +1
with elements Pτ , τ = i, . . . , t (note that vectors in Pt may have different lengths).
Finally, we let t1

P = i be the first production period of P (and by definition the only
production period of P in {1, . . .,t − k + 1}).

We will first focus on the cost associated with a given partial plan. We let c(m, P)

be the variable production and holding cost incurred when satisfying the demands of
market m ∈ Mt using the setups in partial plan P ∈ Pt . Because of the zero-inventory
property, these costs are easy to calculate. Suppose that the partial plan P is part of
the optimal solution. Then market m will be selected only if Rm ≥ c(m, P). So if we
let �(t, P) be the profit (excluding setup cost) when considering all markets in Mt

using partial plan P ∈ Pt , then

�(t, P) =
∑

m∈Mt

(Rm − c(m, P))+.

The forward DP we will present considers each solution as a sequence of “com-
patible” partial plans, and is based on the fact that if P ∈ Pt is part of the optimal
solution, then either one of the following cases holds: (i) partial plan P overlaps some
partial plan Q, i.e., Q ∈ P j with t1

P ≤ j < t , or (ii) there is a partial partial plan Q
that precedes P , i.e., Q ∈ P j with j < t1

P . Note that if P overlaps some partial plan
Q ∈ P j with j < t , then P also overlaps with some partial plan Q ∈ Pt−1. Further-
more, partial plans P ∈ Pt and Q ∈ Pt−1 need to be “compatible”. That is, period i
is a production period in P if and only if i is a production period in Q. Formally, we
have Qi = Pi for i = t − k − 2, . . .,t − 1 and either t1

P = t1
Q or t1

P = t − k + 1 and
Qt−k+1 = 1. We denote the compatibility of partial plans P and Q by P ∼ Q.

We are now ready to state the recursion formulas. Let F(t, P) be the optimal
profit when considering markets

⋃t
i=k Mi and with partial plan P ∈ Pt contained

in the solution. Furthermore, let F(t) be the optimal profit up to period t . Then, for
t = k, . . .,T and P ∈ Pt we have

F(t, P) = max

{
max{Q∈Pt−1: Q∼P} {F(t − 1, Q) + �(t, P) − Pt Kt } ,

F(t1
P − 1) + �(t, P) −

∑

i=t1
p,...,t

Pi Ki
(11)

and

F(t) = max{F(t − 1), max
P∈Pt

{F(t, P)}}. (12)

Note that (11) considers the two cases mentioned in the previous paragraph. To pre-
vent double counting the setup costs in cases involving overlapping partial production
plans, we only subtract the setup cost of the production period in period t (if any).
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To initialize the DP algorithm, we let Pk−1 = Ø and F(t) = 0 for t = 0, . . .,k − 1.
Clearly, the optimal profit equals F(T ).

Finally, we determine the running time of the DP algorithm. First, note that |Pt | =
(t − k + 1)2k−1 = O(T ) for fixed k. It takes O(k) = O(1) time to calculate the
variable cost associated with market m ∈ Mt for some P ∈ Pt , which means that all
values c(m, t, P) can be determined in O(MT 2) time. Furthermore, for a given t and
P ∈ Pt , the calculation of (11) takes O(T ) time as |P j | = O(T ). So the calculation
of all values F(t, P) takes O(T 3) time. Finally, it takes O(T 2) time to determine all
values F(t) in (12). Therefore, the total running time is O(MT 2)+O(T 3)+O(T 2) =
O(T 2(M + T )).

4.5 Staircase demand matrix

The final special case that we will consider deals with a situation in which, in each
period, there is positive demand in only one market, and each market has positive
demand in a consecutive sequence of periods. (Note that this is a special case of the
class of instances for which the corresponding MSP was shown to be NP-complete.)
This situation may occur, for example, if we face demands in a single market only, but
the planning horizon is partitioned into a collection of time intervals with the property
that if we satisfy demand in a period we have to satisfy demand in all periods that are in
the same interval. These intervals could correspond to seasons, so that this constraint
would, for example, say that we should either satisfy demand for the entire summer
season or not satisfy demand in any of the summer months. Now if we view each time
interval as a distinct “market”, we obtain the more general situation sketched above.
This class of problems has the attractive property that, in contrast with the general
MSP, there is a natural ordering for the markets based on the demands.

