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Abstract
Robotic systems are crucial for increasing productivity, automation and to per-

form dangerous tasks. However, the complexity and unpredictability of physical sys-
tems requires robust and efficient control strategies that can manage uncertain para-
meters and adapt to changing environments. This thesis strives to push the state-of-
the-art in robotic planning and control under uncertainty. We present an ensemble
of learning-basedmethods to represent uncertainmodels, update our knowledge over
their uncertainty in real-time and reason over multi-modal solutions.

In our first contribution, we introduce a framework which utilises modern tech-
niques in Bayesian statistics to perform likelihood-free inference over the model para-
meters. This enables the use of complex black-box simulators to design a controller
that is efficient and robust with respect to the uncertainty over simulation parameters.
This approach employs the unscented transform and a variant of information theor-
etical model predictive control, providing a method that is efficient and robust over
the uncertainty of simulation parameters. It demonstrates superior performance in
evaluating trajectory rollouts in comparison to Monte Carlo sampling, reducing the
online computation burden, as shown in a variety of control and robotics tasks.

Next we tackle the problem of multi-modal solutions by re-framing robotic plan-
ning and control as a Bayesian inference problem over the posterior distribution of
actions and model parameters. To solve the inference problem, we propose an im-
plicit variational inference algorithm, capable of estimating distributions over model
parameters and control inputs in real-time by performing Stein Variational Gradient
Descent. With this Bayesian formulation the method is able to approximate complex
multi-modal posterior distributions, a requirement in dynamic and realistic robot
navigation tasks.

Lastly, we address the problem of diversity in high-dimensional spaces. We dis-
cuss how the previous approach is prone to underestimating the uncertainty of the
posterior distribution under certain conditions, generating solutions which are only
locally optimal. Using advancements in the theory of rough paths, we devise an al-
gorithm for parallel trajectory optimisation that promotes diversity in the solutions,
hence avoiding mode collapse and ensuring better global properties. Our approach
builds upon our variational inference method for trajectory estimation by employing
diversity promoting kernels, leveraging the path signature representation of traject-
ories. Empirical tests on a variety of problems, from 2-D navigation to robotic ma-
nipulators operating in cluttered environments, underscore the method’s efficiency,
which surpasses that of the existing alternatives.



To the loves of my life.



iv

Acknowledgments
Pursuing a Ph.D. has been a mesmerising ride, and I would not have made it

through without the unwavering support of many dear friends and loved ones.
I’d like to begin by acknowledging the two people who, quite literally, made this

journey possible. First, my most sincere thanks go to my wife and partner-in-crime,
Fran. Your bravery to embark on this adventure with me is what made it a reality.
Not many would board a plane with a 5-month-old baby to move to an unknown
country on the other side of the world in pursuit of your partner’s ambitious dream.
Your unconditional love, support, and partnership carried me through every step of
the way.

Secondly, my heartfelt appreciation goes to my supervisor, Prof. Fabio Ramos,
who placed an immense amount of trust in me. Despite the geographic distance dur-
ing most of my Ph.D. journey, his mentorship, creativity, and tenacity were instru-
mental in guiding my research and ensuring our work was the best it could possibly
be. I am grateful for our many intriguing discussions, casual chats, the encourage-
ment, and for maintaining such an open and friendly relationship.

I was fortunate to have two unofficial co-supervisors, Paulo Borges and Rafael
Oliveira. Paulo, I appreciate your support, mentorship, and genuine concern for my
well-being. You alwaysmanaged to liftmy spirits after our chats. And I have nowords
to express my gratitude to Rafa, who is essentially my de facto thesis co-supervisor.
You are a force-of-nature, exceptionally bright, yet humble, and truly a kind soul. You
both made me immensely proud of my roots.

I’m also profoundly grateful to all my lab colleagues and post-docs who shared
this chapter of my life with me. I’d like to extend my gratitude to my good friend,
programming whizz, and board game nemesis, Tin Lai, for all his assistance in our
work together; the prolific William Zhi, for all the fascinating chats and cups of tea;
PhilippeMorere andAnthonyTompkins,whowere early inspirations in this scientific
journey; Lionel Ott and Gilad Francis, for showing me the ropes of the university’s
operations andorganisingnumerous reading groups and seminars; Rafael Possas, who
has always been exceptionally helpful andwelcoming tome andmy family; and finally,
my new lab mates, Paco Tseng, Houston Warren, Wenzheng Zhang, and Kim Bente,
thank you for reigniting the joy post-pandemic and keeping the flame alive. To all of
you, thank you for indulging my insatiable appetite for board games; I hope you had
as much fun as I did.

Lastly, I’d like to express my gratitude to my family. To Sinelma, my mother, and
Gilson, my father, thank you for gifting me with such a happy childhood. Dad, I still
remember you assistingme withmy grade school assignments, your relentless pursuit



v

of knowledge andpushingboundaries has always been a guiding light inmy life. Mom,
your lessons have shaped me in ways I can’t put into words. I am also deeply grateful
for the time you dedicated to supporting us in this endeavour. You’ve given so much
from the heart, and from the bottomofmyown, I thank you. Tomyuncle Jura, thank
you for beingmymentor, role model, and for lovingme as your own son. And finally,
thanks to my two beautiful boys, Nicolas and Benjamin, for filling our lives with joy
and colour. To all of you, this work is as much yours as it is mine, and I’m sincerely
grateful to have shared it with you.



Contents

Contents vi

List of Abbreviations ix

Nomenclature xii

List of Figures xiv

List of Tables xv

Authorship Attribution xvi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Goals and research questions . . . . . . . . . . . . . . . . . . . . 8
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13
2.1 Bayesian learning . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Approximate Bayesian inference . . . . . . . . . . . . . . . . . . . 15
2.3 Likelihood-free parameter estimation . . . . . . . . . . . . . . . . 18
2.4 Unscented Transform . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . . 21
2.6 Stein Variational Gradient Descent . . . . . . . . . . . . . . . . . 27
2.7 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Stochastic Non-linear Model Predictive Control . . . . . . . . . . 33
2.10 Model Predictive Path Integral . . . . . . . . . . . . . . . . . . . 34
2.11 Sim-to-real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.12 Path signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



Contents vii

3 Propagating model uncertainty in MPC through moment matching 43
3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Propagation of uncertainty over the state-space dynamics . . . . . . 50
3.5 Updating the parameter prior distribution . . . . . . . . . . . . . 50
3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Online inference of actions and model parameters 59
4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 MPC as Bayesian inference . . . . . . . . . . . . . . . . . . . . . 66
4.3 Joint inference of policy and dynamics . . . . . . . . . . . . . . . 68
4.4 Policy inference for BayesianMPC . . . . . . . . . . . . . . . . . 69
4.5 Real-time dynamics inference . . . . . . . . . . . . . . . . . . . . 71
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Improving solution diversity with path signatures 82
5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusion and future work 106
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Supplementary material for Chapter 3 111
A.1 Further details on performed experiments . . . . . . . . . . . . . . 111

B Supplementary material for Chapter 4 114
B.1 Further details on performed experiments . . . . . . . . . . . . . . 114
B.2 Considerations on action selection . . . . . . . . . . . . . . . . . 117
B.3 Considerations on covariate shift . . . . . . . . . . . . . . . . . . 118
B.4 Bias on joint inference of policy and dynamics . . . . . . . . . . . 118

C Supplementary material for Chapter 5 120
C.1 Path following example . . . . . . . . . . . . . . . . . . . . . . . 120
C.2 Experiments hyper-parameters . . . . . . . . . . . . . . . . . . . 121
C.3 Including hyper-priors in SigSVGD . . . . . . . . . . . . . . . . . 123



Contents viii

References 125

Bibliography 125



List of Abbreviations

ABC Approximate Bayesian Computation
ADP Approximate Dynamic Programming
AGI Artifical General Intelligence
AGV Automated Guided Vehicle
AI Artifical Intelligence
API Application Programming Interface

BC Behavioral Cloning
BGD Batch Gradient Descent

CEM Cross EntropyMethod
CHOMP Covariant Hamiltonian Optimisation for Motion

Planning
CMA-ES Covariance Matrix Adaptation Evolution Strategy

DDP Differential Dynamic Programming
DDPG Deep Deterministic Policy Gradient
DISCO Double Likelihood-free Inference Stochastic Con-

trol
DOF Degrees of Freedom
DuSt-MPC Dual Stein Variational Model Predictive Control

