
OF PRIORS AND PARTICLES:

STRUCTURED AND DISTRIBUTED APPROACHES TO
ROBOT PERCEPTION AND CONTROL

A Dissertation
Presented to

The Academic Faculty

By

Alexander Lambert

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in Robotics

School of Electrical and Computer Engineering
Georgia Institute of Technology

August 2021

© Alexander Lambert 2021

OF PRIORS AND PARTICLES:

STRUCTURED AND DISTRIBUTED APPROACHES TO
ROBOT PERCEPTION AND CONTROL

Dissertation committee:

Dr. Byron Boots
Paul G. Allen School of
Computer Science and Engineering
University of Washington

Dr. Seth Hutchinson
School of Interactive Computing
Georgia Institute of Technology

Dr. Sonia Chernova
School of Interactive Computing
Georgia Institute of Technology

Dr. Matthew Gombolay
School of Interactive Computing
Georgia Institute of Technology

Dr. Fabio Ramos
School of Computer Science
University of Sydney

Date approved: May 28, 2021

Study hard what interests you the most

in the most undisciplined, irreverent and original manner possible.

Richard P. Feynman

To my parents.

ACKNOWLEDGMENTS

There are many people who have helped and supported me throughout my graduate

studies. I would not have succeeded in completing this journey without them, and I must

express my gratitude for the various roles they have played during my Ph.D experience.

I have to begin by thanking my advisor, Byron Boots, for his support and mentorship. I

am grateful for his invaluable feedback, patience while listening to my often inchoate ideas,

and help in focusing my efforts towards meaningful contributions. He has been a reliable

source of technical expertise, professional guidance and inspiration. Being a part of his lab

has been a privilege, and has led me to gain confidence and grow as a researcher.

I am honoured to have such exceptional committee members, and thank them for their

help and encouragement during the making of this dissertation: Seth Hutchinson, Sonia

Chernova, Matthew Gombolay, and Fabio Ramos. I would like to give special thanks to

Fabio, in particular. Working with him has been a fun and exciting adventure, and has

introduced a degree of playful creativity to my research process.

I am also grateful to a number of collaborators at NVIDIA, from whom I’ve learned a

great deal. I’d like to thank Dieter Fox, who has been especially welcoming and generous

during my internships with the SRL group, and has provided essential guidance and input.

I would also like to thank Nathan Ratliff for his insights, stimulating discussions, and re-

minding me to check my intuitions and assumptions. I’ve also had the pleasure of working

with Yi-Ting Chen and his team at HRI, which led to an enjoyable and educational research

experience.

My transition to robotics would not have been possible without Henrik Christensen,

who gave me the opportunity to start pursuing a career in the field. I am also indebted

to Charles Isbell for allowing me to gain valuable teaching experience and educate others

interested in machine learning. Heni Ben Amor also played a key role during his post-doc

at Georgia Tech, being both a charitable friend and an encouraging mentor.

v

I am fortunate to have worked with a number of amazing researchers and colleagues.

Thanks to Amir Shaban, Mustafa Mukadam, Bala Sundaralingam, Tucker Hermans, Lucas

Barcelos, Adam Fishman, Ankur Handa, Stan Birchfield, Rafael Oliveira, Paulo Borges,

Zhen Liu, and Amit Raj. Ching-An Cheng and Anqi Li have also kindly provided their

feedback on a number of occasions.

I am lucky to have made a number of great friends throughout my time as a grad student.

Thanks to Ashley Edwards, Himanshu Sahni, Shray Bansal, Yannick Shroecker, Steven

Hickson, Kalesha Bullard and Meera Hahn for the awesome adventures outside of the

lab, and making internship summers memorable. I’d also like to thank the “early-days”

crew for being an indispensable source of laughs and good times when I first started Ph.D

life. This includes Jon “Noodle” Scholz, Amber “Burrito” Numamoto, “Mis-tah” Martin

Levihn, Michael “Misha” Novitzky, and Baris “Old Man” Akgun. There have also been

many others that I’ve met and worked alongside of, who have been amazingly tolerable of

my lame jokes, and with whom I’ve shared moments of levity and humor. Thank you all.

I’m grateful to all my family and friends back home. Thanks to my brothers Brandon

and Bechir, to Alicia, and to my good friends Silvie, Devon, Ben, and Woody for welcom-

ing me back with warmth and familiarity whenever I returned to visit.

Finally, I’d like to thank my parents for their love and support throughout this journey.

My mother Joanna and step-dad Wally have been there for me the entire way, raising my

spirits when the going got tough. My father Dave has largely been the reason I set out

on this path. He laid the foundations early on, and has been an inspiration from the very

beginning. This dissertation is dedicated to you three.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xii

List of Figures . xiii

Chapter 1: Introduction . 1

I Structure in Learned Perceptual Models 5

Chapter 2: Flow-Based Visual Prediction and Tracking 6

2.1 Introduction . 6

2.2 Related Work . 7

2.3 Model Design . 9

2.3.1 A Forward Sensor Model . 10

2.3.2 Forward Model with k-Nearest Neighbors 12

2.3.3 Prediction using the Forward Model 12

2.4 Tracking with Learned Visual Models . 13

2.5 An Inverse Sensor Model . 14

2.6 Tracking using the Inverse Sensor Model 14

2.7 Synthetic Dataset Generation . 15

vii

2.8 Real-world Data Collection . 15

2.9 Forward Sensor Model Evaluation . 18

2.10 Occlusion Prediction . 19

2.11 Tracking Task Evaluation . 20

2.12 Discussion . 23

Chapter 3: Learned Tactile Sensing and Force Estimation 25

3.1 Introduction . 25

3.2 Related Work . 26

3.3 Problem Definition & Proposed Approach 28

3.3.1 BioTac Sensor . 28

3.3.2 Problem Definition & Approach Overview 29

3.3.3 Mechanics of Planar Pushing as a System of Particles 30

3.3.4 Network Architecture . 32

3.3.5 Loss Functions . 32

3.4 Dataset Collection, Implementation Details, & Experimental Protocol . . . 33

3.4.1 Dataset Collection . 34

3.4.2 Neural Network Implementation Details 35

3.4.3 Error Metrics, Protocol & Comparison Methods 35

3.5 Results . 37

3.5.1 Prediction accuracy: . 38

3.5.2 Effect of spatial encoding and α regularization: 38

3.6 Force Feedback for Object Manipulation 38

viii

3.7 Discussion . 41

II Priors for Multi-Sensory Integration 43

Chapter 4: Joint Inference for Visuo-Tactile Sensing 44

4.1 Introduction & Related Work . 44

4.2 Dynamics of Planar Pushing . 46

4.3 State Estimation with Factor Graphs . 48

4.3.1 Measurements . 48

4.3.2 Geometric Constraints . 50

4.3.3 Dynamics . 50

4.4 Baseline Comparison . 51

4.5 State Estimation in Open and Cluttered scenes 53

4.6 Force Estimation for Tactile Sensing . 58

4.7 Discussion . 60

III Variational Inference for Control and Dynamics Estimation 62

Chapter 5: Stein Variational Model Predictive Control 63

5.1 Introduction . 63

5.2 Related Work . 64

5.3 Model Predictive Control . 65

5.4 MPC as Bayesian Inference . 66

5.5 Nonparametric Bayesian MPC . 68

5.6 Variational Inference . 68

5.7 Stein Variational Gradient Descent . 70

ix

5.8 Stein Variational MPC . 72

5.8.1 Posterior Sequential Updates . 72

5.8.2 Exponentiated Utility (EU) . 74

5.8.3 Probability of Low Cost (PLC) . 75

5.8.4 Kernels for trajectories . 77

5.8.5 Action Selection . 77

5.8.6 Shifting the distribution . 79

5.9 Non-parametric SV-MPC . 81

5.10 Trajectory optimization . 82

5.11 Experiments . 85

5.11.1 Planar Navigation . 85

5.11.2 Manipulation . 86

5.11.3 Stochastic Half-Cheetah . 87

5.11.4 Motion Planning . 87

5.12 Complexity . 90

5.13 Connection to Path Integral Control . 91

5.14 Discussion . 96

Chapter 6: Particle-Based Inference for Online Parameter Estimation 97

6.1 Introduction . 97

6.2 Related Work . 98

6.3 Joint Inference for Control and Dynamics 100

6.3.1 Real-time Dynamics Inference . 100

x

6.4 Experiments . 103

6.4.1 Inverted pendulum with uncertain parameters 104

6.4.2 Point-mass navigation on an obstacle grid 105

6.4.3 Trajectory tracking with autonomous ground vehicle 107

6.5 Discussion . 109

Chapter 7: Conclusion . 111

7.1 Future Directions . 112

Appendices . 115

Appendix A: Chapter 6: Experiment Parameters 116

References . 117

xi

LIST OF TABLES

2.1 RGB prediction pixel-error results on simulated datasets for WAM (4-dof)
and PR2 (6-dof) platforms. Shown are values for different k-NN-FLOW
forward models (k = 1, 2, 5 nearest-neighbors), with comparison to 1-
nearest-neighbor, DECONV and GAN baselines. Raw pixels values are
within [0, 1]. 17

2.2 RGB prediction pixel-error results on the real-world 4-dof WAM dataset.
Shown are values for different k-NN-FLOW forward models (k = 1, 2, 5
nearest-neighbors), with comparison to 1-nearest-neighbor, DECONV and
GAN baselines. Raw pixels values are within [0, 1]. 18

4.1 RMS and Covariance values on the MIT Dataset. 52

4.2 Error Results for force and contact Recovery 57

5.1 Statistics for planar navigation task over 25 trials (4x4 obstacle grid) 85

6.1 Simulation results. Summary of results for simulation experiments. The
mean episode cost is given by the sum of the instant costs over the episode
length. Values shown do not include the crash penalty for a more compara-
ble baseline. §Not used in the navigation task; has perfect knowledge in the
pendulum task. †Successes are episodes with no crashes. ‡Successes are
episodes whose last five steps have a instant cost below 4 (≈10° from the
upright position). 104

A.1 Hyperparameters used in the experiments. 116

xii

LIST OF FIGURES

2.1 A conceptual diagram of the proposed framework, makes use of learned
visual sensor models to infer states xi from observations oi, and predict
observations from future states [14]. 9

2.2 A depiction of a single parametric branch used in the forward model with
flow-field output (i-Flow). 10

2.3 The complete k-NN-FLOW model architecture. k-Nearest neighbor (im-
age, state)-pairs selected by the k-NN module, and passed to individual
parametric branches (having shared weights). Resulting warped images are
weighed by their corresponding confidence maps and summed together to
produce final output image [14]. 10

2.4 The inverse sensor model architecture, based on VGG-net. 14

2.5 Examples of generated images for randomly-sampled input joint values,
which were not encountered during training. Each row corresponds to the
following (top-to-bottom): ground-truth images, 1-NN-FLOW predicted
output, DECONV baseline, and GAN baseline. Differences in robot-pose
arise for GAN predictions due to noise injection necessary for joint-conditioned
training. 16

2.6 Sequence of generated images for a test trajectory, where the top-to-bottom
row correspondence is as follows: ground-truth images, 1-NN-FLOW pre-
dicted output, DECONV baseline, and GAN baseline. Times indicated for
t = 1, 20, 40, ..., 80, from left to right, respectively 17

2.7 Each row shows an example of occlusion detection. The first column is the
first observation o1 in which the arm is not occluded by the object. The goal
is to predict which part of the arm would be occluded if it moves to the sec-
ond state. Second columns show the second observation o2. Note that the
observations are shown for demonstration purposes, and the network only
uses the corresponding joint values x1 and x2. The third column depicts the
where violation forward-backward symmetry is predicted for o1: red pixels
indicate occluded regions, while green pixels indicate be observable surfaces. 20

xiii

2.8 Comparison between the learned inverse sensor model (Fig. 2.4) and an
EKF using the 2-NN-FLOW forward sensor model. Each row corresponds
to a single joint evolving over 450 frames. The red line is the ground truth
joint configuration, the black line is the estimated state. RMSE scores are
shown. (a) The inverse model can robustly and accurately predict the state
from an arbitrary image and unknown start state. (b) Tracking using an EKF
and the learned DECONV model starting from a 10-degree offset and (c)
20-degree offset. The EKF works better when the state is already accurately
tracked, but in general is much less robust and accurate than the learned
inverse model. 21

2.9 Tracking results and RMSE scores for DECONV EKF (same context as
Fig. 2.8). The DECONV EKF works better when the state is already ac-
curately tracked, but in general is much less robust and accurate than the
learned inverse model. 22

2.10 Inferred joint values from a sequence of images using inverse sensor model
for an arbitrary trajectory. 23

3.1 The BioTac sensor [82] consists of a rigid core, surrounded by a weakly
conductive gel and a high friction elastomeric skin. Changes in impedance
caused by fluid deformation during contact are captured by an array of 19
electrodes. However, these measurements must be converted into meaning-
ful force values for many manipulation tasks. 26

3.2 The force prediction neural network uses 3D voxelized inputs that preserve
the spatial information. We use layer norm followed by ReLU after ev-
ery convolutional and fully connected layer (FCN). Additionally, we use
kernels and strides of 2 for every convolutional layer. 32

3.3 Predicted force error for different models and training sets. Analytic refers
to the linear model from [80], Su et al. refers to the best performing model
from [81]. 37

3.4 Estimated force from our model and Su et al. compared with the FT sensor,
to which the BioTac is rigidly mounted. Our model sufficiently tracks the
ground truth along all three axes. 39

3.5 Effect of the spatial encoding (“voxel”) and α on the prediction accuracy. . 40

3.6 Success rates on the manipulation task of object lifting and placement.
Our method performs significantly better on the deformable objects plastic-
bottle and paper-cup. 41

xiv

4.1 Tracking contact dynamics: (Top-left) Pushing probe with Force-Torque
sensor on the WAM arm. (Top-right) Yumi robot with mounted biomimetic
tactile sensor. (Bottom) Optimized kinematic and force trajectories on a
pushed object. 45

4.2 Estimation graphs. Filled circles are unknown state variables, unfilled cir-
cles are measured values, and squares indicate factors. 49

4.3 Example of performing the inference on a trajectory from the MIT pushing
dataset, using the QS graph. Noise is artificially added to measurements
prior to smoothing. Two-sigma contours and force vectors are displayed at
every 15th time-step for visual clarity. 53

4.4 Left: Setup for pushing experiments with occlusion using Barrett-WAM
manipulator. The white box is the pushed object, with general pushing
direction indicated by the blue arrow. The system is observed by a depth
camera to the left (out of frame). Right: visualization of the tracked system
in DART [116], with the observed pointcloud marked in dark grey. 54

4.5 Mean error and standard deviations of object pose estimates (after the last
iSAM2 step has been performed). CP, SDF, and QS model results are com-
pared raw measured values, and to those produced by the graph described
in Yu et al. [106]. Tracking performance is greatly improved with the in-
clusion of geometric and physics-based priors. The comparison with [106],
which does not use SDF priors, indicates the importance of enforcing these
constraints in practice. 55

4.6 Examples of estimated object trajectories for both un-occluded and oc-
cluded scenarios. Measured object pose histories (pink) are shown in the
top rows, and compared below to the incrementally-optimized trajectories
(blue) using the CP, SDF, and QS factor graphs illustrated in Fig. 4.2.
Each column depicts the state estimates at a particular timestep (with re-
spect to object pose measurements). The trajectories are overlayed onto the
full ground-truth trajectories derived from motion-capture, with every 10
timestep intervals shown. Trajectories of the end-effector (grey circle) are
also represented. The measurements show how the tracking system perfor-
mance degrades under certain orientations, since less of the object is seen
as it turns away from the camera. 56

4.7 Example of force-estimation using the QS model with ground-truth poses
and non-Gaussian noise added to force measurements and contact points.
Force vectors and contact points are recovered by the optimization process. 57

xv

4.8 Examples of pushing trajectories performed on the YUMI system. Initial
object and finger pose estimates are provided by the DART tracking system.
Contact points and force measurements are estimated by the analytic tactile
sensor model [108]. Each trajectory is optimized using the QS graph de-
picted in Fig. 4.2c. Two-sigma values and force vectors shown at every 10th
timestep for visual clarity. Joint inference over kinematic and force trajec-
tories decreases uncertainty in poses as well as contact points and forces,
and smoothens noisy tactile data to agree with physics-based constraints. . . 58

4.9 Visualizations of measurements for corresponding trajectories in Fig. 4.8.
Measured positions, contact points and force-vector outputs from the learned
sensor model are shown on the left-hand side. Optimized values are shown
on the right, indicating consistency of finger-object surface contact. Our
approach produces force trajectories which more closely adhere to quasi-
static mechanics. Joint inference allows kinematic trajectories to inform the
force estimates, aligning forces to the object center of mass during linear
motion, and correcting applied moments when motion is non-linear. 59

5.1 A 7-dof reaching task. The SV-MPC framework is capable of reasoning
over multi-modal distributions of trajectories in high-dimensional spaces.
Here, the controller iteratively explores the posterior over joint-velocities
by simulating trajectories in parallel (green frame) in order to guide the
system (orange frame). Each particle-generated distribution is shown by a
unique coloring over the generated state trajectories, as seen from a top-
down view of the workspace. The robot arm manages to reach the goal
(red), while avoiding poor local minima. 78

5.2 Depiction of the planar navigation task. The robot (orange dot) attempts
to reach the goal location (red cross) while avoiding obstacles. Each frame
depicts the environment state at a particular time-step, along with the dis-
tributions of sampled state-trajectory rollouts generated by the MPC con-
trollers using the modeled dynamics. Each trajectory color is associated
with a single particle from SV-MPC. The multi-modal distribution of SV-
MPC is able to explore passages between obstacles and find shorter paths
to the goal. 84

xvi

5.3 Examples of end-effector Cartesian trajectories resulting from application
of different MPC algorithms on the Franka reaching experiment. The rel-
ative distance to the fixed target location is plotted over the length of each
episode. The dashed red line indicates the coordinates of the target. The
sample-averaged terminal cost for the final state CT (xT) is evaluated over
the 24 independent trials. With four particles (m = 4), SV-MPC with Ex-
ponentiated utility likelihood manages to avoid bad local minima, despite
higher-variance gradients due to fewer samples used to evaluate gradients
(ns = 32 vs. ns = 128). 84

5.4 Comparisons of cumulative-reward distributions for the Stochastic HalfChee-
tah task. Results are collected over 16 independent trials, with mean and
standard deviations shown. SV-MPC is capable of finding high-reward tra-
jectories, using the same total amount of samples as MPPI and CEM. 88

5.5 The SV-TrajOpt algorithm is applied to a motion-planning problem, where
a velocity-controlled holonomic robot must reach the goal (red cross). Each
blue state-trajectory results from a single particle control-sequence. Parti-
cles are randomly initialized from the prior (t = 0), and are optimized
until convergence (t = 10, 100). Independent local MAP approximations
are generated after 50 iterations of gradient-descent refinement, and the
lowest-cost particle shown in green. 89

6.1 Online parameter estimation for autonomous ground vehicles. Distribu-
tions over system parameters such as the inertial center of rotation (ICR),
are adapted in real-time. (a) The custom built skid-steer robot platform
used in experiments. (b) Distribution over xICR at different time steps. The
mass load on the robot is suddenly increased during system execution. The
parameter distribution estimate quickly changes to include a second mode
that better explains the new dynamics. Our particle-based control scheme
can accommodate such multi-modal uncertainty and adapt to dynamically
changing environments. 98

6.2 Inverted pendulum results. (a) The image shows the mean cumulative cost
over 10 episodes. The shaded region represents the 50% confidence in-
terval. The high variance is expected since each scenario has parameters
sampled from a uniform distribution. (b) Plot of the posterior distribution
over the pendulum pole-mass at the final step of one of the episodes. The
true latent value is shown by the red star marker. 103

xvii

6.3 Point-mass navigation task. The plots shows trajectories from the start po-
sition (red dot) towards the goal (red star). (a) Trajectories executed by
SVMPC. Note that, as the mass of the robot changes, the model mismatch
causes many of the episodes to crash (x markers). (b) Trajectories executed
by DuSt-MPC. Depending on the state of the system when the mass change
occurs, a few trajectories deviate from the centre path to avoid collisions.
A few trajectories are truncated due to the fixed episode length. (c) Ridge
plot of the distribution over mass along several steps of the simulation. The
vertical dashed line denotes the true mass. Mass is initially set at 2 kg, and
changed to 3 kg at step 100. 106

6.4 AGV trajectory tracking results. (a) Raw cost over time. Amount of steps
before and after the change of mass are normalised for proper comparison.
(b) Trajectories executed by each method. Line style changes when mass
changes. Markers denote initial and change of mass position. 107

xviii

SUMMARY

Applications of robotic systems have expanded significantly in their scope, moving be-

yond the caged predictability of industrial automation and towards more open, unstructured

environments. These agents must learn to reliably perceive their surroundings, efficiently

integrate new information and quickly adapt to dynamic perturbations. To accomplish this,

we require solutions which can effectively incorporate prior knowledge while maintaining

the generality of learned representations. These systems must also contend with uncertainty

in both their perception of the world and in predicting possible future outcomes. Efficient

methods for probabilistic inference are then key to realizing robust, adaptive behavior.

This thesis will first examine data-driven approaches for learning and combining per-

ceptual models for both visual and tactile sensor modalities, common in robotics. Modern

variational inference methods will then be examined in the context of online optimization

and stochastic optimal control. Specifically, this thesis will contribute (1) data-driven visual

and tactile perceptual models leveraging kinematic and dynamic priors, (2) a framework for

joint inference with visuo-tactile sensing, (3) a family of particle-based, variational model

predictive control and planning algorithms, and (4) a distributed inference scheme for on-

line model adaptation.

xix

CHAPTER 1

INTRODUCTION

Successful deployment of fully-autonomous, robotic systems in noisy and dynamic en-

vironments remains a challenge. These machines must contend with varying degrees of

uncertainty characterized by multiple sources, including sensor measurements, modelling

error, and stochastic dynamics. This can be accomplished by leveraging tools from ma-

chine learning and statistics to (1) learn generalize-able models for interpreting sensory

signals, (2) efficiently integrate new information during execution, and (3) reason about

current and future states in a principled and distributed way.

Although much progress has been made on developing sophisticated hardware for sens-

ing and perception, deriving reliable analytical models to correctly extract useful informa-

tion from high-dimensional measurements is often difficult and unreliable. Learning such

models from experience offers a promising alternative for both improving accuracy and

scalability. Recently, large-scale data-driven approaches have become increasingly popu-

lar for training large parametric models which can interpret raw, high-dimensional sensory

measurements to actionable latent spaces. These have demonstrated improved general-

ization over purely model-based and engineered methods, minimizing the need for expert

intervention and feature construction [1, 2, 3, 4]. A significant trend in this area has been to

learn ‘end-to-end’ function approximators which map observations directly to system con-

trol commands [5, 6, 7, 8]. However, these methods use a large number of parameters, and

consequently require vast amounts of training data. This can be expensive to obtain on real

systems, making it prohibitive for many applications. Further still, naïve approaches often

lack a sufficiently interpretable intermediate representation [9, 10]. Incorporating struc-

ture can be crucial for ensuring safety-critical intervention in the sense-to-act pipeline, and

make engineering of complex autonomous systems far more tenable. This may even be

1

necessary to effectively scale learning and improve performance, in general [11, 12].

In order to make learning and inference for robotics more data-efficient and scalable, we

should strive to integrate domain knowledge into our representations when possible, with

careful consideration of inductive biases [10]. Luckily, robotics problems often exhibit rich

structure and known dependencies which can be exploited in a variety of ways, particularly

when learning predictive models for inference. Such examples include system appearance

and geometry [13, 14], kinematics [15], and physics-based priors [16, 17, 18]. To learn

effective sensory mappings, perceptual models should be designed to efficiently leverage

such problem structure. Furthermore, as data can be arduous and expensive to acquire for

real robot systems, data collection should be carefully targeted to capture essential modes

of the target state distribution, with adequate coverage of critical corner cases [19, 20].

Bayesian inference is a fundamental statistical method that has generated many practi-

cal and theoretically-principled tools for probabilistic reasoning. It has been pivotal in the

field of robotics, engineering, and related disciplines [21, 22, 23], providing a framework

for parameter- and state-estimation which naturally incorporates uncertainty in modelling,

measurement and prior information. Recently, developments in variational inference have

led to a number of sample-efficient methods for approximating complex, multi-modal prob-

ability distributions. A subset of these techniques maintain an empirical representation as

a system of interacting particles, with deterministic updates computed efficiently in batch.

These representations are distributed, in that they consist of a collection of unique param-

eters which require local evaluation, but interact in a de-centralized way. This makes these

approaches particularly amenable to parallel computation, yet their application has been

largely limited to toy examples and simple offline datasets. With the growth in availability

of on-board GPUs, effort should be driven towards developing online inference and control

algorithms with parallelization in mind. Doing so will allow for the practical adoption of

powerful techniques from the statistics community, and provide efficient means for han-

dling high-dimensional state and control distributions common in robotics.

2

Data-driven perceptual models for both predicting and inferring sensory observations

can achieve robust performance from sparsely collected data by leveraging known priors.

This can be accomplished by integrating system structure directly into representations used

for learning and inference. Predicting distributions of current and future states for control

and estimation can be scaled effectively by leveraging distributed probabilistic representa-

tions.

In this thesis, I present novel methods for incorporating structure for learning and com-

bining sensory models in robotics, followed by distributed inference methods for stochastic

optimal control and parameter estimation.

Beginning with Part I, the problem of embedding structure in perceptual models for

robot manipulation tasks is addressed for both visual and tactile sensing. Chapter 2 de-

scribes a combined parameteric/non-parameteric learning representation which leverages

key-frame data for improved image-based prediction, and demonstrates the use of gener-

ative models to infer system states for tracking tasks and detecting occlusions [14]. In

Chapter 3, we propose a tactile perceptual model with integrated spatial structure for ro-

bust force prediction, and outline a data collection strategy to improve cross-domain learn-

ing [24].

Part II covers the role of incorporating structure via model-based priors for state es-

timation with multi-sensory observations. In Chapter 4, I describe a framework for ef-

ficient, online probabilistic inference for robot manipulation, combining both tactile and

visual perceptual models [25]. The use of geometric and physics-based priors is shown to

be a vital component in cross-modal compensation, particularly when dealing with heavy

occlusion. Pose estimates from visual tracking systems can be enhanced by using contact

force measurements and, conversely, visual information can be used to alleviate biases in

tactile estimation.

In Part III, I examine how a modern particle variational inference method, known as

Stein Variational Gradient Descent (SVGD) [26], can be adapted to solve control and esti-

3

mation problems for common robotics tasks, such as manipulation and navigation. Chap-

ter 5 presents a new class of control algorithms leveraging SVGD and parallel computa-

tion. This work is the first of its kind, providing the earliest known examples of Stein’s

Method [27, 28] being used for stochastic optimal control and motion planning [29]. By

formulating MPC as an inference problem, and using appropriately factored kernels, favor-

able performance is shown for short and long planning horizons, mitigating the occurrence

of poor local optima in the control solution. In Chapter 6, we extend this approach to

include online estimation of system parameters [30]. Effective adaptation of these param-

eters is shown to improve performance of the MPC algorithm in a dynamically-changing

environment, and tested on a real autonomous ground vehicle.

4

Part I

Structure in Learned Perceptual Models

5

CHAPTER 2

FLOW-BASED VISUAL PREDICTION AND TRACKING

2.1 Introduction

Several fundamental problems in robotics, including state estimation, prediction, and mo-

tion planning rely on accurate models that can map state to measurements (forward mod-

els) or measurements to state (inverse models). Classic examples include the measurement

models for global positioning systems, inertial measurement units, or beam sensors that are

frequently used in simultaneous localization and mapping [31], or the forward and inverse

kinematic models that map joint configurations to workspace and vice-versa. Some of these

models can be very difficult to derive analytically, and, in these cases, roboticists have of-

ten resorted to machine learning to infer accurate models directly from data. For example,

complex nonlinear forward kinematics have been modeled with techniques as diverse as

Bayesian networks [32] and Bezier Splines [33], and many researchers have tackled the

problem of learning inverse kinematics with nonparametric methods like locally weighted

projection regression (LWPR) [34, 35], mixtures of experts [36], and Gaussian Process

Regression [37]. While these techniques are able to learn accurate models, they rely heav-

ily on prior knowledge about the kinematic relationship between the robot state-space and

work-space.