More formally, let market m have positive demand in periods tm
1 , . . . , tm

2 . Further-
more, assume that tm

2 < tm+1
1 for m = 1, . . .,M −1. This ensures that for two different

markets the positive demand periods do not have any “overlap” and the positive values
in the demand matrix form a “staircase.” As in the previous sections we will solve this
problem by DP. Define �(m, t) (m = 1, . . .,M, t = 1, . . .,tm

2 ) as the maximum profit
when markets 1, . . .,m are considered, and where the last setup occurs in period t . To
develop the recursion, we will need some more notation. Let cV

q (s, t) be the variable
production and holding cost to satisfy demand in periods {s, . . . , t} from production
in period q and let cL S(s, t) the optimal lot-sizing cost for the problem consisting of
periods {s, . . . , t}.

Consider the following two cases to calculate �(m, t):

• 1 ≤ t < tm
1 :

In this case we only have to determine whether the variable costs are less than the
revenue for the market as the setup cost is already taken into account. Therefore,

�(m, t) = �(m − 1, t) +
(

Rm − cV
t (tm

1 , tm
2 )

)+
.
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• tm
1 ≤ t ≤ tm

2 :
Let s be the first setup in {tm

1 , . . . , tm
2 }. Furthermore, let q be the last setup period

before this interval (q = 0 if it does not exist). With this information we can calcu-
late all relevant costs: the variable cost to satisfy demand in periods {tm

1 , . . . , s−1},
the cost of the lot-sizing problem in periods {s, . . . , t − 1}, and the variable cost
to satisfy demand in periods {t, . . . , tm

1 }. Therefore, the recursion becomes

�(m, t) = max
0≤q<tm

1 ,tm
1 ≤s≤t

{�(m − 1, q) + (Rm − (cV
q (tm

1 , s − 1) + cL S(s, t − 1)

+cV
t (t, tm

2 )))+ − Kt }.

The recursion is initialized by �(0, t) = −∞ (t = 1, . . . , T ) and �(m, 0) = 0
(m = 0, . . . , M). Furthermore, for the recursion to be valid, we let cV

s (t, t − 1) =
cL S(t, t − 1) = 0 (t = 1, . . . , T ) and cV

0 (s, t) = ∞ for s �= tm
1 (m = 1, . . . , M). The

optimal profit equals

�∗ = max
t=0,...,T

{�(M, t)}.

Note that we can calculate the values cV
q (s, t) (1 ≤ q ≤ s ≤ t) and cL S(s, t) (1 ≤ s ≤

t) in O(T 3) and O(T 2 log T ), respectively. Given these values and given a fixed m
and t , the calculation of �(m, t) for 1 ≤ t < tm

1 and for tm
1 ≤ t ≤ tm

2 takes O(1) and
O(T 2) time, respectively. Therefore, the total running time of the DP is O(MT 2).

5 Heuristics

Because the MSP is NP-complete, it is very unlikely that there exist efficient algo-
rithms to solve the problem to optimality. Moreover, the inapproximability result of
Theorem 2 shows that we cannot hope for a polynomial-time approximation algo-
rithm. Therefore, finding good solutions for large instances in a reasonable amount of
time requires restricting ourselves to heuristics. In the following sections we propose
two heuristics.

5.1 An iterative algorithm

Recall from Sect. 2 that given a selection of markets, the MSP is easy to solve, and
given a production plan, the MSP is also easy to solve. This suggests the following
iterative algorithm (IA). Start with an initial production plan y. Given this production
plan, find the optimal set of markets, say z = z(y). Given this selection of markets,
determine the optimal production plan, say y = y(z). Repeat this procedure until it
converges. The idea of iterating between two types of variables is based on [20] and
[29], who developed an algorithm that iterates between prices and production plans
for a joint lot-sizing and pricing model.