E-MDN Ensemble of Mixture Density Networks
e.g. exempli gratia, for example
ELBO Evidence Lower Bound

GMM GaussianMixture Model
GP Gaussian Process
GPMP Gaussian Process Motion Planing
GPU Graphic Processing Unit

ix



List of Abbreviations x

HJB Hamilton-Jabobi-Bellman equation

i.e. id est, that is
i.i.d. independent and identically distributed
ICR Inertial Centre of Rotation
iLQG Iterative Linear Quadratic Gaussian
iLQR Iterative Linear Quadratic Regulator
IT-MPC Information Theoretical MPC

LFI Likelihood Free Inference
LiDAR Laser Imaging, Detection, and Ranging
LLM Large Language Model
LQR Linear Quadratic Regulator

MAP maximum a posteriori
MCMC Markov ChainMonte Carlo
MDN Mixture Density Network
MDP Markov Decision Process
ML Machine Learning
MPC Model Predictive Control
MPPI Model Predictive Path Integral

NLP Non-linear Programming
NMPC Non-linear Model Predictive Control

OC Optimal Control

PDDP Probabilistic Differential Dynamic Programming
PDE Partial Differential Equation
PDF Probability Density Function
PID Proportional-Integral-Derivative
PS Policy Search

RHC Receding Horizon Control
RHS right-hand side
RKHS Reproducing Kernel Hilbert Space
RL Reinforcement Learning
RRT Rapidly-exploring Random Tree

s.t. such that
SigSVGD Kernel Signature Variational Gradient Descent



List of Abbreviations xi

SMPC Stochastic Model Predictive Control
SNMPC Stochastic Non-linear Model Predictive Control
SOC Stochastic Optimal Control
STOMP Stochastic Trajectory Optimisation for Motion

Planning
SVGD Stein Variational Gradient Descent
SVMP Stein Variational Motion Planning
SVMPC Stein Variational Model Predictive Control

TRPO Trust Region Policy Optimisation

UAV Unmanned Aerial Vehicle
UT Unscented Transform

VI Variational Inference

w.r.t. with respect to



Nomenclature

𝑥 a scalar
𝑖, 𝑗, 𝑘, 𝑡 indices
𝐱 a vector
𝐱𝖳 the transpose of vector 𝐱
𝐗 a matrix
𝐗−1 inverse of matrix𝐗
𝐗† generalised inverse of matrix𝐗
𝐈 the identity matrix
𝑋 interchangeably, a path, trajectory, or sequence of

scalar- or vector-valued variables
𝑋 a random variable
ℕ the set of natural numbers
ℝ the field of real numbers
ℝ𝑚×𝑛 the set of𝑚 by 𝑛 real matrices
𝒜 = {⋅} a set
𝑓(⋅) a function
F(⋅) a functional whose domain are functions, as typical

in Computer Science
𝑝(𝑋 | 𝑌) the (conditional) Probability Density Function of

random variable 𝑋 given 𝑌
𝐷KL(𝑝 || 𝑞) Kullback-Leibler divergence between densities 𝑝

and 𝑞
𝔼[⋅] expected value
𝕍[⋅] variance
Cov(𝑋, 𝑌) the covariance between random variables 𝑋 and 𝑌
𝑘(𝐱, 𝐲) kernel function evaluated at 𝐱 and 𝐲
𝛍 typically used to denote a mean vector
𝚺 typically used to denote a covariance matrix
𝒩(𝛍, 𝚺) Normal distributionwithmean𝛍 and covariance𝚺
𝒰(𝑎, 𝑏) Uniform distribution in the closed interval [𝑎, 𝑏]
𝒢𝒫 a Gaussian Process

xii



Nomenclature xiii

𝛉 parameters of a control policy
𝜋𝛉 a control policy parameterised by 𝛉, i.e. 𝜋(⋅ | 𝛉)
𝛏 parameters of a simulator, i.e.model of a dynamical

system
∝ proportional to
𝛿𝑎 theDirac delta function evaluated at𝑎, i.e.𝛿(𝑥−𝑎)
𝟙𝒜(⋅) indicator function of a set𝒜
ℒ(𝛉 | 𝑋) log likelihood of parameters 𝛉 given the random

variable 𝑋
𝒬 configuration space, e.g. the space of parameters

that define the configuration of a system
𝒲 work space in which a system operates, e.g.ℝ3



List of Figures

1.1 Examples of robotics applications. . . . . . . . . . . . . . . . . . . . 2
1.2 Examples of control applications. . . . . . . . . . . . . . . . . . . . . 5

2.1 Signature invariance to reparametrisation . . . . . . . . . . . . . . . . 39

3.1 Mean cost over time for the inverted pendulum experiment . . . . . . . 53
3.2 TheWombot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Estimated parameters found by BayesSim . . . . . . . . . . . . . . . . 56
3.4 Experimental results of applying DISCO to the physical robot . . . . . 57

4.1 Online parameter estimation for autonomous ground vehicles . . . . . 61
4.2 Point-mass navigation task . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Inverted pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 AGV trajectory tracking . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 An episode of theKitchen scene. . . . . . . . . . . . . . . . . . . . . . 85
5.2 Qualitative analysis of 2-D planning task . . . . . . . . . . . . . . . . 86
5.3 Point-mass navigation trajectories . . . . . . . . . . . . . . . . . . . . 97
5.4 Motion planning benchmark . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Visualisation of SigSVGD in the motion planning benchmark . . . . . 100

C.1 Qualitative analysis of trajectory tracking task . . . . . . . . . . . . . . 121

xiv



List of Tables

4.1 Results summary of simulation experiments . . . . . . . . . . . . . . 77

5.1 Point-mass navigation experimental results . . . . . . . . . . . . . . . 96
5.2 Motion planning benchmark experimental results . . . . . . . . . . . 102

A.1 Hyper-parameters for the inverted pendulum experiment in Chapter 3. 112
A.2 Hyper-parameters for the skid-steer experiment in Chapter 3. . . . . . 112

B.1 Hyper-parameters for the inverted pendulum experiment in Chapter 4. 115
B.2 Hyper-parameters for the navigation experiment in Chapter 4. . . . . . 116
B.3 Hyper-parameters for the trajectory tracking experiment in Chapter 4. . 116

C.1 Hyper-parameters for the 2-D terrain experiment. . . . . . . . . . . . 122
C.2 Hyper-parameters for the navigation experiment. . . . . . . . . . . . 122
C.3 Hyper-parameters for the manipulator benchmark experiment. . . . . 123

xv



Authorship Attribution

The contributions presented in this thesis have been published in the following con-
ferences and journals, which form the core chapters of this thesis. The author’s attri-
bution includes, but is not limited to, the motivation, conceptualisation, formalisa-
tion, derivation, theorisation, experimentation, and communication of the following
academic articles.

Chapter 3 appears as: Barcelos, L., Oliveira, R., Possas, R., Ott, L., & Ramos, F.
(2020). DISCO: Double Likelihood-Free Inference Stochastic Control. Proceedings
of the 2020 IEEE International Conference on Robotics and Automation (ICRA), 7.
https://doi.org/978-1-7281-7395-5/20

Chapter 4 appears as: Barcelos, L., Lambert, A., Oliveira, R., Borges, P., Boots, B.,
& Ramos, F. (2021, July 12–16). Dual online stein variational inference for control
and dynamics. In D. A. Shell, M. Toussaint &M. A. Hsieh (Eds.),Robotics: Science
and systems XVII (RSS) (pp. 1–12). https://doi.org/10.15607/RSS.2021.XVII.068

Chapter 5 appears as: Barcelos, L., Lai, T., Oliveira, R., Borges, P., & Ramos, F.
(2023). Path Signatures for Diversity in Probabilistic Trajectory Optimisation. [ma-
nuscript submitted for publication]. School of Computer Science, The University of
Sydney

In addition to the statements above, in cases where I am not the corresponding
author of a published item, permission to include the published material has been
granted by the corresponding author.

. . . . . . . . . . . . . . . . . . . . . . . . . .
Lucas Barcelos

xvi

https://doi.org/978-1-7281-7395-5/20
https://doi.org/10.15607/RSS.2021.XVII.068


xvii

As supervisor for the candidature upon which this thesis is based, I can confirm
that the authorship attribution statements above are correct.