Despite the important role that forward and inverse models have played in robotics,

there has been little progress in defining these models for very high-dimensional sensor

data like images and video. This has been disappointing: cameras are a cheap, reliable

source of information about the robot and its environment, but the precise relationship be-

tween a robot pose or configuration, the environment, and the generated image is extremely

complex. A possible solution to this problem is to learn a forward model that directly maps

6

the robot pose or configuration to high-dimensional perceptual space or an inverse model

that maps new images to the robot pose or configuration. Given these models, one can di-

rectly and accurately solve a wide range of common robotics problems including recursive

state estimation, sequential prediction, and motion planning.

In the following chapter, we explore the idea of directly learning forward and inverse

perceptual models that relate high-dimensional images and low-dimensional robot state.

Specifically, we use deep neural networks to learn both forward and inverse perceptual

models for a camera pointed at the manipulation space of a Barret WAM arm. While recent

work on convolutional neural networks (CNNs) provides a fairly straightforward frame-

work for learning inverse models that can map images to robot configurations, learning

accurate generative (forward) models remains a challenge.

2.2 Related Work

Predictive models for visual data, such as image frames or video, define a mapping from

a latent space to pixel-level observations. They have been used most recently for learning

unsupervised visuo-motor policies [38, 13], visual task planning [39], and model-predictive

control [4, 40, 41]. This has demonstrated the utility of defining desired visual states and

trajectories directly in observation space, for both manipulation and navigation tasks.

Generative neural networks have recently shown much promise in addressing the prob-

lem of mapping low-dimensional encodings to a high-dimensional pixel-space [42, 43,

44, 45]. The generative capacity of these approaches is heavily dependent on learning a

strictly parametric model to map input vectors to images. Using deconvolutional networks

for learning controllable, kinematic transformations of objects has previously been demon-

strated, as in [46, 47]. However, these models have difficulty reproducing clear images

with matching textures, and have mainly been investigated on affine transformations of

simulated objects.

Learning to predict frames has also been conducted on two-dimensional robot manipu-

7

lation tasks. Finn et al. [38] propose an LSTM-based network to predict next-frame images,

given the current frame and state-action pair. In order to model pixel transformations, the

authors make use of composited convolutions with either unconstrained or affine kernels.

The generated image frames appear to reproduce linear motion in the scene, but also ap-

pear to have difficulty replicating multi-degree-of-freedom dynamics. Given that forward

prediction is conducted by recursive input of predicted frames, error compounds during

sequential prediction and prediction quality quickly degrades over future timesteps.

An alternative approach to generating images directly, after applying transformations

in a low-dimensional encoding, is to learn a transformation in the high-dimensional output

space. One can then re-use pixel information from observed images to reconstruct new

views from the same scene. This has been proposed in previous studies [48, 49]. The

authors in [49], for instance, learn a model to generate a flow-field transformation from

an input image-pose pair derived from synthetic data. This is subsequently applied to a

reference frame, effectively rotating the original image to a previously unseen viewpoint.

Using confidence masks to combine multiple flow-fields generated from different reference

frames is also proposed. However, these frames are selected randomly from the training

data.

In this Chapter, we present a method for predicting photo-realistic observations in robot

manipulation by leveraging a key fact: the geometry and kinematics of the system is ef-

fectively constant, and the configuration space is a well-defined closed set. By collecting

key-frame data of different robot poses, a flow-based transformation can be learned to gen-

erate novel viewpoints from nearest-neighbour images. This can then be used for visual

prediction of desired joint-space trajectories, with the added benefit of detecting occlusions

in the task space.

8

Figure 2.1: A conceptual diagram of the proposed framework, makes use of learned visual
sensor models to infer states xi from observations oi, and predict observations from future
states [14].

2.3 Model Design

Tracking and prediction are important tasks in robotics. Consider the problem of tracking

state and predicting future images, illustrated in Fig. 2.1. Given a history of Ot = (oi)
t
i=0

where o ∈ Rm, we wish to track the state of the system x ∈ Rn for the corresponding

sequenceXt = (xi)
t
i=0. This can be accomplished using an inverse model that maps images

to state. Conversely, given a sequence of expected states X t = (xi)
T
i=t+1 (which may

be obtained from planner, for instance), each state x̄i can be mapped to a corresponding

observation prediction ōi by a forward model.

The tasks of mapping the configuration-space joint values to (observed) robot poses,

and vice-versa, is similar to the problem of forward/inverse kinematics for modeling robot

manipulator mechanics. Traditionally, such mechanical models are integrated with visual

information using separately-constructed image-projection models, for techniques such as

Position-based Visual Servoing [50, 51]. In the present context, however, the kinematics

and projection relations are represented jointly by the learned forward/inverse models.

If we assume that (1) the configuration space of the robot is fixed (kinematics do not

change after training time) and (2) the camera intrinsic/extrinsic parameters are also con-

stant (ex. a head-mounted camera on a humanoid robot), then the 3D projection of any

un-occluded robot pose will lie within some fixed set. Given this assumption of constant

9

 x 5

fc1
(256)

fc2
(256)

fc5
(1024)

fc6
(1024)

fc3
(512) fc7

(256x8x8)

...

Deconvi
(cixsixsi)

Convi
(cixsixsi)

...

iflow
(2x256x256)

xr
reference

state

xi
current state

(for k>1)
confidence map

(256x256)

Warp

or
reference image

oi
prediction

fc4
(512)

Figure 2.2: A depiction of a single parametric branch used in the forward model with
flow-field output (i-Flow).

Forward Branch #11st (xr, or)

W
eighted A

verage

1st confidence map

1st prediction

Forward Branch #kkth (xr, or)

kth confidence map

kth prediction
...

x
current state

k-NN

o
prediction

Figure 2.3: The complete k-NN-FLOW model architecture. k-Nearest neighbor (image,
state)-pairs selected by the k-NN module, and passed to individual parametric branches
(having shared weights). Resulting warped images are weighed by their corresponding
confidence maps and summed together to produce final output image [14].

geometry in many robotics problems, we can leverage experienced key-point data to learn

nonparametric models describing the system without explicitly defining the kinematic re-

lationships a priori.

2.3.1 A Forward Sensor Model

We use a generative observation model g to perform a mapping from joint-space values

xi to pixel-space values oi for a trajectory sequence of future states X t. Instead of train-

ing a neural network to predict the RGB values completely from scratch, our network is

comprised of two parts: 1) a non-parametric component, where given a state value xi, a

reference pair (xr,or) is found such that or has a similar appearance as the output image

oi; and 2) a parametric component, where given the same state value xi and the reference

state-image pair (xr,or), we learn to predict the pixel flow field
−→
h (xi,xr) from reference

10

image or to the image oi (using image-warping layers similar to [49]).

The final prediction is made by warping the reference image or with the predicted

flow field
−→
h : g(xi) = warp(or,

−→
h). As long as there is a high correlation between visual

appearance of the reference image or and the output image oi, warping the reference image

results in much higher-fidelity predictions when compared to models which map input

directly to RGB values [47]. The overall architecture is shown in Figs. 2.2 and 2.3.

We use a nearest neighbor algorithm in the configuration space to find or. More pre-

cisely, we take a subset of the training set Fp ⊆ F , consisting of configuration-image pairs

and store the data in a KD-tree [52]. We can quickly find a reference pair by searching for

the training data pair closest to the current joint configuration xi in configuration space.

Since the state-space is low-dimensional we can find this nearest reference efficiently. In

practice, the output of Nearest Neighbor is limited to the elements inside the training set

and cannot generalize to unseen data very well. To address this problem, we train a network

to warp the predicted or to the target observation oi. A diagram of this parametric model

is shown in Fig. 2.2. Given a current and reference state vector as input, the network is

trained to produce a flow tensor to warp the reference image [49].

Intuitively, the Nearest Neighbor component (Fig. 2.3) provides the RGB values for a

nearby joint configuration, and the neural network learns to move the pixels to produce

an image which corresponds to the target joint vector. The input is first mapped to a high

dimensional space using six fully-connected layers. The resulting vector is reshaped into a

tensor with size 256 × 8 × 8. The spatial resolution is increased from 8 × 8 to 28 × 28 by

using 5 deconvolution layers. Following the deconvolutions with convolutional layers was

found to qualitatively improve the output images. Finally, we use the predicted flow field

of size 2× 256× 256 to warp the reference image. To allow end-to-end training, we used a

differentiable image sampling method with a bi-linear interpolation kernel in the warping

layer [53]. To prevent over-fitting, we randomly sample one of 10-nearest neighbors in

the training phase. Using L2 prediction loss, the final optimization function is defined as

11

follows:

min
W

L(W) =
∑
i

||oi − warp(or,
−→
h W (xi,xr))||2 + λ||W ||2 (2.1)

in which W contains the network parameters and λ is the regularization coefficient. Train-

ing on the forward model was performed end-to-end using the Caffe library [54], which we

extended to support the warping layer. ADAM [55] was used to optimize the network.

2.3.2 Forward Model with k-Nearest Neighbors

Using a reference image works well if all visible portions of the arm in oi are also visible in

the reference image or [49]. However, portions of the arm may be visible in some reference

images and not others. As such, we could improve the prediction fidelity by warping more

than one reference image, and merging the results. The idea of warping a single nearest

neighbor can be extended to warping an ensemble of k-nearest neighbor reference images,

with each neighbor contributing separately to the prediction.

In addition to the flow field, each network in the ensemble also predicts a 256 × 256

confidence map (as shown in Fig. 2.2). We use these confidence maps to compute the

weighted sum of different predictions in the ensemble and compute the final prediction.

We refer to this general, multi-neighbor formulation of the forward model as k-NN-FLOW.

2.3.3 Prediction using the Forward Model

Given a trajectory or sequence of states Xt = (xi)
T
i=t+1, it may be desirable to obtain the

corresponding observations Ot = (oi)
T
i=t+1. For instance, an expected trajectory X t could

be obtained by using a motion-planning algorithm in simulation. The resulting solution

would then be translated into observation space using the forward sensor model, generating

a predictive video containing photo-realistic image frames. Generating each image oi is

accomplished simply by performing a forward pass on each corresponding state value xi

using the architecture described in Section 2.3.1.

12

2.4 Tracking with Learned Visual Models

A common approach to state estimation is to use a Bayesian filter with a generative sensor

model to provide a correction conditioned on measurement uncertainty. For instance, the

forward model, described in the previous sections, could be used to provide such a state

update, and potentially allow for a single model to be used for both tracking and prediction.

To track a belief-state distribution, we derive an Extended Kalman Filter from this sensor

model. For the parametric component, this is a straightforward process, as deep neural net-

works are inherently amenable to linearization. To perform the correction step, the Jacobian

J is computed as the product of the layer-wise Jacobians: J = J (L) × J (L−1) × · · · × J (0),

where L is the total number of layers in the network branch. The dimensionality of the ob-

servations makes it impractical to compute the Kalman Gain
(
K = ΣJT (JΣJT +R)−1

)
directly. Instead, we use a low-rank approximation of the sensor-noise covariance matrix

R, and perform the inversion in projected space:

(JTΣJ +R)−1 ≈ U(UTJTΣJU + SR)−1UT (2.2)

where SR contains the top-most singular values of R. Simple first-order linear dynamics is

used for the transition model. We provide an initial prior over the state values with identical

covariance, and an arbitrary mean-offset from ground-truth.

Although it is possible to define an EKF in this manner, this approach is only expected

to perform accurately for sufficiently smooth functions. The non-parametric component

described in Section 2.3.1 prevents the current forward model from having this property,

and, the EKF derived for our forward model has limited accuracy in practice (as discussed

in below). The stability of the tracking is also highly dependent on the quality of the gener-

ated images. Discontinuities arise from the non-parametric component of the k-NN-FLOW

model, as selected nearest-neighbors may abruptly change during a tracked trajectory. Al-

though this effect is mitigated by using a softmax mask for weighting of nearest-neighbor-

13

flow outputs, these sudden jumps in the value of the Jacobian and residual terms can lead

to aberrations in the tracking performance. We find that using a de-convolutional network

for this task is more stable, in general. Alternatively, we can learn an inverse sensor model,

in analogy with inverse kinematics, to directly predict robot state from observations.

2.5 An Inverse Sensor Model

In order to infer the latent joint states xi from observed images oi, we define a discrimi-

native model gfwd. Given the capacity of convolutional neural network models to perform

regression on high-dimensional input data, we used a modified version of the VGG CNN-

S network [56] containing 5 convolutional layers and 4 fully-connected layers (shown in

Fig. 2.4). The model was trained on 256 × 256 × 3 input images and corresponding joint

labels, optimizing an L2 loss on joint values and regularized with dropout layers.

2.6 Tracking using the Inverse Sensor Model

The problem of tracking the state of a system can be generally defined as follows: given

a history of observations Ot = (oi)
t
i=t−T , we would like to estimate the corresponding

sequence of states Xt = (xi)
t
i=t−T . In the current application, we propose to use the

inverse model described in Section 2.5 to infer each state value xi directly from oi, and

independently of other states (xj 6=i ∈ Xt) and observations (oj 6=i ∈ Ot). This assumes that

the state of the system is fully-observable in a given image frame, and that the observations

fc6
(4096) fc7

(1024)
conv5
(512)

conv3
(512) conv4

(512)

conv1
(96) conv2

(256)
fc8

(1024)
fc9
(7)

Figure 2.4: The inverse sensor model architecture, based on VGG-net.

14

oi are therefore free of occlusion.

2.7 Synthetic Dataset Generation

Images of robot-pose and corresponding joint values were captured for a Barrett WAM

robot manipulator modeled in simulation using DART [57]. These were taken from a

different viewpoint compared to those of the physical system, and the first four joints were

sampled randomly. With a truly uniform sampling distribution, less data was required for

training (20,000 for the training set and 10,000 for nearest-neighbor set). In addition, a

simulation dataset of identical size was captured for a PR2 dual-manipulator robot, with

random sampling of six degrees-of-freedom (first three joints in each arm).

2.8 Real-world Data Collection

Experiments were conducted using a Barrett WAM manipulator, a cable-actuated robotic

arm. Data was captured from raw joint-encoder traces and a statically-positioned camera,

collecting 640×480 RGB frames at 30 fps using a PrimeSense camera (the infra-red depth

modality was not used for this study). Due to non-linear effects arising from joint flexibility

and cable stretch, large joint velocities and accelerations induce discrepancies between

recorded joint values and actual positions seen in the images [58]. In order to mitigate

aliasing, the joint velocities were kept under 10◦/s. This and other practical constraints

imposed limitations on obtaining an adequate sampling density of the four-dimensional

joint space. As such, the training data was collected while executing randomly generated

trajectories using only the first four joints (trajectories were made linear for simplicity).

A total of 500 trajectories were executed, resulting in 225,000 captured camera frames

and corresponding joint values. 50,000 data points were reserved for the nearest-neighbor

data-set, and the remaining for training data. Test data was collected for arbitrary joint

trajectories with varying velocities and accelerations (without concern for joint flexibility

and stretch).

15

G
ro

u
n
d
 T

ru
th

1
-N

N
-F

LO
W

D
E
C

O
N

V
G

A
N

1
-N

N

(a) WAM 4-dof

G
ro

u
n
d
 T

ru
th

1
-N

N
-F

LO
W

D
E
C

O
N

V
G

A
N

1
-N

N

(b) PR2 6-dof

Figure 2.5: Examples of generated images for randomly-sampled input joint values, which
were not encountered during training. Each row corresponds to the following (top-to-
bottom): ground-truth images, 1-NN-FLOW predicted output, DECONV baseline, and
GAN baseline. Differences in robot-pose arise for GAN predictions due to noise injection
necessary for joint-conditioned training.

Dense sampling along sparsely-distributed trajectories results in non-uniformly sam-

pled data. Simply constructing a nearest-neighbor dataset from randomly sampling col-

lected data results in clusters of neighbors with high intra-cluster similarity. Picking k-

nearest neighbors results in many reference images providing nearly identical viewpoints

of the robot arm, which reduces the benefit of using multiple neighbors to begin with. To in-

troduce more dissimilarity (and variation) into k-neighbor selection, it was ensured that no

two nearest neighbors originated from the same trajectory executed during data collection.

16

Figure 2.6: Sequence of generated images for a test trajectory, where the top-to-bottom
row correspondence is as follows: ground-truth images, 1-NN-FLOW predicted output,
DECONV baseline, and GAN baseline. Times indicated for t = 1, 20, 40, ..., 80, from left
to right, respectively

WAM (4-dof) PR2 (6-dof)
Model Mean L1 RMS Mean L1 RMS

5-NN-FLOW (ours) 0.00255 0.02319 0.00878 0.04546
2-NN-FLOW (ours) 0.00222 0.02171 0.00867 0.04843
1-NN-FLOW (ours) 0.00183 0.01905 0.00616 0.03868
DECONV (baseline) 0.00726 0.02871 0.01567 0.04566

GAN (baseline) 0.03552 0.04262 0.12373 0.08151
1-NN (baseline) 0.00838 0.06471 0.02617 0.12283

Table 2.1: RGB prediction pixel-error results on simulated datasets for WAM (4-dof)
and PR2 (6-dof) platforms. Shown are values for different k-NN-FLOW forward mod-
els (k = 1, 2, 5 nearest-neighbors), with comparison to 1-nearest-neighbor, DECONV and
GAN baselines. Raw pixels values are within [0, 1].

17

Model Mean L1 RMS

5-NN-FLOW (ours) 0.01246 0.02852
2-NN-FLOW (ours) 0.01084 0.02269
1-NN-FLOW (ours) 0.01223 0.02510
DECONV (baseline) 0.01303 0.02832

GAN (baseline) 0.01417 0.03017
1-NN (baseline) 0.01786 0.05210

Table 2.2: RGB prediction pixel-error results on the real-world 4-dof WAM dataset. Shown
are values for different k-NN-FLOW forward models (k = 1, 2, 5 nearest-neighbors), with
comparison to 1-nearest-neighbor, DECONV and GAN baselines. Raw pixels values are
within [0, 1].

2.9 Forward Sensor Model Evaluation

We first examine the predicted observations generated by the proposed forward sensor

model (k-NN-FLOW). This includes three different variations of the proposed model, con-

structed for k = 1, 2, 5 nearest neighbors. A deconvolutional network (DECONV) similar

to that used in [46] is selected as a baseline, with the absence of a branch for predicting

segmentation masks (as these are not readily available from RGB data). Given recent suc-

cesses of generative adversarial networks (GANs) for image generation, we also include a

GAN model based on [59, 60]. GAN models can be conditioned for controlled output [61].

Instead of conditioning on discrete labels, we condition on a continuous signal provided by

the joint angles. We stabilize the training by adding low variance noise to the input signal .

Finally, we include results produced by a simple 1-Nearest Neighbor implementation.

Quantitative results for prediction accuracy are shown in Tables 2.1 and 2.2, where it is

apparent that both 1-NN-FLOW and 2-NN-FLOW models outperform the DECONV, GAN

and 1-NN baselines in both mean L1 and RMS pixel error. The 5-NN-FLOW predictions

are similar in appearance to the real-world predictions produced by both the DECONV and

GAN networks, but outperform them on the simulated datasets. All models outperform

simple 1-NN selection.

Qualitative comparisons between the ground-truth, forward-sensor predictions, DE-

18

CONV and GAN outputs are depicted in Fig. 2.5 for randomly selected joint input values in

simulation. For the physical system, prediction results are shown in Fig. 2.6 for a sequence

of state-input values at various times on a pair of real test trajectories.

Detailed texture and features have been preserved in the k-NN-FLOW predictions, and

the generated robot poses closely match the ground truth images. Both DECONV and

GAN outputs suffer from blurred reconstructions, as expected, and do not manage to render

certain components of the robot arm (such as the end-effector).

2.10 Occlusion Prediction

Using generative models for frame-prediction results in another interesting benefit: the ca-

pacity to reason about constraints in image-space. We briefly demonstrate how the forward

model, k-NN-Flow, can be used for predicting occlusions of articulated bodies. This may

be desirable in instances where maintaining visibility of the robot is required for monitor-

ing execution under partial observability, such as reaching or grasping in cluttered environ-

ments [62, 63, 64].

While collecting ground-truth optical flow values is infeasible in a real-world applica-

tion, the core architecture shown in Fig. 2.2 learns to predict the inverse optical flow fields

from reference observation or to the current observation o without any direct supervision.

The forward optical flow can also be generated by changing the order of the inputs to the

network. We use the assumption that forward and inverse optical flow should be symmetric

for visible portions of the arm [65, 66]. Given two states x1 and x2, we compute the forward

and backward optical flow. We then find the robot-pixels in the first image with symmet-

ric forward and backward optical flow. Points that violate this property are assumed to be

occluded in the second image. Fig. 2.7 illustrates a few qualitative examples that were gen-

erated using this method. Predicting occlusions by projecting from configuration to image

space could allow such perceptual constraints to be used in defining desirable trajectories

(which maintain end-effector visibility, for example), and could be used in conjunction

19

Figure 2.7: Each row shows an example of occlusion detection. The first column is the
first observation o1 in which the arm is not occluded by the object. The goal is to predict
which part of the arm would be occluded if it moves to the second state. Second columns
show the second observation o2. Note that the observations are shown for demonstration
purposes, and the network only uses the corresponding joint values x1 and x2. The third
column depicts the where violation forward-backward symmetry is predicted for o1: red
pixels indicate occluded regions, while green pixels indicate be observable surfaces.

with a planning framework.

2.11 Tracking Task Evaluation

We use the inverse model described in Section 2.5 to track the 4-dof robot joint positions

from images. The performance is compared to tracking with an EKF formulated using the

forward model defined in Section 2.3.1) and an EKF based on the DECONV model. The

latter uses a Jacobian calculated in the same manner as described in Section 2.3.1.

Examples of tracking accuracy for a single test trajectory are shown in Fig. 2.8 and

Fig. 2.9. Here, joint state estimates from the inverse model are compared to those provided

by a 2-NN-FLOW EKF and a DECONV EKF. Both EKF models are initialized with dif-

ferent mean-offsets (x0 = 10◦ and x0 = 20◦), to demonstrate approximate knowledge of

20

(a) (b)

(c)

Figure 2.8: Comparison between the learned inverse sensor model (Fig. 2.4) and an EKF
using the 2-NN-FLOW forward sensor model. Each row corresponds to a single joint
evolving over 450 frames. The red line is the ground truth joint configuration, the black
line is the estimated state. RMSE scores are shown. (a) The inverse model can robustly and
accurately predict the state from an arbitrary image and unknown start state. (b) Tracking
using an EKF and the learned DECONV model starting from a 10-degree offset and (c)
20-degree offset. The EKF works better when the state is already accurately tracked, but in
general is much less robust and accurate than the learned inverse model.

the starting state at t = 0.

The results indicate that both EKF trackers are able to converge the state estimate to

the true trajectory over time, given a favorable (10◦ offset) initial prior. RMSE tracking

errors demonstrate similar tracking performance for this initialization. Failure cases for

21

(a) (b)

(c)

Figure 2.9: Tracking results and RMSE scores for DECONV EKF (same context as
Fig. 2.8). The DECONV EKF works better when the state is already accurately tracked,
but in general is much less robust and accurate than the learned inverse model.

2-NN-FLOW and DECONV EKF models are shown in Fig. 2.8c and Fig. 2.9c. Here, the

state is initialized with a 20◦ offset, leading to instability in both trackers. Although perfor-

mance has drastically deteriorated in both cases, it is worth noting that the DECONV EKF

manages to recover reasonable joint state estimates for the first two joints. As mentioned in

Section 2.4, EKF performance is dependent on the smoothness of the function, and may be

a contributing factor to tracking robustness. The stability of the tracking is highly depen-

dent on the quality of the generated images. Discontinuities arise from the non-parametric

22

Figure 2.10: Inferred joint values from a sequence of images using inverse sensor model
for an arbitrary trajectory.

component of the k-NN-FLOW model, as selected nearest-neighbors may abruptly change

during a tracked trajectory. Although this effect is mitigated by using a softmax mask for

weighting of nearest-neighbor-flow outputs, these sudden jumps in the value of the Jaco-

bian and residual terms can lead to aberrations in the tracking performance. It is apparent

that the inverse sensor model is considerably more suited to the tracking task in this do-

main. The tracker requires no initial prior, and finds an optimum in a single forward pass

(as opposed to the iterative optimization performed by the EKF). The comparatively high

robustness of the inverse model in tracking is further demonstrated by estimating the state

of an arbitrary nonlinear test trajectory shown in Fig. 2.10. No latent dynamics model is

assumed here, and state estimates are produced independently given a currently observed

frame.

2.12 Discussion

This chapter presented a framework for tracking and prediction consisting of separate in-

verse and forward models, relating state to perceptual space, for purposes of state esti-

mation and observation generation respectively. A novel approach was proposed, which

combines the strengths of nearest neighbors and neural networks to generate high-quality

23

predictions of never-before-seen images. In both a quantitative and qualitative sense, this

generative network produces improved results over the DECONV, GAN and 1-NN base-

lines. For state-estimation and tracking, the generative observation model can be used in an

EKF-based framework to perform probabilistic inference on the underlying latent state, and

track the manipulator state over a simple trajectory. However, we have shown that learning

a convolutional neural network as a forward model results in better performance in prac-

tice. Several experiments were performed on a real robotic system, validating the approach

and showing that our forward model is quantitatively and qualitatively state-of-the-art.

We have examined a technique for incorporating structure in visual perceptual models,

where robot kinematic states and projected appearance served to provided non-parametric

reference points for training a predictive module. Next, we will move on to the tactile sens-

ing modality, and discuss how structure can be used to improve prediction in this context.

24

CHAPTER 3

LEARNED TACTILE SENSING AND FORCE ESTIMATION

3.1 Introduction

Tactile perception is an important sensing modality, enabling robots to gain critical infor-

mation for safe interaction in the physical world [67, 68, 69]. The advent of sophisticated

tactile sensors [70] have provided increased sensitivity to forces induced by contact dynam-

ics, allowing for a diversity of applications in robotics ranging from object class and pose

identification, surface texture reasoning, and slip detection [71, 72, 73, 74, 75, 76, 77, 78].

Yet, the output signals of these devices are typically noisy and difficult to interpret. This is

largely due to the complexity and non-linearity of contact mechanics (such as visco-elastic

deformation and adhesion). There has been lack of accurate, generalize-able models which

can correctly map raw sensory signals to useful force information across different tasks.

This has limited the use of these sensors to coarse, force-based control, acting as classifiers

of salient events such as slip or contact [79, 75]. Providing reliable, continuous measure-

ments on force direction and magnitude could allow for improved robustness in controller

design used in contact-rich manipulation tasks.

These shortcomings were addressed in [24] using a large-scale data-driven approach,

where training examples were collected across different contact domains in order to learn a

tactile sensor model. To improve prediction of directional force measurements, the spatial

structure and surface geometry of the sensor was encoded directly into the architecture of

the network used for the model. The proposed approach was compared to the current state-

of-the-art methods for force estimation using the same tactile-sensing device, including

both analytic [80] and learned [81] baselines.

25

Figure 3.1: The BioTac sensor [82] consists of a rigid core, surrounded by a weakly con-
ductive gel and a high friction elastomeric skin. Changes in impedance caused by fluid
deformation during contact are captured by an array of 19 electrodes. However, these mea-
surements must be converted into meaningful force values for many manipulation tasks.

3.2 Related Work

One limiting factor in existing approaches has been the lack of effective mappings from

tactile signals to force measurements which scale robustly across different tasks. Current

methods for force estimation on the SynTouch BioTac [83] fail to cover the entire range

of forces applied during typical manipulation tasks. Analytic methods [80, 84] tend to

produce very noisy estimates at small force values and their accuracy decreases as the

imparted force angle relative to the sensor surface normal becomes large (i.e., a large shear

component relative to the compression force). On the other hand, learned force models [85,

81] tend to overfit to the dataset used in training and have not been sufficiently validated in

predicting force across varied tasks.

More specifically, Wettel and Loeb [85] use machine learning techniques to estimate the

force, contact location, and object curvature when a tactile sensor interacts with an object.

Lin et al. [80] improve upon [85], formulating analytic functions for estimation of the con-

tact point, force, and torque from the BioTac sensor readings. Navarro et al. [84] explore

calibration of the force magnitude estimates by recording the DC pressure signal when the

sensor is in contact with a force plate. They use these values in a linear least squares for-

26

mulation to estimate the gain. While they can estimate the magnitude of force, they cannot

estimate force direction. Su et al. [81] explore using feed-forward neural networks to learn

a model that maps BioTac signals to force estimates. The neural network more accurately

estimates forces than the linear model from [80] and is used to perform grasp stabiliza-

tion. Importantly, none of these methods validate their force estimates using a data source

different from the method used to generate the training data. They also lack experimental

comparison between different approaches in the context of robotic manipulation tasks.