In each iteration of the IA the profit strictly improves until identical production
plans are found in two consecutive iterations. As the total number of production plans
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and market selections are finite, the algorithm terminates after a finite number of itera-
tions. Furthermore, the algorithm terminates in some local optimal optimum (ŷ, ẑ). If
we let π(y, z) be the profit of the solution (y, z), then a locally optimal solution (ŷ, ẑ)
satisfies the property that π(ŷ, ẑ) ≥ π(y, ẑ) for all y ∈ {0, 1}T and π(ŷ, ẑ) ≥ π(ŷ, z)
for all z ∈ {0, 1}M . So clearly, if we happen to come across either the production plan
or the set of markets that are in an optimal solution, we will have found a (global)
optimal solution.

In a single iteration we have to find the optimal selection of markets given a pro-
duction plan and an optimal production plan given a selection of markets. Given a
production plan, a market m is selected if the variable production and holding cost are
less than the revenue. For a single market, this takes O(T ) time and hence O(MT ) in
total. Given a selection of markets, we have to solve a lot-sizing problem, which can
be done in O(T log T ) time. Therefore, each iteration takes O(T (M + log T )) time.

It is not clear in advance how many iterations the IA will take. Clearly, this depends
on the starting production plan y (among other factors). In the implementation we
used T initial production plans y(n) (n = 1, . . . , T ) where plan y(n) has n subplans
(approximately) equally spaced over the periods. Formally, plan y(n) has setups in peri-
ods t = 1 + ⌊ i−1

n T
⌋

for i = 1, . . . , n. Furthermore, for instances with zero demands,
we include some additional starting production plans. If t is the first non-zero demand
period for some market m, then we add starting production plans with the first setup
in t , and T − t − i + 1 (for i = 0, . . . , T − t) setups evenly distributed over periods
t, . . . , T as described before. These production plans may be good starting points
because an optimal solution will not have a setup period before the first non-zero
demand period (in the case of time-independent cost parameters). So for an instance
with only non-zero demands we have T starting points and for instances with zero
demands we have O(MT ) starting points. Because we use multiple starting points,
we stand a good chance of finding an optimal solution for problems where only a few
locally optimal solutions exist. (Note that M′ = Ø is always a local optimum.)

5.2 A rounding procedure

As mentioned in Sect. 3.3, [22] developed a polynomial-time approximation algorithm
for the MSP with (10) as the objective function. The approximation algorithm works as
follows. First, the LP relaxation of (P) is solved (with (10) as the objective function).
We then sort the markets in nondecreasing order of their z-value in the optimal solution
of the LP relaxation, say zL P

m , m = 1, . . . , M . In the last step the algorithm chooses
the best among the market selections {1, . . . , m} for m = 0, . . . , M . Levi et al. [22]
show that this is a 1.582-approximation algorithm in terms of the cost of the solution.
Although, as we mentioned before, this procedure does not provide a worst-case per-
formance guarantee for the maximization version of the MSP, we will nevertheless
apply the rounding procedure and empirically test its performance. Since, for each of
the O(M) candidate solutions, we effectively round the market selection variables to
0 or 1 according to some threshold, we will refer to this algorithm as the rounding
procedure (RP). Note that in the RP we have to solve one LP, sort M numbers, and
solve at most M lot-sizing problems, and hence the RP takes polynomial time.
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6 Computational study

In this section we present the results of a computational study that tests the performance
of the heuristics in terms of solution quality and computation time. Since Theorem 1
shows that the MSP is hard even when the cost parameters are time-invariant, we
restrict ourselves to such instances; in particular, we set pt = p = 0 and ht = h = 1
throughout. Furthermore, such instances are the most common/realistic ones from a
practical point of view, since technologies and holding cost rates are not expected to
change often over time. Moreover, we performed preliminary testing on a random sam-
ple of problems with time dependent parameters and these tests show that instances
with time-invariant cost parameters also tend to be the hardest ones.