. . . . . . . . . . . . . . . . . . . . . . . . . .
Prof. Fabio Ramos



The only constant in life is change.
OnNature

Heraclitus

CHAPTER 1
Introduction

Currently, we reside in the era of the scientific revolution, and despite a vocal anti-
science minority, scientific knowledge has never played a more crucial role in human
history than it does now. Our collective human challenges, such as global warming,
space exploration, sanitation, and effective treatment for diseases, are just a few of the
global issues we hope to solve through technological advancements. Recent progress
in generative models like the Large Language Models (LLMs) chat-bots (Katz et al.,
2023) and text-to-image models (Ramesh et al., 2021) have reignited the chase for Ar-
tifical General Intelligence (AGI), leading to renewed interest in robotics. Robotics
is an interdisciplinary branch of technology that deals with the design, construction,
operation, and use of robots. The aim is to create autonomous intelligent robots able
to communicate with people and one another, learn from their experiences, and per-
form all kinds of dangerous or menial tasks (Lu et al., 2023).

1
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(a)The hexapod robotWeaverwhich is cap-
able of navigation in confined spaces, from
Buchanan et al. (2019).

(b) An industrial fruit picking drone,
from Tevel (2023).

(c)Acompanion robot, fromIntuition
Robotics (2023).

(d) A cleaning robot, from iRobot (2023).

Figure 1.1: Examples of robotics applications.

Despite their incredible success, most generative models are still a black-box sci-
ence (Gillani, 2023). It is unclear how they reason and, importantly, how they deal
with uncertain information. As the chapter epigraph emphasises, the only certainty
wehave is that nothing is certain. For all agents interactingwith theworld, uncertainty
is unavoidable. Humans develop heuristics and surrogate models to adapt to changes
in their environment. For example, individuals walk more carefully if the floor is slip-
pery or drive more carefully during rainfall. However, adapting to uncertainty still
poses a challenge for robots.

This thesis aims to explore how to represent and deal with uncertainty in robotic
planning and control, including how to update behaviour as the uncertainty changes
over time. Despite our focus on the direct application to robotics, the methods we
will discuss are more general in nature and can be used to decision-making based on
uncertain inductive models, such as financial and climate models.
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1.1 Motivation

Robotics has become a valuable tool for increasing production and automating repet-
itive or hazardous tasks (Trevelyan, Hamel & Kang, 2016). Beyond automated man-
ufacturing, robots have been used for construction (Burden, Caldwell & Guertler,
2022; Gharbia et al., 2020), domestic cleaning, and even companionship (Cooper et
al., 2020). Some of these applications can be seen on Fig. 1.1. Furthermore, robots are
equippedwith a vast array of sensory inputs that allow them to perceive, navigate, and
reason about the world (Wahrmann et al., 2016; Wittmann et al., 2015). However, it
is important to note that each sensor has its own set of limitations. For example, cam-
eras and laser ranging sensors are unable to detect objects obstructed by obstacles. Ad-
ditionally, global positioning systems are susceptible to interferences caused by atmo-
spheric conditions, multi-path reflections, and satellite visibility. Orientation sensors
such as inertial measurement units are prone to generating estimates that drift over
time, adding further uncertainty to models learned from sensor data.

The aforementioned signals are processed within a computational unit, which
utilises the information gathered from the surrounding environment to perform reas-
oning and decision-making based on programmed instructions. Programming code
is a fundamental aspect of robots, as it enables them to receive remote commands or
operate autonomously by utilising artificial intelligence to interact with their environ-
ment. In this context, the term Artifical Intelligence (AI) refers to any manifestation
of intelligence exhibited by machines, where the agent can sense its environment and
execute actions to accomplish its objectives. Therefore, an artificially intelligent ro-
bot is an agent capable of displaying behaviors such as reasoning, planning, learning,
perception, problem-solving, formal logic, and knowledge representation.

Typically, many of the tasks performed by robots rely onMachine Learning (ML)
algorithms and techniques. ML is a type of artificial intelligence that enables ma-
chines to learn and improve their performance on a task without being explicitly pro-
grammed. It involves the use of algorithms and statistical models to analyse and draw
insights from data, and then use those insights tomake predictions or decisions about
new data. In many cases breakthroughs are achieved with the use of extensive and
labeled datasets, resource intensive neural networks or long iterative trial-and-error
procedures. Although this paradigm has achievedmany impressive results, they are of
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limited use when decisions need to be made in real-time under statistical models that
evolve over time and where state-feedback creates an interplay between decisions and
observations.

A synthetic and useful taxonomy for machine learning problems is the following:

• descriptive or unsupervised: learn the distribution 𝑝(𝑧|𝑥) that meaningfully
summarises the latent variable 𝑧 given observed data 𝑥;

• predictive or supervised: learn to predict an outcome 𝑦, given observed data 𝑥;

• prescriptive or Reinforcement Learning (RL): prescribe an action 𝑎 given a cur-
rent state 𝑥 to maximise a reward 𝑦.

As it can be seen, there is an intrinsic and progressive complexity to each of these
tasks, where prescriptive analytics is themost challenging. In other words, descriptive
analytics concernsmaking analysis in hindsight, predictive analytics focuses in determ-
iningwhat will happen, whereas prescriptive analytics is a foresight exercise of how an
agent may interfere in the world to make a desirable outcome happen.

Robotic control, high-frequency algorithmic trading, and energy transmission are
a few examples of prescriptive problems (Fig. 1.2). In computer science and engineer-
ing there are usually two distinct perspectives to address problems of this type, RL
and Optimal Control (OC). In OC the goal is to derive complex actions from well-
specified models with robustness guarantees to model uncertainties, whereas RL fo-
cuses on intricate model-free actions derived from data alone. In general lines, Op-
timal Control focuses primarily in continuous time and spaces and is based on phys-
ical models to derive robust control policies. Whereas RL starts from a discrete state-
action space and tries to learn intricate policies from data alone. Those are, however,
broad generalisations and in practice both fields have been extended beyond their ori-
ginal domains. In fact, for the specific cases of temporal difference algorithms with
full Markov Decision Process (MDP), RL can be shown to be equivalent to an OC
solution (Lewis, Vrabie & Vamvoudakis, 2012).

On the other hand, planning algorithms refer to a set of procedures designed to
determine effective strategies for moving a system from an initial, suboptimal state to
an improved state, commonly referred to as a goal state (LaValle, 2006). In the context
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(a) Visualisation of the internal step con-
trol algorithm of Boston Dynamics’s At-
las robot, fromKuindersma et al. (2016).

(b) Buy and sell signals fromahigh-frequency
trading algorithm, from UC Berkeley D-Lab
(2015).

(c) A power grid control room, from IEEE Spec-
trum (2023).

Figure 1.2: Examples of control applications.

of robotic systems, planners can direct the robot through its environment to accom-
plish specific tasks, such as mapping an environment. Empirical data obtained from
observations allows us to validate and refine theoretical models that aim to describe
the characteristics and behaviors of diverse physical environments. Simultaneously,
these models assist the planning algorithm in navigating the robot through the envir-
onment, whether it involves avoiding hazardous regions, such as obstacles and chal-
lenging terrains, or identifying areas within the model that require additional data.

1.1.1 Model-free and model-based control

Strategies for solving these prescriptive problems can be coarsely subdivided in two
main branches: model-based and model-free learning. In model-based Control, the
first step is to find an approximate model of the system dynamics, which is then used
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in a feedback control loop to find an approximate solution. On the other hand,model-
free control neglects the need of a dynamicmodel, searching for a policy directly from
data. A policy is a map from the state of the environment to the actions to be taken
and defines the learning agent’s way of behaving at a given time. Formally, a policy 𝜋
is a probability distribution over actions given states. In other words, given a state 𝐱
and an action 𝐮, 𝜋(𝐮 | 𝐱) is the probability that the agent will choose action 𝐮while
in state 𝐱.

The goal of many reinforcement learning algorithms is to find the optimal policy,
which is the policy that will, from any initial state, yield the highest expected return,
where the return is usually defined as the sumof rewards obtained after performing ac-
tions over some period of time. model-free methods can be subdivided into primarily
two approaches: Policy Search (PS) andApproximate Dynamic Programming (ADP).
As expected, PS methods directly searches for policies by using data from previous
episodes in order to improve the reward. On the other hand, ADP uses Bellman’s
principle of optimality to approximate a solution from previously observed data.