In the following, we attempt to address these limitations by collecting a large scale

ground truth dataset from different methods and by leveraging the sensor surface and spa-

tial information in our proposed neural network architecture. For one of our collection

methods, we infer force from the motion of an object on a planar surface, by formaliz-

ing the interaction as a system of particles, a deviation from the well-established velocity

model for planar pushing [86] which does not reason about force magnitude. This scheme

of force estimation allows us to obtain accurate small-scale forces (0.1-2N), enabling us to

learn a precise force prediction model.

Motivated by [87], we compare our proposed method with the current state-of-the-art

methods for force estimation for the BioTac sensor. We specifically compare the analytic

model from [80] and the best performing feed-forward neural network model from [81].

We compare both in terms of force estimation accuracy on our dataset and also empirical

experiments on a robot manipulation task. To summarize, we make the following contribu-

tions:

1. We provide a novel method to infer force from object motion on a planar surface by

formalizing the mechanics as a system of particles and solving for the force in a least

squares minimization problem, given the object motion and the point on the object

where the force is imparted.

2. We introduce a novel 3D voxel grid, neural network encoding of tactile signals en-

abling the network to better leverage spatial relations in the signal. We further tailor

27

our learning to the tactile sensor through the introduction of a novel loss function

used in training that scales the loss as a function of the angular distance between the

imparted force and the surface normal.

3. We collected a large-scale dataset for the BioTac sensor, consisting of over 600 push-

ing episodes and 200 interactions between an arm-hand system equipped with the

BioTac sensors and a force torque sensor.

We validate these contributions on our dataset and in an autonomous pick and place task.

We show that our proposed method robustly learns a model to estimate forces from the Bio-

Tac tactile signals that generalize across multiple robot tasks. Our method improves upon

the state of the art [81, 80] in tactile force estimation for the BioTac sensor achieving a me-

dian angular accuracy of 3.5 degrees in predicting force direction (66% improvement over

the current state of the art) and a median magnitude accuracy of 0.06 N (93% improvement)

on a test dataset.

3.3 Problem Definition & Proposed Approach

We describe the sensor’s states in the following section, followed by a formal definition of

the problem. We then describe the computation of ground truth force from planar pushing

in Section 3.3.3 and our network architecture in Section 3.3.4.

3.3.1 BioTac Sensor

We use the BioTac sensor [82] from SynTouch. The sensor has a rigid core which is en-

veloped by a high friction elastomeric skin. A weakly conductive liquid is filled in the

space between the core and the skin. There are 19 impedance sensing electrodes spread

out on the core surface, giving measurements e ∈ R19. A thermistor coupled with heaters

measures the fluid temperature Tdc ∈ R and temperature flow Tac ∈ R. A transducer

measures the static pressure pdc ∈ R. High frequency changes to the pressure are mea-

28

sured by the transducer at 2.2 kHz and sent to the system in a buffer with the past 22 val-

ues pac ∈ R22 at 100 Hz along with the other signals. A single sensor sample is thus given

by z = [e, pdc, pac, Tdc, Tac]
> ∈ R44. Following [80], we use the tared signals from the

sensor (i.e., initial value subtracted). Using methods described by Lin et al. [80], we also

compute the contact point sc ∈ R3 on the BioTac sensor and the surface normal sn ∈ R3 by

approximating the BioTac surface geometry as a half-cylinder attached to a quarter-cylinder

cap, both of the same radius r.

3.3.2 Problem Definition & Approach Overview

We define the problem as estimating the force f ∈ R3 with reference to the sensor frameB,

given z, sc, and sn. We use feed-forward neural networks to learn the function f =

F (z, sc, sn) that maps from sensor readings z, the sensor surface contact point sc, and

the surface normal sn, to the force f . In order to learn an accurate model, our training

dataset needs to cover a wide range of forces (in magnitude and direction). Furthermore,

to learn a robust model that transfers to new tasks, we generate ground truth data from

three different sources. The first source is collected by rigidly attaching the BioTac to a

wrist force/torque (FT) sensor similar to [81, 80] and pressing on the BioTac sensor using

objects. We term this source rigid-ft. This requires a human to interact with the object and

is biased by the human. This setup was used to cover very large forces. For the second

source, we attach the same FT sensor to a ball, with which we interact using a robotic

hand-arm system. We call this source ball-ft. The ball-ft source adds randomness to the

orientation of the BioTac sensor frame with respect to the force torque sensor frame. The

wrist force/torque sensor is noisy in ranges between 0.01 N to 0.1 N, making small force

readings unreliable. To overcome this problem, we collect sensor readings from a planar

pushing setup, where a robot pushes a box on a planar surface using the tactile sensor. We

call this source planar-pushing. The ground truth force for planar pushing is computed by

least squares optimization, described in the next section.

29

3.3.3 Mechanics of Planar Pushing as a System of Particles

Given an object with mass m in an SE(2) planar space, moving with a linear velocity v and

an angular velocity ω, the net force causing this motion can be defined as

fc = mv̇ (3.1)

c× fc = Iω̇ (3.2)

where fc ∈ R2 is the net force acting at a point c ∈ R2 with reference to the center of

mass (CM) of the object. Given the linear acceleration, the net force can be obtained.

However, if the measurement system is not able to observe small linear accelerations, solv-

ing Eq. (3.1) is intractable. There are two cases when the linear acceleration can be small:

1) when the force applied to the object is very small, causing very small linear and angular

acceleration, 2) when the force applied is perpendicular to the radial line, in which case the

object will have a large angular acceleration. In the latter case, Eq. (3.2) could give us the

net force fc. However, Eq. (3.2) is a degenerate system as we need fc ∈ R2 from ω̇ ∈ R.

We solve for fc by formulating Eq. (3.1) and Eq. (3.2) as loss functions in a least squares

minimization problem:

argmin
fc

k||fc −mv̇||2 + ||[c]×fc − Iω̇||2 (3.3)

where the weight k scales the linear acceleration loss and [c]× is the skew symmetric matrix

of vector c. Consider the object to be now resting on a planar surface with coefficient of

friction µs between the object and the surface. The friction between the object and the pla-

nar surface will oppose the motion of the object with a frictional force ff and moment nf .

If the contact region between the object and the surface is R, and r is any point on the

30

object in this region, the force and moment can be defined using Coulomb’s law as

ff = −µs
∫
R

v(r)

‖v(r)‖
p(r)dA (3.4)

nf = −µs
∫
R

r × v(r)

‖v(r)‖
p(r)dA (3.5)

where v(·) is a function that gives the velocity of the point. The pressure at r is given

by p(·) and dA is a differential element of area at r. We derive the moment with reference

to the object’s center of mass. To make computation of the frictional force tractable for

planar pushing, we make the following assumptions:

1. The pressure distribution in the contact region R is uniform.

2. The rigid body is made of n particles which are uniformly distributed.

The contact region is decomposed into n small regions, with center of mass for region i

at ri and the normal force applied by region i is
∫
i
p(ri)dA = mg

N
.

With the listed assumptions, we simplify the frictional force

ff = −µs
mg

N

n∑
i=0

v(ri)

‖v(ri)‖
(3.6)

and the moment due to frictional force becomes

nf = −µs
mg

N

n∑
i=0

ri ×
v(ri)

‖v(ri)‖
(3.7)

Including the frictional force ff and moment nf in our minimization problem of Eq. (3.3)),

argmin
fc

k||fc + ff −mv̇||2 + ||[c]×fc + nf − Iω̇||2 (3.8)

Optimizing Eq. (3.8) yields an estimate of the force fc. The force fc is 2D, parallel to the

support surface. We obtain the ground truth force f3d = BRofc by transforming the force fc

31

Biotac signals

e voxel grid

sc voxel grid

2D CNN FCN fp

Q(.)

f3d

sn

BRw

Planar pushing plane

3D CNN

3D CNN

3D CNN 3D CNN

filters: 64

filters: 64

filters: 64 filters: 64 filters: 128 filters: 64

FCN

filters: 32

FCN

filters: 3

surface normal

electrode
signals

surface
contact point

Figure 3.2: The force prediction neural network uses 3D voxelized inputs that preserve
the spatial information. We use layer norm followed by ReLU after every convolutional
and fully connected layer (FCN). Additionally, we use kernels and strides of 2 for every
convolutional layer.

from the object’s frame of reference o to the BioTac sensor frame B.

3.3.4 Network Architecture

Our proposed neural network architecture takes only the spatial signals1 e, sc from the

BioTac to estimate the force as shown in Fig. 3.2. We create a 3D voxel grid and input the

value of each electrode on the corresponding voxels based on the electrode’s position with

reference to the BioTac frame B. We create a second voxel grid for the contact point and

input a value of 1 for the voxel at contact point sc. These two voxel layers are concatenated

and passed through two layers of 3D convolutions. The features are then flattened and

passed through a layer of 2D convolutions, which is further flattened to a vector. This

vector passes through fully connected layers to output the predicted force vector fp of

length 3.

3.3.5 Loss Functions

The predicted force vector fp is compared to the 3D ground truth force f3d via a scaled `2

norm.

Q3d(f3d, fp) =
1

||f3d||
||f3d − fp|| (3.9)

1We found empirically that the other signals did not improve the force estimation accuracy.

32

For the planar pushing dataset, we use a projected `2 norm, as there could be forces acting

perpendicular to the planar surface which the physics model does not take into account.

Qproj(f3d, fp, wRB) =
1

||f3d||
||(wRBf3d − wRBfp)

>ψ||2 (3.10)

where ψ is the orientation of the support surface plane.

The high friction of the BioTac surface allows for imparting force from directions other

than the surface normal at a contact point. So the force could be applied from any contact

point on the surface and is not only limited to contact points whose surface normal matches

with the force direction. We hypothesize that as the angle between the force and the surface

normal increases, the sensor’s signals might be less meaningful. We scale the loss function

with an adaptive weight function α(·) to reflect this hypothesis.

α(sn, f3d) = 2β(1−D(sn,f3d)) (3.11)

D(sn, f3d) =
cos−1(s>n f̂3d)

π
(3.12)

where β is a scalar weight and f̂3d is the unit vector of the ground truth force vector f3d and

D(·) is the normalized cosine distance function. The loss function used in our network is

defined as

Q(·) =

α(·)Qproj(f3d, fp, wRB) if planar pushing

α(·)Q3d(f3d, fp) otherwise

3.4 Dataset Collection, Implementation Details, & Experimental Protocol

This section provides a concise description of our dataset collection procedure. We also

provide implementation details of our neural network and describe the error metrics and

comparison methods used to analyze our force model.

33

3.4.1 Dataset Collection

The setups for our three different data sources rigid-ft, ball-ft, and planar-pushing are

shown in Fig. 1. For learning the force model, we only used samples from the dataset

that have non-zero force readings; we term these samples “force samples”. We use the

OptoForce HEX-E 6-DOF force torque sensor to collect the rigid-ft and ball-ft data. For

rigid-ft, we mounted the BioTac to the force torque (FT) sensor and pressed down on the

finger using flat rigid plastic objects to collect data. This closely resembles the data collec-

tion performed by [80, 81] for BioTac force estimation. We collected a total of 20k force

samples. For the ball-ft method the Allegro hand pushed the BioTac against a hard plastic

ball mounted on a vertical bar attached to the same FT sensor. We generated a total of 200

random trajectories for the middle fingertip to make contact with the ball across 10 differ-

ent wrist poses generating a total of 20k force samples. For the planar-pushing method, we

mounted a BioTac on an ABB YuMi robot which pushed a known box weighing 0.65 kg.

We generated a single straight-line, task-space position trajectory for the YuMi fingertip to

follow using trajectory optimization. We use Riemannian motion policies [88] to execute

the task space trajectory. We chose a random initial orientation for the BioTac and box

for every execution of the task space position trajectory. The orientation of the box was

sampled from a small range to keep the contact on the same face of the box for each push.

We collected a total of 600 trials on the robot generating 100k force samples in total.

Our final dataset collected across all three data sources contains a total of 140k force

samples. For ball-ft and planar-pushing setups, we track the robot with an ASUS Xtion

RGB-D camera using Dense Articulated Real-Time Tracking (DART) [89]. We enable

DART’s contact prior when the FT sensor measures a force greater than 2 N for ball-ft and

when the BioTac absolute pressure signal (pdc) rises greater than 10 units for the planar-

pushing setup.

We chose the parameters for the optimization described in Eq. (3.8) as n = 80 and

k = 10. We found the number of particles n did not affect the force by much above this

34

size and any value of k greater than 2 gave similar performance. We chose the coefficient

of friction µs = 0.1 between the box and the planar surface by interpolating data from [90].

We solve the optimization using Sequential Least Squares Programming (SLSQP) [91]

available through PAGMO [92].

3.4.2 Neural Network Implementation Details

We built our neural network in TensorFlow [93]. For each data source, we used 80% for

training and approximately 10% for validation and from the remaining data, we picked 1.5k

samples for testing; the data was split by trials (leaving whole trials). We run the training

for a maximum of 200 epochs with a batch size of 512 and store the model only when the

loss on the validation set improves. We optimize using the Adam optimizer [55]. We use

an adaptive learning rate that starts at 10−4 and increases for the first 2 epochs by 2(i/50)

and later decreases by 0.95 each iteration i for the remaining epochs, motivated by [94].

We only send the BioTac signals to the network when the robot detects the fingertip is

in contact. We use the absolute pressure (pdc) signal from the BioTac to determine contact

and classify the sensor as in contact if this pdc signal maintains a value above 10 for the

past 10 timesteps. This reduces false positives when the sensor is moving in free space. We

set the voxel grid to have dimensions 15× 15× 7, which allowed a unique voxel for each

electrode of the BioTac sensor. We plan on studying the effect of voxel dimensions on the

efficiency of learning in the future.

3.4.3 Error Metrics, Protocol & Comparison Methods

Given the predicted force fp and the ground truth force f3d, we compute the error in direc-

tion as the cosine similarity between the vectors. We scale this cosine similarity to give a

percentage direction accuracy.

Direction error% = 100× 1

π
cos−1(f̂>3df̂p) (3.13)

35

For computing the error in magnitude, we report the symmetric mean absolute percentage

accuracy between the ground truth and predicted force magnitudes:

Magnitude error% = 100× abs(||f3d|| − ||fp||)
||f3d||+ ||fp||

(3.14)

We report the absolute `1 norm between the ground truth and predicted force magnitude as

“magnitude error (N)”.

We compare our proposed network architecture against the NN-3 model from Su et

al. [81] and also the linear model given by [80]:

fp = [Sx

19∑
i=1

einx,i, Sy

19∑
i=1

einy,i, Sz

19∑
i=1

einz,i]
> (3.15)

We compute the scalar weights Sx, Sy, Sz using linear regression and [nx,i, ny,i, nz,i]
> for

the orientation of electrode i.

We report error on the test dataset which contains 1500 samples from each data source (4500

in total). To study how each dataset source affects the prediction model, we train each pre-

diction model with the following source combinations:

1. rigid-ft to directly compare to Su et al. [81] and [80].

2. planar-pushing to study how 2D ground truth force obtained by optimizing over

planar physics performs on predicting 3D forces.

3. ball-ft to study the effect of randomization of the sensor’s frame with respect to a

6-DOF force sensor.

4. mixed, which includes all sources rigid-ft, planar-pushing and ball-ft, to study the

ability of the prediction model to learn from different sources.

We also evaluate the effect of the two primary contributions of our network structure:

spatial signal encoding by 3D voxelization and the proposed α weight. We train our pro-

36

0

20

40

60

80

100

C
o
s
in

e
 D

is
ta

n
c
e
 E

rr
o
r

%

rigid-ft ball-ft planar-pushing mixed
0

20

40

60

80

100
F
o
rc

e
 M

a
g
n
it

u
d
e
 E

rr
o
r

%

Analytic Su et. al Ours

0

20

40

60

80

100
C

o
s
in

e
 D

is
ta

n
c
e
 E

rr
o
r

%

rigid-ft ball-ft planar-pushing mixed
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
o
rc

e
 M

a
g
n
it

u
d
e
 E

rr
o
r

(N
)

Analytic Su et al. Ours

Figure 3.3: Predicted force error for different models and training sets. Analytic refers to
the linear model from [80], Su et al. refers to the best performing model from [81].

posed network architecture with and without each of these contributions (making a total of

four models) on the same source combinations as described above. We compare voxeliza-

tion to four fully connected layers of the signals e and sc, input to the proposed network’s

first fully connected layer.

3.5 Results

We now report the results on our test dataset. In all plots the middle line in the box plot

defines the median error. The bottom and top borders indicate the first and third quartiles.

37

The whiskers indicate the extrema of the inliers within 1.5 times the interquartile range.

3.5.1 Prediction accuracy:

Our method trained on the mixed dataset achieves the best accuracy, as shown in Fig. 3.3.

We achieve a median angular error of 0.06 radians (3.5 degrees) and a median magnitude

error of 0.06 N compared to Su et al.’s median angular error of 0.18 radians (10 degrees)

and median magnitude error of 0.91 N. We also compare our model to Su et al. (trained on

rigid-ft) in a time series of force estimates in Fig. 3.4. We see that our model sufficiently

captures the ground truth while Su et al. only covers the magnitude along z-axis. In

Fig. 3.4, we suspect the FT ground truth to be noisy, causing the oscillating behaviour in

the force along x-axis.

3.5.2 Effect of spatial encoding and α regularization:

We investigate the effect of α in the loss function. As seen in Fig. 3.5, without α, the

interquartile is larger, specifically in ball-ft and mixed trained models, indicating that α

indeed helps regularize the force predictions. Voxelization helps in lowering the predic-

tion error further when combined with α highlighting that spatial information is important.

Without α, voxelization performs worse only on the magnitude of ball-ft trained model.

3.6 Force Feedback for Object Manipulation

We analyze the generalization ability of the learned force model in an autonomous object

lifting and placement task. We use this task to illustrate the utility of the learned force

model and do not directly compare to other approaches to grasp stabilization and placement

using tactile sensing [95, 73].

To perform the task the robot reaches its hand to a fixed pose with respect to the object.

The robot closes its fingers and makes contact in the desired configuration. The robot then

attempts to increase the force on all the fingertips to a desired threshold τ by increasing

38

0 2 4 6 8 10 12
0.8

0.6

0.4

0.2

0.0

0.2

0.4

F
o

rc
e

(x
-a

x
is

)
N

0 2 4 6 8 10 12
0.5

0.0

0.5

1.0

1.5

2.0
F

o
rc

e
(y

-a
x

is
)

N

0 2 4 6 8 10 12

Tim estep

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

F
o

rc
e

(z
-a

x
is

)
N

ground t ruth Su et al. Our m odel

Figure 3.4: Estimated force from our model and Su et al. compared with the FT sensor, to
which the BioTac is rigidly mounted. Our model sufficiently tracks the ground truth along
all three axes.

the finger position along a predefined task-space vector. We experimentally selected τ to

be 2 N as the minimal force needed for the method from [81] to lift the soft-scrub object.

The robot then raises its arm to lift the object along a straight-vertical trajectory. After

reaching the desired height, the robot lowers its arm down along the same straight line and

the fingers release the object when a negative force in the normal direction to the support

surface is detected on the index fingertip. All grasps we studied were three fingered grasps.

We chose the index finger as it had the largest change in force direction caused by the

support surface.

The lifting and placement tasks directly depend on the accuracy of the forces estimated

from the tactile sensor. If the estimated force values are larger than the actual force, the

39

0

10

20

30

40

50

60

70

80

C
o
s
in

e
 D

is
ta

n
c
e
 E

rr
o
r

%

rigid-ft ball-ft planar-pushing mixed
0

20

40

60

80

100

F
o
rc

e
 M

a
g
n
it

u
d
e
 E

rr
o
r

%

no voxel + no alpha

voxel + no alpha

no voxel + alpha

voxel + alpha

Figure 3.5: Effect of the spatial encoding (“voxel”) and α on the prediction accuracy.

object will not be in a stable grasp and the object will not rise with the arm. If the values

are smaller than the actual force, the grasp may deform the softer objects used in the exper-

iments. If the force estimates are incorrect at placement, then the robot will either drop the

object too soon or push down onto the table with excessive force, possibly knocking the

object over.

We chose four objects from the YCB dataset [96] and two deformable objects—a paper

cup and a plastic bottle. The objects are shown in Fig. 3.6. We show results for our mixed

dataset trained prediction model and compare to Su et al.’s prediction model [81]. We train

the Su et al. prediction model using the rigid-ft data to closely replicate the experiments

in [81] and show the benefit of training on diverse sources of data. We ran 5 manipulation

trials per object for each method. The initial and desired pose of the object was kept

consistent across the two methods.

40

0 2 4 6 8 10 12
0.8

0.6

0.4

0.2

0.0

0.2

0.4

Fo
rc

e
(x

-a
xi

s)
 N

0 2 4 6 8 10 12
0.5

0.0

0.5

1.0

1.5

2.0

Fo
rc

e
(y

-a
xi

s)
 N

0 2 4 6 8 10 12
Tim estep

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Fo
rc

e
(z

-a
xi

s)
 N

ground t ruth Su et al. Our m odel

Fig. 4: Estimated force from our model and Su et al. compared with
the FT sensor, to which the BioTac is rigidly mounted. Our model
sufficiently tracks the ground truth along all three axes.

0
10
20
30
40
50
60
70
80

Co
sin

e
Di

st
an

ce
 E

rro
r %

rigid-ft ball-ft planar-pushing mixed0

20

40

60

80

100

Fo
rc

e
M

ag
ni

tu
de

 E
rro

r %

no voxel + no alpha
voxel + no alpha

no voxel + alpha
voxel + alpha

Fig. 5: Effect of the spatial encoding ("voxel") and ↵ on the
prediction accuracy.

the estimated force values are larger than the actual force, the
object will not be in a stable grasp and the object will not
rise with the arm. If the values are smaller than the actual
force, the grasp may deform the softer objects used in the
experiments. If the force estimates are incorrect at placement,
then the robot will either drop the object too soon or push
down onto the table with excessive force, possibly knocking
the object over.

We chose four objects from the YCB dataset [35] and two

chips cleanser lego plastic-
bottle

paper-
cup

mustard all

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge
(%

) Su et al. Ours

Fig. 6: Success rates on the manipulation task of object lifting
and placement. Our method performs significantly better on the
deformable objects plastic-bottle and paper-cup.

deformable objects—a paper cup and a plastic bottle. The
objects are shown in Fig. 6. We show results for our mixed
dataset trained prediction model and compare to Su et al.’s
prediction model [22]. We train the Su et al. prediction model
using the rigid-ft data to closely replicate the experiments
in [22] and show the benefit of training on diverse sources of
data. We ran 5 manipulation trials per object for each method.
The initial and desired pose of the object was kept consistent
across the two methods.

On rigid objects, both methods performed similarly well,
as shown in Fig. 6. However, on deformable objects paper-
cup and plastic-bottle, our model performs significantly better.
This shows our proposed approach has the ability to estimate
accurate forces on "never seen" data, as we only collected
our dataset on rigid objects. For the mustard object, the index
fingertip was on the cap, as shown in Fig. 1 for four of the
trials to check the predictions on non-flat contact surfaces.
We see that only our method was able to detect placement
and successfully release the object.

VI. CONCLUSION & FUTURE WORK

We have explored the effect of combining large-scale data
from multiple sources with feed-forward neural networks
for robustly learning to estimate force from tactile fingertip
sensors. We showed significant improvements compared to
simple linear models and small-scale neural network methods.
We also formulated an optimization scheme to obtain ground
truth force from planar pushing of known objects. In future
work we will explore the use of these learned force estimates
in providing feedback for in-hand manipulation, extending
our previous work on in-hand regrasp planning [36]. We will
additionally extend our planar force estimate formulation to
infer dynamic properties of unknown objects through pushing
and in-hand manipulation. With the large scale dataset, we
hope to also model sensor drift, thereby alleviating the need
to tare the signals often in the future.

ACKNOWLEDGMENT

We would like to thank Giovanni Sutanto for fabrication of
the BioTac mount. We would also like to thank Siddhartha S.
Srinivasa, Filipe Veiga and Zhe Su for helpful discussions.

Figure 3.6: Success rates on the manipulation task of object lifting and placement. Our
method performs significantly better on the deformable objects plastic-bottle and paper-
cup.

On rigid objects, both methods performed similarly well, as shown in Fig. 3.6. How-

ever, on deformable objects paper-cup and plastic-bottle, our model performs significantly

better. This shows our proposed approach has the ability to estimate accurate forces on

“never seen” data, as we only collected our dataset on rigid objects. For the mustard ob-

ject, the index fingertip was on the cap, as shown in Fig. 1 for four of the trials to check the

predictions on non-flat contact surfaces. We see that only our method was able to detect

placement and successfully release the object.

3.7 Discussion

In this chapter, we examined a method for embedding structure within tactile perceptual

models. By incorporating spatial information of the input-signals directly into the neu-

ral architecture, improvement of contact-force predictions across a variety of manipulation

tasks was demonstrated. This lends credence to the general idea of introducing practically-

motivated inductive bias into our learned perceptual models for robotics applications. We

additionally examined the use of task-specific loss functions, which are informed by knowl-

edge of directional friction forces present during data collection and execution. When

41

trained across different tasks in combination, the approach exhibits significant improve-

ment over baseline models.

The question of integrating structure for perception has been examined for both visual

and tactile sensing modalities. In the following chapter, we will address the issue of lever-

aging structure in the form of priors in combining these two sensory input streams within

an efficient framework for probabilistic inference and state estimation.

42

Part II

Priors for Multi-Sensory Integration

43

CHAPTER 4

JOINT INFERENCE FOR VISUO-TACTILE SENSING

4.1 Introduction & Related Work

Manipulation is a difficult problem, complicated by the challenge of robustly estimating the

state of the robot’s interaction with the environment. Parameters such as the contact point

and the force vector applied at that point, can be very hard to robustly estimate. These

parameters are generally partially observable and must be inferred from noisy information

obtained via coarse visual or depth sensors and highly sensitive but difficult to interpret

tactile sensors.

For instance, in the case of “in-hand“ manipulation problems, where a held object is

often partially occluded by an end-effector, tactile sensing offers an additional modality

that can be exploited to estimate the pose of the object [89].

Vision and tactile sensors have been used to localize an object within a grasp using

a gradient-based optimization approach [97]. This has been extended to incorporate con-

straints like signed-distance field penalties and kinematic priors [89]. However, the former

is deterministic and the latter handles uncertainty only per time-step, which is insufficient

since sensors can be highly noisy and sensitive. Particle filtering-based approaches have

been proposed that can infer the latent belief state from bi-modal and noisy sensory data,

to estimate the object pose for two-dimensional grasps [98] and online localization of a

grasped object [99]. These approaches are often limited in scope. For example, [99] uses

vision to only initialize the object pose and later relies purely on contact information and

dynamics models. In general, particle filtering based methods also suffer from practical

limitations like computational complexity, mode collapse, and particle depletions in tightly

constrained state spaces.

44

Figure 4.1: Tracking contact dynamics: (Top-left) Pushing probe with Force-Torque sen-
sor on the WAM arm. (Top-right) Yumi robot with mounted biomimetic tactile sensor.
(Bottom) Optimized kinematic and force trajectories on a pushed object.

Beyond manipulation, sate estimation is a classic problem in robotics. For example,

Simultaneous Localization and Mapping (SLAM) has been studied for many decades, and

many efficient tools have been developed to address noisy multi-modal sensor fusion in

these domains [100, 101, 102]. One of the more successful tools, the smoothing and map-

ping (SAM) framework [102], uses factor graphs to perform inference and exploits the

underlying sparsity of the estimation problem to efficiently find locally optimal distribu-

tions of latent state variables over temporal sequences. This technique offers the desired

combination of being computationally fast while accounting for uncertainty over time, and

has been recently incorporated into motion planning [103, 104].

This framework has also been explored for estimation during manipulation [105, 106,

107]. In particular, Yu et al. [106] formulate a factor graph of planar pushing interaction (for

non-prehensile and underactuated object manipulation) using a simplified dynamics model,

with both visual object-pose and force-torque measurements and show improved pose re-

covery over trajectory histories compared to single-step filtering techniques. However, the

scope of [106] is limited to the use of a purpose-built system, equipped with small-diameter

45

pushing-rods kept at a vertical orientation, allowing for high-fidelity contact-point estima-

tion. A fiducial-based tracking system is also used. Such high precision measurements are

impractical in a realistic setting.