We tested the heuristics on three sets of problem instances with randomly generated
demands according to a

A. stationary demand distribution;
B. demand distribution that allows for a high proportion of periods with zero demand;
C. demand distribution that follows a seasonal pattern.

In many practical applications, we would expect a substantial number of periods with
positive demands (Sets A and C). However, we also test the heuristics’ performance
on problem instances with a substantial number of zero-demands (Set B). So these
instances are ‘closer’ to the instances presented in the NP-completeness proof of
Sect. 3. All computations were performed on a 3.4 GHz Pentium IV desktop com-
puter with 2.0 Gb RAM and the Windows XP operating system. Furthermore, we
used CPLEX 10.1 with default settings to solve (P) and its LP-relaxation. As we
mentioned before, we can relax one of the sets of binary constraints (1e) and (1f).
Based on preliminary tests, we concluded that CPLEX could solve (P) most effi-
ciently when constraints (1e) are relaxed for instances in which T > M and when
constraints (1f) are relaxed when M ≥ T . Because the results for Set C are very similar
to the results of Set A, we only present the results for Sets A and B.

6.1 Problem set A: Stationary demands

In Set A, the demands are generated from an integer uniform distribution over the inter-
val [0, 2d̄], which we denote by U[0, 2d̄]. To obtain comparable problem instances
for different values of M and T , we let the parameters Kt and Rm depend on M and
T . In particular, we set Kt = K = αMd̄, where α is a parameter that characterizes
the class of problem instances. We next discuss the implications of this choice of α

on the total cost in the case that all markets are selected. The average demand per
period equals Md̄. In an EOQ model environment the optimal solution has a setup in
every n = √

2α periods. In turn, a subplan of n periods in a discrete environment has
inventory and setup costs equal to

1

2
n(n − 1)Md̄ + αMd̄.
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Table 2 Set A: Performance of the IA and RP heuristic

M T α NS LP IG avg dev (%) max dev (%) non-opt IA-RP

avg max IA RP IA RP IA RP

40 40 2 17 2 5.99 85.2 0.01 17.3 0.14 100.0 1 16 16-0

5 20 2 0.44 2.7 0.00 5.4 0.00 82.9 0 11 11-0

8 19 1 0.23 1.1 0.00 1.1 0.00 11.2 0 9 9-0

11 24 0 0.52 3.5 0.00 0.6 0.00 5.3 0 10 10-0

80 40 2 19 3 0.74 3.6 0.00 26.8 0.00 100.0 0 19 19-0

5 24 0 1.16 12.9 0.00 11.9 0.00 100.0 0 24 24-0

8 19 2 0.69 4.3 0.00 0.5 0.00 4.7 0 12 12-0

11 21 0 0.37 2.4 0.00 1.0 0.00 6.1 0 15 15-0

40 80 2 14 5 0.19 1.1 0.00 9.2 0.00 75.3 0 13 13-0

5 19 2 10.06 212.2 0.00 7.7 0.00 100.0 0 16 16-0

8 18 4 0.32 1.9 0.00 0.1 0.03 1.7 1 4 3-0

11 18 4 0.40 2.4 0.04 0.6 0.97 10.3 1 8 7-0

As there are T
n subplans and α = 1

2 n2, the total cost equals approximately
1
2 MT d̄(2n-1) if all markets are selected. Finally, revenues are generated from U[0, 2R̄]
with R̄ = 1

2 T d̄(2n − 1). By using these parameters the profit will be approximately
equal to zero when all markets are selected (and exactly zero when no market is
selected).