There is no consensus on the literature on which strategy is more successful or
promising. Many researchers sustain that algorithms should be able learn innately
how to derive a policy from experimentation alone, without access to the complex
details required to simulate a dynamical system. The argument is that it will often
be easier to directly find a policy for a task than to fit a general purpose model of the
dynamics (Bertsekas, 2012). model-free approaches have been successful in a variety
of tasks, however these approaches require a large number of iterations to optimise
the policy and, sometimes, will also require expert demonstration to initiate learning.
This implies on a large training dataset, which may constrain their application (Dann
& Brunskill, 2015). However, when the system dynamics of high-dimensional spaces
need to be learned, it is not clear whether an model approximation or value-function
approximation yields better results (Atkeson & Santamaria, 1997).

1.1.2 Machine learning and robotic control

Nowadays machine learning and robotics are inextricably linked and one would be
hard-pressed to find modern complex robots that do not rely on some form of ma-
chine learning to operate. Here we show a brief and non-exhaustive survey of how
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RL and OC started to converge to the blurry outlines we have today. For a more ex-
tended survey on this topic, we refer the reader to the work of Recht (2018). Within
model-basedmethods, results incorporating commonOCmethods like LinearQuad-
ratic Regulator (LQR) andModel Predictive Control (MPC) have been used to solve
RL problems. For instance, Abbeel, Coates andNg (2010) used LQR in a RL setting
to learn how to perform acrobatic maneuvers autonomously with an helicopter.

Another commonmodel-based approach relies onMPC to either optimise a cost
function or estimate a Q-function. Because MPC relies on Receding Horizon Con-
trol (RHC), the hypothesis is it will be more robust to disturbances and an effective
way to achieve generalisation for RL tasks, which is particularly important in robot-
ics. This idiosyncrasy is explored by Lowrey et al. (2019) to propose a framework
where anMPC controller is used as a local trajectory optimiser in conjunction with a
global value function approximator and an exploration planner. The authors propose
a lemma showing that the cost increase due to model estimation errors is much lower
for the MPC trajectory optimisation than that of a greedy policy improvement. Tra-
jectory optimisation based on MPC has been used in prior work (Levine & Koltun,
2013; Mordatch & Todorov, 2014), but usually as a mean to improve PS.

At any rate, the approaches discussed above rely on a constrained optimisation,
which implies that a convex approximation of the cost function and first or second or-
der approximations of the dynamics are required (Camacho&Alba, 2013). Recently,
Model Predictive Path Integral (MPPI) controllers have been successfully integrated
to an RL framework achieving good results in several tasks, such as quadrotor traject-
ory control with obstacle avoidance and aggressive driving on a dirt track (G.Williams
et al., 2017). MPPI is a trajectory sampling-basedmethod, relying on the Free-Energy
Principle (Friston, 2010) andMonte Carlo estimation to attain an asymptotically op-
timal trajectory for the length of the control horizon. As such, it is capable of hand-
ling complex cost criteria and is applicable to general nonlinear dynamics. Despite
the use of importance sampling in (G. Williams et al., 2017) and the fact that MPPI
requires no gradient updates, the task of sampling requires several forward passes on
the neural network used to approximate the system dynamics and is in itself compu-
tationally expensive, posing as a bottleneck for its online application. Furthermore,
despite its applicability to nonlinear dynamics, there are is no upper bound guaran-
tees of robustness to model uncertainties and disturbances.
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As formodel-freemethods, there has been a groundswell of activity in recent years.
Levine and Koltun were part of the first to use MuJoCo as a test-bed and achieve ro-
botic locomotionwithout special purpose techniques (Levine&Koltun, 2013). Since
then, several results have beenpresented, as for example in (Lillicrap et al., 2016; Schul-
man et al., 2015; Silver et al., 2014).

However, despite the progress presented in these papers, model-free RL has been
the target of substantial critic by some authors. At one hand, there are reservations
on the Sample Efficiency of model-free RL for continuous problems. Intuitively, this
mayderive from the fact that at eachupdate step, themodel-free techniqueswepresen-
ted are improving on a single estimation of the policy or value function. In contrast,
model-based methods iterate over 𝑛 differential equations at each time step, where 𝑛
is the dimension of the model used. This can be seen in practical results presented in
(Dann & Brunskill, 2015; Henderson et al., 2018; Koch et al., 2019; Recht, 2018).

Another concern refers to the high variance of themethods to changes in intrinsic
factors, such as the discount factor and random seeds (Henderson et al., 2018; Islam
et al., 2017; Koch et al., 2019). This severely limits the reproducibility and or applica-
tion of such approaches for most practical purposes, indicating there might be a bias
towards bespoke solutions for achieving particular attractive results at benchmarks
rather than a general purpose method. A perhaps surprising example of this is shown
in (Koch et al., 2019), where a simple Proportional-Integral-Derivative (PID) control-
ler yields better andmore stable results than state-of-the-art algorithms, such as Trust
Region Policy Optimisation (TRPO) (Schulman et al., 2015) and Deep Determin-
istic Policy Gradient (DDPG) (Lillicrap et al., 2016), for the straightforward task of
altitude control of anUnmannedAerial Vehicle (UAV), even after 10million episodes
of training.

1.2 Goals and research questions

Control and planning are crucial components of how robots behave and interactwith
the environment. Necessarily, this interaction is always imprecise and subject to ran-
domness outcomes due to inaccuracies, noise and external disturbances. The study
of how to best perform these tasks under uncertainty is discussed in the growing area
of probabilistic robotics (Thrun, 2002). Out of a diversity of approaches on how
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to address stochasticity, in this thesis we are concerned on the problem of model un-
certainty. In this setting, we are either given or learn a model that approximates the
system dynamics and we incorporate uncertainties to the parameters of this model.
This a natural way of quantifying uncertainty, associating it to physical attributes,
and provides a useful framework with embedded inductive learning. In other words,
we might have a better intuition for a prior distribution to capture the possible fric-
tion range on a mechanical joint than we might have for a latent representation of a
Q-function.

Model uncertainty has been handled in many different ways, ranging from dis-
counting future states estimation, establishing trust-regions for policies, the use of
Gaussian Processes (GPs) to quantify uncertainty and combinations of these (Cai et
al., 2021; Deisenroth, Fox&Rasmussen, 2015; Polydoros&Nalpantidis, 2017). One
of the main challenges of learning policies for such systems is the limited availability
of data, since it is usually costly and complex to assemble a comprehensive dataset. Re-
searchers likeMandlekar et al. have tried addressing this problem through open access
training platforms (Mandlekar et al., 2018), but those are still in incipient stages.

Furthermore, learning through simulated data is always limited to the capabilit-
ies of the simulator and the model inaccuracies, often referred to as reality gap (Jha
& Lincoln, 2018). Additionally, given that robots interact with stochastic environ-
ments, we are interested in problems where the system dynamics are uncertain and/or
evolve over time, a problem known as covariate shift (Ganegedara, Ott & Ramos,
2016). Therefore, we need not only to worry about learning a control policy, but
also to incorporate model learning to account for such uncertainties.

Finally, despite their success in several applications, there are still many open prob-
lems that need to be addressed. Firstly, many of these approaches rely on gradients
that are expensive to compute or sometimes unavailable. Additionally, in the typical
case, the stochasticity is approximated with Gaussian noise in order to simplify the
assumptions and result in a uni-modal solution. In reality, many problems are inher-
ently ambiguous or naturally have multi-modal solutions in which case these approx-
imations perform poorly (Lambert et al., 2020). Lastly, due to stochastic nature of
the problem, it is difficult to incorporate constraints on actions and states.

In summary, themain goal of this thesis is to address the following high-level prob-
lem:



1.3 Contributions 10

How should a robot behave when faced with imperfect information and
ambiguous outcomes?

More specifically, we can formulate the following research questions:

• What is the best way to formulate uncertainty on model parameters and apply
Bayesian inference for robotic control?

• How can we efficiently propagate model uncertainty in future state outcomes
so as in to apply RHC?

• Can we improve the sample efficiency to allow learning uncertain models on-
line? If so, what is the interplay between learning the model parameters and
learning the control policy?

• In a probabilistic model formulation, is the control policy more amenable to
sampling-based based methods over gradient-based optimisation?

• Can we efficiently capture the multi-modality of control and planning prob-
lems under uncertainty?

1.3 Contributions

The thesis consists of three contributing chapters, which are summarised as follows.

