780,244 research outputs found

    The geometry of characters of Hopf algebras

    Full text link
    Character groups of Hopf algebras appear in a variety of mathematical contexts such as non-commutative geometry, renormalisation of quantum field theory, numerical analysis and the theory of regularity structures for stochastic partial differential equations. In these applications, several species of "series expansions" can then be described as characters from a Hopf algebra to a commutative algebra. Examples include ordinary Taylor series, B-series, Chen-Fliess series from control theory and rough paths. In this note we explain and review the constructions for Lie group and topological structures for character groups. The main novel result of the present article is a Lie group structure for characters of graded and not necessarily connected Hopf algebras (under the assumption that the degree zero subalgebra is finite-dimensional). Further, we establish regularity (in the sense of Milnor) for these Lie groups.Comment: 25 pages, notes for the Abelsymposium 2016: "Computation and Combinatorics in Dynamics, Stochastics and Control", v4: corrected typos and mistakes, main results remains valid, updated reference

    Controllability distributions and systems approximations: a geometric approach

    Get PDF
    Given a nonlinear system, a relation between controllability distributions defined for a nonlinear system and a Taylor series approximation of it is determined. Special attention is given to this relation at the equilibrium. It is known from nonlinear control theory that the solvability conditions as well as the solutions to some control synthesis problems can be stated in terms of geometric concepts like controlled invariant (controllability) distributions. By dealing with a k-th Taylor series approximation of the system, the authors are able to decide when the solvability conditions of these kinds of problem are equivalent for the nonlinear system and its approximation. Some cases when the solution obtained from the approximated system is an approximation of an exact solution for the original problem are distinguished. Some examples illustrate the result

    Right-invertibility for a class of nonlinear control systems: A geometric approach

    Get PDF
    In recent years it has become evident that various synthesis problems known from linear system theory can also be solved for nonlinear control systems by using differential geometric methods. The purpose of this paper is to use this mathematical framework for giving a preliminary account on the notion of right-invertibility of a nonlinear system. This concept, which is of importance in several tracking problems, requires a Taylor-series expansion of the output function. We will also show that there is an appealing geometric interpretation of the lower-order terms in this series expansion. In this way a function that can occur as output function of a nonlinear system is partly described by specifying its k-jet

    Relaxed stability conditions based on Taylor series membership functions for polynomial fuzzy-model-based control systems

    Full text link
    © 2014 IEEE. In this paper, we investigate the stability of polynomial fuzzy-model-based (PFMB) control systems, aiming to relax stability conditions by considering the information of membership functions. To facilitate the stability analysis, we propose a general form of approximated membership functions, which is implemented by Taylor series expansion. Taylor series membership functions (TSMF) can be brought into stability conditions such that the relation between membership grades and system states is expressed. To further reduce the con-servativeness, different types of information are taken into account: the boundary of membership functions, the property of membership functions, and the boundary of operating domain. Stability conditions are obtained from Lyapunov stability theory by sum of squares (SOS) approach. Simulation examples demonstrate the effect of each piece of information

    Practical use of the algorithm estimating the gradient

    Full text link
    Автором статьи представлен алгоритм оценивания градиента в экстремальных системах автоматического управления, основанный на классической теории фильтра Калмана. Проведенные вычислительные эксперименты показали относительно высокую точность оценивания градиента, а также хорошую помехоустойчивость. В данной статье приводится пример практического использования алгоритма при решении задачи оптимизации расхода топлива у транспортных средств.The author presents an algorithm estimating the gradient in extreme control systems, based on the classical theory of the Kalman filter. The key features of the algorithm are a representation of the dynamic component object model in the state space, and approximation of the objective function finite Taylor series. The author cites the example of the practical use of the algorithm in solving the problem of optimizing fuel consumption

    Solution of fractional linear and bilinear time invariant system via formal power series methods