In this work, we extend the capabilities of such factor graph inference frameworks

in several ways to perform planar pushing tasks in real world settings. We extend the

representation to incorporate various geometric and physics-based constraints alongside

multi-modal information from vision and tactile sensors. We perform ablation benchmarks

to show the benefits of including such constraints, and benchmarks where the vision is

occluded or the tactile sensors are very noisy, using data from on our own generalized sys-

tems. We conduct our tests on two systems, a dual-arm ABB Yumi manipulator equipped

a gel-based Syntouch Biotac tactile sensor [108] and a Barrett WAM arm equipped with a

pushing probe end effector mounted with a force torque sensor (Fig. 4.1). Both of these

systems are also set up with a vision-based articulated tracking system that leverages a

depth camera, joint encoders, and contact-point estimates [89].

Through inference, we jointly estimate the history of not only object poses, and end-

effector poses, but also, contact points, and applied force vectors. Estimating contact points

and applied force vectors can be very useful in tractable dynamics models to predict future

states and can be beneficial to contact-rich planning and control for manipulation [109].

With our experiments, we show that we can contend with a range of multi-modal noisy

sensor data and perform efficient inference in batch and incremental settings to provide

high-fidelity and consistent state estimates.

4.2 Dynamics of Planar Pushing

In this section, we review the dynamics model for pushing on planar surfaces. The quasi-

static approximation of this model is used in the next section to describe the motion model

of the pushed object within the factor graph for estimation.

Given an object of mass m being pushed with an applied force f , we can describe the

46

planar dynamics of the rigid body through the primary equations of motion

f + fµ = mẍCM , τ + τµ = ICMω (4.1)

where xCM is the object position measured at the center-of-mass (CM), ω the angular

velocity of the object frame, ICM the moment of inertia, and fµ the linear frictional force.

The applied and frictional moments are defined as τ = xCM × f and τµ = xCM × fµ

respectively.

We can estimate the frictional loads on the object by considering the contribution of

each point on the support area A of the object [105]. The friction force fµ and corre-

sponding moment τµ is found by integrating Coulomb’s law across the contact region of

the object with the surface

fµ = −µs
∫
A

v(r)

|v(r)|
P (r)dA, τµ = −µs

∫
A

r × v(r)

|v(r)|
P (r)dA (4.2)

where v(r) denotes the linear velocity at a point r in area A, and P (r) the pressure distri-

bution. The coefficient of friction is assumed to be uniform across the support area.

For pusher trajectories that are executed at near-constant speeds, inertial forces can be

considered negligible. The push is then said to be quasi-static, where the applied force is

large enough to overcome friction and maintain a velocity, but is insufficient to impart an

acceleration [110]. Then, the applied force f must lie on the limit surface. This surface

is defined in (fx, fy, τ) space and encloses all loads under which the object would remain

stationary [111]. It can be approximated as an ellipsoid with principal semi-axes fmax and

τmax [112] (
fx
fmax

)2

+

(
fy
fmax

)2

+

(
τ

τmax

)2

= 1 (4.3)

where fmax = µsfn, and fn is the normal force. In order to calculate τmax, we assume a

uniform pressure distribution and define r with respect to the center of mass (r = rCM):

47

τmax = −µsmgA
∫
A
|rCM |dA. For quasi-static pushing, the velocity is aligned with the

frictional load, and therefore must be parallel to the normal of the limit surface. This

results in the following constraints on the object motion

vx
ω

= c2fx
τ
,

vy
ω

= c2fy
τ
, and c =

τmax
fmax

(4.4)

used within our estimation factor graph in the next section.

4.3 State Estimation with Factor Graphs

To solve state estimation during manipulation we formulate a factor graph of belief distri-

butions over any state and force vector trajectory and perform inference over the trajectory

given noisy sensor measurements. The graph construction and inference is performed with

GTSAM [102, 113] via sparsity exploiting nonlinear least squares optimization to find the

maximum a posteriori (MAP) trajectory that satisfies all the constraints and measurements.

In the batch setting we use a Gauss-Newton optimizer and in an incremental setting we use

iSAM2 that performs incremental inference via Bayes trees [114]. All random variables

and measurements are assumed to have a Gaussian distribution. In the remainder of this

section, we describe the construction of the relevant factor graphs depicted in Fig. 4.2.

We construct three different factor graphs for state estimation in our pushing task: CP,

SDF, and QS (Fig. 4.2). All three models include the latent state variables for a given time

t: the planar object pose xt ∈ SE(2), the projected end-effector pose et ∈ SE(2), and the

contact point pt ∈ R2.

4.3.1 Measurements

Each of the latent state variable is accompanied by an associated measurement factor M

which projects corresponding measurements from SE(3) into the pushing plane. The ob-

ject poses are estimated by the visual tracking system with measurements yt ∈ SE(3).

48

y1

z1

x0 x1

e0 e1

M

M

V

V

p1

C

C

w1 M

y2

z2

x2

e2

M

M

V

p2

C

C

w2 M

V

yT

zT

xT

eT

M

M

V

pT

C

C

wT M

V

(a) CP (pose + contact point meas.)

y1

z1

x0 x1

e0 e1

M

M

V

V

p1

C

C

w1 MS

y2

z2

x2

e2

M

M

V

p2

C

C

w2 MS

V

yT

zT

xT

eT

M

M

V

pT

C

C

wT MS

V

(b) SDF (Intersection prior + CP)
y1

z1

x0 x1

e0 e1

M

M

V

V

p1

C

C

w1 MS

y2

z2

x2

e2

M

M

D

p2

C

C

w2 MS

V

yT

zT

xT

eT

M

M

D

pT

C

C

wT MS

V

~ ~ ~ ~ ~ ~

V V

(c) QS (Quasi-static dynamics + SDF)

Figure 4.2: Estimation graphs. Filled circles are unknown state variables, unfilled circles
are measured values, and squares indicate factors.

Likewise, the end-effector pose measurements zt ∈ SE(3) may be provided from robot

forward kinematics, or from the tracking system (DART includes a prior on joint measure-

ments). The contact-point measurements wt ∈ SE(3) are provided by a tactile sensor

model. In the QS graph (Fig. 4.2c), we include a new state variable for the applied pla-

nar contact force f t ∈ R2 with corresponding measurements αt ∈ R3. For simplicity of

graphical representation, we combine the contact point and force variables:

p̃t =

pt

f t

 , w̃t =

wt

αt

 (4.5)

49

4.3.2 Geometric Constraints

We assume constant point-contact between the end-effector and the object. We include the

factor C which incurs a cost on the difference between the contact point pt and the closest

point to a surface (ξ):

C(ξ, pt) = G (ξ, pt)− pt (4.6)

where G (ξ, pt) is the projection of pt onto ξ, and ξ = ξ (·) returns the surface geometry

of a body with a given pose: ξ = ξ (xt) for the object, and ξ = ξ (et) for the end-effector.

Additionally, the object and the end-effector must be prevented from occupying the same

region in space. Such a constraint is necessary in practice where contact-point estimation

is often noisy. Therefore, we introduce a factor S to penalize intersecting geometries with

a signed distance field. Let the point on the end-effector furthest into the object be denoted

by δ ∈ R2, where δ = δ (x, ξ (e)). The projection of δ onto ξ (x) (the surface of the object)

is then defined by Gδ = G (ξ (x), δ), and we can apply a penalty

S(x, e) =

Gδ − δ, if intersecting

0, otherwise

4.3.3 Dynamics

We add a constant velocity prior V to impose smoothness on state transitions. For example,

for finite-difference velocities of object poses we have

V (xt−1,xt,xt+1) =
xt − xt−1

∆t

− xt+1 − xt
∆t+1

(4.7)

where ∆t and ∆t+1 denote the timestep sizes at t and t+ 1. Similar to [106], we introduce

an additional factor D to condition object state transitions on quasi-static pushing. The

50

corresponding graphical model is denoted by QS and is shown in Fig. 4.2c. From Eq. (4.4)

we get

D(xt−1,xt, p̃t) =
vt
ωt
− c2 f t

τt
(4.8)

where vt = (xtrans,t − xtrans,t−1)/∆t and ωt = (xrot,t − xrot,t−1)/∆t−1 are the finite-

difference linear and angular velocity, respectively. The final cost function is optimized

with respect to the set of variables Φ = {(x, e, p̃)}t=Tt=1 over a trajectory of length T :

Φ∗ = arg min
Φ

T∑
t=1

{
‖D(xt−1,xt, p̃t))‖

2
ΣD

+ ‖V(xt−1,xt,xt+1)‖2
ΣV

+ ‖V(et−1, et, et+1)‖2
ΣV

+ ‖C(xt, et)‖2
ΣC

+ ‖C(p̃t,xt)‖
2
ΣC

+ ‖C(p̃t, et)‖
2
ΣC

+ ‖S(xt, et)‖2
ΣS

+ ‖M(xt,yt)‖
2
ΣM

+ ‖M(et, zt)‖2
ΣM

+ ‖M(p̃t, w̃t)‖2
ΣM

}

The above equation provides the locally optimal i.e.MAP solution of the estimation prob-

lem.

4.4 Baseline Comparison

In order to first ascertain the general performance of our approach, we evaluate the QS-

graph on the MIT planar pushing dataset [115] using batch optimization. This data con-

tains a variety of pushing trajectories for a single-point robotic pushing system. The object

poses were tracked with a motion capture system, and contact forces were measured with a

pushing probe mounted on a force-torque sensor. We use this data as ground truth, since it

is considered to be sufficiently reliable. We restrict our experiments to a subset of this data,

using trajectories with zero pushing acceleration and velocities under 10 cm/s in order to

maintain approximately quasi-static conditions. Additionally, we only consider trajectories

on the ABS surface, but examine different object types (ellip1, rect1, rect3) with approxi-

51

mately 100 trajectories per object and measurements provided at 100Hz. Gaussian noise is

artificially added to the measurements prior to inference, with the following sigma values:

σxtrans = 0.5cm, σxrot = 0.5rad, σetrans = 0.5cm, σerot = 0.5rad, σp = 0.5cm, σf =

0.5N.

The resulting RMS and covariance values post-optimization are shown in Table 4.1.

The optimized values exhibit marked reductions in error compared to the sigma values of

the initial measurements. Note that, for object poses we only include values in which the

object is in motion, in order to exclude trivial stationary estimates. All position-related

values are in cm, with angular values in radians, and forces in Newtons. An example of an

optimized trajectory is shown in Fig. 4.3. Although the observation noise is artificial, these

results indicate that latent state estimates may still be successfully recovered with the addi-

tion of geometric and physics-based priors, and without over-constraining the optimization.

Table 4.1: RMS and Covariance values on the MIT Dataset.

Object RMS (xtrans) RMS (xrot) Σ (xtrans) Σ (xrot)
ellip1 0.0262 0.283 2.723e-4 4.171e-10
rect1 0.0253 3.471-5 2.931e-4 4.19e-10
rect3 0.0182 1.672e-5 2.563e-4 4.18e-10

Object RMS (etrans) RMS (erot) Σ (etrans) Σ (erot)
ellip1 7.73e-2 9.47e-2 4.74e-3 7.11e-3
rect1 8.59e-2 9.18e-2 5.89e-3 6.01e-3
rect3 0.372 0.376 0.148 0.154

Object RMS (‖f‖) RMS (f rot) Σ (‖f‖) Σ (f rot)
ellip1 0.118 9.543e-2 9.827e-3 1.635e-4
rect1 0.145 9.683e-2 9.862e-3 1.823e-4
rect3 0.113 9.754e-2 9.145e-3 1.856e-4

Object RMS (ptrans) — Σ (ptrans) —
ellip1 3.42e-2 — 2.54e-3 —
rect1 4.52e-2 — 6.21e-3 —
rect3 3.26e-2 — 3.41e-3 —

52

Contact Point

Object Pose

y
 (

c
m

) 0.0

-0.5

0.0 1.0 2.0 3.0 4.0 5.0

2.0

1.6

-6.0 -5.0 -4.0 -3.0

Force Vector

x (cm)

2.0

1.6

-6.0 -5.0 -4.0 -3.0

Ground Truth Measured Optimized

Figure 4.3: Example of performing the inference on a trajectory from the MIT pushing
dataset, using the QS graph. Noise is artificially added to measurements prior to smooth-
ing. Two-sigma contours and force vectors are displayed at every 15th time-step for visual
clarity.

4.5 State Estimation in Open and Cluttered scenes

We first perform pushing experiments with the Barrett WAM manipulator acting on a lam-

inated box as shown in Fig. 4.4. The system is observed by a stationary PrimeSense depth

camera located 2.0m away from the starting push position of the end-effector. Vision-

based tracking measurements of the object pose are provided by DART, configured with

contact-based priors and joint estimates [89]. The robot is equipped with a Force-Torque

sensor and a rigid end-effector mounted with a spherical hard-plastic pushing probe. The

contact forces are measured by the F/T sensor, with contact point measurements provided

through optimization in DART. Ground-truth poses are provided via a motion-capture sys-

tem. The table is mounted with a smooth delrin sheet to provide approximately uniform

friction across the pushing area.

53

Figure 4.4: Left: Setup for pushing experiments with occlusion using Barrett-WAM ma-
nipulator. The white box is the pushed object, with general pushing direction indicated by
the blue arrow. The system is observed by a depth camera to the left (out of frame). Right:
visualization of the tracked system in DART [116], with the observed pointcloud marked
in dark grey.

We performed 100 pushing trials with varying initial end-effector and object poses.

The end-effector trajectories were varied in curvature and maintained a translational speed

close to 6 cm/s to approximate quasi-static conditions. Object pose-tracking measurements

were provided at roughly 25Hz, with end-effector poses and force/contact measurements

published at 250Hz. Incremental inference of the factor graph is performed after 5 object

pose measurements.

In order to provide real-time performance, DART maintains a belief distribution over

state at a single timestep. However, this can make tracking susceptible to unreliable mea-

surements that may arise from state-dependent uncertainty or partial observability. As such,

we purposely include trajectories in which the object orientation changes significantly with

respect to the camera orientation, causing large variations in pointcloud association. In

addition, the pushing trajectories were also performed in cluttered scenes, as depicted in

Fig. 4.4, with 85% occlusion of the pushing object occurring in the middle of the trajectory.

Examples of measured and estimated state trajectories are shown in Fig. 4.6. In the

fully-observable (unocccluded) setting, distinct improvement of the object pose can be

seen with both SDF and QS models. Under heavy occlusion, the visual tracking system

54

Meas. CP SDF QS Yu et al.
1

2

3

4

5

cm

Translational
Rotational

1

2

3

4

5

6

7

de
g.

(a) Fully observable

Meas. CP SDF QS Yu et al.

5

10

15

20

25

cm

Translational
Rotational

10

20

30

40

50

60

70

de
g.

(b) Occluded

Figure 4.5: Mean error and standard deviations of object pose estimates (after the last
iSAM2 step has been performed). CP, SDF, and QS model results are compared raw mea-
sured values, and to those produced by the graph described in Yu et al. [106]. Tracking
performance is greatly improved with the inclusion of geometric and physics-based priors.
The comparison with [106], which does not use SDF priors, indicates the importance of
enforcing these constraints in practice.

loses track of the object and is unable to regain the trajectory state. Contact-point factors

are insufficient for reliable tracking, and can cause object orientation to deviate wildly un-

der occlusion. Incorporating SDF constraints helps to prevent many infeasible poses. The

QS graph enforces pose changes which adhere to pushing mechanics. These physics-based

priors inform the pose estimates, and stabilize the trajectory even under occlusion. The ad-

dition of both geometric and physics based priors to the factor graph result in realignment

of the tracked object. Fig. 4.5 shows the tracking performance for fully observable trajec-

tories using the CP, SDF, and QS factor graphs. The results are compared to the model

proposed by Yu et al. [106], which includes quasi-static dynamics factors with contact and

55

−15

0

15

y
(c

m
)

step = 50 150

−15

0

15

300

−15

0

15

−15

0

15

−15

0

15

−15

0

15

0 20 40 60 80 100
x (cm)

−15

0

15

0 20 40 60 80 100 0 20 40 60 80 100

−15

0

15

(a) Trajectory 1 (fully observable)

−15

0

15

Meas.

step = 100 200

−15

0

15

y
(c

m
)

380

−15

0

15

CP
−15

0

15

−15

0

15

SDF
−15

0

15

0 20 40 60 80 100
x (cm)

−15

0

15

QS

0 20 40 60 80 100 0 20 40 60 80 100

−15

0

15

(b) Trajectory 2 (with occlusion)

Figure 4.6: Examples of estimated object trajectories for both un-occluded and occluded
scenarios. Measured object pose histories (pink) are shown in the top rows, and compared
below to the incrementally-optimized trajectories (blue) using the CP, SDF, and QS fac-
tor graphs illustrated in Fig. 4.2. Each column depicts the state estimates at a particular
timestep (with respect to object pose measurements). The trajectories are overlayed onto
the full ground-truth trajectories derived from motion-capture, with every 10 timestep in-
tervals shown. Trajectories of the end-effector (grey circle) are also represented. The mea-
surements show how the tracking system performance degrades under certain orientations,
since less of the object is seen as it turns away from the camera.

zero-velocity priors.

In addition to improving inference on kinematic trajectories, the QS graph can be used

56

−20

−10

0

10

y
(c

m
)

20 40 60 80
x (cm)

−20

−10

0

10

y
(c

m
)

Ground truth Measured Optimized

Figure 4.7: Example of force-estimation using the QS model with ground-truth poses and
non-Gaussian noise added to force measurements and contact points. Force vectors and
contact points are recovered by the optimization process.

to improve contact point and force estimates. To demonstrate this, we artificially add non-

Gaussian noise (bi-modal mixture of two triangular distributions) to contact points and

force measurements on the ground-truth data. The resulting estimation errors after opti-

mization are shown in Table 4.2, and indicate that our approach manages to recover true

contact points and pushing forces. An an example of force-trajectory optimization is illus-

trated in Fig. 4.7.

Table 4.2: Error Results for force and contact Recovery

Component RMSE MAE σ
Force magnitude (N) 0.352 0.195 0.043
Force direction (deg.) 3.15 2.54 0.78
Contact location (cm) 0.32 0.14 0.18

57

y
 (

cm
)

22

26

30

32

28

24

Measured

Optimized

70 72 74 63.5 64 62 6464.5 66 62 64 66
x (cm)

(a) Trajectory 1

y
 (

cm
)

22

26

30

32

28

24

Measured

Optimized

70 72 74 63.5 64 62 6464.5 66 62 64 66
x (cm)

(b) Trajectory 2

Figure 4.8: Examples of pushing trajectories performed on the YUMI system. Initial object
and finger pose estimates are provided by the DART tracking system. Contact points and
force measurements are estimated by the analytic tactile sensor model [108]. Each trajec-
tory is optimized using the QS graph depicted in Fig. 4.2c. Two-sigma values and force
vectors shown at every 10th timestep for visual clarity. Joint inference over kinematic and
force trajectories decreases uncertainty in poses as well as contact points and forces, and
smoothens noisy tactile data to agree with physics-based constraints.

4.6 Force Estimation for Tactile Sensing

We further demonstrate inference on force trajectories using realistic (noisy) tactile data.

The Biotac sensor comprises of a solid core encased in an elastomeric skin and is filled with

58

y
 (

cm
)

40

35

30

25

20

15

x (cm)
65 70 75 80 65 70 75 80

Measured Optimized

(a) Trajectory 1

y
 (

cm
)

x (cm)
65 70 75 80 65 70 75

40

35

30

25

20

15

Measured Optimized

(b) Trajectory 2

Figure 4.9: Visualizations of measurements for corresponding trajectories in Fig. 4.8. Mea-
sured positions, contact points and force-vector outputs from the learned sensor model are
shown on the left-hand side. Optimized values are shown on the right, indicating con-
sistency of finger-object surface contact. Our approach produces force trajectories which
more closely adhere to quasi-static mechanics. Joint inference allows kinematic trajecto-
ries to inform the force estimates, aligning forces to the object center of mass during linear
motion, and correcting applied moments when motion is non-linear.

weakly-conductive gel [108]. The core surface is populated by an array of 19 electrodes,

each measuring impedance as the thickness of the fluid between the electrode and the skin

changes. A transducer provides static pressure readings which consist of a single scalar

59

value per time-step. This sensor is also equipped with a thermistor for measuring fluid

temperature. Although the device does not directly provide a force distribution or contact

point measurements, an analytical method for estimating these values is described in [108].

Using an ABB YUMI robot with a mounted Biotac sensor, we generated randomized

linear trajectories of the end effector pushing a 0.65 kg box across a laminated surface

(Fig. 4.1) starting from a number of different poses. We used the DART tracking sys-

tem [89] to obtain object and end-effector pose measurements, along with approximate

contact points. The analytical force sensor model [108], was used to provide initial force

measurements.

Examples of initial and optimized trajectories are shown in Figs. 4.8 and 4.9. The

presence of the contact surface factor shrinks the contact point covariance in the direction

of push, as is expected. The covariances for finger and object pose estimates are drastically

reduced, exhibiting the benefits of joint-inference across trajectory histories. Also, the

dynamics factor aligns the force vector in the direction of motion of the object. This is

further clarified in Fig. 4.9, where force vectors are correctly aligned with the object center-

of-mass for linear trajectories, and provide a moment arm during angular displacement.

This demonstrates the importance of contact and geometric factors in aligning the surface

tangents of the finger and the object at the point of contact.

4.7 Discussion

We proposed a factor graph-based inference framework to solve estimation problems for

robotic manipulation in batch and incremental settings. Our approach can leverage geomet-

ric and physics-based constraints in the form of probabilistic priors, along with vision and

tactile based multi-modal sensor information to jointly estimate the history of robot and

objects poses along with contact locations and force vectors. We perform several bench-

marks on various datasets with multiple manipulators in real environments and show that

our framework can contend with sensitive, noisy sensor data and occlusions in vision to

60

efficiently solve for locally optimal state estimates that closely match ground truth. Future

work will include incorporating the approach within a motion planning context [104], com-

bining vision and tactile modalities in learning predictive sensor models [14, 24], and the

possibility of integration into a hierarchical task-planning framework.

Although the inference tools used in above framework are convenient for fast and on-

line performance, the least-squares optimization objective is equivalent to a maximum-

likelihood inference procedure. As such, this general class of probabilistic inference makes

strong assumptions on the convexity / uni-modality of the inference problem, and may be

susceptible to poor local minima for highly non-convex / multi-modal target functions. To

handle this added complexity, we may wish to resolve multiple local solutions by recover-

ing the full posterior distribution over inference parameters. This will require inquiry into

methods which allow us to add flexibility into how we model target distributions, while

considering the issue of scalability for robotics-based applications. Furthermore, we have

so far dealt with the problem of inferring and predicting state for perceptual models. Next,

we will change our focus to predicting distributions over future outcomes for control and

planning problems common to robotics.

61

Part III

Variational Inference for Control and

Dynamics Estimation

62

CHAPTER 5

STEIN VARIATIONAL MODEL PREDICTIVE CONTROL

5.1 Introduction

Model predictive control (MPC) is a powerful framework for sequential decision making

in robotics [117, 118]. This success can be largely attributed to its simplicity and scala-

bility in dealing with stochastic, non-stationary optimization problems encountered on real

systems. MPC has been applied effectively in different areas, including autonomous driv-

ing [119, 117, 118], humanoid locomotion [120], and dextrous manipulation [121]. How-

ever, common approaches to MPC often fall short in their ability to adequately contend

with complex, multi-modal distributions over possible actions. For instance, such distri-

butions may arise from non-convexity of constraints, such as obstacles [122, 123] or from

multiple goal locations [124]. Although common sampling-based SOC algorithms have

been shown to exhibit symmetry-breaking in the presence of sudden disturbances [125]

and multiple optima [126], the sampling scheme may inadequately resolve the true poste-

rior [122]. We require a new class of MPC algorithms that can effectively contend with

complex, non-Gaussian distributions.

In the following chapter, we formulate MPC as a Bayesian inference problem, where

the target posterior is defined directly over control policy parameters or control inputs, as

opposed to joint probabilities over states and actions [127, 128]. By taking this perspective,

we can construct a relative-entropy minimization problem to approximate the posterior, and

leverage recent advances in variational inference [129, 130, 131] to derive the optimal dis-

tribution over parameters. Specifically, we use Stein variational gradient descent (SVGD)

[132], to infer a set of solutions which constitute a nonparametric approximation to the

posterior distribution over decision parameters, given state observations and a defined cost

63

function. The generality of this approach offers flexibility in designing appropriate MPC

algorithms, and is closely related to common MPC approaches. Additionally, we show how

this framework can be extended to general trajectory optimization problems.

5.2 Related Work

The duality between probabilistic inference and optimization for stochastic optimal control

(SOC) has been examined extensively in previous work [133, 134, 135, 136]. A wide range

of approximate inference methods have been proposed, including Expectation-Propagation

(EP) and moment-matching approaches to control and trajectory optimization [119, 135].

These methods typically assume a restricted form of the target posterior distribution over

controls (usually in the exponential family), which, under simplifying assumptions, return

the optimal control input. However, these distributions are often insufficiently expressive

for many SOC problems, where non-convexity may arise from nonlinear dynamics or non-

convex cost functions, for instance. Our interpretation of MPC as an approximate inference

problem is perhaps most closely related to the formulation presented in [134, 127]. Here,

an iterative KL-minimization problem for finite-horizon problems is presented, where the

prior is defined to be the control distribution obtained from the previous iteration. However,

this does not include a strategy for contending with non-stationary distributions, where the

posterior may change between iterations, and the analysis is restricted to exact inference of

the log-partition function.

Expectation-Maximization (EM) approaches to SOC have also been considered [137,

138, 139], which iteratively optimize a variational lower-bound. However, these approaches

share the limitations inherent with common EM strategies, in that the form of the poste-

rior distribution is assumed to be known and tractable. Additionally, representations based

on mixture models must contend with mode-collapse and poor local minima, especially

prevalent in higher dimensions [140, 141]. These issues can be mitigated, for example, by

introducing entropy regularization heuristics [138].

64

The Path Integral (PI) formulation of stochastic optimal control [142, 143, 144] bears

close resemblance to the open-loop-controls characterization of our proposed approach,

where a particular choice of the marginal log-likelihood is assumed to contain an expo-

nentiated cost. In fact, PI attempts to minimize a variational lower-bound with respect to

the controlled stochastic dynamics. This follows from the perspective presented here. This

comparison applies equally to KL-control [136], the discrete-time counterpart to PI-control.

The application of SVGD for approximate inference in decision making problems has

been previously explored in the context of maximum entropy reinforcement learning, where

policies are trained using collected experience and updated offline. In [145], the network-

based policy is represented using a set of Stein particles to generate a single-step action.

However, it is unclear how to appropriately design kernels and evaluate them efficiently

in order to counter the effects of increasing dimensionality (i.e. network size) using this

approach. By contrast, the soft Q-learning algorithm [146] evaluates the SVGD gradient

over single-step actions. This is then subsequently backpropagated through the policy to

update the parameters. To our knowledge, the non-parametric variational inference ap-

proach of [132] has yet to be applied to MPC, or general SOC and planning problems.

The dependence on length of the planning horizon poses interesting challenges for scaling

and sample-efficient computation. Furthermore, the proposed approach is developed with

the online setting in mind, and addresses the problem of rapidly-changing, non-stationary

target distributions. Lastly, we make explicit connections to existing SOC methods from a

theoretical standpoint.

5.3 Model Predictive Control

We consider the discrete-time stochastic dynamical system: xt+1 ∼ f (xt,ut), where at

time t, the system state is denoted by xt ∈ Rn and the control input as ut ∈ Rd. The

stochastic transition map f : Rn × Rd → Rn randomly produces the subsequent state xt+1

and this state is accompanied by an instantaneous cost c(xt,ut).

65

Over a time horizon H , we define a control trajectory as a sequence of control inputs

beginning at time t : Ut , (ut,ut+1, ...,ut+H−1). Similarly, we define the state trajectory:

Xt , (xt,xt+1, ...,xt+H−1,xt+H). The total cost incurred over H timesteps can then be

specified as

C(Xt, Ut) = cterm(xt+H) +
H−1∑
h=0

c(xt+h,ut+h), (5.1)

where cterm(·) is the terminal cost. As in [118], we define an instantaneous feedback policy,

πθt(xt), as a parameterized probability distribution p(ut|xt; θt) used to generate a control

input at time t given the xt, i.e., ut ∼ πθt(xt), where θt ∈ Θ, is the set of feasible parameter

values. MPC describes the process of finding the optimal, time-indexed sequence of pol-

icy parameters θt , (θt, θt+1, ..., θt+H−1), which determine the sequence of instantaneous

feedback policies πθt ,
(
πθt , πθt+1 , ..., πθt+H−1

)
. At each time step, we must find θt, the

parameters that define the optimal policy. We can do this by defining a statistic J(·) on

cost C(Xt, Ut) where the minimal J(·) occurs at the optimal θt. In real-world situations,

the true dynamics function f is often unavailable, and is commonly estimated using a pa-

rameterized function f̂ξ with parameters ξ. As such, we define the surrogate loss function

Ĵ(πθ; xt) = Eπθ ,f̂ξ

[
C(Xt, Ut)

]
. For each MPC-step, the optimal decision is defined as

θt = argminθ Ĵ(πθ; xt) which parameterizes the optimal policy πθt , from which we can

sample a new control value for the first timestep: ut ∼ πθt(xt) = p(ut|xt; θt). This is then

executed on the physical system to generate the next state value: xt+1 ∼ f(xt,ut).