1.3.1 Efficiently Propagating Model Uncertainty with
Posterior Moment-matching

Chapter 3 addresses the issue of how to formulate the control problem in a probab-
ilistic framework and efficiently generate trajectory rollouts using a technique called
UnscentedTransform (UT). UT assumes that the posterior distribution is uni-modal
and approximates the posterior up to a previously defined moment by evaluating a
small set of sigma points. This idea is used to extend an MPPI controller to leverage
prior knowledge of themodel uncertainty and outperform the baseline case in a set of
simulated and practical experiments. The chapter also discusses and perform ablation
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studies to evaluate the difference between using approximate gradients from Monte
Carlo samples and numerical gradients.

1.3.2 Online learning the joint posterior distribution of
control and model parameters

In Chapter 4 we reformulate the control problem of Chapter 3 in order to learn the
complete posterior distribution over control actions. To accomplish this, the pos-
terior is approximated with a series of particles which are in turn updated using Stein
Variational GradientDescent (SVGD). Additionally, the same approach is used to up-
date distributions over the uncertain parameters of the model, allowing the agent to
react to changes in the environment online. The chapter concludes by revisiting some
of the experiments in Chapter 3 as well as including new experiments to evaluate the
newmethod.

1.3.3 Tackling high-dimensional problems with path
signatures

Finally, inChapter 5, we discuss and tackle the issue of vanishing repulsive forcewhen
using SVGD in high-dimensional problems. The reducing repulsive force results in
an underestimation of the posterior distribution, which leads to locally optimal solu-
tions andmode collapse. We show howwe can use a canonical feature representation
of trajectories, the path signature, to reduce the problem dimensionality and gener-
ate solutions with better global properties. This is highlighted by experiments on a
comprehensive motion planning benchmark for robotic manipulators, in which the
proposed method outperforms other trajectory optimisation approaches, including
that of Chapter 4.

1.4 Outline

This thesis is structured as follows. Following the introduction, three contributing
chapters present novel methodologies discussed in Section 1.3. Chapter 2 provides
the necessary theoretical background, covering Bayesian learning, Reproducing Ker-
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nel Hilbert Space, Stein Variational Gradient Descent, Optimal Control, Stochastic
Non-linear Model Predictive Control, Model Predictive Path Integral, Likelihood
Free Inference and Sim-to-real. Chapters 3 to 5 follow a consistent format, starting
with an introduction, followed by a discussion of related work, methodology, and
experiments. Finally, Chapter 6 concludes the thesis by reviewing the contributions
and outlining directions for future research. Additional information for each of the
main chapters is provided in Appendices A to C.



In the background of machine
learning, lies a mosaic of ideas and
breakthroughs, forming the bedrock
upon which our present innovations
are built.

Yoshua Bengio

CHAPTER 2
Background

2.1 Bayesian learning

Supervised learning involves learning a function that maps inputs to outputs based
on a given dataset. Let our dataset𝒟 consist of𝑁 input-output pairs (𝐱𝑖, 𝑦𝑖), where
inputs are 𝑛-dimensional vectors from a set 𝒳 ⊂ ℝ𝑛, and outputs are real-valued
scalars. In general, we will assume that the observed outputs are corrupted by i.i.d.
noise 𝜂𝑖 drawn from a given probability distribution. Our goal is to learn a function𝑓
that maps each input 𝐱𝑖 to the corresponding output 𝑦𝑖 and can predict the function
value at unobserved inputs.

To find the best 𝑓, we assume that it belongs to a known hypothesis spaceℋ and
try to find the function 𝑓 ∈ ℋ that best explains the data in𝒟. For instance, in the

13



2.1 Bayesian learning 14

case of linear regression, we assume that

𝑓(𝐱) = 𝛚𝖳𝐱 (2.1)

where𝛚 are the parameters of themodel and the hypothesis space is the space of linear
functionsℋ = {𝑓 ∶ 𝒳 → ℝ | 𝑓(𝐱) = 𝛚𝖳𝐱}. We can generalise this to the case of
non-linearmodels by introducing a set ofnon-linear basis functions𝜙𝑖 ∶ 𝒳 → ℝ, 𝑖 ∈
{1,… , 𝑞}, 𝑞 ∈ ℕ, and assuming that

𝑓(𝐱) = 𝛚𝖳 𝜙(𝐱), (2.2)

where 𝜙(𝐱) ≔ [𝜙1(𝐱),… , 𝜙𝑞(𝐱)] is the vector of the basis functions’ values at 𝐱.
Note that in this instance, the hypothesis space would no longer be linear, but rather
a linear combination of the basis functions used.

The most common approach to finding the parameters 𝛚 that best explain the
data is to minimise a data-dependent loss function over the hypothesis space. How-
ever, this approach does not provide information about the model’s confidence in
its predictions given a limited amount of noise-corrupted data. In contrast, Bayesian
learning provides a way to quantifymodel uncertainty by placing a belief distribution
over themodel and updating it based on the observed data. Predictions are thenmade
by performing inference over the posterior distribution of the model conditioned on
the data. In the case of parametric Bayesian learning, the posterior distribution over
the model parameters𝛚 given the observed data𝒟 is given by Bayes’ rule,

𝑝(𝛚 | 𝒟) = 𝑝(𝒟 | 𝛚) 𝑝(𝛚)
𝑝(𝒟) , (2.3)

where 𝑝(𝛚) is the prior, 𝑝(𝒟 | 𝛚) is the likelihood of the parameters, and 𝑝(𝒟) is
the evidence or marginal likelihood (MacKay, 2019). Since we now have a full pos-
terior distribution 𝑝(𝛚 | 𝒟), we can assess how likely 𝛚 is to be correct, encoding a
confidence level in the model.

In Bayesian linear regression, a Gaussian prior is assumed over the parameters vec-
tor, 𝛚 ∼ 𝒩(𝟎, 𝚺𝛚), with i.i.d. zero-mean Gaussian noise, 𝜂 ∼ 𝒩(0, 𝜎2𝜂). The joint
distribution between the data and parameters is then given by:

[𝛚
𝐲
] ∼ 𝒩(𝟎, [ 𝚺𝛚 𝚺𝛚 𝛟𝖳

𝛟𝚺𝛚 𝛟𝚺𝛚 𝛟𝖳+𝜎2𝜂𝐈
]), (2.4)
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where𝛟 is an 𝑛-by-𝑞matrix with elements𝛟𝑖𝑗 = 𝜙𝑗(𝐱𝑖) and 𝐲 is a 𝑛-by-1 column vec-
tor with the given observations. We can obtain the posterior distribution in Eq. (2.3)
by conditioning Eq. (2.4) on the observed data:

𝑝(𝛚 | 𝒟) ∼ 𝒩(𝚺𝛚 𝛟𝖳 𝚺−1𝒟 𝐲, 𝚺𝛚 − 𝚺𝛚 𝛟𝖳 𝚺−1𝒟 𝛟𝚺𝛚), (2.5)

where 𝚺𝒟 ≔ 𝛟𝚺𝛚 𝛟𝖳. Given a query point 𝐱∗, the value of 𝑓 at that point can be
predicted by the distribution

𝑝(𝑓(𝐱∗) | 𝒟) = 𝒩(𝑚(𝐱∗), 𝑐𝑜𝑣(𝐱∗)) (2.6)

𝑚(𝐱∗) = 𝜙 ∗𝖳𝚺𝛚 𝛟𝖳 𝚺−1𝒟 𝐲 (2.7)

𝑐𝑜𝑣(𝐱∗) = 𝜙𝖳∗ 𝚺𝛚 𝜙∗−𝜙∗𝖳𝚺𝛚 𝛟
𝖳 𝚺−1𝒟 𝛟𝚺𝛚 𝜙∗, (2.8)

where 𝜙∗ = 𝜙(𝐱∗) and the mean of the distribution being the most likely prediction,
and the variance quantifying the level of uncertainty.

As explained in (Rasmussen & Williams, 2006), 𝜙(𝐱) maps the 𝑛-dimensional
vector 𝐱 into a 𝑞-dimensional feature space, and these maps are used in the predict-
ive distribution in the form of (𝐱, 𝐱′) ↦ 𝜙(𝐱)𝖳𝚺𝛚𝛚𝜙(𝐱′). This defines a positive-
definite kernel or covariance function, 𝑐𝑜𝑣(𝐱, 𝐱′) = 𝜙(𝐱)𝖳𝚺𝛚𝛚𝜙(𝐱′), which allows
feature maps to be abstracted to even infinite-dimensional feature spaces, leading to
non-parametric methods.