    Get PDF
    The area of fractional calculus is more than three centuries old but applications have only appeared in the past few decades. Differential equations of non-integer order are known to represent certain physical processes in a more precise way than using the usual differential equations with integer order. Therefore, considering fractional calculus in the context of input- output systems can be beneficial. A useful representation of an input-output map in control theory is the Chen-Fliess functional series or Fliess operator. It can be viewed as a generalization of a Taylor series, and its algebraic nature is especially well suited for several important applications. In this thesis, a general solution for a fractional linear and bilinear time invariant system via formal power series methods and Fliess operators is presented. A mathematical model (that includes a differential equation) for an input-output linear and bilinear time invariant system is very well known, both the explicit solution and the one using formal power series. However, the question of how this system behaves when a fractional differential equation (where the derivative is of a non-integer order) has not been yet studied from the power series point of view. This thesis focuses on two specific kind of derivatives, one using Riemann-Liouville fractional derivatives and the other using Caputo fractional derivatives.Tesi

    Distributed Saturated Control for a Class of Semilinear PDE Systems: A SOS Approach

    Get PDF
    Producción CientíficaThis paper presents a systematic approach to deal with the saturated control of a class of distributed parameter systems which can be modeled by first-order hyperbolic partial differential equations (PDE). The approach extends (also improves over) the existing fuzzy Takagi-Sugeno (TS) state feedback designs for such systems by applying the concepts of the polynomial sum-of-squares (SOS) techniques. Firstly, a fuzzy-polynomial model via Taylor series is used to model the semilinear hyperbolic PDE system. Secondly, the closed-loop exponential stability of the fuzzy-PDE system is studied through the Lyapunov theory. This allows to derive a design methodology in which a more complex fuzzy state-feedback control is designed in terms of a set of SOS constraints, able to be numerically computed via semidefinite programming. Finally, the proposed approach is tested in simulation with the standard example of a nonisothermal plug-flow reactor (PFR).The research leading to these results has received funding from the European Union and from the Spanish Government (MINECO/FEDER DPI2015-70975-P)

    High-loop perturbative renormalization constants for Lattice QCD (I): finite constants for Wilson quark currents

    Get PDF
    We present a high order perturbative computation of the renormalization constants Z_V, Z_A and of the ratio Z_P/Z_S for Wilson fermions. The computational setup is the one provided by the RI'-MOM scheme. Three- and four-loop expansions are made possible by Numerical Stochastic Perturbation Theory. Results are given for various numbers of flavours and/or (within a finite accuracy) for generic n_f up to three loops. For the case n_f=2 we also present four-loop results. Finite size effects are well under control and the continuum limit is taken by means of hypercubic symmetric Taylor expansions. The main indetermination comes from truncation errors, which should be assessed in connection with convergence properties of the series. The latter is best discussed in the framework of Boosted Perturbation Theory, whose impact we try to assess carefully. Final results and their uncertainties show that high-loop perturbative computations of Lattice QCD RC's are feasible and should not be viewed as a second choice. As a by-product, we discuss the perturbative expansion for the critical mass, also for which results are for generic n_f up to three loops, while a four-loop result is obtained for n_f=2

    New scaling-squaring Taylor algorithms for computing the matrix exponential

    Full text link
    The matrix exponential plays a fundamental role in linear differential equations arising in engineering, mechanics, and control theory. The most widely used, and the most generally efficient, technique for calculating the matrix exponential is a combination of “scaling and squaring” with a Pad´e approximation. For alternative scaling and squaring methods based on Taylor series, we present two modifications that provably reduce the number of matrix multiplications needed to satisfy the required accuracy bounds, and a detailed comparison of the several algorithmic variants is provided.This work was supported by the Generalitat Valenciana project GVPRE/2008/340.Sastre, J.; Ibáñez González, JJ.; Defez Candel, E.; Ruiz Martínez, PA. (2015). New scaling-squaring Taylor algorithms for computing the matrix exponential. SIAM Journal on Scientific Computing. 37(1):A439-A455. https://doi.org/10.1137/090763202SA439A45537
    corecore