5.4 MPC as Bayesian Inference

Optimal control can be framed as Bayesian inference by considering the distribution over

parameters θ. Similarly to [134, 128], we introduce an auxiliary binary random variable

Oτ ∈ {0, 1} to indicate optimality of the state-action trajectory τ = (Xt, Ut) with respect to

the cost function C(·). Using Bayes’ rule, the distribution of parameters θ conditioned on

66

the requirement for optimal trajectories (Oτ = 1) and the current state xt can be expressed

as

pt(θ|Oτ = 1; ξ,xt) =
pt(Oτ = 1|θ; ξ,xt) pt(θ; xt)∫
pt(Oτ = 1|θ; ξ,xt) pt(θ; xt) dθ

, (5.2)

where explicit dependence on state xt is included for generality. In the remaining discus-

sion, we will denoteOτ = 1 simply asOτ without ambiguity. The likelihood pt(Oτ |θ; ξ,xt)

is defined as the marginal probability over all possible control and state trajectories:

pt(Oτ |θ; ξ,xt) =

∫ ∫
p(Oτ |Xt, Ut) p(Xt, Ut |θ; ξ,xt) dUt dXt (5.3)

where p(Oτ |Xt, Ut) is the probability of optimality given the observed trajectory τ =

(Xt, Ut), and p(Xt, Ut|θ; ξ,xt) is the joint probability of state-control trajectories, condi-

tioned on parameters θ and assumed dynamics model f̂ξ = pξ(xt+1|xt,ut). In the discrete-

time case, the joint probability can be factorized as

p(Xt, Ut|θ; ξ,xt) =
H−1∏
h=0

pξ(xt+h+1|xt+h,ut+h)πθh(xt+h), (5.4)

where the current state xt is observed. If dynamics parameters must also be inferred, the

equations can be extended to include ξ as an inference variable, where the posterior is

defined over both parameters: pt(θ, ξ|Oτ ; xt) ∝ pt(Oτ |θ, ξ; xt) pt(θ|ξ; xt) p(ξ), suggesting

the definition of an alternative latent random variable, such as Θ = (θ, ξ).

We can further model p(Oτ |Xt, Ut) using a non-negative functionL(τ) ∝ p(Oτ |Xt, Ut),

which we refer to as the “cost-likelihood”. This is defined to be the composition L = g ◦C

of the cost function C(·) with a monotonically decreasing function g(·). The likelihood in

Eq. (5.3) then takes the form

pt(Oτ |θ; ξ,xt) ∝
∫
L(τ) p(τ |θ; ξ,xt) dτ = Eπθ ,f̂ξ

[
L(τ)

]
. (5.5)

67

5.5 Nonparametric Bayesian MPC

Instead of performing inference over policy parameters, the Bayesian MPC formulation

can be used for inference over control input sequences. In this case, the inference variable

θ is defined as the sequence of open-loop controls: θ , (ut,ut+1, ...,ut+H−1). This can be

interpreted as a nonparametric version of Bayesian-MPC, as no assumption is made on the

existence of a parametrized policy π. Although the relationship in Eq. (5.2) still holds, the

likelihood function pt(Oτ |θ; ξ,xt) must then be re-defined as

pt(Oτ |θ; ξ,xt) =

∫
p(Oτ |Xt,θ) p(Xt|θ; ξ,xt) dXt ∝ Ef̂ξ

[
L(Xt,θ)

]
, (5.6)

where p(Xt|θ; ξ,xt) is the probability of state trajectories, conditioned on decisions θ and

assumed dynamics model f̂ξ = pξ(xt+1|xt,ut). In the discrete-time case, this can be

written as the product of state transition probabilities along a trajectory:

p(Xt|θ; ξ,xt) =
H−1∏
h=0

pξ(xt+h+1|xt+h, θt+h) . (5.7)

Furthermore, if we assume a fixed current state (xt = const.), we can apply this model

to trajectory optimization problems by performing approximate inference on the posterior

p(θ|Oτ ; ξ), and taking the maximum a posteriori estimate, θ∗ = argmaxθ p(θ|Oτ ; ξ).

5.6 Variational Inference

Variational inference poses posterior estimation as an optimization task where a candidate

distribution q∗(θ) within a distribution family Q = {q(θ)} is chosen to best approximate

the target distribution p(θ|Oτ). This is typically obtained by minimizing the Kullback-

68

Leibler (KL) divergence:

q∗ = argmin
q∈Q

DKL (q(θ)||p(θ|Oτ)) . (5.8)

The solution also maximizes the Evidence Lower Bound (ELBO), as expressed by the

following objective:

q∗ = argmax
q∈Q

Eq
[

log p(Oτ |θ)
]
−DKL (q(θ) || p(θ)) (5.9)

This optimization seeks to maximize the log-likelihood of the observations with the first

term while penalizing for differences between the target and the prior with the second

term. For a high-capacity model space Q that includes the target distribution, the second

term becomes increasingly small. Selecting a model space Q with both high capacity

and computational efficiency is critical to variational inference, but remains a challenging

problem.

Proof 1:

q∗ = argmin
q∈Q

DKL (q(θ)||p(θ|Oτ)) (5.10)

= argmin
q∈Q

∫
log q(θ)dq(θ)−

∫
log p(θ|Oτ)dq(θ) (5.11)

= argmin
q∈Q

∫
log q(θ)dq(θ)−

∫
log p(Oτ |θ)dq(θ)−

∫
log p(θ)dq(θ) + logZ

(5.12)

= argmin
q∈Q

∫
log q(θ)dq(θ)−

∫
log p(Oτ |θ)dq(θ)−

∫
log p(θ)dq(θ) (5.13)

= argmin
q∈Q

Eq
[

log q(θ)
]
− Eq

[
log p(Oτ |θ) + log p(θ)

]
(5.14)

= argmax
q∈Q

Eq
[

log p(Oτ |θ)
]
−DKL (q(θ) || p(θ)) (5.15)

where Z is the normalizing constant. The functional in the objective is also known as the

69

variational free energy Fq(θ) := Eq
[

log p(Oτ |θ)
]
− DKL (q(θ) || p(θ)). An alternative

derivation can be found by deriving the lower-bound to the log marginal-likelihood:

Proof 2:

logEp
[
p(Oτ |θ)

]
= log

∫
p(Oτ |θ)p(θ)dθ (5.16)

= log

∫
p(Oτ |θ)p(θ)dθ (5.17)

= log

∫
p(Oτ |θ)

p(θ)

q(θ)
q(θ)dθ (5.18)

= logEq
[
p(Oτ |θ)

p(θ)

q(θ)

]
(5.19)

≥ Eq
[

log
p(Oτ |θ)p(θ)

q(θ)

]
(5.20)

= Eq
[

log p(Oτ |θ)
]
− Eq

[
log

p(θ)

q(θ)

]
(5.21)

= Eq
[

log p(Oτ |θ)
]
−DKL (q(θ) || p(θ)) (5.22)

where Eq. (5.20) results from log-concavity and application of Jensen’s inequality. Equal-

ity is obtained when q matches the posterior probability. In other words, provided that

p(θ|Oτ) ∈ Q, we have:

q∗(θ) =
p(Oτ |θ) p(θ)∫
p(Oτ |θ) p(θ)dθ

= p(θ|Oτ) (5.23)

As such, we can define the minimization:

− logEp
[
p(Oτ |θ)

]
= min

q∈Q
−Eq

[
log p(Oτ |θ)

]
+DKL (q(θ) || p(θ)) (5.24)

5.7 Stein Variational Gradient Descent

In order to circumvent the challenge of determining an appropriateQ, while also addressing

Eq. (5.8), we develop an algorithm based on Stein variational gradient descent (SVGD) for

70

Bayesian inference. The nonparametric nature of SVGD is advantageous as it removes the

need for assumptions on restricted parametric families for q. This approach approximates

a posterior p(θ|x) with a set of particles {θi}mi=1, θi ∈ Rp. The particles are iteratively

updated according to

θi ← θi + εφ∗(θi) (5.25)

given a step-size ε. The function φ∗(·) lies in the unit-ball of an Rp-valued reproducing

kernel Hilbert space (RKHS) of the form H = H0 × ...H0, where H0 is a scalar-valued

RKHS with kernel k(θ′,θ). It characterizes the optimal perturbation or velocity field (i.e.

gradient direction) which maximally decreases the KL-divergence:

φ∗ = argmax
φ∈H

{
−∇εDKL

(
q[εφ]||p(θ|x)

)
s.t. ‖φ‖H ≤ 1

}
, (5.26)

where q[εφ] indicates the particle distribution resulting from taking an update step θ = θ +

εφ(θ). This has been shown to yield a closed-form solution [132] which can be interpreted

as a functional gradient in RKHS and approximated with the set of particles:

φ̂∗(θ) =
1

m

m∑
j=1

[
k(θj,θ)∇θj log p(θj||x) +∇θjk(θj,θ)

]
. (5.27)

Eq. (5.27) has two terms that control different aspects of the algorithm. The first term

is essentially a scaled gradient of the log-likelihood over the posterior’s particle approxi-

mation. The second term is known as the repulsive force. Intuitively, it pushes particles

apart when they get too close to each other and prevents them from collapsing into a single

mode. This allows the method to approximate complex, possibly multi-modal posteriors

in MPC. When there is only a single particle, the method reduces to a standard optimiza-

tion of the log-likelihood or a MAP estimate of the posterior as the repulsive force term

vanishes, i.e. ∇θk(θ,θ) = 0. SVGD’s optimization structure empirically provides better

71

particle efficiency than other popular sampling procedures, such as Markov Chain Monte

Carlo [147].

5.8 Stein Variational MPC

In this section we present our novel method for Stein inference, specifically designed

around MPC requirements. The full algorithm can is outlined in Algorithm 1.

5.8.1 Posterior Sequential Updates

The Bayesian interpretation of MPC seeks to find the posterior distribution over decision

parameters at time t. Recalling Eq. (5.2):

pt(θ|Oτ ; ξ,xt) =
pt(Oτ |θ; ξ,xt) q̃t(θ; xt)∫
pt(Oτ |θ; ξ,xt) q̃t(θ; xt) dθ

. (5.28)

with a prior q̃t(θ; xt). Our approach approximates the posterior over decision parameters

using a weighted set of particles {θi}mi=1, where the proposal q is defined as the empirical

distribution q(θ) =
∑m

i=1 w
iδ(θi) with weights evaluated according to:

wi =
pt(Oτ |θi; ξ,xt) q̃t(θ; xt)∑m
j=1 pt(Oτ |θj; ξ,xt) q̃t(θ; xt)

(5.29)

such that
∑m

i=1w
i = 1. Following the procedure outlined in Eq. (5.25)-Eq. (5.27), an

SVGD update can be computed for the individual particles by computing the functional

gradient

φ̂∗(θi) =
1

m

m∑
j=1

[
k(θj,θi)∇θj log pt(θ

j|Oτ ; ξ,xt) +∇θjk(θj,θi)
]

(5.30)

and performing the gradient step: θi ← θi+ εφ̂∗(θi). The evaluation of Eq. (5.30) requires

computation of the log-posterior gradient, which can be written as the sum of the gradients

72

of both the log-prior and log-likelihood:

∇θi log pt(θ
i|Oτ ; ξ,xt) = ∇θi log pt(Oτ |θi; ξ,xt) +∇θi log q̃t(θ

i; xt) (5.31)

= ∇θi logEπθi ,f̂ξ

[
L(τ)

]
+∇θi log q̃t(θ

i; xt) (5.32)

The first RHS term requires that we define the cost-likelihood function L. The SV-

MPC framework allows for different possible definitions for L. We will consider two in

particular:

• Exponentiated Utility (EU): L(τ) = exp (−αC(Xt, Ut)) , where α > 0 (5.33)

• Probability of Low Cost (PLC): L(τ) = 1C≤Cmax(C(Xt, Ut)) (5.34)

It is generally assumed that the cost function C(Xt, Ut) is non-differentiable with re-

spect to the decision parameter θ, and that resulting expectations are difficult to evaluate

analytically. As such, the gradients can be estimated via Monte-Carlo sampling, where a

set of N control and state trajectory samples are drawn from the policy and the modeled

dynamics: {τ s}Ns=1 ∼ p(Xt, Ut|θ; ξ,xt), where τ s = (Xs
t , U

s
t). This leads to the following

approximation:

∇θi logEπθi ,f̂ξ

[
L(τ)

]
=

Eπθi ,f̂ξ

[
L(τ)∇θi logπθi

]
Eπθi ,f̂ξ

[
L(τ)

] (5.35)

≈
∑N

s=1 L(τ s)∇θi logπθi(U
s
t)∑N

s=1 L(τ s)
(5.36)

For a single particle (m = 1), the full gradient in Eq. (5.30) reduces to : φ∗(θ) =

∇θ log pt(θ|Oτ ; ξ,xt). SVGD then produces a local MAP estimate of the posterior distri-

bution over θ. As a result, the SV-MPC update step exhibits strong similarity to common

MPC algorithms (such as MPPI [117] and CEM [148]) depending on the chosen likelihood

function, exhibiting equivalence under parameter values and choice of prior.

73

5.8.2 Exponentiated Utility (EU)

By picking the cost-likelihood to be: L(τ) = exp (−αC(Xt, Ut)), we obtain the likelihood

function

Eπθ ,f̂ξ

[
L(τ)

]
= Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))

]
. (5.37)

This is otherwise known as the Free-Energy of the cost function C(xt,ut) [143], as well as

the “soft maximum” or “risk-aware” loss. This yields the likelihood-gradient:

∇θ logEπθ ,f̂ξ

[
L(τ)

]
= ∇θ logEπθ ,f̂ξ

[
exp (−αC(Xt, Ut))

]
(5.38)

=
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))∇θ logπθ

]
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))

] (5.39)

As α → ∞, regions of high-cost are assigned lower probability, making the distribution

of resulting policies risk-averse. Conversely, as α → 0, high-cost regions have higher

likelihood, making the policy distributions more risk-seeking.

With this form of the gradient, we can choose a control policy as a sequence of

Gaussian distributions over open-loop controls with fixed covariance: given that πθt =(
πθt , πθt+1 , ..., πθt+H−1

)
, we have the instantaneous policy πθt = N (µt,Σt), our decision

parameter is thus θt = µt = (µt, µt+1, ...µt+H−1), where µt ∈ Rd, Σt ∈ Rd×d. Consid-

ering the SV-MPC step in Eq. (5.30) for a single particle, we can derive the update for a

parameter element h ∈ (t, t+ 1, ..., t+H − 1):

74

θ′h = θh + ε
(
∇θh log pt(Oτ |θ; ξ,xt) +∇θh log q̃t(θ)

)
(5.40)

= θh + ε
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))∇θh log πθh

]
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))

] + ε∇θh log q̃t(θ) (5.41)

= θh + εΣ−1
t

Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut)) (uh − θh)

]
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))

] + ε∇θh log q̃t(θ) (5.42)

= (I − εΣ−1
t) θh + εΣ−1

t

Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut)) uh

]
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))

] + ε∇θh log q̃t(θ) (5.43)

where the gradient of the log-prior will depend on the particular choice of transition prob-

ability, pt(θ|θ̃; xt+1), used in the shift operation (Section 5.8.6). The update reduces to

that found in MPPI [117] if we consider the control distribution to be uncorrelated across

dimensions (as is often done in practice): Σt = σ2
t I . Setting the step-size to ε = σ2, and

assuming a uniform prior on controls, pt(θ|θ̃; xt+1) = U(θmin, θmax):

θ′h = (I − σ2
t σ
−2
t I) θh + σ2

t σ
−2
t I

Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut)) uh

]
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))

] + 0 (5.44)

=
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut)) uh

]
Eπθ ,f̂ξ

[
exp (−αC(Xt, Ut))

] , (5.45)

recovering the MPPI update rule.

5.8.3 Probability of Low Cost (PLC)

We can incorporate a threshold-utility to indicate preference for costs below a given thresh-

old, using the indicator function: L(τ) = 1C≤Ct,max(C(Xt, Ut)). The likelihood then takes

75

the form

Eπθ ,f̂ξ

[
L(τ)

]
= Eπθ ,f̂ξ

[
1C≤Ct,max(C(Xt, Ut))

]
. (5.46)

with the resulting gradient:

∇θ logEπθ ,f̂ξ

[
L(τ)

]
=

Eπθ ,f̂ξ

[
1C≤Ct,max(C(Xt, Ut))∇θ logπθ

]
Eπθ ,f̂ξ

[
1C≤Ct,max(C(Xt, Ut))

] (5.47)

The threshold parameter Ct,max is set adaptively as the largest cost of the top member

in the elite fraction of sampled trajectories. Using the same derivation for the case of

Exponentiated Utility likelihood, the choice of a Gaussian policy with a threshold-utilty

reduces to the update rule for the Cross Entropy Method [148]:

θ′h =
Eπθ ,f̂ξ

[
1C≤Ct,max(C(Xt, Ut))uh

]
Eπθ ,f̂ξ

[
1C≤Ct,max(C(Xt, Ut))

] . (5.48)

A significant advantage of the SV-MPC formulation is the robustness to highly-peaked

posterior distributions. If particles are initialized poorly, or if the target posterior changes

significantly between time-steps, many particles may find themselves in regions of low-

probability. Indeed, this may occur frequently for likelihoods p(Oτ |θi; ξ,xt) with expo-

nentiated cost (see Section 5.8.2, for example). However, the shared gradient terms in

Eq. (5.30) allow these particles to overcome this degeneracy quickly, while avoiding col-

lapse due to the repulsive term (the reader may refer to Figure 1. in [149] for an intuitive

illustration of this phenomenon.) As a consequence, SV-MPC avoids the problem of parti-

cle depletion often encountered in Sequential Monte Carlo methods [150].

76

5.8.4 Kernels for trajectories

High-dimensional inference problems pose significant challenges for SVGD as the repul-

sive force given by the derivative of the kernel with respect to the inputs diminishes as the

dimensionality increases [151]. Inspired by probabilistic graphical models and the condi-

tional independence assumptions encoded in Markov random fields, we tackle this issue

by devising a kernel that factorizes a high-dimensional input into a sum of kernels defined

over cliques of dimensions. This allows the exploitation of the Markov structure of the

trajectories to address the curse of dimensionality. For example, assume that the posterior

over the parameters θ satisfies the conditional independence relations encoded in a graph

G = (V , E), with vertices V , and edges E such that p(θ) ∝
∏

d∈E ψd(θd)
∏

(dt)∈E ψdt(θd, θt),

where ψd(θd) and ψdt(θd, θt) are unary and pairwise potential functions respectively. We

define the kernel over parameters as,

k(θ,θ′) =
∑
d∈V

k(θd, θd) +
∑

(d,t)∈E

k(θ(d,t), θ
′
(d,t)) (5.49)

The kernel is a sum of positive semi-definite kernels, so the result is a valid reproducing

kernel Hilbert space [152] but less sensitive to the curse of dimensionality. In this paper

we adopt the smooth RBF kernel; k(θ,θ′) = exp {−‖θ − θ′‖2
2/h}, where h is evaluated

using the median heuristic on the set of particles: h = med ({θi})2
/ logm.

5.8.5 Action Selection

The variational inference procedure results in an approximation of the posterior distribution

over θ. Following this step, a decision must be made on θt, such that a control action can be

generated from the resulting policy πθt and executed on the real system. Here we outline

two possible methods for choosing an appropriate θt.

We can first consider the relative probabilistic weight of the particles as an approxima-

77

Simulated Rollouts System

Figure 5.1: A 7-dof reaching task. The SV-MPC framework is capable of reasoning over
multi-modal distributions of trajectories in high-dimensional spaces. Here, the controller
iteratively explores the posterior over joint-velocities by simulating trajectories in parallel
(green frame) in order to guide the system (orange frame). Each particle-generated distri-
bution is shown by a unique coloring over the generated state trajectories, as seen from a
top-down view of the workspace. The robot arm manages to reach the goal (red), while
avoiding poor local minima.

tion to their posterior probabilities:

wi =
p(Oτ |θi; ξ,xt) q̃t−1(θi)∑m
j=1 p(Oτ |θj; ξ,xt) q̃t−1(θj)

(5.50)

≈ p(θi|Oτ ; ξ,xt). (5.51)

One strategy to selecting θt is to pick the highest-weighted particle θt = θi∗ , which corre-

sponds to the approximate MAP solution:

i∗ = argmax
i

[wi] (5.52)

≈ argmax
i

p(θi|Oτ ; ξ,xt). (5.53)

An alternative approach is to randomly sample from the posterior distribution, which can

be approximated by sampling from the set of particles according to their weight wi. This

78

Algorithm 1: Stein Variational MPC
* Components which apply only in the presence of a parameterized policy π are
marked in red.
Input: Initial state x0, dynamics f̂ξ, cost-likelihood L, prior p0(θ; ·), kernel k,

policy π

Initialize q̃0(θ) = p0(θ; x0)

Sample {θi}mi=1 ∼ q̃0(θ)

for t = 0, 1, ..., T − 1 do
for i = 1, 2, ...,m do in parallel
∇θi log pt(θ

i|Oτ ; ξ,xt) = ∇θi logEπθi ,f̂ξ

[
L(τ)

]
+∇θi log q̃t(θ

i)

end
for i = 1, 2, ...,m do in parallel

∆θi ← 1
m

∑m
j=1 k(θj,θi)∇θj log pt(θ

j|Oτ ; ξ,xt) +∇θjk(θj,θi)

θi ← θi + ε∆θi

end
wi ← p(Oτ |θi; xt)q̃t(θi)

wi ← wi∑m
j=1 w

j

Pick θ∗ (using Eq. (5.50) or Eq. (5.52), for example)
Get control input: ut ← θ∗ or sample ut ∼ πθ∗t

(xt)
Sample true dynamics: xt+1 ∼ f(xt,ut)
Shift particles: θ̃i = Φ(θi)
Update prior: q̃t+1(θ; xt+1) =

∑m
i=1w

ipt(θ|θ̃i; xt+1)
end

can be performed by drawing from the categorical distribution over particle weights:

i∗ ∼ Cat(wi). (5.54)

5.8.6 Shifting the distribution

The prior q̃t(θ; xt) is obtained by an operation akin to the prediction step commonly found

in Bayes filtering and sequential Monte-Carlo methods, and can be interpreted as a proba-

bilistic version of the shift operator defined in [118] which serves to bootstrap the previous

79

MPC solution to initialize the current iteration. Specifically, the proposal distribution q is

propagated after each round of MPC by marginalizing the transition over the approximate

posterior distribution obtained from the previous iteration:

q̃t+1(θ; xt+1) =

∫
pt(θ|θt; xt+1)qt(θt)dθt (5.55)

given a transition probability, pt(θ|θt−1; xt) which includes a dependence on the currently

observed state xt for generality. This operation serves to approximate the prior at the new

iteration. Given the empirical distribution qt, we can simplify the expression above:

q̃t+1(θ; xt+1) =
m∑
i=1

∫
pt(θ|θt; xt+1) wiδθi(θt)dθt =

m∑
i=1

wipt(θ|θi; xt+1) (5.56)

resulting in a mixture of conditional probabilities.

In many open-loop MPC implementations [117, 118], it is assumed that the solution

does not change significantly between each round, given an accurate dynamics model

and sufficiently high controller frequency to resolve the dynamics and possible perturba-

tions. This motivates a common heuristic used to reduce the computational burden between

timesteps, which is to shift the control distribution πθt , forward-in-time by one step. That

is, given an initial parameter sequence θt = (θt, θt+1, ..., θt+H−1):

θ̃t+1 = Φ(θt) (5.57)

= (θt+1, θt+2, ..., θt+H−1, θ̃t+H−1) (5.58)

where the new parameter θ̃t+H−1 is chosen to reflect the expected final action. In the im-

plementation, we adopt a similar heuristic, where the empirical distribution is first shifted

deterministically according to:

θ̃i = Φ(θi) ∀ i ∈ 1 : m (5.59)

80

and setting the resulting distribution as q̃t(θ) = qt(θ). The shifted particles, θ̃i, are then

used in the following iteration to approximate the posterior, and the prior is updated ac-

cording to Eq. (5.56). The shift operation can then be summarized by the following two

sub-steps:

1. Shift particles: θ̃i = Φ(θi)

2. Update prior: q̃t+1(θ; xt+1) =
∑m

i=1w
ipt(θ|θ̃i; xt+1)

5.9 Non-parametric SV-MPC

Inference can be performed directly over the posterior of open-loop control input sequences

θ , (ut,ut+1, ...,ut+H−1). To accommodate this, we can define the cost-likelihood as a

function of state: L = L(Xt), and introduce a cost on control by defining an additional

prior factor p(θ), and combining it with the transition probability defined in Section 5.8.6.

If the dynamics are :

∇θ logEf̂ξ
[
L(Xt)

]
=

Ef̂ξ
[
L(Xt)∇θ log p(Xt|θ; ξ,xt)

]
Ef̂ξ
[
L(Xt)

] (5.60)

Similarly to the parametric formulation, the form of the cost-likelihood L will result

in a particular update rule. The gradient can generally be evaluated by approximating the

expectations with Monte Carlo sampling of state trajectories given the controlled stochastic

dynamics, and evaluating the gradients on sampled trajectories. Under certain conditions,

however, it may be evaluated in closed form. Such is the case for a Linear-Quadratic-

Gaussian (LQG) system, for example [143]. An analytic expression to the log-likelihood

can be derived by following steps similar to deriving the LEQR loss in [118], and taking

the gradient of the resulting quadratic equation.

81

Algorithm 2: SV-TrajOpt
Input: Initial state x0, dynamics f , cost function C, prior p0(θ), kernel k,

termination condition Done(·)

Sample {θi}mi=1 ∼ p0(θ)

Set ∆θi = Inf ∀ i ∈ 1 : m

while Done({∆θi}) is False do
for i = 1, 2, ...,m do in parallel

Forward dynamics : X i = X(f,θi,x0)

∇θi log p(θi|Oτ ; ξ) = −α∇θiC(X i) +∇θi log p0(θi)
end
for i = 1, 2, ...,m do in parallel

∆θi ← 1
m

∑m
j=1 k(θj,θi)∇θj log p(θj|Oτ ; ξ) +∇θjk(θj,θi)

θi ← θi + ε∆θi

end
end
(Optional: SGD refinement)
for iter = 1, ..., N do

∆θi ← ∇θi log p(θi|Oτ ; ξ) ∀ i ∈ 1 : m

θi ← εr∆θi ∀ i ∈ 1 : m
end

θ∗ = argmaxθi
log p(θi|Oτ ; ξ)

5.10 Trajectory optimization

The variational inference framework defined by SV-MPC can be modified to accommodate

general motion planning problems common to many robotics applications. This special

case can be considered by (1) using the non-parametric formulation, (2) assuming a station-

ary posterior distribution (no shifting), and (3) defining a deterministic dynamics model f̄

such that state trajectory probabilities can be represented as p(X|θ) = δ(X − f̄(θ, x0)).

A prior over sequences p(θ) can be defined to encourage desired behavior such as smooth-

ness [103]. Because individual particles are not guaranteed to produce a MAP estimate

once the SVGD optimization has converged, they can be subsequently refined by applying

a deterministic gradient descent update using posterior gradients without kernelization. Se-

82

lection of a feasible and optimal plan can then be generated by simply picking the best parti-

cle. In order to derive the likelihood gradient, we can consider the special case for determin-

istic dynamics by defining the trajectory distributions using a dirac measure on the space of

trajectories: p(Xt|θ; ξ,xt) = δ(Xt−X t), whereX t = F (θ, ξ,xt), and F performs consec-

utive application of the deterministic dynamics f . Setting L(Xt,θt) = exp(−αC(Xt,θt)),

the gradient then reduces to :

∇θ logEf̂ξ
[
L(Xt,θ)

]
=
∇θ

∫
exp (−αC(Xt,θ)) δ(Xt −X t)dXt∫

exp (−αC(Xt,θ)) δ(Xt −X t)dXt

(5.61)

=
∇θ exp

(
−αC(X t,θ)

)
exp

(
−αC(X t,θ)

) (5.62)

=
−α exp

(
−αC(X t,θ)

)
∇θC(X t,θ)

exp
(
−αC(X t,θ)

) (5.63)

= −α∇θC(X t,θ) (5.64)

The gradient can then be evaluated in a straightforward manner via back-propagation on

the cost function, through the dynamics. The final motion planning algorithm, SV-TrajOpt,

is fully outline in Algorithm 2.