2.2 Approximate Bayesian inference

Bayesian inference is a method of statistical inference in which Bayes’ theorem is used
to update the probability for a hypothesis as more evidence or information becomes
available. Bayesian inference is an important technique in statistics, and especially in
mathematical statistics. Inmany practical applications, the exact Bayesian inference is
computationally intractable. One of themain reason is because it requires computing
the normalisation term

𝑝(𝐱) = ∫
𝛉
𝑝(𝐱 | 𝛉) 𝑝(𝛉) d𝛉 (2.9)

which involves a high-dimensional integration over the parameter space. Approxim-
ate Bayesian inference methods are used to overcome this issue by computing approx-
imations to the posterior distribution and the integrals involved in Bayesian inference.
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There are two main approaches to approximate Bayesian inference, Variational Infer-
ence (VI) andMarkov ChainMonte Carlo (MCMC).

2.2.1 Markov Chain Monte Carlo

MCMC is a stochastic approach to approximate Bayesian inference. Themain idea is
to construct aMarkov chain that has the desired posterior distribution as its stationary
distribution. Hence, by running the chain for a sufficiently long time, samples of the
chain will coincide to samples of the target distribution (Haugh, 2021).

The transition probabilities of the Markov chain are defined such that the chain
is guaranteed to converge to the desired distribution. Note that the desired distribu-
tion may only be know up to a factor and the stationary distribution of the Markov
Chain is still guaranteed to converge to the (normalised) desired distribution. In the
Metropolis-Hastings algorithm, a popular MCMC method, we start by defining a
proposal distribution ℎ(𝑥 | 𝑋𝑛) that is easy to sample and will serve at suggesting
transitions𝑥. Then, at iteration n+1, the next state to be visited by theMarkovChain
is defined by the following process. We start by drawing a suggested transition 𝑥 from
ℎ(𝑥 | 𝑋𝑛). The transition probability from state 𝑋𝑛 to state 𝑥 is then given by:

𝑡(𝑥 | 𝑋𝑛) = 𝑎(𝑥 | 𝑋𝑛) ⋅ ℎ(𝑥 | 𝑋𝑛), (2.10)

where the acceptance probability 𝑡(𝐱′ | 𝐱) is defined as:

𝑎(𝑥 | 𝑋𝑛) = min(1, 𝑝(𝑥) ⋅ ℎ(𝑋𝑛 | 𝑥)𝑝(𝑋𝑛) ⋅ ℎ(𝑥 | 𝑋𝑛)
). (2.11)

The acceptance probability ensures that states with higher posterior probability
are more likely to be accepted. This way, the next state of the chain is given by

𝑋𝑛+1 = {
𝑥 with probability 𝑎
𝑋𝑛 with probability 1 − 𝑎

(2.12)

MCMC methods are guaranteed to converge to the true posterior distribution
given enough time, but they can be slow, especially in high-dimensional spaces. They
also require careful tuning of the proposal distribution to ensure efficient sampling.
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2.2.2 Variational Inference

Variational Inference is a deterministic approach to approximate Bayesian inference.
The main idea is to turn the problem of computing the posterior distribution into
an optimization problem. It does this by introducing a family of simpler, tractable
distributions, denoted by𝒬, and then finding themember of this family that is closest
to the true posterior distribution (Blei, Kucukelbir &McAuliffe, 2017).

The closeness between the approximate distribution 𝑞(𝛉) and the true posterior
𝑝(𝛉 | 𝐱) is measured using the Kullback-Leibler (KL) divergence:

𝑞∗(𝛉) = argmin
𝑞(𝛉)∈𝒬

𝐷KL(𝑞(𝛉)|| 𝑝(𝛉 | 𝐱)). (2.13)

The KL divergence is a measure of the difference between two probability distri-
butions. It is non-negative and equals zero if and only if the two distributions are the
same. The optimization problem is typically solved using gradient-based methods.
However, this is still a challenging task because it involves an intractable posterior. To
overcome this, VI optimizes a lower bound to the log likelihood of the observed data,
known as the Evidence Lower Bound (ELBO). The ELBO is derived by rearranging
the KL divergence:

log𝑝(𝐱) = 𝐷KL(𝑞(𝛉)|| 𝑝(𝜃 | 𝐱)) + 𝐸𝐿𝐵𝑂. (2.14)

Since the KL divergence is always non-negative, the ELBO is a lower bound to the
log likelihood of the observed data:

𝐸𝐿𝐵𝑂 = log𝑝(𝐱) − 𝐷KL(𝑞(𝛉)|| 𝑝(𝜃 | 𝐱)). (2.15)

The ELBO can also be written in terms of expectations with respect to the variational
distribution 𝑞(𝛉):

𝐸𝐿𝐵𝑂 = 𝔼𝑞(𝛉)[log𝑝(𝐱, 𝛉)] − 𝔼𝑞(𝛉)[log 𝑞(𝛉)], (2.16)

where first term on the right-hand side is the expected log joint probability, and the
second term is the entropy of the variational distribution. The ELBO is a function
of the variational parameters, and VI optimizes the ELBO with respect to these para-
meters. By maximizing the ELBO, we are pushing up on the lower bound to the log
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likelihood of the observed data, and indirectlyminimizing theKLdivergence between
the variational distribution and the true posterior. This results in an approximation
to the posterior that is as close as possible to the true posterior, given the family of dis-
tributions that we have chosen for 𝑞(𝛉). Therefore, contrary to sampling approaches,
in VI a model is assumed (the parameterised distribution family), implying a bias but
also a lower variance. As such, the choice of the family𝒬 is crucial in variational infer-
ence. A common choice is themean-field variational family, where each latent variable
is assumed to be independent and is associated with its own variational parameter.

Both Variational Inference and MCMC have their strengths and weaknesses. VI
is typically faster and can work better for large datasets, but the quality of the approx-
imation can be hard to assess, and the choice of the family 𝒬 can significantly affect
the results. MCMC, on the other hand, is asymptotically exact, but it can be slow
and requires careful tuning of the proposal distribution. The choice between VI and
MCMC often depends on the specific problem and the trade-off between computa-
tional efficiency and approximation quality.

2.3 Likelihood-free parameter estimation

Nowadays simulation is extensively used in a variety of scientific domains, such as
protein folding, population genetics, particle physics, etc. This has been fueled by
the advancements in computing power, Graphic Processing Units (GPUs), parallel-
ism, and the expressiveness of modern computing languages. The wide availability
of these tool have made the development of highly complex high-fidelity simulations
more accessible than ever before. Unfortunately, one significant drawback of such
complex simulators is their unsuitability for statistical inference. The main issue is
that the probability density, or even the likelihood, for a given observation is typically
intractable. This is a crucial requirement for both frequentist and Bayesian inference
methods. Hence why these problems are commonly referred to as implicit models,
in contrast to the prescribed models in which the likelihood of an observation can be
explicitly calculated.

In Likelihood Free Inference (LFI), themain goal is to estimate posterior distribu-
tions from data on systems where the likelihood is intractable. In a typical scenario,
a Likelihood-free inference method takes a prior 𝑝(𝛏) over simulation parameters 𝛏,
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a black box generative model or simulator 𝐱 = 𝑔(𝛏) that generates simulated ob-
servations 𝐱 from these parameters, and observations from the physical world 𝐱𝑟 to
compute the posterior 𝑝(𝛏 | 𝐱, 𝐱𝑟). The main difficulty in computing this posterior
relates to the evaluation of the likelihood function𝑝(𝐱 | 𝛏)which is defined implicitly
from the simulator (Diggle &Gratton, 1984). Here we assume that the simulator is a
set of dynamical differential equations associated with a numerical or analytical solver
which are typically intractable and expensive to evaluate. Furthermore, we do not as-
sume these equations are known and treat the simulator as a black box. This allows
LFI methods to be utilised with many robotics simulators (even closed source ones)
but requires a method where the likelihood cannot be evaluated directly but instead
only sampled from, by performing forward simulations. The most popular family
of algorithms to address it are known as Approximate Bayesian Computation (ABC)
(Beaumont, Zhang & Balding, 2002), and it’s variants (Bonassi & West, 2015; Mar-
joram et al., 2003; Pritchard et al., 1999).

