205 research outputs found

    Of Priors and Particles: Structured and Distributed Approaches to Robot Perception and Control

    Get PDF
    Applications of robotic systems have expanded significantly in their scope, moving beyond the caged predictability of industrial automation and towards more open, unstructured environments. These agents must learn to reliably perceive their surroundings, efficiently integrate new information and quickly adapt to dynamic perturbations. To accomplish this, we require solutions which can effectively incorporate prior knowledge while maintaining the generality of learned representations. These systems must also contend with uncertainty in both their perception of the world and in predicting possible future outcomes. Efficient methods for probabilistic inference are then key to realizing robust, adaptive behavior. This thesis will first examine data-driven approaches for learning and combining perceptual models for both visual and tactile sensor modalities, common in robotics. Modern variational inference methods will then be examined in the context of online optimization and stochastic optimal control. Specifically, this thesis will contribute (1) data-driven visual and tactile perceptual models leveraging kinematic and dynamic priors, (2) a framework for joint inference with visuo-tactile sensing, (3) a family of particle-based, variational model predictive control and planning algorithms, and (4) a distributed inference scheme for online model adaptation.Ph.D

    Probabilistic Inference for Model Based Control

    Get PDF
    Robotic systems are essential for enhancing productivity, automation, and performing hazardous tasks. Addressing the unpredictability of physical systems, this thesis advances robotic planning and control under uncertainty, introducing learning-based methods for managing uncertain parameters and adapting to changing environments in real-time. Our first contribution is a framework using Bayesian statistics for likelihood-free inference of model parameters. This allows employing complex simulators for designing efficient, robust controllers. The method, integrating the unscented transform with a variant of information theoretical model predictive control, shows better performance in trajectory evaluation compared to Monte Carlo sampling, easing the computational load in various control and robotics tasks. Next, we reframe robotic planning and control as a Bayesian inference problem, focusing on the posterior distribution of actions and model parameters. An implicit variational inference algorithm, performing Stein Variational Gradient Descent, estimates distributions over model parameters and control inputs in real-time. This Bayesian approach effectively handles complex multi-modal posterior distributions, vital for dynamic and realistic robot navigation. Finally, we tackle diversity in high-dimensional spaces. Our approach mitigates underestimation of uncertainty in posterior distributions, which leads to locally optimal solutions. Using the theory of rough paths, we develop an algorithm for parallel trajectory optimisation, enhancing solution diversity and avoiding mode collapse. This method extends our variational inference approach for trajectory estimation, employing diversity-enhancing kernels and leveraging path signature representation of trajectories. Empirical tests, ranging from 2-D navigation to robotic manipulators in cluttered environments, affirm our method's efficiency, outperforming existing alternatives

    Annotated Bibliography: Anticipation

    Get PDF

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology

    Get PDF
    renewable; green; energy; environment; law; polic

    Aaria: A Simulation Framework of Reconfigurable Manipulators for Deep Learning Scenarios

    Get PDF
    This thesis presents a simulation platform called Aaria. The purpose of Aaria is the generation of synthetic movement data for machine learning applications in robotics. The goal is to learn deep features that are common to the robotic structures so that the solution could generalize to all robots regardless of mass or structure. This thesis also discusses the literature about reconfigurable mechanisms, system parameter identification, human activity recognition and synthetic data. The descriptions of the components of a convolutional neural network are also included in this work along with the network architecture used in the presented machine-learning task. The modular structure of Aaria allows it to generate any kind of open chain manipulator with a maximum of six degrees of freedom defined by modified Denavit-Hartenberg parameters. One of the advantages of Aaria is its ability to generate randomized structures and thus generate a wide variety of time series data. Time series data can be considered as one-dimensional images, which makes them a suitable data type for convolutional neural networks. Multiple time series can form a two-dimensional structure similar to images. This kind of two-dimensional time series dataset can be used as training data for learning deep features of robotic structures. In addition to being able to generate random strictures, Aaria can also be used to simulate and gather data from specific structures. Some of the generated synthetic data was used in a machine-learning task to estimate the lengths and masses of swinging structures based on input torques and rotation angles, velocities and accelerations. The results were promising with 2.5 % mean relative error for both length and mass

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Evaluating footwear “in the wild”: Examining wrap and lace trail shoe closures during trail running

    Get PDF
    Trail running participation has grown over the last two decades. As a result, there have been an increasing number of studies examining the sport. Despite these increases, there is a lack of understanding regarding the effects of footwear on trail running biomechanics in ecologically valid conditions. The purpose of our study was to evaluate how a Wrap vs. Lace closure (on the same shoe) impacts running biomechanics on a trail. Thirty subjects ran a trail loop in each shoe while wearing a global positioning system (GPS) watch, heart rate monitor, inertial measurement units (IMUs), and plantar pressure insoles. The Wrap closure reduced peak foot eversion velocity (measured via IMU), which has been associated with fit. The Wrap closure also increased heel contact area, which is also associated with fit. This increase may be associated with the subjective preference for the Wrap. Lastly, runners had a small but significant increase in running speed in the Wrap shoe with no differences in heart rate nor subjective exertion. In total, the Wrap closure fit better than the Lace closure on a variety of terrain. This study demonstrates the feasibility of detecting meaningful biomechanical differences between footwear features in the wild using statistical tools and study design. Evaluating footwear in ecologically valid environments often creates additional variance in the data. This variance should not be treated as noise; instead, it is critical to capture this additional variance and challenges of ecologically valid terrain if we hope to use biomechanics to impact the development of new products

    Patient Movement Monitoring Based on IMU and Deep Learning

    Get PDF
    Osteoarthritis (OA) is the leading cause of disability among the aging population in the United States and is frequently treated by replacing deteriorated joints with metal and plastic components. Developing better quantitative measures of movement quality to track patients longitudinally in their own homes would enable personalized treatment plans and hasten the advancement of promising new interventions. Wearable sensors and machine learning used to quantify patient movement could revolutionize the diagnosis and treatment of movement disorders. The purpose of this dissertation was to overcome technical challenges associated with the use of wearable sensors, specifically Inertial Measurement Units (IMUs), as a diagnostic tool for osteoarthritic (OA) and total knee replacement patients (TKR) through a detailed biomechanical assessment and development of machine learning algorithms. Specifically, the first study developed a relevant dataset consisting of IMU and associated biomechanical parameters of OA and TKR patients performing various activities, created a machine learning-based framework to accurately estimate spatiotemporal movement characteristics from IMU during level ground walking, and defined optimum sensor configuration associated with the patient population and activity. The second study designed a framework to generate synthetic kinematic and associated IMU data as well as investigated the influence of adding synthetic data into training-measured data on deep learning model performance. The third study investigated the kinematic variation between two patient’s population across various activities: stair ascent, stair descent, and gait using principle component analysis PCA. Additionally, PCA-based autoencoders were developed to generate synthetic kinematics data for each patient population and activity. The fourth study investigated the potential use of a universal deep learning model for the estimation of lower extremities’ kinematics across various activities. Therefore, this model can be used as a global model for transfer learning methods in future research. This line of study resulted in a machine-learning framework that can be used to estimate biomechanical movements based on a stream of signals emitted from low-cost and portable IMUs. Eventually, this could lead to a simple clinical tool for tracking patients\u27 movements in their own homes and translating those movements into diagnostic metrics that clinicians will be able to use to tailor treatment to each patient\u27s needs in the future
    • …
    corecore