In the following section, we apply SV-MPC to common robotics problems: naviga-

tion, manipulation and locomotion. We end with an example of the SV-TrajOpt algorithm

applied to a planar motion-planning scenario. All control algorithms were implemented in

PyTorch, with batched gradient computation across particles and parallel generation of roll-

outs using either simulated or analytic dynamical models. Additional experimental details

and results can be found in the appendix.

83

t = 25 50 100 150 200

SV
-M

PC
M
PP

I

Figure 5.2: Depiction of the planar navigation task. The robot (orange dot) attempts to
reach the goal location (red cross) while avoiding obstacles. Each frame depicts the en-
vironment state at a particular time-step, along with the distributions of sampled state-
trajectory rollouts generated by the MPC controllers using the modeled dynamics. Each
trajectory color is associated with a single particle from SV-MPC. The multi-modal distri-
bution of SV-MPC is able to explore passages between obstacles and find shorter paths to
the goal.

0.2

0.4

0.6

0.8

x e
e

CT(xT) 411.26

6V-03C (8 (P 4, nV 32)

CT(xT) 813.13

033, (nV 128)

CT(xT) 713.12

C(0 (nV 128)

0.0

0.2

y e
e

0 20 40 60 80 100 120

0.5

0.6

0.7

z e
e

0 20 40 60 80 100 120 0 20 40 60 80 100 120

7iPeVteS

Figure 5.3: Examples of end-effector Cartesian trajectories resulting from application of
different MPC algorithms on the Franka reaching experiment. The relative distance to
the fixed target location is plotted over the length of each episode. The dashed red line
indicates the coordinates of the target. The sample-averaged terminal cost for the final state
CT (xT) is evaluated over the 24 independent trials. With four particles (m = 4), SV-MPC
with Exponentiated utility likelihood manages to avoid bad local minima, despite higher-
variance gradients due to fewer samples used to evaluate gradients (ns = 32 vs. ns = 128).

84

Table 5.1: Statistics for planar navigation task over 25 trials (4x4 obstacle grid)

Controller Num. of particles Avg. cost of suc-
cess (×103)

Success rate
(%)

32 20.7 96
SV-MPC 12 21.8 96

6 25.6 84
MPPI — 26.5 64
CEM — 25.4 64

5.11 Experiments

5.11.1 Planar Navigation

We construct a 2D robot navigation task, where a holonomic point-robot must reach a tar-

get location while avoiding obstacles (Fig. 5.2). Hitting an obstacle will cause the agent

to “crash” and prevent any further movement. This added non-differentiability makes the

problem particularly challenging, but also suitable for sampling-based control schemes.

The system exhibits stochastic dynamics, and is defined as a double-integrator model with

additive Gaussian noise. The SV-MPC controller with exponentiated-utility (EU) is con-

structed with a set of 6 to 32 particles, where the gradient of each particle is estimated via

Monte-Carlo sampling of control and state trajectories. At each round, the best-performing

particle is chosen to generate the action using Eq. (5.52).

For state xt = (xt, ẋt) and control ut = ẍt, where xt, ẋt, ẍt are the 2D position,

velocity and acceleration, respectively, and the xgoal the target 2D goal position, we define

the instantaneous and terminal costs (with respect to Eq. (5.1)):

c(xt,ut) = 0.5(xt − xgoal)>(xt − xgoal) + 0.25ẋ>t ẋt + 0.2ẍ>t ẍt (5.65)

cterm(xt) = 1000(xt − xgoal)>(xt − xgoal) + 0.1ẋ>t ẋt (5.66)

The SV-MPC controller is compared against MPPI (Fig. 5.2) and CEM. We include quan-

titative summaries of performance across control types in Table 5.1. The performance of

85

the SV-MPC controller improves with increasing particle number.

5.11.2 Manipulation

We demonstrate SV-MPC on a 7-DOF reaching task (Fig. 5.1). Velocity-based control

commands are generated in the configuration space of a simulated robot manipulator,

which must reach a stationary goal in its work-space. We leverage the GPU-accelerated

Isaac-Gym library [153] for parallel computation of trajectory rollouts in simulation during

MPC iterations. The use of simulation provides the ability to efficiently compute highly-

resolved geometric constraints between the robot and obstacles, eliminating the need for

coarsely-defined heuristics for collision detection (such as signed-distance fields [103]).

Although the dynamics are deterministic, the problem remains challenging since the pos-

terior probability distribution implies a nonlinear mapping (via inverse kinematics) from

the work-space to the sampling space. A sampling-based SV-MPC controller is compared

against MPPI and CEM for an open-loop, constant-covariance Gaussian control distribu-

tion: πθ = N (Ut;θ,Σ). The obstacles and the target are placed in order to demonstrate

a local-minima trap: given a finite H , the optimal control solution is to move left. How-

ever, the opening between the obstacles in this direction is too narrow for the robot to

move through. To avoid getting stuck, a sampling-based control scheme must generate a

sequence which will move the robot in the other direction. For a uni-modal distribution,

this may have a very low-probability, and recovery will not occur. Increasing the sampling

covariance would mitigate this, but would require a larger amount of samples to reduce

variance. The cost-function consists of a cost on cartesian distance-to-goal from the end-

effector, as well as a penalty on control. For state xt = (et, ėt) and control ut = q̇t, where

et, ėt, are the cartesian end-effector positions and velocities, respectively, q̇ the joint ve-

locities, and the egoal the target 3D goal position, we define the instantaneous and terminal

86

costs (with respect to Eq. (5.1)):

c(xt,ut) = 1(et − egoal)>(et − egoal) + 0.25ė>t ėt + 0.1q̇>t q̇t (5.67)

cterm(xt) = 5000(et − egoal)>(et − egoal) + 0.1ė>t ėt (5.68)

Examples of trajectory executions are shown in Fig. 5.3. The total number of generated

control samples is held constant across algorithms. Both MPPI and CEM tend towards the

sub-optimal local minimum, leading the robot to get stuck between two obstacles. Using a

particle-based representation of the posterior, SV-MPC can resolve multiple optima simul-

taneously, switching to lower-cost modes around obstacles and successfully reaching the

goal.

5.11.3 Stochastic Half-Cheetah

To test our approach on a complex nonlinear system with discontinuous dynamics, we

consider an environment common in many Reinforcement Learning benchmarks: the Half-

Cheetah [154]. We use a stochastic version of the dynamics with additive noise in the

control space. We modify the cost function to reward forward velocity only if the agent

is forward-facing, as done in [138], along with a control penalty. Without this alteration,

progress can be made fairly easily by applying torque commands in a single direction, and

‘cart-wheeling’ the system. For instantaneous forward velocity vt and body angle β,

c(xt,ut) = 0.1u>t ut −
vt
2

(1 + sgn(cos β)) (5.69)

The cumulative rewards over multiple trials are plotted in Fig. 5.4.

5.11.4 Motion Planning

We use the SV-TrajOpt algorithm Algorithm 2 to infer a distribution over optimal control

sequences for a planar motion planning problem on a point robot (Fig. 5.5). The robot must

87

(a) Exponentiated Utility (EU)

(b) Probability of Low-Cost (PLC)

Figure 5.4: Comparisons of cumulative-reward distributions for the Stochastic HalfCheetah
task. Results are collected over 16 independent trials, with mean and standard deviations
shown. SV-MPC is capable of finding high-reward trajectories, using the same total amount
of samples as MPPI and CEM.

find a velocity-based control sequence which results in a low-cost, feasible path around a

set of obstacles to reach the goal. The occupancy map is fully-differentiable, allowing a

gradient on obstacle cost to be computed numerically. A ‘smoothness’ prior is defined over

velocities as a multi-variate Gaussian with a tri-diagonal precision matrix, which favors

low-acceleration trajectories. The dynamics consist of a deterministic, velocity controlled

single-integrator model on the 2D position: xt+1 = xt + ut∆t, where xt,ut ∈ Rd×1 (d =

2). In the example, we use a constant-control (i.e. zero-acceleration) prior on velocities:

88

t = 0 10 100 + 50

Figure 5.5: The SV-TrajOpt algorithm is applied to a motion-planning problem, where
a velocity-controlled holonomic robot must reach the goal (red cross). Each blue state-
trajectory results from a single particle control-sequence. Particles are randomly initialized
from the prior (t = 0), and are optimized until convergence (t = 10, 100). Independent
local MAP approximations are generated after 50 iterations of gradient-descent refinement,
and the lowest-cost particle shown in green.

ut+1 = ut + wt, wt ∼ N (0,Σ). We can construct the prior over sequences by first

considering the convolution of control inputs over the planning horizon T :

u0

u1

u2

...

uT−1

=

I 0 0 · · · 0

I I 0 · · · 0

I I I · · · 0

...
...

...

I I I · · · I

w−1

w0

w1

...

wT−2

, (5.70)

where we assume the initial control is drawn from the same zero-mean distribution:

u0 = w−1 ∼ N (0,Σ). For the sequences U , [u0,u1, ...,uT−1]> and W ,

[w−1,w0,w1, ...,wT−2]>, we can write the above as:

U = LW (5.71)

with L defined as the lower-triangular matrix. We can then define the prior over control

sequences:

U ∼ p(U) = N (0,Σ) (5.72)

89

with covariance Σ = LDLT , where D = diag(Σ,Σ, ...,Σ) ∈ RTd×Td. Note that the pre-

cision matrix Σ−1 is tri-diagonal, implying a graphical structure with Markovian depen-

dencies. In the SV-MPC optimization, the prior can also be interpreted as a penalty which

encourages smooth state trajectories (similarly to the GP-prior described in [103]). In the

motion planning problem, we use this multi-variate Gaussian as the prior over particles:

p(θ) = N (0,Σ).

Furthermore, the cost function defined for this problem includes a smooth obstacle

cost-map. This is generated using a bi-modal mixture of Gaussians, with the probability of

collision given by pobs(xt). The cost function is then:

c(xt) = 1× 105 pobs(xt) (5.73)

cterm(xt) = 1000(xt − xgoal)>(xt − xgoal) (5.74)

5.12 Complexity

The implementation of SV-MPC requires the computation of the kernel Gram-matrix

K(θi, θj) ∀ i, j ∈ (1, ...,m) for the SVGD update. This requires an inner-product oper-

ation for all particle pairs, resulting in a computational complexity of O(m2hd) (where m

: number of particles, h : horizon, d : control dimension). However, by exploiting struc-

tured kernels for trajectories, the scaling with respect to the horizon can be removed by

parallel computation of kernel factors. Evaluation of a kernel factor is then a constant-time

operation (O(1)), and the overall SV-MPC complexity reduces toO(m2). In practice a rel-

atively low order of particles is required: m << 1 × 103. The core bottleneck is typically

the generation of rollout trajectories from control samples during each iteration of MPC,

which can be performed in parallel but is linear in time with respect to the horizon h. As

with most MPC applications, the horizon length, number of samples, etc. can be varied to

balance accuracy with runtime complexity, depending on the constraints of the system.

90

5.13 Connection to Path Integral Control

The equation derived in Eq. (5.24) is well-known in statistical thermodynamics, where the

random variable under consideration is the energy C(x) : Ωx 7→ R, a non-negative real-

valued measurable property, and x ∈ Rn is the state of the system. The Helmholtz free

energy of C, with respect to probability density p, is defined as the function:

− 1

α
logEp

[
exp (−αC(x))

]
, (5.75)

where α > 0 is the (inverse) temperature. The corresponding variational inequality, known

as the Donsker-Varadahn principle [155, 156], relates the free energy as the Legendre trans-

form of the entropy:

− 1

α
logEp

[
exp (−αC(x))

]
= min

q
− 1

α
Eq
[

log exp (−αC(x))
]

+
1

α
DKL (q(x) || p(x))

(5.76)

= min
q

Eq
[
C(x)

]
+

1

α
DKL (q(x) || p(x)) (5.77)

Following the same derivation presented in Eqs. (5.16) and (5.24), the solution is then

found to be the Gibbs distribution:

q∗ =
exp (−αC(x)) p(x)∫
exp (−αC(x)) p(x)dx

. (5.78)

In the context of stochastic dynamics, the above is also applicable to random paths gener-

ated by a Markov diffusion process [156]. This can then be extended to optimal control, by

addressing the KL-minimization problem between controlled and uncontrolled stochastic

systems. The connection was developed and explored for continuous-time dynamics in pre-

vious work, such as [143, 144]. Here, the nonlinear-affine dynamics under consideration

91

are subject to Brownian motion:

xt+1 = f̄(xt) +G(xt)ut +B(xt)wt, wt ∼ N (0,Σ) (5.79)

= f(xt,ut) (5.80)

for the discrete-time case. For a SOC expected-cost objective:

min
Ut

J(Xt) = min
Ut=(u0,...,uT)

Ef
[
cterm(xT) +

T∑
t=0

ct(xt) +
1

2
u>t Rut

]
, (5.81)

the optimal control distribution could be derived by a change of measure using Girsanov’s

theorem, which was shown to satisfy the Hamilton-Jacobi-Bellman (HJB) equations for

optimality. To solve the HJB equations, an exponentiated form of the value function,

the desirability-function, was defined: Ψ(xt) = exp (−αV(xt)). By application of the

Feynman-Kac lemma, the transformed HJB partial differential equation can be solved as:

Ψ(xt) =

∫
exp (−αC(Xt)) pf (Xt; xt)dXt (5.82)

= Epf
[

exp (−αC(Xt))
]

(5.83)

where pf denotes the passive dynamics i.e. the probability density of trajectories Xt, re-

sulting from the stochastic dynamics f(xt,ut) with ut = 0. Under the assumption that

R = 1
α

Σ−1, this can then be used to evaluate the optimal control law:

u∗t = −αΣG(xt)
>∇xV(xt)

= ΣG(xt)
>∇x log Ψ(xt)

= ΣG(xt)
>∇xΨ

Ψ
. (5.84)

92

For receding-horizon control, we can borrow from [117] and consider a discrete-time case

of Path-Integral control for a nonlinear stochastic dynamical system:

xt+1 = f̄(xt,vt), vt ∼ p(vt|ut) (5.85)

with nominal deterministic dynamics f̄ , commanded control input ut, and stochastic per-

turbations vt which are exhibited in the control input channel. The uncontrolled system is

then realized when ut = 0, and is controlled otherwise. Given a sequence of perturbations:

Vt = (vt,vt+1, ...vt+H−1), we can write the resulting state trajectory as Xt = F (xt, Vt),

where F performs consecutive application of the dynamics f̄ given xt and a sequence Vt.

We can then consider probability distributions directly over Vt, with p(Vt) for uncontrolled

dynamics and q(Vt|Ut) for the controlled system, with the sequence of control inputs given

by Ut = (ut,ut+1, ...ut+H−1). A cost on state C(Xt) is mapped to the random variable Vt

by the convolution S = C ◦ F . Similarly to equations Eqs. (5.24) and (5.77) above, we

then seek a solution to minimize the variational objective:

q∗ = argmin
q

DKL (q || q∗(Vt)) (5.86)

= argmin
q

− 1

α
Eq
[

log exp (−αS(Vt))
]

+
1

α
DKL (q || p) (5.87)

= argmin
q

Eq
[
S(Vt)

]
+

1

α
DKL (q || p) (5.88)

where the optimal distribution is then known to be

q∗(Vt) =
exp (−αS(Vt)) p(Vt)∫
exp (−αS(Vt)) p(Vt)dVt

. (5.89)

Although we have the form of the optimal control distribution, an analytic solution is gen-

erally intractable due to the partition function. The algorithm for Model Predictive Path

Integral Control (MPPI) [119, 117] proceeds by defining a surrogate cross-entropy mini-

93

mization problem:

min
q∈Q

DKL (q∗(Vt) || q) (5.90)

for a tractable family of distributions Q, typically fixed-covariance Gaussians with mean

parameters µt = Ut and an equivalent assumption on the controlled dynamics distribution.

In the SV-MPC framework, the original variational objective of Path Integral control

can be addressed, where

min
q∈Q

DKL (q || q∗(Vt)) . (5.91)

We can apply the non-parametric Bayesian-MPC formulation (Setion Section 5.5) to solve

for q∗(Vt) directly over Vt, setting the inference parameter to be θ = Vt with a prior given by

the passive dynamics p(θ; xt) = p(Vt). The likelihood term p(Oτ |θ; ξ,xt) can be derived

by using the exponentiated-utility L(Xt) = exp (−αC(Xt)) and defining a dirac measure

over state trajectories to denote the probability density of Xt given θ:

p(Oτ |θ; ξ,xt) ∝
∫

exp (−αC(Xt)) δ(Xt − F (xt,θ))dXt (5.92)

= exp (−αC(F (xt,θ))) (5.93)

= exp (−αS(θ)) . (5.94)

where we drop ξ-notation for the dynamics parameters for simplicity. We then recover the

Bayesian formulation:

q∗(θ) =
p(Oτ |θ; ξ,xt) p(θ; xt)∫
p(Oτ |θ; ξ,xt) p(θ; xt)dθ

(5.95)

=
exp (−αS(θ)) p(θ; xt)∫
exp (−αS(θ)) p(θ; xt)dθ

(5.96)

= p(θ|Oτ ; ξ,xt) (5.97)

94

Approximate inference on the posterior p(θ|Oτ ; ξ,xt) can then be performed using Algo-

rithm 1. We can further consider the special case of control-affine dynamics of the form:

xt+1 = f̄(xt) +G(xt)(ut + vt), vt ∼ N (0,Σ). (5.98)

with passive dynamics:

xt+1 = f̄(xt) +G(xt)vt, ut = 0 ∀ t . (5.99)

We refer to this in trajectory-wise form as Xt = F (xt, Vt). By application of Eq. (5.84),

the optimal control action can then be determined:

u∗t = ΣG(xt)
>∇xΨ

Ψ
= ΣG(xt)

>
∇xEVt∼p(Vt)

[
exp(−αS(Vt))

]
EVt∼p(Vt)

[
exp(−αS(Vt))

] (5.100)

= −αΣG(xt)
>
EVt∼p(Vt)

[
exp(−αS(Vt))∇xS(Vt)|x=xt

]
EVt∼p(Vt)

[
exp(−αS(Vt))

] (5.101)

≈ −αΣG(xt)
>
∑m

i=1 exp(−αS(θi))∇xS(θi)|x=xt∑m
i=1 exp(−αS(θi))

(5.102)

where ∇xS(θi)|x=xt is the gradient of the path cost with respect to the current state xt.

This can be expressed in terms of the nominal dynamics by using the chain rule:

∇xS(θi)
>|x=xt =

dC(Xt)

dXt

∣∣∣∣
Xt=F (xt,θi)

· dF (x,θi)

dx

∣∣∣∣
x=xt

(5.103)

Numerical evaluation of this gradient can be performed via backpropagation for each i-th

particle.

95

5.14 Discussion

A novel formulation for Bayesian model predictive control is presented, where inference is

performed directly over the control parameters and inputs. An algorithm for approximate

inference is then proposed, where the posterior is represented as a set of particles and is

optimized via SVGD. In contrast to pure Monte-Carlo sampling methods, gradient-based

information can be exploited to improve particle efficiency, where many computationally-

intensive operations can be run in parallel using effective GPU implementation. The flex-

ibility of the approach can accommodate different cost transformations to modulate risk-

seeking behavior, and can naturally be extended to trajectory optimization problems. We

compare against common MPC baselines, demonstrating improved performance on a vari-

ety of control tasks.

In the next chapter, we propose an extension of this distributed control algorithm to

include inference over dynamics parameters, such as mass and inertial values. This is

examined in the online setting, where incoming streams of measurement are used to update

belief over the physical properties of the system model.

96

CHAPTER 6

PARTICLE-BASED INFERENCE FOR ONLINE PARAMETER ESTIMATION

6.1 Introduction

In Chapter 5, model predictive control was formulated as a Bayesian inference problem,

where the posterior distribution is estimated over control parameters given the state and

“cost-based” conditioning for optimal trajectories. This approach was shown to be better

suited at handling the multi-modality of the distribution over actions, but did not attempt to

dynamically adapt to changes in environment parameters. Previous work has demonstrated

that incorporating uncertainty of system parameters in the evaluation of SOC estimates can

improve performance [157], particularly when this uncertainty is periodically re-estimated

[158]. In the following chapter, we extend the application of Stein Variational Gradient

Descent in control problems to include the estimation of uncertainty over model parame-

ters on-the-fly. We represent the structural uncertainty over parameters as a collection of

particles, representing an implicit variational distribution. These particles are then updated

sequentially in an online fashion, and can capture complex multi-modal distributions. We

demonstrate the approach on both simulated and real-world navigation tasks requiring real-

time execution in the face of dynamically changing environments. The proposed algorithm

is implemented on a real autonomous ground vehicle (AGV) (Fig. 6.1a), illustrating the

applicability of the method in real time. Experiments show how the control and parame-

ter inference are leveraged to adapt the behaviour of the robot under varying conditions,

such as changes in mass. Simulation results are presented for an inverted pendulum and

a 2D obstacle grid, demonstrating an effective adaptation to dynamic changes in model

parameters.

97

(a) Wombot AGV

Step 0

Step 330

1.0 0.5 0.0 0.5 1.0 1.5 2.0
xICR (m)

Step 340

(b) Posterior distribution over xICR

Figure 6.1: Online parameter estimation for autonomous ground vehicles. Distributions
over system parameters such as the inertial center of rotation (ICR), are adapted in real-
time. (a) The custom built skid-steer robot platform used in experiments. (b) Distribution
over xICR at different time steps. The mass load on the robot is suddenly increased during
system execution. The parameter distribution estimate quickly changes to include a second
mode that better explains the new dynamics. Our particle-based control scheme can accom-
modate such multi-modal uncertainty and adapt to dynamically changing environments.

6.2 Related Work

Model predictive control is a reactive control scheme, and can accommodate modelling

errors to a limited degree. However, its performance is largely affected by the accuracy of

long-range predictions. Modelling errors can compound over the planning horizon, affect-

ing the expected outcome of a given control action. This can be mitigated by accounting

for model uncertainty, leading to better estimates of expected cost. This has been demon-

strated to improve performance in stochastic optimal control methods and model-based

reinforcement learning [159, 160]. Integrating uncertainty has typically been achieved by

learning probabilistic dynamics models from collected state-transition data in an episodic

setting, where the model is updated in between trajectory-length system executions [161,

162, 163, 164]. A variety of modelling representations have been explored, including

Gaussian processes [160], neural network ensembles [161], Bayesian regression, and meta-

learning [165]. Alternatively, the authors in [164, 158] estimate posterior distributions of

98

physical parameters for black-box simulators, given real-world observations.

Recent efforts have examined the online setting, where a learned probabilistic model is

updated based on observations made during execution [166, 167, 168, 169]. The benefits

of this paradigm are clear: incorporating new observations and adapting the dynamics in

situ will allow for better predictions, improved control, and recovery from sudden changes

to the environment. However, real-time requirements dictate that model adaptation must

be done quickly and efficiently, and accommodate the operational timescale of the con-

troller. This typically comes at the cost of modelling accuracy, and limits the application

of computationally-burdensome representations, such as neural networks and vanilla GPs.

Previous work has included the use of sparse-spectrum GPs and efficient factorization to

incrementally update the dynamics model [166, 170]. In [165], the authors use a meta-

learning approach to train a network model offline, which is adapted to new observations

using Bayesian linear regression operating on the last layer. However, these approaches are

restricted to Gaussian predictive distributions, and may lack sufficient modelling power for

predicting complex, multi-modal distributions.

Perhaps most closely related to our approach is the work presented in [167]. The au-

thors propose to track a distribution over simulation parameters using a sequential Monte

Carlo method akin to a particle filter. The set of possible environments resulting from the

parameter distribution is used by an MPPI controller to generate control samples. Each

simulated trajectory rollout is then weighted according to the weight of the correspond-

ing environment parameter. Although such an approach can model multi-modal posterior

distributions, we should expect similar drawbacks to particle filters, which require clever

re-sampling schemes to avoid mode collapse and particle depletion. Our method also lever-

ages a particle-based representation of parameter distributions, but performs deterministic

updates based on new information and is more sample efficient than MC sampling tech-

niques.

99

6.3 Joint Inference for Control and Dynamics

We can generalise the framework presented in Chapter 5 to simultaneously refine our

knowledge of the dynamical system, while estimating optimal policy parameters θt. We

can assume to have access to a model or simulation of the dynamics, which is a func-

tion of a set of physical parameters ξ (such as mass, friction, geometry, etc). To per-

form inference over ξ, we can store observations from the environment into a dataset

D1:t := {(xrt ,urt−1,x
r
t−1)}NDt=1 at each timestep t. The current posterior probability in

Eq. (5.2) can then be expressed as:

p(θt, ξ|O,D1:t) = p(θt|O, ξ)p(ξ|D1:t) , (6.1)

Note that the policy parameters θ are conditionally independent from the system obser-

vations, given ξ. We can then perform an iterative inference procedure, where at each

time-step the posterior over dynamics parameters p(ξ|D1:t) is first updated based on recent

measurements. Following this, the posterior p(θt|O, ξ) over control parameters can then be

inferred. The latter can be achieved using a the SV-MPC approach described in Chapter 5.

6.3.1 Real-time Dynamics Inference

We now focus on the problem of updating the posterior over the simulator parameters ξt.

Note that, due to the independence of each inference problem, the frequency in which we

update p(ξ|D1:t) can be different from the control policy update. Ideally, it is preferable to

update the parameter distribution in real-time, allowing a robotic system to quickly adapt

to sudden changes in the environment. To that end, we require an efficient way of incorpo-

rating recent measurements.

The inference problem at a given time-step can then be written as:

p(ξ|D1:t) ∝ p(Dt|ξ,D1:t−1)p(ξ|D1:t−1) . (6.2)

100

Note that in this formulation, ξ is considered time-invariant. This is based on the implicit

assumption that the frequency with which we gather new observations is significantly larger

than the covariate shift to which p(ξ|D1:t) is subject to as we traverse the environment.

In general, we do not have access to direct measurements of ξ, only to the system

state. Therefore, in order to perform inference over the dynamics parameters, we rely on a

generative model, i.e.the simulator f̂ξ, to generate samples in the state space X for different

values of ξ. However, unlike in the policy inference step, for the dynamics parameter

estimation we are not computing deterministic simulated rollouts, but rather trying to find

the explanatory parameter for each observed transition in the environment. Namely, we

have:

xrt = f(xrt−1,ut−1) = f̂ξ(x
r
t−1,ut−1) + ηt , (6.3)

where xrt denotes the true system state and ηt is a time-dependent random variable closely

related to the reality gap in the sim-to-real literature [171] and incorporates all the complex-

ities of the real system not captured in simulation, such as model mismatch, unmodelled

dynamics, etc. As result, the distribution of ηt is unknown, correlated over time and hard

to estimate.

In practice, for the feasibility of the inference problem, we make the standard as-

sumption that the noise is distributed according to a time-invariant normal distribution

ηt ∼ N (0,Σobs), with an empirically chosen covariance matrix. More concretely, this

allows us to define the likelihood term in Eq. (6.2) as:

`(ξ|D1:t) := p(Dt|ξ,D1:t−1)

= p(xrt |ξ,D1:t−1)

= N (xrt ; f̂ξ(x
r
t−1,ut−1),Σobs) ,

(6.4)

where we leverage the symmetry of the Gaussian distribution to center the uncertainty

around xrt . The likelihood of `(ξ|D1:t) depends only on the current observation tuple given

101

by Dt, and we can drop the conditioning on previously observed data. In other words,

we now have a way to quantify how likely is a given realisation of ξ based on the data

we have collected from the environment. Furthermore, let us define a single observation

Dt = (xrt ,u
r
t−1,x

r
t−1) as the tuple of last applied control action and observed state transi-

tion. Inferring exclusively over the current state is useful whenever frequent observations

are received and prevents us from having to store information over the entire observation

dataset.