Recent advances in LFI allowed the use of probabilistic inference to learn distri-
butions over simulation parameters (Ramos, Possas & Fox, 2019). The main idea
is that of approximating an intractable posterior 𝑝(𝛏 | 𝐱, 𝐱𝑟) using data generated
from a generative forward model (or simulator) where trajectories are collected for
different simulation configurations. Therefore, one can directly learn a conditional
density 𝑞𝜙(𝛏 | 𝐱)where parameters 𝜙 are learned through an optimisation procedure.
The learned model usually takes the form of a mixture of Gaussians where inputs are
summary statistics obtained from trajectories and outputs are the parameters of the
mixture.

The goal is to maximise the likelihood∏𝑛 𝑞𝜙(𝛏𝑛 | 𝐱𝑛). It has been shown in
previous work (Ramos, Possas & Fox, 2019) that 𝑞𝜙(𝛏 | 𝐱)will be proportional to

̃𝑝(𝛏)
𝑝(𝛏) 𝑝(𝛏 | 𝐱) (2.17)

if the log-likelihood is optimised with the following loss:

ℒ(𝜙) = 1
𝑁 ∑

𝑛
log 𝑞𝜙(𝛏𝑛 | 𝐱𝑛). (2.18)

Consequently, a posterior estimate can be obtained by

̂𝑝(𝛏 | 𝐱 = 𝐱𝑟) ∝ 𝑝(𝛏)
̃𝑝(𝛏) 𝑞𝜙(𝐱 = 𝐱𝑟). (2.19)
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The conditional density 𝑞𝜙(𝛏 | 𝐱) is a mixture of 𝐾 Gaussians,

𝑞𝜙(𝛏 | 𝐱) =
𝐾
∑
𝑘=1

𝛼𝑘(𝐱)𝒩(𝛏 | 𝛍𝑘, 𝚺𝑘), (2.20)

where {𝛼𝑘(𝐱)}𝐾𝑘=1 are mixing functions, {𝛍𝑘}𝐾𝑘=1 are mean functions and {𝚺𝑘}𝐾𝑘=1 are
covariance functions.

2.4 Unscented Transform

The UT is a map used to estimate the result of applying a given nonlinear transform-
ation to a probability distribution that is characterised only in terms of a finite set of
statistics As such, it is able to reconstruct an approximate 𝑌 ′ of the random variable
𝑌 = 𝑔(𝑋) resulting when an original random variable 𝑋 is applied to a non-linear
function 𝑓. The premise behind this approach is that it should be easier to approx-
imate a probability distribution than a arbitrary non-linear transformation. The idea
is to select a set of sigma points able to capture the most important statistical proper-
ties of the prior random variable𝑋 . The necessary statistical information captured by
the UT is the first and second order moments of 𝑝(𝑋). The number of sigma-points
needed to do this 𝐿 = 2𝑛 + 1, where 𝑛 is the dimension of 𝑋 . Van derMerwe (2004)
has shown that matching the moments of 𝑋 up to the 𝑛th order implies matching
the moments of 𝑌 to the same order. By using a larger number of sigma-points, skew
and kurtosis can also be captured (Julier, 2002). Note however, that this moment-
matching approach provides an uni-modal approximation to the potentially multi-
modal true distribution.

The expressions to compute the sigma-points andweights for themean,𝜛𝑚
0 , and

covariance,𝜛𝑐
0, of the distribution 𝑝(𝛏) are presented below (van der Merwe, 2004):

𝜛𝑚
0 = 𝜈

𝑛 + 𝜈 𝛘0 = 𝛍𝛏

𝜛𝑚
𝑖 = 𝜛𝑐

𝑖 =
1

2(𝑛 + 𝜈) 𝛘𝑖 = 𝛍𝛏 + (√(𝑛 + 𝜈)𝚺𝛏), for 1 ≤ 𝑖 ≤ 𝑛

𝜛𝑐
0 = 𝜛𝑚

0 + (1 − 𝜈2 + 𝜊) 𝛘𝑖 = 𝛍𝛏 − (√(𝑛 + 𝜈)𝚺𝛏), for 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛,
(2.21)
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where 𝜈 = 𝛼2(𝑛 + 𝜅) − 𝑛 is the primary scaling factor, 𝜅 a secondary scaling (usu-
ally zero), 𝛼 determines the spread of the sigma points around 𝛍𝛏, and 𝜊 is a scalar to
provide an extra degree freedom. The reader is encouraged to refer to van der Merwe
(2004) for details on hyper-parameter selection.

2.5 Reproducing kernel Hilbert spaces

The projection of inputs into a possibly infinite-dimensional feature space, as seen
in Section 2.1, is intimately related with the concept of a Reproducing Kernel Hil-
bert Space (RKHS). Essentially, a positive-definite covariance function defines a re-
producing kernel and an associated Hilbert space. In this section we will revise these
concepts, which will play an important role in deriving models and theoretical res-
ults in subsequent chapters. We begin by reviewing linear spaces, which are a super-
class of Hilbert spaces, and follow by defining reproducing kernels and RKHS’s in
Section 2.5.2. For a more comprehensive understanding, readers can refer to the ex-
tensive literature on the topic of RKHS’s, including (Schölkopf & Smola, 2002) and
(Steinwart & Christmann, 2008).

2.5.1 Linear spaces

In summary, a Hilbert space is a complete inner product space with respect to the
norm induced by its inner product Although Hilbert spaces can also be defined for
vector-valued functions, this section will focus on real, scalar-valued Hilbert spaces.
In addition, this section briefly covers some related concepts of mathematical spaces
that are necessary for amore comprehensive definition of aHilbert space and aRKHS,
and further information on these topics can be found in books on functional analysis,
such as (Lax, 2014).

For simplicity, wewill assume that the field𝔽 inwhich the linear spaces are defined
is theℝ, that any 𝑓, 𝑔, ℎ ∈ 𝒱 , and any 𝛼, 𝛽 ∈ ℝ.

Definition 1 (Vector spaces) A vector space, also known as a linear space, is a non-
empty set𝒱 that is closed under the operations of addition and scalar multiplication.
Closure of an operation on a set means that performing the operation on elements of
the set always results in an element of the same set. For instance, ℝ𝑑, where 𝑑 ∈ ℕ,
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represents the space of 𝑑-dimensional real-valued vectors, and is a vector space. Sim-
ilarly, the space ℝ𝒳 , consisting of all real-valued functions 𝑓∶ 𝒳 → ℝ on any non-
empty set𝒳, is also a vector space when addition and scalar multiplication operations
are defined as follows:

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) , ∀𝑥 ∈ 𝒳 , (2.22)

(𝛼𝑓)(𝑥) = 𝛼𝑓(𝑥) , ∀𝑥 ∈ 𝒳 , (2.23)

and satisfy the axioms:

VS1. 𝑓 + (𝑔 + ℎ) = (𝑓 + 𝑔) + ℎ

VS2. ∃0 ∈ 𝒱 s.t. 0 + 𝑓 = 𝑓

VS3. ∀𝑓 ∈ 𝒱∃𝑓′ ∈ 𝒱 s.t. 𝑓 + 𝑓′ = 0.

VS4. 𝑓 + 𝑔 = 𝑔 + 𝑓

VS5. 1𝑓 = 𝑓, 𝛼(𝛽𝑓) = (𝛼𝛽)𝑓, (𝛼+𝛽)𝑓 = 𝛼𝑓+𝛽𝑓, 𝛼(𝑓+𝑔) = 𝛼𝑓+𝛼𝑔

Definition 2 (Inner product spaces) An inner product space (𝒱, ⟨⋅, ⋅⟩𝒱) is a vector
space𝒱 equipped with an inner product, denoted by the operator ⟨⋅, ⋅⟩𝒱 ∶ 𝒱 ×𝒱 →
ℝ, that satisfies the following axioms:

IP1. ⟨𝑓, 𝑔⟩𝒱 = ⟨𝑔, 𝑓⟩𝒱 ;

IP2. ⟨𝑓, 𝑓⟩𝒱 ≥ 0, ⟨𝑓, 𝑓⟩𝒱 = 0 ⟺ 𝑓 = 0;

IP3. ⟨𝛼𝑓 + 𝛽𝑔, ℎ⟩𝒱 = ⟨𝛼𝑓, ℎ⟩𝒱 + ⟨𝛽𝑔, ℎ⟩𝒱 = 𝛼⟨𝑓, ℎ⟩𝒱 + 𝛽⟨𝑔, ℎ⟩𝒱 .