We generated 25 instances with α ∈ {2, 5, 8, 11} and (M, T ) ∈ {(40, 40), (80, 40),

(40, 80)}. The most important statistics on the quality of the heuristic solutions can
be found in Table 2. Column ‘NS’ presents the number of times the optimal solution
consists of a “non-straightforward” market selection, i.e., neither the empty selection
nor the selection that includes all markets. Column ‘LP’ shows how many times the
LP relaxation is tight and hence provides an optimal solution. The columns under ‘IG’
provide the average (avg) and maximum (max) integrality gap (which is defined as
the difference between the optimal values of the LP relaxation and the IP as a fraction
of the optimal value of the IP). The columns ‘avg dev’ and ‘max dev’ give the average
and maximum relative deviation from the optimal profit (in %). The columns under
‘non-opt’ present the number of instances for which each of the heuristics does not
find an optimal solution. Finally, a cell with value a - b in column ‘IA-RP’ means that
there are a instances for which the IA finds a strictly better solution than the RP and
b instances for which the RP finds a strictly better solution than the IA.

Table 2 shows that the instances vary in terms of optimal solution characteristics.
Most of the instances have an optimal solution that is a “non-straightforward” market
selection. However, the integrality gap varies widely: in some instances the LP relax-
ation is tight (and gives the optimal solution), while in other instances the integrality
gap is very large. Overall, Table 2 shows that the IA performs extremely well on prob-
lem instances in Set A. Only in 3 out of 300 instances does it fail to find the optimal
solution, and the maximum deviation is less than 1%. It clearly outperforms the RP,
especially on instances with lower values of α. For some instances, the RP finds a
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Table 3 Set A: Running time of the IA and RP heuristic

M T α avg time (s) max time (s) IA It

IA RP MIP IA RP MIP avg max

40 40 2 0.013 9.9 140 0.016 11.0 475 2.91 9

5 0.013 14.5 159 0.032 17.7 376 3.10 7

8 0.016 18.0 170 0.016 20.9 519 3.18 6

11 0.013 20.3 202 0.016 24.3 478 3.02 6

80 40 2 0.017 47 571 0.032 59 1,673 2.90 10

5 0.020 69 1,182 0.032 73 2,150 3.19 7

8 0.020 92 994 0.032 180 2,114 3.20 8

11 0.019 151 982 0.032 410 1,843 3.14 6

40 80 2 0.054 196 2,907 0.078 264 16,734 3.08 9

5 0.062 274 6,711 0.094 327 36,473 3.34 8

8 0.063 286 4,337 0.093 1024 16,400 3.40 8

11 0.064 319 7,357 0.094 1,303 43, 154 3.36 8

solution whose deviation from optimality is 100%, which means that the RP finds a
solution with profit zero while there does exist a profitable solution. Finally, we see
that the RP never finds a better solution than the IA.

Table 3 presents the running times of the heuristics and CPLEX. The last two col-
umns present the average and maximum number of iterations that the IA takes for a
single starting point (i.e., for a single initial production plan). We see that the aver-
age and maximum number of iterations for the IA increases slightly as the size of
the instances increase. The small number of iterations can be explained as follows.
Although market selections do not satisfy a monotonicity property in general, the
experiments show that it rarely happens that a market first enters and later leaves (or
the other way around) a solution in the path of the IA (that is, the production plans and
market selections in consecutive iterations). An intuitive explanation of this is that if
only markets enter the current selection in an iteration, then demand will increase and
the number of setups will increase in general. In turn, the variable cost will decrease in
general and again more markets will enter the selection. By repeating this argument,
markets will only enter the selection until a local optimum is found. Clearly, for a path
where a market switches at most once from selected to non-selected, the number of
possible market selections is limited (O(M)) and hence the number of iterations is
limited.

With respect to running time, the IA finds a solution within 0.1 s for all instances,
while the RP takes more than 20 min in the worst case. Furthermore, the optimal
solutions are found within 10 min by solving the MIP for (M, T ) = (40, 40), but
for (M, T ) = (80, 40) and (M, T ) = (40, 80) there are instances for which solving
the MIP takes more than half an hour and almost 12 h, respectively. Overall, we can
conclude that the IA outperforms the RP both in terms of solution quality and running
time for this set of instances.