Equipped with Eq. (6.4) and assuming that an initial prior p(ξ) is available, we can

proceed by approximating each prior at time twith a set of Stein particles {ξi}Nξi=1 following

q(ξ|D1:t−1), so that our posterior over ξ at a given time t can then be rewritten as:

p(ξ|D1:t) ≈ q(ξ|D1:t) ∝ `(ξ|Dt)q(ξ|D1:t−1) , (6.5)

and we can make recursive updates to q(ξ|D1:t) by employing it as the prior distribution

for the following step. Namely, we can iteratively update q(ξ|D1:t) a number of steps L by

applying the SVGD functional gradient update (Eq. (5.25), where the score function can

approximated as

∇ξ log pt(ξ|D1:t) ≈ ∇ξ log p(Dt|ξ) +∇ξ log qt(ξ|D1:t) . (6.6)

An element needed to evaluate Eq. (6.6) is an expression for the gradient of the posterior

density. An issue in sequential Bayesian inference is that there is no exact expression for

the posterior density [172]. Namely, we know the likelihood function, but the prior density

is only represented by a set of particles, not the density itself.

One could forge an empirical distribution q(ξ|D1:t) = 1
Nξ

∑Nξ
i=1 δ(ξ

i) by assigning Dirac

functions at each particle location, but we would still be unable to differentiate the posterior.

In practice, we need to apply an efficient density estimation method, as we need to compute

the density at each optimisation step. We choose to approximate the posterior density with

102

0 25 50 75 100 125 150 175 200
Timestep

0

2000

4000

6000

8000

10000

12000

14000

M
ea

n
Cu

m
ul

at
iv

e
Co

st

MPPI
DISCO
SVMPC
DuSt-MPC

(a) Pendulum costs

0.6 0.8 1.0 1.2 1.4
Mass (kg)

0.6

0.8

1.0

1.2

1.4

Le
ng

th
(m

)

True value
0.0

0.2

0.4

0.6

0.8

1.0

(b) Pendulum posterior

Figure 6.2: Inverted pendulum results. (a) The image shows the mean cumulative cost over
10 episodes. The shaded region represents the 50% confidence interval. The high variance
is expected since each scenario has parameters sampled from a uniform distribution. (b)
Plot of the posterior distribution over the pendulum pole-mass at the final step of one of the
episodes. The true latent value is shown by the red star marker.

an equal-weight Gaussian Mixture Model (GMM) with a fixed diagonal covariance matrix:

q(ξ|D1:t) =
1

Nξ

Nξ∑
i=1

N (ξ; ξi,Σs) , (6.7)

where the covariance matrix Σs can be predetermined or computed from data. One option,

for example, is to use a Kernel Density bandwidth estimation heuristic, such as Improved

Sheather Jones [173], Silverman’s [174] or Scott’s [175] rule, to determine the standard

deviation σ and set Σs = σ2I.

6.4 Experiments

In the following section we present experiments, both in simulation and with a physical

autonomous ground vehicle (AGV), to demonstrate the correctness and applicability of our

method.

103

Point-mass Pendulum

Cost (µ± σ) Succ.† Cost (µ± σ) Succ.‡

MPPI§ — — 30.8± 12.6 100%
DISCO 250.8± 29.9 20% 61.3± 40.0 70%
SVMPC 191.7± 56.5 25% 44.5± 17.9 70%
DuSt-MPC 118.3± 07.9 100% 36.8± 14.0 80%

Table 6.1: Simulation results. Summary of results for simulation experiments. The mean
episode cost is given by the sum of the instant costs over the episode length. Values shown
do not include the crash penalty for a more comparable baseline. §Not used in the navi-
gation task; has perfect knowledge in the pendulum task. †Successes are episodes with no
crashes. ‡Successes are episodes whose last five steps have a instant cost below 4 (≈10°
from the upright position).

6.4.1 Inverted pendulum with uncertain parameters

We first investigate the performance of DuSt-MPC in the classic inverted pendulum control

problem. As usual, the pendulum is composed of a rigid pole-mass system controlled at

one end by a 1-degree-of-freedom torque actuator. The task is to balance the point-mass

upright, which, as the controller is typically under-actuated, requires a controlled swing

motion to overcome gravity. Contrary to the typical case, however, in our experiments the

mass and length of the pole-mass are unknown and equally likely within a range of 0.5 kg

to 1.5 kg and 0.5 m to 1.5 m, respectively.

At each episode, a set of latent model parameters is sampled and used in the simulated

environment. Each method is then deployed utilising this same parameter set. MPPI is

used as a baseline and has perfect knowledge of the latent parameters. This provides a

measure of the task difficulty and achievable results. As discussed in Section 6.2, we

compare against DISCO and SVMPC as additional baselines. We argue that, although

these methods perform no online update of their knowledge of the world, they offer a

good underpinning for comparison since the former tries to leverage the model uncertainty

to create more robust policies, whereas the latter shares the same variational inference

principles as our method. DISCO is implemented in its unscented transform variant applied

104

to the uninformative prior used to generate the random environments. SVMPC uses the

mean values for mass and length as point-estimates for its fixed parametric model. For

more details on the hyper-parameters used, refer to Appendix A.

Figure 6.2a presents the average cumulative costs over 10 episodes. Although the re-

sults show great variance, due to the randomised environment, it is clear that DuSt-MPC

outperforms both baselines. Careful consideration will show that the improvement is more

noticeable as the episode progresses, which is expected as the posterior distribution over

the model parameters being used by DuSt-MPC gets more informative. The final distribu-

tion over mass and length for one of the episodes is shown in Fig. 6.2b. Finally, a summary

of the experimental results is presented in Table 6.1.

6.4.2 Point-mass navigation on an obstacle grid

Here, we reproduce and extend the planar navigation task presented in [29]. We con-

struct a scenario in which an holonomic point-mass robot must reach a target location

while avoiding obstacles. As in [29], colliding with obstacles not only incurs a high cost

penalty to the controller, but prevents all future movement, simulating a crash. The non-

differentiable cost function makes this a challenging problem, well-suited for sampling-

based approaches. Obstacles lie in an equally spaced 4-by-4 grid, yielding several multi-

modal solutions. This is depicted in Fig. 6.3. Additionally, we include barriers at the

boundaries of the simulated space to prevent the robot from easily circumventing obsta-

cles.

The system dynamics is represented as a double integrator model with non-unitary mass

m, he particle acceleration is given by ẍ = m−1u and the control signal is the force applied

to the point-mass. In order to demonstrate the inference over dynamics, we forcibly change

the mass of the robot at a fixed step of the experiment, adding extra weight. This has a

direct parallel to several tasks in reality, such as collecting a payload or passengers while

executing a task. Assuming the goal position is denoted by xg, the cost function that defines

105

(a) SVMPC trajectories (b) DuSt-MPC trajectories

Step 0

Step 50

Step 100

Step 105

Step 110

Step 120

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Mass (kg)

Step 150

(c) Ridge plot of mass distribution (in kg)

Figure 6.3: Point-mass navigation task. The plots shows trajectories from the start position
(red dot) towards the goal (red star). (a) Trajectories executed by SVMPC. Note that, as
the mass of the robot changes, the model mismatch causes many of the episodes to crash
(x markers). (b) Trajectories executed by DuSt-MPC. Depending on the state of the system
when the mass change occurs, a few trajectories deviate from the centre path to avoid
collisions. A few trajectories are truncated due to the fixed episode length. (c) Ridge plot
of the distribution over mass along several steps of the simulation. The vertical dashed line
denotes the true mass. Mass is initially set at 2 kg, and changed to 3 kg at step 100.

the task is given by:

c(xt,ut) = 0.5eT
t et + 0.25ẋt

Tẋt + 0.2uT
t ut + p · 1{col.}

cterm(xt,ut) = 1000eT
t et + 0.1ẋt

Tẋt ,

where et = xt − xg is the instantaneous position error and p = 106 is the penalty when

106

0 25 50 75 100 125 150 175 200
Step

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
in

st
an

tc
os

t

DuSt-MPC SVMPC New xICR

(a) Raw costs

1.0 0.5 0.0 0.5 1.0 1.5
x (m)

0.5

1.0

1.5

2.0

2.5

y
(m

)

DuSt-MPC SVMPC Target

(b) Trajectories

Figure 6.4: AGV trajectory tracking results. (a) Raw cost over time. Amount of steps
before and after the change of mass are normalised for proper comparison. (b) Trajectories
executed by each method. Line style changes when mass changes. Markers denote initial
and change of mass position.

a collision happens. A detailed account of the hyper-parameters used in the experiment is

presented in Chapter A.

As a baseline, we once more compare against DISCO and SVMPC. In Fig. 6.3 we

present an overlay of the trajectories for SVMPC and DuSt-MPC over 20 independent

episodes and we choose to omit trajectories of DISCO for conciseness. Collisions to ob-

stacles are denoted by a x marker. Note that in a third of the episodes SVMPC is unable to

avoid obstacles due to the high model mismatch while DuSt-MPC is able to avoid collisions

by quickly adjusting to the new model configuration online. A typical sequential plot of

the posterior distribution induced by fitting a GMM as in Eq. (6.7) is shown in Fig. 6.3c for

one episode. There is little variation between episodes and the distribution remains stable

in the intermediate steps not depicted.

6.4.3 Trajectory tracking with autonomous ground vehicle

We now present experimental results with a physical autonomous ground robot equipped

with a skid-steering drive mechanism. The kinematics of the robot are based on a modi-

fied unicycle model, which accounts for skidding via an additional parameter [176]. The

107

parameters of interest in this model are the robot’s wheel radius rw, axial distance aw, i.e.

the distance between the wheels, and the displacement of the robot’s ICR from the robot’s

centre xICR. A non-zero value on the latter affects turning by sliding the robot sideways.

The robot is velocity controlled and, although it possess four-wheel drive, the controls is

restricted to two-degrees of freedom, left and right wheel speed. Individual wheel speeds

are regulated by a low-level proportional-integral controller.

The robot is equipped with a 2D Hokuyo LIDAR and operates in an indoor environ-

ment in our experiments. Prior to the tests, the area is pre-mapped using the gmapping

package [177] and the robot is localised against this pre-built map. Similar to the exper-

iment in Section 6.4.2, we simulate a change in the environment that could be captured

by our parametric model of the robot to explain the real trajectories. However, we are

only applying a relatively simple kinematic model in which the effects of the dynamics and

ground-wheel interactions are not accounted for. Therefore, friction and mass are not feasi-

ble inference choices. Hence, out of the available parameters, we opted for inferring xICR,

the robot’s centre of rotation. Since measuring xICR involves a laborious process, requiring

different weight measurements or many trajectories from the physical hardware [178], this

also makes the experiment more realistic. To circumvent the difficulties of ascertaining

xICR, we use the posterior distribution estimated in [157], and bootstrap our experiment

with xICR ∼ N (0.5, 0.22).

To reduce the influence of external effects, such as localisation, we defined a simple

control task of following a circular path at a constant tangential speed. Costs were set to

make the robot follow a circle of 1 m radius with c(xt) =
√
d2
t + 10(st − s0)2, where dt

represents the robot’s distance to the edge of the circle and s0 = 0.2 m/s is a reference

linear speed.

The initial particles needed by DuSt-MPC in Eq. (6.6) for the estimation of xICR are

sampled from the bootstrapping distribution, whereas for SVMPC we set xICR = 0.5 m, the

distribution mean. Again, we want to capture whether our method is capable of adjusting

108

to environmental changes. To this end, approximately halfway through the experiment, we

add an extra load of approximately 5.3 kg at the rear of the robot in order to alter its centre

of mass. These moments are indicated on the trajectories shown in Fig. 6.4b. In Fig. 6.4a

we plot the instant costs for a fixed number of steps before and after the change of mass.

For the complete experiment parameters refer to Appendix A.

We observe that considering the uncertainty over xICR and, crucially, refining our

knowledge over it allows DuSt-MPC to significantly outperform the SVMPC baseline.

Focusing on the trajectories from SVMPC we note that our estimation of xICR is proba-

bly not accurate. As the cost function emphasises the tangential speed over the cross-track

error, this results in circles correctly centred, but of smaller radius. Crucially though, the

algorithm cannot overcome this poor initial estimation. DuSt-MPC initially appears to find

the same solution, but quickly adapts, overshooting the target trajectory and eventually

converging to a better result. This behaviour can be observed both prior to and after the

change in the robot’s mass. Conversely, with the addition of mass, the trajectory of SVMPC

diverged and eventually led the robot to a halt.

6.5 Discussion

We present a method capable of simultaneously estimating model parameters and con-

trols. The method expands previous results in control as implicit variational inference and

provides the theoretical framework to formally incorporate uncertainty over simulator pa-

rameters. By encapsulating the uncertainty on dynamic systems as distributions over a

parametric model, we are able to incorporate domain knowledge and physics principles

while still allowing for a highly representative model. Crucially, we perform an online re-

finement step where the agent leverages system feedback in a sequential way to efficiently

update its beliefs regardless of the size of observation dataset.

Simulated experiments are presented for a randomised inverted pendulum environment

and obstacle grid with step changes in the dynamical parameters. Additionally, a trajec-

109

tory tracking experiment utilising a custom built AGV demonstrates the feasibility of the

method for online control. The results illustrate how the simplifications on dynamic in-

ference are effective and allow for a quick adjustment of the posterior belief resulting in a

de facto adaptive controller. Consider, for instance, the inverted pendulum task. In such

periodic and non-linear system, untangling mass and length can pose a difficult challenge

as there are many plausible solutions [164]. Nonetheless, the results obtained are quite

encouraging, even with very few mapping steps per control loop.

Finally, we demonstrated how, by incorporating uncertainty over the model parameters,

DuSt-MPC produces more robust policies to dynamically changing environments, even

when the posterior estimation of the model parameters is rather uncertain. This can be

seen, for instance, in the adjustments made to trajectories in the obstacle grid.

110

CHAPTER 7

CONCLUSION

Interpretable sensory integration is an important component to building robust autonomous

systems. Training perceptual components from collected data can benefit from informed

design during data collection, model construction, and for merging perceptual modalities.

Incorporating structure and prior knowledge directly into parameteric models is a useful

strategy for improving scalability and performance.

Reasoning about uncertainty and probability distributions in an online fashion can be

expensive, particulary for high-dimensional problems encountered in robotics. Fortunately,

the use of GPU-accelerated computation for robotic platforms is increasing. This is timely,

as new developments in distributed Bayesian inference are well positioned to take advan-

tage of this parallelization.

This thesis addressed these two central themes, providing methods and formal insights

to further the adoption of modern learning and inference techniques in robotics. In Chap-

ter 2 and Chapter 3, we examined the role of both non-parametric and parametric structure

in designing learnable perception modules for both visual and tactile modalities. Forward

models for visual prediction were demonstrated to benefit from key-frame robot pose data,

learning ensembles of residual transformations to accurately predict projected appearance

from arbitrary robot configurations. This was shown to be additionally capable of predict-

ing occluded regions in cluttered scenes. We then described a novel method for interpreting

raw signals from a sophisticated bio-mimetic tactile sensor, where electrode array structure

and sensor geometry were encoded into the network architecture. A strategy for automat-

ing data collection with minimal human intervention was outlined to scale learning across

manipulation tasks. Chapter 4 demonstrated the use of geometric and physics-based pri-

ors for fusing visual and tactile models in a probabilistic framework. This was shown to

111

improve estimation of object poses and contact forces during partially-observable manipu-

lation tasks.

In Chapter 5 and Chapter 6, we examined distributed approaches to variational infer-

ence for control, planning and parameter estimation. A family of sampling-based, model-

predictive controllers was derived, based on equivalent formulations between optimal con-

trol and Bayesian posterior approximation. Optimization was performed using Stein Varia-

tional Gradient Descent (SVGD), using appropriate Markovian kernels for trajectory-wise

inference and leveraging parallel evaluation of control policies. This also led to a for-

mulation for trajectory optimization problems exhibiting deterministic dynamics, where

structured priors can be incorporated to plan for smooth motions. The SVGD approach

was then extended to combine particle-based MPC with online parameter estimation, ad-

dressing scenarios involving uncertainty in physical values such as mass and inertial center

of rotation. Augmenting the inference procedure to include model adaptation demonstrated

improved robustness on simulated and real systems.

7.1 Future Directions

The SV-MPC perspective outlined in Chapter 5 is one example of using particle-based rep-

resentations for variational inference in control and planning. A variety of other possible

methods exist, including Hamiltonian Monte Carlo (HMC) [179], Particle Mirror Descent

(PMD) [180], and Particle Optimization (PO) [181], among others. Although SVGD has

been shown numerically to outperform many of these candidates in low-dimensional prob-

lems [26], the specific trade-offs between these choices with regards to convergence, com-

putational overhead, and accuracy for inference over trajectory spaces remain to be fully

elaborated and compared.

Theoretical analysis of SVGD and related algorithms is also still in its infancy, but is

being actively developed [28]. To-date, convergence analysis of SVGD has largely been

constrained to the large-sample asymptotic limit (e.g. infinite particles), as in [182]. The

112

KL divergence is guaranteed to decrease monotonically, with a rate bounded from above

by the kernelized Stein discrepancy. A recent study has derived bounds for finite-sample

approximations [183]. How these rates translate to performance in the MPC and planning

context is currently unclear, but offers an exciting direction for future research.

A promising avenue for distributed posterior representations would be to include the ap-

plication of particle-based control schemes to KL-regularized reinforcement learning [184].

The approximate inference problem described in Eq. (5.8) is directly related to entropy-

regularized policy evaluation and value approximation. As such, the problem of find-

ing low-variance, sample-efficient approximation of expected-costs may be particularly

amenable to modern variational inference methods.

Additionally, the incorporation of parameter uncertainty into model-based reinforce-

ment learning has been generally limited to the episodic setting [185, 138]. To realize safe

and robust learning, we should consider how the agent manages uncertainty and adapts

its belief during execution. This would mean including online parameter adaptation, ac-

tive learning and adaptive control for minimizing Bayesian regret at both the continual

and episodic level [186, 163]. Efficient, online methods for resolving complex posterior

distributions should be very helpful in this regard.

Further, by considering a Bayesian formulation of model-predictive control, we can

incorporate priors over action spaces in a principled way. Obtaining meaningful priors is

non-trivial. However these can be derived from expert or human demonstrations [187, 188],

learned from experience [189, 190] or take the form of a trajectory or skill library [191].

Ideally, such informed priors may be conditioned on the context, such as the task and

environment setting [192].

With the availability of fast, GPU-accelerated simulators [153] and increasingly sophis-

ticated methods for bridging the sim-to-real gap [193, 194, 164, 195], it is becoming con-

ceivable to employ simulators within sampling-based control and state-estimation loops

during real-time execution [167, 196]. However, to effectively utilize such parallelized

113

computation, we need principled methods for resolving high-dimensional uncertainty over

actions and model parameters. This could be achieved by considering the natural, non-

Euclidean geometry induced by system kinematics and constraints of the system [197]. By

ensuring that our sampling space lies on a known Riemannian manifold, for example, we

can improve sample efficiency by implicitly accounting for system geometry [198].

114

Appendices

APPENDIX A

CHAPTER 6: EXPERIMENT PARAMETERS

Parameter Inverted Pendulum Point-mass Navigation AGV Traj. Tracking

Initial state, x0 [3rad, 0 m/sec] — —
Environment maximum speed 5m/sec — —
Environment maximum acceleration 10m/sec2 — —
Policy samples, Na 32 64 50
Dynamics samples, Ns 8 4 4
Cost Likelihood inverse temperature, α 1.0 1.0 1.0
Control authority, Σ 2.02 5.02 0.12

Control horizon, H 20 40 20
Number of policies, Nπ 3 6 2
Policy Kernel, kπ(·, ·) Radial Basis Function
Policy Kernel bandwidth selection Silverman’s rule
Policy prior covariance, Σa 2.02 5.02 1.02

Policy step size, ε 2.0 100.0 0.02
Dynamics prior distribution
Dynamics number of particles, Nξ 50 50 50
Dynamics Kernel, kξ(·, ·) Radial Basis Function
Dynamics GMM covariance, Σs Improved Sheather Jones 0.252 0.06252

Dynamics likelihood covariance, Σobs 0.12 0.12 0.12

Dynamics update steps, L 20 20 5
Dynamics step size, ε 0.001 0.01 0.05
Dynamics in log space No Yes No
Unscented Transform spread [157], α 0.5 — —

Table A.1: Hyperparameters used in the experiments.

116

REFERENCES

[1] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox, and
S. Birchfield, “Camera-to-robot pose estimation from a single image”, in 2020
IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020,
pp. 9426–9432.

[2] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep
object pose estimation for semantic robotic grasping of household objects”, in Con-
ference on Robot Learning, PMLR, 2018, pp. 306–316.

[3] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots,
“Agile autonomous driving using end-to-end deep imitation learning”, in Robotics:
science and systems, 2018.

[4] C. Finn and S. Levine, “Deep visual foresight for planning robot motion”, in 2017
IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017,
pp. 2786–2793.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomo-
tor policies”, The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334–
1373, 2016.

[6] D. Jain, A. Li, S. Singhal, A. Rajeswaran, V. Kumar, and E. Todorov, “Learning
deep visuomotor policies for dexterous hand manipulation”, in 2019 International
Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 3636–3643.

[7] A. Amini, G. Rosman, S. Karaman, and D. Rus, “Variational end-to-end navigation
and localization”, in 2019 International Conference on Robotics and Automation
(ICRA), IEEE, 2019, pp. 8958–8964.

[8] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and J. Z. Kolter, “Differentiable
mpc for end-to-end planning and control”, in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 2018, pp. 8299–8310.

[9] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train
your robot with deep reinforcement learning: Lessons we have learned”, The Inter-
national Journal of Robotics Research, p. 0 278 364 920 987 859, 2021.

[10] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft, P.
Abbeel, W. Burgard, M. Milford, et al., “The limits and potentials of deep learning
for robotics”, The International Journal of Robotics Research, vol. 37, no. 4-5,
pp. 405–420, 2018.

117

[11] A. Webb, C. Reynolds, W. Chen, H. Reeve, D. Iliescu, M. Lujan, and G. Brown, “To
ensemble or not ensemble: When does end-to-end training fail?”, stat, vol. 1050,
p. 6, 2020.

[12] T. Glasmachers, “Limits of end-to-end learning”, in Asian Conference on Machine
Learning, PMLR, 2017, pp. 17–32.

[13] A. Byravan, F. Leeb, F. Meier, and D. Fox, “Se3-pose-nets: Structured deep dy-
namics models for visuomotor control”, in 2018 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2018, pp. 3339–3346.

[14] A. Lambert, A. Shaban, A. Raj, Z. Liu, and B. Boots, “Deep forward and inverse
perceptual models for tracking and prediction”, in 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), IEEE, 2018, pp. 675–682.

[15] A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using deep neural
networks”, in 2017 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2017, pp. 173–180.

[16] R. Jonschkowski, R. Hafner, J. Scholz, and M. Riedmiller, “Pves: Position-velocity
encoders for unsupervised learning of structured state representations”, arXiv
preprint arXiv:1705.09805, 2017.

[17] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using physics as
model prior for deep learning”, in International Conference on Learning Represen-
tations, 2018.

[18] M. Lutter, J. Silberbauer, J. Watson, and J. Peters, “Differentiable physics mod-
els for real-world offline model-based reinforcement learning”, arXiv preprint
arXiv:2011.01734, 2020.

[19] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learn-
ing techniques for autonomous driving”, Journal of Field Robotics, vol. 37, no. 3,
pp. 362–386, 2020.

[20] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-neural-
network-driven autonomous cars”, in Proceedings of the 40th international confer-
ence on software engineering, 2018, pp. 303–314.

[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press Cambridge,
2000, vol. 1.

[22] S. Thrun, “Probabilistic robotics”, Communications of the ACM, vol. 45, no. 3,
pp. 52–57, 2002.

118

[23] Z. Chen et al., “Bayesian filtering: From kalman filters to particle filters, and be-
yond”, Statistics, vol. 182, no. 1, pp. 1–69, 2003.

[24] B. Sundaralingam, A. S. Lambert, A. Handa, B. Boots, T. Hermans, S. Birchfield,
N. Ratliff, and D. Fox, “Robust learning of tactile force estimation through robot in-
teraction”, in 2019 International Conference on Robotics and Automation (ICRA),
IEEE, 2019, pp. 9035–9042.

[25] A. S. Lambert, M. Mukadam, B. Sundaralingam, N. Ratliff, B. Boots, and D. Fox,
“Joint inference of kinematic and force trajectories with visuo-tactile sensing”, in
2019 International Conference on Robotics and Automation (ICRA), IEEE, 2019,
pp. 3165–3171.

[26] Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose
bayesian inference algorithm”, in Advances in Neural Information Processing Sys-
tems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.,
Curran Associates, Inc., 2016, pp. 2378–2386.

[27] C. Stein et al., “A bound for the error in the normal approximation to the distribu-
tion of a sum of dependent random variables”, in Proceedings of the Sixth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 2: Probability The-
ory, The Regents of the University of California, 1972.

[28] A. Anastasiou, A. Barp, F.-X. Briol, B. Ebner, R. E. Gaunt, F. Ghaderinezhad, J.
Gorham, A. Gretton, C. Ley, Q. Liu, L. W. Mackey, C. Oates, G. Reinert, and Y.
Swan, “Stein’s method meets statistics: A review of some recent developments”,
2021.

[29] A. Lambert, A. Fishman, D. Fox, B. Boots, and F. Ramos, “Stein variational model
predictive control”, in Proceedings of the 4th Annual Conference on Robot Learn-
ing, 2020.

[30] L. Barcelos, A. Lambert, R. Oliveira, P. Borges, B. Boots, and F. Ramos, “Dual
online stein variational inference for control and dynamics”, in Robotics: Science
and Systems, 2021.

[31] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[32] A. Dearden and Y. Demiris, “Learning forward models for robots”, in IJCAI, vol. 5,
2005, p. 1440.

[33] S. Ulbrich, M. Bechtel, T. Asfour, and R. Dillmann, “Learning robot dynamics with
kinematic bezier maps”, in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, IEEE, 2012, pp. 3598–3604.

119

[34] S. Vijayakumar and S. Schaal, “Locally weighted projection regression: Incremen-
tal real time learning in high dimensional space”, in Proceedings of the Seven-
teenth International Conference on Machine Learning, Morgan Kaufmann Pub-
lishers Inc., 2000, pp. 1079–1086.

[35] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinematics”, in In-
telligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on, IEEE, vol. 1, 2001, pp. 298–303.

[36] B. Damas and J. Santos-Victor, “An online algorithm for simultaneously learning
forward and inverse kinematics”, in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, IEEE, 2012, pp. 1499–1506.

[37] D. Nguyen-Tuong, J. R. Peters, and M. Seeger, “Local gaussian process regression
for real time online model learning”, in Advances in Neural Information Processing
Systems, 2009, pp. 1193–1200.

[38] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for physical inter-
action through video prediction”, in Advances In Neural Information Processing
Systems, 2016, pp. 64–72.

[39] C. Paxton, Y. Barnoy, K. Katyal, R. Arora, and G. D. Hager, “Visual robot task
planning”, in 2019 international conference on robotics and automation (ICRA),
IEEE, 2019, pp. 8832–8838.

[40] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised visual planning with
temporal skip connections.”, in CoRL, 2017, pp. 344–356.

[41] N. Hirose, F. Xia, R. Martin-Martin, A. Sadeghian, and S. Savarese, “Deep visual
mpc-policy learning for navigation”, IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 3184–3191, 2019.

[42] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der
Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with convolu-
tional networks”, in Proceedings of the IEEE International Conference on Com-
puter Vision, 2015, pp. 2758–2766.

[43] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep convolutional
inverse graphics network”, in Advances in Neural Information Processing Systems,
2015, pp. 2539–2547.

[44] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets”, in Advances in neural
information processing systems, 2014, pp. 2672–2680.

120

[45] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks”, arXiv preprint
arXiv:1511.06434, 2015.

[46] A. Dosovitskiy, J. Springenberg, M. Tatarchenko, and T. Brox, “Learning to gen-
erate chairs, tables and cars with convolutional networks”, IEEE transactions on
pattern analysis and machine intelligence, 2016.

[47] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Single-view to multi-view: Re-
constructing unseen views with a convolutional network”, CoRR abs/1511.06702,
2015.

[48] Y. Ganin, D. Kononenko, D. Sungatullina, and V. Lempitsky, “Deepwarp: Pho-
torealistic image resynthesis for gaze manipulation”, in European Conference on
Computer Vision, Springer, 2016, pp. 311–326.

[49] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View synthesis by appear-
ance flow”, in European Conference on Computer Vision, Springer, 2016, pp. 286–
301.

[50] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic approaches”, IEEE
Robotics & Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.

[51] P. I. Corke, “Visual control of robot manipulators-a review”, Visual servoing, vol. 7,
pp. 1–31, 1993.

[52] S. Maneewongvatana and D. M. Mount, “It’s okay to be skinny, if your friends are
fat”, in Center for Geometric Computing 4th Annual Workshop on Computational
Geometry, vol. 2, 1999, pp. 1–8.

[53] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer networks”,
in Advances in Neural Information Processing Systems, 2015, pp. 2017–2025.

[54] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding”, arXiv preprint arXiv:1408.5093, 2014.

[55] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, arXiv
preprint arXiv:1412.6980, 2014.

[56] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil in
the details: Delving deep into convolutional nets”, arXiv preprint arXiv:1405.3531,
2014.

121

[57] C. K. Liu and S. Jain, “A quick tutorial on multibody dynamics”, Online tutorial,
June, p. 7, 2012.

[58] B. Boots, A. Byravan, and D. Fox, “Learning predictive models of a depth camera
and manipulator from raw execution traces”, in 2014 IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2014, pp. 4021–4028.

[59] M. Mirza and S. Osindero, “Conditional generative adversarial nets”, arXiv
preprint arXiv:1411.1784, 2014.

[60] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks”, arXiv preprint
arXiv:1511.06434, 2015.

[61] J. Gauthier, “Conditional generative adversarial nets for convolutional face gen-
eration”, Class Project for Stanford CS231N: Convolutional Neural Networks for
Visual Recognition, Winter semester, vol. 2014, no. 5, p. 2, 2014.

[62] G. Kahn, P. Sujan, S. Patil, S. Bopardikar, J. Ryde, K. Goldberg, and P. Abbeel,
“Active exploration using trajectory optimization for robotic grasping in the pres-
ence of occlusions”, in 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2015, pp. 4783–4790.

[63] S.-K. Kim and M. Likhachev, “Planning for grasp selection of partially occluded
objects”, in 2016 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2016, pp. 3971–3978.

[64] J. Pajarinen and V. Kyrki, “Robotic manipulation of multiple objects as a pomdp”,
Artificial Intelligence, vol. 247, pp. 213–228, 2017.

[65] L. Alvarez, R. Deriche, T. Papadopoulo, and J. Sánchez, “Symmetrical dense opti-
cal flow estimation with occlusions detection”, International Journal of Computer
Vision, vol. 75, no. 3, pp. 371–385, 2007.

[66] S. Ince and J. Konrad, “Occlusion-aware optical flow estimation”, IEEE Transac-
tions on Image Processing, vol. 17, no. 8, pp. 1443–1451, 2008.

[67] A. A. Shenoi, T. Bhattacharjee, and C. C. Kemp, “A CRF that combines touch and
vision for haptic mapping”, in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016, pp. 2255–2262.

[68] Y. Gao, L. A. Hendricks, K. J. Kuchenbecker, and T. Darrell, “Deep learning for
tactile understanding from visual and haptic data”, in IEEE International Confer-
ence on Robotics and Automation (ICRA), 2016, pp. 536–543.

122

[69] R. Calandra, J. Lin, A. Owens, J. Malik, U. Berkeley, D. Jayaraman, and E. H.
Adelson, “More than a feeling: Learning to grasp and regrasp using vision and
touch”, in NIPS, 2017, pp. 1–10.

[70] P. S. Girão, P. M. P. Ramos, O. Postolache, and J. M. D. Pereira, “Tactile sensors
for robotic applications”, Measurement, vol. 46, no. 3, pp. 1257–1271, 2013.

[71] D. Xu, G. E. Loeb, and J. A. Fishel, “Tactile identification of objects using
bayesian exploration”, in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2013, pp. 3056–3061.

[72] R. Li, R. Platt, W. Yuan, A. ten Pas, N. Roscup, M. A. Srinivasan, and E. Adel-
son, “Localization and manipulation of small parts using GelSight tactile sensing”,
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2014, pp. 3988–3993.

[73] F. Veiga, H. van Hoof, J. Peters, and T. Hermans, “Stabilizing Novel Objects by
Learning to Predict Tactile Slip”, in iros, Hamburg, Germany, 2015.

[74] N. Wettels, A. R. Parnandi, J.-H. Moon, G. E. Loeb, and G. S. Sukhatme, “Grip
control using biomimetic tactile sensing systems”, IEEE/ASME Transactions On
Mechatronics, vol. 14, no. 6, pp. 718–723, 2009.

[75] M. Meier, G. Walck, R. Haschke, and H. J. Ritter, “Distinguishing sliding from
slipping during object pushing”, in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2016, pp. 5579–5584.

[76] I. Agriomallos, S. Doltsinis, I. Mitsioni, and Z. Doulgeri, “Slippage detection gen-
eralizing to grasping of unknown objects using machine learning with novel fea-
tures”, IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 942–948, 2018.

[77] B. Heyneman and M. R. Cutkosky, “Slip classification for dynamic tactile array
sensors”, The International Journal of Robotics Research, vol. 35, no. 4, pp. 404–
421, 2016.

[78] J. Hoelscher, J. Peters, and T. Hermans, “Evaluation of Tactile Feature Extraction
for Interactive Object Recognition”, in IEEE-RAS International Conference on Hu-
manoid Robotics, Seoul, Korea, 2015.

[79] F. Veiga, J. Peters, and T. Hermans, “Grip stabilization of novel objects using slip
prediction”, IEEE Transactions on Haptics, 2018.

[80] L. Chia-Hsien, J. A. Fishel, and G. E. Loeb, “Estimating point of contact, force and
torque in a biomimetic tactile sensor with deformable skin”, Tech. Rep., 2013.

123

[81] Z. Su, K. Hausman, Y. Chebotar, A. Molchanov, G. E. Loeb, G. S. Sukhatme,
and S. Schaal, “Force estimation and slip detection/classification for grip control
using a biomimetic tactile sensor”, in IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), 2015, pp. 297–303.

[82] N. Wettels, J. A. Fishel, and G. E. Loeb, “Multimodal tactile sensor”, in The Human
Hand as an Inspiration for Robot Hand Development, Springer, 2014, pp. 405–429.

[83] J. Fishel, G. Lin, and G. Loeb, “SynTouch LLC BioTac product manual, v. 16”,
Tech. Rep., 2013.

[84] B. Navarro, P. Kumar, A. Fonte, P. Fraisse, G. Poisson, and A. Cherubini, “Active
calibration of tactile sensors mounted on a robotic hand”, in IEEE/RSJ Conference
on Intelligent Robots and Systems (IROS), 2015.

[85] N. Wettels and G. E. Loeb, “Haptic feature extraction from a biomimetic tactile
sensor: Force, contact location and curvature”, in IEEE International Conference
on Robotics and Biomimetics (ROBIO), 2011, pp. 2471–2478.

[86] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controllability, and
planning”, The International Journal of Robotics Research, vol. 15, no. 6, pp. 533–
556, 1996.

[87] J. Reinecke, A. Dietrich, F. Schmidt, and M. Chalon, “Experimental comparison of
slip detection strategies by tactile sensing with the BioTac® on the DLR hand arm
system”, in IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 2742–2748.

[88] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and N. Ratliff,
“Rmpflow: A computational graph for automatic motion policy generation”, in In-
ternational Workshop on the Algorithmic Foundations of Robotics, Springer, 2018,
pp. 441–457.

[89] T. Schmidt, K. Hertkorn, R. Newcombe, Z. Marton, M. Suppa, and D. Fox, “Depth-
based tracking with physical constraints for robot manipulation”, in ICRA, IEEE,
2015, pp. 119–126.

[90] Coefficients of friction between materials, https : / / www . engineersedge . com /
coeffients_of_friction.htm, Accessed: 2018-09-13.

[91] D. Kraft, “A software package for sequential quadratic programming”, DLR Ger-
man Aerospace Center - Institute for Flight Mechanics, Koln, Germany, Tech. Rep.
DFVLR-FB 88-28, 1988.

124

https://www.engineersedge.com/coeffients_of_friction.htm
https://www.engineersedge.com/coeffients_of_friction.htm

[92] F. Biscani, D. Izzo, and C. H. Yam, “A global optimisation toolbox for massively
parallel engineering optimisation”, arXiv preprint arXiv:1004.3824, 2010.

[93] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning”,
in 12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16), 2016, pp. 265–283.

[94] L. N. Smith and N. Topin, “Super-convergence: Very fast training of residual net-
works using large learning rates”, arXiv preprint arXiv:1708.07120, 2017.

[95] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker, “Human-
inspired robotic grasp control with tactile sensing”, IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1067–1079, 2011.

[96] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar,
“Benchmarking in manipulation research”, IEEE Robotics & Automation Maga-
zine, vol. 1070, no. 9932/15, p. 36, 2015.

[97] J. Bimbo, L. D. Seneviratne, K. Althoefer, and H. Liu, “Combining touch and vision
for the estimation of an object’s pose during manipulation”, in Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on, IEEE, 2013,
pp. 4021–4026.

[98] L. Zhang and J. C. Trinkle, “The application of particle filtering to grasping ac-
quisition with visual occlusion and tactile sensing”, in Robotics and automation
(ICRA), 2012 IEEE international conference on, IEEE, 2012, pp. 3805–3812.

[99] M. Chalon, J. Reinecke, and M. Pfanne, “Online in-hand object localization”, in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, IEEE, 2013, pp. 2977–2984.

[100] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam: A fac-
tored solution to the simultaneous localization and mapping problem”, Aaai/iaai,
vol. 593598, 2002.

[101] S. Thrun and M. Montemerlo, “The graph slam algorithm with applications to
large-scale mapping of urban structures”, The International Journal of Robotics
Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[102] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization and map-
ping via square root information smoothing”, The International Journal of Robotics
Research, vol. 25, no. 12, pp. 1181–1203, 2006.

125

[103] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-time Gaus-
sian process motion planning via probabilistic inference”, The International Jour-
nal of Robotics Research (IJRR), vol. 37, no. 11, pp. 1319–1340, 2018.

[104] M. Mukadam, J. Dong, F. Dellaert, and B. Boots, “Simultaneous trajectory estima-
tion and planning via probabilistic inference”, in Proceedings of Robotics: Science
and Systems (RSS), 2017.

[105] K.-T. Yu, J. Leonard, and A. Rodriguez, “Shape and pose recovery from planar
pushing”, in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, IEEE, 2015, pp. 1208–1215.

[106] K.-.-T. Yu and A. Rodriguez, “Realtime state estimation with tactile and visual
sensing. application to planar manipulation”, in 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2018, pp. 7778–7785.

[107] K.-T. Yu and A. Rodriguez, “Realtime state estimation with tactile and visual sens-
ing for inserting a suction-held object”, in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 1628–1635.

[108] G. E. Loeb, “Estimating point of contact, force and torque in a biomimetic tactile
sensor with deformable skin”, 2013.

[109] F. R. Hogan and A. Rodriguez, “Feedback control of the pusher-slider sys-
tem: A story of hybrid and underactuated contact dynamics”, arXiv preprint
arXiv:1611.08268, 2016.

[110] K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing by
pushing using tactile feedback.”, in IROS, 1992, pp. 416–421.

[111] M. T. Mason, “Mechanics and planning of manipulator pushing operations”, The
International Journal of Robotics Research, vol. 5, no. 3, pp. 53–71, 1986.

[112] S. H. Lee and M. Cutkosky, “Fixture planning with friction”, Journal of Engineer-
ing for Industry, vol. 113, no. 3, pp. 320–327, 1991.

[113] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction”, Georgia Institute
of Technology, Tech. Rep., 2012.

[114] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “Isam2:
Incremental smoothing and mapping using the bayes tree”, The International Jour-
nal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.

[115] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million ways to
be pushed. a high-fidelity experimental dataset of planar pushing”, in Intelligent

126

Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, IEEE,
2016, pp. 30–37.

[116] T. Schmidt, R. A. Newcombe, and D. Fox, “DART: Dense articulated real-time
tracking.”, in Robotics: Science and Systems, vol. 2, 2014.

[117] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applications to au-
tonomous driving”, IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1603–1622,
2018.

[118] N. Wagener, C.-A. Cheng, J. Sacks, and B. Boots, “An online learning approach to
model predictive control”, arXiv preprint arXiv:1902.08967, 2019.

[119] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control”, in 2016 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 1433–1440.

[120] M. Kasaei, N. Lau, and A. Pereira, “A robust closed-loop biped locomotion planner
based on time varying model predictive control”, arXiv preprint arXiv:1909.06873,
2019.

[121] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned local models:
Application to dexterous manipulation”, in 2016 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2016, pp. 378–383.

[122] H. J. Kappen, “Path integrals and symmetry breaking for optimal control theory”,
Journal of statistical mechanics: theory and experiment, vol. 2005, no. 11, P11011,
2005.

[123] V. Gómez, S. Thijssen, A. Symington, S. Hailes, and H. J. Kappen, “Real-time
stochastic optimal control for multi-agent quadrotor systems”, in Twenty-Sixth In-
ternational Conference on Automated Planning and Scheduling, 2016.

[124] W. Wiegerinck, B. v. d. Broek, and H. Kappen, “Stochastic optimal control in con-
tinuous space-time multi-agent systems”, arXiv preprint arXiv:1206.6866, 2012.

[125] G. Williams, B. Goldfain, P. Drews, K. Saigol, J. M. Rehg, and E. A. Theodorou,
“Robust sampling based model predictive control with sparse objective informa-
tion.”, in Robotics: Science and Systems, 2018.

[126] H. J. Kappen, “Linear theory for control of nonlinear stochastic systems”, Physical
review letters, vol. 95, no. 20, p. 200 201, 2005.

127

[127] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal control and
reinforcement learning by approximate inference”, in Twenty-Third International
Joint Conference on Artificial Intelligence, 2013.

[128] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial
and review”, arXiv preprint arXiv:1805.00909, 2018.

[129] M. I. Jordan, Z. Ghahramani, and et al., “An introduction to variational methods
for graphical models”, in Machine Learning, MIT Press, 1999, pp. 183–233.

[130] M. J. Beal, “Variational algorithms for approximate bayesian inference”, University
College London, Tech. Rep., 2003.

[131] M. Wainwright and M. Jordan, “Graphical Models, Exponential Families, and Vari-
ational Inference”, Foundations and Trends in Machine Learning, vol. 1, no. 1-2,
pp. 1–305, 2008.

[132] Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose
bayesian inference algorithm”, in Advances in Neural Information Processing Sys-
tems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.,
Curran Associates, Inc., 2016, pp. 2378–2386.

[133] E. Todorov, “General duality between optimal control and estimation”, in 2008
47th IEEE Conference on Decision and Control, IEEE, 2008, pp. 4286–4292.

[134] K. Rawlik, M. Toussaint, and S. Vijayakumar, “Approximate inference and stochas-
tic optimal control”, arXiv preprint arXiv:1009.3958, 2010.

[135] M. Toussaint, “Robot trajectory optimization using approximate inference”, in Pro-
ceedings of the 26th annual international conference on machine learning, ACM,
2009, pp. 1049–1056.

[136] H. J. Kappen, V. Gómez, and M. Opper, “Optimal control as a graphical model
inference problem”, Machine learning, vol. 87, no. 2, pp. 159–182, 2012.

[137] M. Toussaint and A. Storkey, “Probabilistic inference for solving discrete and con-
tinuous state markov decision processes”, in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 945–952.

[138] M. Okada and T. Taniguchi, “Variational inference mpc for bayesian model-based
reinforcement learning”, in Conference on Robotics Learning (CoRL), 2019.

[139] J. Watson, H. Abdulsamad, and J. Peters, “Stochastic optimal control as approxi-
mate input inference”, in Conference on Robot Learning, 2020, pp. 697–716.

128

[140] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[141] D. Ormoneit and V. Tresp, “Averaging, maximum penalized likelihood and
bayesian estimation for improving gaussian mixture probability density estimates”,
IEEE Transactions on Neural Networks, vol. 9, no. 4, pp. 639–650, 1998.

[142] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral control ap-
proach to reinforcement learning”, The Journal of Machine Learning Research,
vol. 11, pp. 3137–3181, 2010.

[143] E. A. Theodorou and E. Todorov, “Relative entropy and free energy dualities: Con-
nections to path integral and kl control”, in 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC), IEEE, 2012, pp. 1466–1473.

[144] E. A. Theodorou, “Nonlinear stochastic control and information theoretic duali-
ties: Connections, interdependencies and thermodynamic interpretations”, Entropy,
vol. 17, no. 5, pp. 3352–3375, 2015.

[145] Y. Liu, P. Ramachandran, Q. Liu, and J. Peng, “Stein variational policy gradient”,
in Conference on Uncertainty on Artificial Intelligence (UAI), 2017.

[146] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep
energy-based policies.”, in International Conference on Machine Learning (ICML),
2017, pp. 1352–1361.

[147] W. Y. Chen, A. Barp, F.-X. Briol, J. Gorham, M. Girolami, L. Mackey, and C. J.
Oates, “Stein point markov chain monte carlo”, in ICML, 2019.

[148] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “The cross-entropy
method for optimization”, in Handbook of statistics, vol. 31, Elsevier, 2013, pp. 35–
59.

[149] Q. Liu, “Stein variational gradient descent: Theory and applications”,

[150] N. Kantas, J. Maciejowski, and A. Lecchini-Visintini, “Sequential monte carlo for
model predictive control”, in Nonlinear model predictive control, Springer, 2009,
pp. 263–273.

[151] J. Zhuo, C. Liu, J. Shi, J. Zhu, N. Chen, and B. Zhang, “Message passing Stein vari-
ational gradient descent”, in Proceedings of the 35th International Conference on
Machine Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 80, Stockholm, Sweden: PMLR, Oct. 2018, pp. 6018–6027.

[152] B. Schölkopf and A. Smola, Learning with Kernels - Support Vector Machines,
Regularization, Optimization and Beyond. Cambridge, MA: MIT Press, 2001.

129

[153] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and V. Makoviy-
chuk, “Non-smooth newton methods for deformable multi-body dynamics”, ACM
Transactions on Graphics (TOG), vol. 38, no. 5, pp. 1–20, 2019.

[154] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, “Openai gym”, arXiv preprint arXiv:1606.01540, 2016.

[155] S. S. Varadhan, Large deviations and applications. SIAM, 1984.

[156] C. Hartmann, L. Richter, C. Schütte, and W. Zhang, “Variational characterization
of free energy: Theory and algorithms”, Entropy, vol. 19, no. 11, p. 626, 2017.

[157] L. Barcelos, R. Oliveira, R. Possas, L. Ott, and F. Ramos, “DISCO: Double
likelihood-free inference stochastic control”, in Proceedings of the 2020 IEEE In-
ternational Conference on Robotics and Automation, Paris, France: IEEE Robotics
and Automation Society, May 31, 2020, p. 7.

[158] R. Possas, L. Barcelos, R. Oliveira, D. Fox, and F. Ramos, “Online BayesSim for
Combined Simulator Parameter Inference and Policy Improvement”, presented at
the International Conference on Intelligent Robots and Systems (IROS), 2020, p. 8.

[159] Y. Pan and E. Theodorou, “Probabilistic differential dynamic programming”, Ad-
vances in Neural Information Processing Systems, vol. 27, pp. 1907–1915, 2014.

[160] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-efficient
approach to policy search”, p. 8,

[161] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learning
in a handful of trials using probabilistic dynamics models”, arXiv:1805.12114 [cs,
stat], Nov. 2, 2018. arXiv: 1805.12114.

[162] M. Okada and T. Taniguchi, “Variational inference MPC for bayesian model-based
reinforcement learning”, arXiv:1907.04202 [cs, eess, stat], Oct. 6, 2019. arXiv:
1907.04202.

[163] K. P. Wabersich and M. Zeilinger, “Bayesian model predictive control: Efficient
model exploration and regret bounds using posterior sampling”, in Learning for
Dynamics and Control, PMLR, 2020, pp. 455–464.

[164] F. Ramos, R. Possas, and D. Fox, “BayesSim: Adaptive domain randomization via
probabilistic inference for robotics simulators”, in Proceedings of Robotics: Sci-
ence and Systems, FreiburgimBreisgau, Germany, Jun. 2019.

130

https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/1907.04202

[165] J. Harrison, A. Sharma, and M. Pavone, “Meta-learning priors for efficient online
bayesian regression”, in International Workshop on the Algorithmic Foundations of
Robotics, Springer, 2018, pp. 318–337.

[166] Y. Pan, X. Yan, E. Theodorou, and B. Boots, “Adaptive probabilistic trajectory
optimization via efficient approximate inference”, 29th Conference on Neural In-
formation Processing System, 2016.

[167] I. Abraham, A. Handa, N. Ratliff, K. Lowrey, T. D. Murphey, and D. Fox, “Model-
based generalization under parameter uncertainty using path integral control”,
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2864–2871, 2020.

[168] D. Fan, A. Agha, and E. Theodorou, “Deep learning tubes for tube MPC”, in
Robotics: Science and Systems XVI, Robotics: Science and Systems Foundation,
Jul. 12, 2020, ISBN: 978-0-9923747-6-1.

[169] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and
C. J. Tomlin, “A general safety framework for learning-based control in uncer-
tain robotic systems”, IEEE Transactions on Automatic Control, vol. 64, no. 7,
pp. 2737–2752, Jul. 2019.

[170] Y. Pan, X. Yan, E. A. Theodorou, and B. Boots, “Prediction under uncertainty
in sparse spectrum gaussian processes with applications to filtering and con-
trol”, in Proceedings of the 34th international conference on machine learning,
D. Precup and Y. W. Teh, Eds., ser. Proceedings of machine learning research,
tex.pdf: http://proceedings.mlr.press/v70/pan17a/pan17a.pdf, vol. 70, International
Convention Centre, Sydney, Australia: PMLR, Aug. 6, 2017, pp. 2760–2768.

[171] E. Valassakis, Z. Ding, and E. Johns, “Crossing The Gap: A Deep Dive into Zero-
Shot Sim-to-Real Transfer for Dynamics”, presented at the International Confer-
ence on Intelligent Robots and Systems (IROS), 2020. arXiv: 2008.06686 [cs].

[172] M. Pulido and P. J. van Leeuwen, “Sequential monte carlo with kernel embed-
ded mappings: The mapping particle filter”, Journal of Computational Physics,
vol. 396, pp. 400–415, Nov. 2019.

[173] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density estimation via diffu-
sion”, The Annals of Statistics, vol. 38, no. 5, pp. 2916–2957, Oct. 2010.

[174] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Boston, MA:
Springer US, 1986, ISBN: 978-1-4899-3324-9.

[175] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization,
1st ed., ser. Wiley Series in Probability and Statistics. Wiley, Aug. 17, 1992, ISBN:
978-0-470-31684-9.

131

https://arxiv.org/abs/2008.06686

[176] K. Kozlowski and D. Pazderski, “Modeling and control of a 4-wheel skid-steering
mobile robot”, Int. J. Appl. Math. Comput. Sci., vol. 14, no. 4, pp. 477–496, 2004.

[177] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping
with rao-blackwellized particle filters”, IEEE transactions on Robotics, vol. 23,
no. 1, pp. 34–46, 2007.

[178] J. Yi, H. Wang, J. Zhang, D. Song, S. Jayasuriya, and J. Liu, “Kinematic
modeling and analysis of skid-steered mobile robots with applications to low-
cost inertial-measurement-unit-based motion estimation”, IEEE Transactions on
Robotics, vol. 25, no. 5, pp. 1087–1097, Oct. 2009, Conference Name: IEEE Trans-
actions on Robotics.

[179] M. Betancourt, “A conceptual introduction to hamiltonian monte carlo”, arXiv
preprint arXiv:1701.02434, 2017.

[180] B. Dai, N. He, H. Dai, and L. Song, “Provable bayesian inference via particle mirror
descent”, in AISTATS, 2015.

[181] C. Chen and R. Zhang, “Particle optimization in stochastic gradient mcmc”, arXiv
preprint arXiv:1711.10927, 2017.

[182] Q. Liu, “Stein variational gradient descent as gradient flow”, in Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Curran Associates, Inc.,
2017, pp. 3115–3123.

[183] A. Korba, A. Salim, M. Arbel, G. Luise, and A. Gretton, “A non-asymptotic anal-
ysis for stein variational gradient descent”, Advances in Neural Information Pro-
cessing Systems, vol. 33, 2020.

[184] J. T. Springenberg, N. Heess, D. Mankowitz, J. Merel, A. Byravan, A. Abdolmaleki,
J. Kay, J. Degrave, J. Schrittwieser, Y. Tassa, et al., “Local search for policy itera-
tion in continuous control”, arXiv preprint arXiv:2010.05545, 2020.

[185] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learning
in a handful of trials using probabilistic dynamics models”, in NeurIPS, 2018.

[186] E. Arcari, L. Hewing, M. Schlichting, and M. Zeilinger, “Dual stochastic mpc for
systems with parametric and structural uncertainty”, in Learning for Dynamics and
Control, PMLR, 2020, pp. 894–903.

[187] R. Jeong, J. T. Springenberg, J. Kay, D. Zheng, Y. Zhou, A. Galashov, N. Heess,
and F. Nori, “Learning dexterous manipulation from suboptimal experts”, in Con-
ference on Robot Learning, 2020.

132

[188] N. Rhinehart, R. McAllister, and S. Levine, “Deep imitative models for flexible
inference, planning, and control”, in International Conference on Learning Repre-
sentations, 2019.

[189] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you need: Learn-
ing skills without a reward function”, in International Conference on Learning Rep-
resentations, 2018.

[190] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine, “Parrot: Data-driven
behavioral priors for reinforcement learning”, arXiv preprint arXiv:2011.10024,
2020.

[191] T. Li, N. Lambert, R. Calandra, F. Meier, and A. Rai, “Learning generalizable loco-
motion skills with hierarchical reinforcement learning”, in 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 413–419.

[192] K. Pertsch, Y. Lee, and J. J. Lim, “Accelerating reinforcement learning with learned
skill priors”, in Conference on Robot Learning, 2020.

[193] R. Antonova, A. Rai, T. Li, and D. Kragic, “Bayesian optimization in variational la-
tent spaces with dynamic compression”, in Conference on Robot Learning, PMLR,
2020, pp. 456–465.

[194] R. Antonova, A. Rai, and C. G. Atkeson, “Deep kernels for optimizing locomotion
controllers”, in Conference on Robot Learning, PMLR, 2017, pp. 47–56.

[195] H. Bharadhwaj, Z. Wang, Y. Bengio, and L. Paull, “A data-efficient framework
for training and sim-to-real transfer of navigation policies”, in 2019 International
Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 782–788.

[196] J. Liang, A. Handa, K. Van Wyk, V. Makoviychuk, O. Kroemer, and D. Fox, “In-
hand object pose tracking via contact feedback and gpu-accelerated robotic simula-
tion”, in 2020 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2020, pp. 6203–6209.

[197] S. Calinon, “Gaussians on riemannian manifolds: Applications for robot learning
and adaptive control”, IEEE Robotics & Automation Magazine, vol. 27, no. 2,
pp. 33–45, 2020.

[198] C. Liu and J. Zhu, “Riemannian stein variational gradient descent for bayesian in-
ference”, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
2018.

133

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 | Introduction
	I Structure in Learned Perceptual Models
	2 | Flow-Based Visual Prediction and Tracking
	Introduction
	Related Work
	Model Design
	Tracking with Learned Visual Models
	An Inverse Sensor Model
	Tracking using the Inverse Sensor Model
	Synthetic Dataset Generation
	Real-world Data Collection
	Forward Sensor Model Evaluation
	Occlusion Prediction
	Tracking Task Evaluation
	Discussion

	3 | Learned Tactile Sensing and Force Estimation
	Introduction
	Related Work
	Problem Definition & Proposed Approach
	Dataset Collection, Implementation Details, & Experimental Protocol
	Results
	Force Feedback for Object Manipulation
	Discussion

	II Priors for Multi-Sensory Integration
	4 | Joint Inference for Visuo-Tactile Sensing
	Introduction & Related Work
	Dynamics of Planar Pushing
	State Estimation with Factor Graphs
	Baseline Comparison
	State Estimation in Open and Cluttered scenes
	Force Estimation for Tactile Sensing
	Discussion

	III Variational Inference for Control and Dynamics Estimation
	5 | Stein Variational Model Predictive Control
	Introduction
	Related Work
	Model Predictive Control
	MPC as Bayesian Inference
	Nonparametric Bayesian MPC
	Variational Inference
	Stein Variational Gradient Descent
	Stein Variational MPC
	Non-parametric SV-MPC
	Trajectory optimization
	Experiments
	Complexity
	Connection to Path Integral Control
	Discussion

	6 | Particle-Based Inference for Online Parameter Estimation
	Introduction
	Related Work
	Joint Inference for Control and Dynamics
	Experiments
	Discussion

	7 | Conclusion
	Future Directions

	Appendices
	A | Chapter 6: Experiment Parameters

	References