Finally, if we use (10) instead of (1a) as the objective function, it turns out that both
the integrality gap and the deviation from optimality are much smaller than the values
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Table 4 Set B: Performance of the IA and RP heuristic

ρ α NS LP IG avg dev (%) max dev(%) non-opt IA-RP

avg max IA RP IA RP IA RP

0.50 2 76 14 0.47 15.6 0.00 7.41 0.00 100.0 0 56 56-0

5 81 5 0.77 28.1 0.03 3.48 3.05 60.9 1 52 52-0

8 86 9 0.28 2.4 0.04 1.27 3.68 17.2 2 50 50-0

11 83 10 0.22 2.5 0.00 2.19 0.30 48.3 1 51 50-0

0.75 2 90 9 0.26 3.0 0.19 10.01 8.43 100.0 7 65 65-1

5 89 9 0.27 6.7 0.09 5.00 3.27 100.0 6 67 67-1

8 90 10 0.30 4.2 0.22 5.23 5.76 100.0 9 65 65-1

11 91 15 0.21 4.9 0.06 4.14 3.90 73.7 3 58 57-0

0.90 2 100 15 0.08 1.3 1.35 6.05 11.63 90.9 43 67 55-18

5 100 20 0.09 0.8 1.01 4.78 12.06 54.5 30 66 59-9

8 99 21 0.28 20.6 1.71 7.53 100.00 100.0 23 66 61-6

11 100 22 0.10 1.4 0.58 5.44 9.57 72.1 19 64 58-4

in Table 2. The average and maximum deviation from optimality of the RP are less
than 1% and 2.5%, respectively, while the average and maximum deviation of the IA
are even less than 0.01% and 0.1%, respectively. This can be explained by the fact
that �(M′) = ∑M

m=1 Rm − �(M′). This relation implies that, in the minimization
problem, the deviation from optimality equals

�(MH ) − �(M∗)
�(M∗)

= �(M∗) − �(MH )
∑M

m=1 Rm − �(M∗)
≤ �(M∗)

∑M
m=1 Rm − �(M∗)

,

where MH is the set of markets selected by some heuristic that considers the empty set
as a candidate solution (hence �(MH ) ≥ 0). As (in general)

∑M
m=1 Rm is large rela-

tive to �(M∗), the deviation from optimality will be small for the minimization prob-
lem. For example, the instances in the NP-completeness proof satisfy �(M∗) ≤ 1

2

and
∑M

m=1 Rm = 3
2 T + 1

2 . Hence, the deviation from optimality is smaller than 1
3T

and tends to zero as T → ∞.

6.2 Problem set B: Sparse demand matrix

This set of instances has the property that, for each market, there is a high fraction of
periods with zero demand, motivated by the fact that the NP-completeness proof of
the MSP is based on instances with a sparse demand matrix. We obtain Set B from
Set A by replacing a market’s demand in a period by zero with some probability ρ,
and with probability 1 − ρ it is generated from U [0, 2d̄]. We generated 100 instances
with the cost parameters as in Set A, (M, T ) = (40, 40), and ρ ∈ {0.5, 0.75, 0.9}.
The results of the tests can be found in Tables 4 and 5.
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Table 5 Set B: Running time of the IA and RP heuristic

ρ α avg time (s) max time (s) IA It

IA RP MIP IA RP MIP avg max

0.50 2 0.04 2.66 19.42 0.09 3.55 124 3.34 10

5 0.04 3.61 32.71 0.06 5.17 113 3.32 10

8 0.04 3.85 28.25 0.06 5.52 90 3.35 8

11 0.04 4.17 29.03 0.08 5.42 111 3.33 8

0.75 2 0.06 0.93 5.62 0.13 1.17 11.6 3.17 10

5 0.06 1.09 7.66 0.08 1.55 33.8 3.21 10

8 0.06 1.17 7.63 0.09 1.67 25.5 3.17 9

11 0.06 1.17 6.45 0.11 1.67 24.0 3.07 8

0.90 2 0.08 0.48 1.22 0.14 0.59 3.08 2.71 8

5 0.08 0.50 1.35 0.11 0.64 3.23 2.80 8

8 0.08 0.51 1.35 0.14 0.63 3.39 2.77 7

11 0.08 0.52 1.37 0.11 0.63 3.67 2.72 8

First, we see that the IA still performs quite well in terms of average deviation from
optimality. However, there is a single instance (with ρ = 0.9 and α = 8) for which
the IA cannot find a profitable solution while one exists. Furthermore, we see that
the performance of the IA worsens as ρ increases, both in terms of deviation from
optimality and in terms of number of non-optimal solutions. The RP shows a decrease
in performance as ρ increases from 0.5 to 0.75, but there is no clear difference between
the cases ρ = 0.75 and ρ = 0.9. Finally, we see that for most cases the IA finds better
solutions than the RP, but for ρ = 0.9 there is also a significant number of instances
for which the RP finds a better solution.

Table 5 shows that the running time of the RP and the time to solve the MIP drop
dramatically as ρ increases. This can be explained by the fact that, if dm

t = 0, then
xm

i,t = 0 for i = 1, . . . , t , which means that the number of variables and constraints in
the MIP decreases considerably as ρ increases. Although neither heuristic performs
very well for instances with high values of ρ, the good news is that these instances can
be solved to optimality by CPLEX. For example, it takes only a couple of seconds to
solve an instance with ρ = 0.9.

7 Summary and concluding remarks

We studied a class of production planning problems with market selection decisions
and showed that, in general, the class of problems is NP-hard and, in addition, that
it is highly unlikely that there exists a polynomial-time algorithm with a constant
worst-case guarantee. We provide polynomial-time solution approaches for several
special cases that may occur in practice. In addition, we introduce a heuristic for
solving the problem and perform extensive computational tests to compare its per-
formance with a rounding procedure from the literature and with a commercial MIP
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solver. These results show that our heuristic finds near-optimal solution extremely fast,
except when the demand patterns are unrealistically small.

Our future research will focus on identifying classes of problem instances that are
polynomially solvable, as well as the development of models and algorithms for prob-
lems in which production planning is integrated with market selection and pricing.
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Appendix

Theorem 3 The MSP with market-specific prices can be solved in O(M2(log M +
T log T )) time.

Proof We will employ the similarities between the M problems (PP (k)) (k =
1, . . . , M) that need to be solved to specialize the approach of [23]. First, note that
all extreme points of the continuous relaxation of the feasible region of each of these
problems are integral, and applying the approach of [23] to the relaxation of (PP (k))
for some fixed k yields an integral solution. Therefore, we can, without loss of optimal-
ity, relax the integrality constraints; we will refer to the relaxed problems as (RP (k)).
Sharkey et al. [23] construct a collection of candidate solutions indexed by

� = {
(i, j) : i < j and wi �= w j

}

and denoted by x (i, j) ((i, j) ∈ �) that is guaranteed to contain an optimal solution to
(RP (k)). In particular, for each (i, j) ∈ �, they use the complementary slackness con-
ditions of a linear program associated with (RP (k)) to first construct partial solutions
as follows. Denote the solution to the system

λ + γwi = ri

λ + γw j = r j

by

γ (i, j) = ri − r j

wi − w j
and λ(i, j) = r jwi − riw j

wi − w j
.
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Then a corresponding partial solution is given by

x (i, j)
� = 0 if r� < λ(i, j) + γ (i, j)w�

x (i, j)
� = 1 if r� > λ(i, j) + γ (i, j)w�.

Finally, set

I (i, j)
0 = {� : x (i, j)

� = 0}
I (i, j) = {� : r� = λ(i, j) + γ (i, j)w�}
I (i, j)
1 = {� : x (i, j)

� = 1}.

Interestingly, these partial candidate solutions are independent of the value of k, and
(as is shown in [23]), the time required to determine the sets I (i, j)

0 , I (i, j), and I (i, j)
1

for all (i, j) ∈ � is O(M2 log M).
It now remains to complete the candidate solutions for each value of k by determin-

ing the values of the variables in I (i, j); we will refer to the corresponding solutions as
x (i, j)(k). These c

(SPP (k)) max
∑

�∈I (i, j)
1

r� +
∑

�∈I (i, j)

r�x� − CP

⎛

⎜
⎝k,

∑

�∈I (i, j)
1

w� +
∑

�∈I (i, j)

w�x�

⎞

⎟
⎠

s.t.
∑

�∈I (i, j)

x� = k − |I (i, j)
1 |

0 ≤ x� ≤ 1 � ∈ I (i, j).

(13)

It is shown in [23] that (SP(i, j)(k)) can be solved by first solving two linear knapsack
problems, namely,

(KP(k)) max(or min)
∑

�∈I (i, j)

w�x�

s.t.
∑

�∈I (i, j)

x� = k − |I (i, j)
1 |

0 ≤ x� ≤ 1 � ∈ I (i, j)

and selecting the solution of these two problems with the best objective function value
to (SPP (k)).

It is important to note that (SP(i, j)(k)) only has a feasible solution, and thus only
needs to be considered, for |I (i, j)

1 | ≤ k ≤ |I (i, j)
1 | + |I (i, j)|. We will proceed by first

adapting the algorithm from [23] by, for each (i, j) ∈ �, solving for all relevant solu-
tions x (i, j)(k) consecutively, i.e., for k = I (i, j)

1 |, . . . , |I (i, j)
1 | + |I (i, j)|. Suppose now

that we have found a solution for some value |I (i, j)
1 | ≤ k < |I (i, j)

1 | + |I (i, j)| and con-
sider the value k+1. Assuming that we have recorded the sorting of the variables in the
linear knapsack problems (KP(k)) that led to their optimal solutions, then we need to
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only add in the next highest (or next lowest) value in the sorting in order to determine
the solutions to (KP(k +1)). We therefore conclude that, for a fixed (i, j) ∈ �, we can
solve for all candidate solutions x (i, j)(k) in O (|I (i, j)| log |I (i, j)| + |I (i, j)|T log T

)

time, which follows from the fact that (i) we need to sort the variables in I (i, j) to solve
all problems of the form (KP(k)), and (ii) we need to evaluate the objective function
value to (SPP (k)) for O(|I (i, j)|) solutions, each of which requires the solution of a
lot-sizing problem.

Typically, we can expect to have |I (i, j)| = 2 for all (i, j) ∈ �. If this is the case, we
obtain the desired result immediately from the fact that |�| = O(M2). If, however,
we may have |I (i, j)| > 2 the situation may be more complex. In general, let us define
the sets �i = { j : (i, j) ∈ �} for i = 1, . . . , M . Now if, for a given i , no variable
occurs in I (i, j) for more than one j ∈ �i we have that

O
⎛

⎝
∑

j∈�i

|I (i, j)|
⎞

⎠ = O(M)

so that the desired result would follow again. Finally, [23] show that, for a given i , the
only variables that can occur in more than one of the sets I (i, j) are the ones for which
the revenue/price pair is identical to that of market i . Denoting, for each i , the set of
such markets by Di , we obtain

∑

j∈�i

|I (i, j)| = O (M + M |Di |)

and, since it is easy to see that the sets Di are disjoint, we obtain the desired result:

O
⎛

⎝
M∑

i=1

∑

j∈�i

(
|I (i, j)| log |I (i, j)| + |I (i, j)|T log T

)
⎞

⎠

= O
⎛

⎝(log M + T log T )

M∑

i=1

∑

j∈�i

|I (i, j)|
⎞

⎠

= O
(

M2(log M + T log T )
)

.

�	
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