The definition of the inner product also implies in the following form of the Cauchy-
Schwartz inequality:

|⟨𝑓, 𝑔⟩𝒱 | ≤ √⟨𝑓, 𝑓⟩𝒱⟨𝑔, 𝑔⟩𝒱 . (2.24)

A simple example of an inner product space is ℝ𝑑, 𝑑 ∈ ℕ, equipped with the dot
product operation:

⟨𝐱, 𝐲⟩ℝ𝑑 ≔ 𝐱 ⋅ 𝐲 ≔
𝑑
∑
𝑖=1

𝑥𝑖𝑦𝑖, ∀𝐱, 𝐲 ∈ ℝ𝑑. (2.25)
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Definition 3 (Normed vector spaces) A normed vector space (𝒱, ‖⋅‖𝒱) is any vec-
tor space 𝒱 that contains a norm ‖⋅‖𝒱 ∶ 𝒱 → ℝ+

0 , which assigns a non-negative
length or size to each vector in the space. A norm can be any function satisfying:

N1. ‖𝛼𝑓‖𝒱 = |𝛼|‖𝑓‖𝒱 ;

N2. ‖𝑓‖𝒱 ≥ 0, ‖𝑓‖𝒱 = 0 ⟺ 𝑓 = 0;

N3. ‖𝑓 + 𝑔‖𝒱 ≤ ‖𝑓‖𝒱 + ‖𝑔‖𝒱 .

Examples of norms applied in this thesis are 𝑝-norms, such as:

‖𝐱‖𝑝 ≔ (
𝑑
∑
𝑖=1

𝑥𝑝𝑖 )

1
𝑝

, ∀𝐱 ∈ ℝ𝑑, (2.26)

which are valid norms for 𝑝 ≥ 1, with ‖𝐱‖∞ ≔ max𝑥𝑖, for 𝑖 ∈ {1,… , 𝑑}. Similarly,
for real-valued functions over some domain𝒳 ⊂ ℝ𝑑, i.e.𝒱 = ℝ𝒳 , one can define:

‖𝑓‖𝑝 ≔ (∫
𝒳
|𝑓(𝐱)|𝑝 d𝐱)

1
𝑝

. (2.27)

However, it should be noted that the ‖⋅‖𝑝 norm may not be positive-definite on the
entire ℝ𝒳 . For instance, a function 𝑓 ∈ ℝ𝒳 that is zero almost everywhere, except
for a countable set of points in 𝒳, would still yield ‖𝑓‖𝑝 = 0, even though 𝑓 ≠ 0.
Moreover, by definition, any norm must be finite, since∞ is not an element of ℝ+

0 .
Nevertheless, if we restrict ourselves to𝒱 = 𝒞(𝒳), which is the set of continuous real-
valued functions on a compact𝒳 ⊂ ℝ𝑑, then ‖⋅‖𝑝 becomes a valid norm on elements
of that set.

Note that from an inner product we can define a induced norm given by: ‖⋅‖𝒱 ≔
√⟨⋅, ⋅⟩𝒱 . Using the inner product defined in Eq. (2.25), is equivalent to the 2-norm
as defined in Eq. (2.26), where 𝑝 = 2.

Definition 4 (Metric spaces) A metric space (𝒱, 𝑑𝒱) is simply a set 𝒱 equipped
with a metric 𝑑𝒱 . A metric on a set𝒱 is any function 𝑑𝒱 ∶ 𝒱 ×𝒱 → ℝ+

0 , whereℝ+
0

denotes the set of non-negative real numbers, which satisfies the following axioms:

M1. 𝑑𝒱(𝑓, 𝑔) = 𝑑𝒱(𝑔, 𝑓);
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M2. 𝑑𝒱(𝑓, 𝑔) ≥ 0, 𝑑𝒱(𝑓, 𝑔) = 0 ⟺ 𝑓 = 𝑔;

M3. 𝑑𝒱(𝑓, 𝑔) ≤ 𝑑𝒱(𝑓, ℎ) + 𝑑𝒱(ℎ, 𝑔).

Note that𝒱 does not need to be a vector space to have a definedmetric. Also, both
normed vector spaces and inner product spaces have, by definition, metrics associated
with them. To see this, consider that for a given norm ‖⋅‖𝒱 , the induced metric is:

𝑑𝒱(𝑓, 𝑔) ≔ ‖𝑓 − 𝑔‖𝒱 , ∀𝑓, 𝑔 ∈ 𝒱. (2.28)

Finally, the metric space defined by ℝ𝑑, 𝑑 ∈ ℕ, and ‖⋅‖2 is referred to as an Eu-
clidean vector space. As the equation above still defines a valid metric if one scales
the vectors by a positive-definite matrix𝐌, a non-Euclidean metric onℝ𝑑 is theMa-
halanobis distance and its associated norm, given by:

‖𝐱 − 𝐲‖𝐌 ≔√(𝐱 − 𝐲)𝖳𝐌(𝐱 − 𝐲). (2.29)

Definition 5 (Complete metric spaces) A metric space is complete if the limit of
every Cauchy sequence in it is an element of the same space (Munkres, 2014). A se-
quence {𝑓𝑖}𝑖∈ℕ in a normed vector space (𝒱, ‖⋅‖𝒱) is Cauchy if, and only if, for every
𝜖 > 0, there is a 𝑛𝜖 ∈ ℕ, such that:

∀𝑖, 𝑗 > 𝑛𝜖, ‖𝑓𝑖 − 𝑓𝑗‖𝒱 < 𝜖. (2.30)

Without completeness it is not possible to ensure that the limit of any given conver-
gent sequence is an element of the samemetric space. That is why important concepts
in calculus and functional analysis are only valid for complete metric spaces. As par-
ticular types of complete metric spaces, we have Banach spaces and Hilbert spaces. It
is also known that every metric space has a completion (Kreyszig, 1989).

Definition 6 (Banach spaces) A normed vector space that is complete with respect
to the metric induced by its norm is called a Banach space.

Definition 7 (Hilbert spaces) AHilbert space is an inner product space that is com-
plete with respect to the norm induced by its inner product.

By its definition, we can see that any Hilbert space is also a Banach space with
norm defined by the inner product. As a trivial example of a Hilbert space, we have
Euclidean vector spaces ℝ𝑑. Hilbert spaces are a powerful tool in machine learning
thanks to the concept of reproducing kernels, which is explained in the next section.
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2.5.2 Reproducing kernels and their Hilbert spaces

Definition 8 (Reproducing kernel Hilbert space) Let𝒳 be a non-empty set and
let ℋ be a Hilbert space of functions 𝑓∶ 𝒳 → ℝ. Let 𝑐𝑜𝑣∶ 𝒳 × 𝒳 → ℝ be
a function such that for any 𝐱 ∈ 𝒳, the function 𝑐𝑜𝑣(𝐱, ⋅)∶ 𝒳 → ℝ. Then ℋ
is called a reproducing kernel Hilbert space with reproducing kernel 𝑐𝑜𝑣 if for any
finite sequence of points 𝐱1, 𝐱2,… , 𝐱𝑞 ∈ 𝒳 and coefficients 𝑐1, 𝑐2,… , 𝑐𝑞 ∈ ℝ the
following axioms hold:

RK1. (Positive-definiteness) The kernel 𝑐𝑜𝑣 is a positive-definite function, or equival-
ently:

𝑞
∑
𝑖=1

𝑞
∑
𝑗=1

𝑐𝑖𝑐𝑗 𝑐𝑜𝑣(𝐱𝑖, 𝐱𝑗) ≥ 0

RK2. (Linearity) The kernel 𝑐𝑜𝑣 is linear in its second argument, that is:

𝑘(𝐱,
𝑞
∑
𝑖=1

𝑐𝑖𝐲𝑖) =
𝑞
∑
𝑖=1

𝑐𝑖 𝑘(𝐱, 𝐲𝑖)

RK3. (Reproducing property) For any 𝐱 ∈ 𝒳 and 𝑓 ∈ ℋ, we have:

𝑓(𝐱) = ⟨𝑓, 𝑐𝑜𝑣(𝐱, ⋅)⟩ℋ.

These axioms imply that the kernel 𝑐𝑜𝑣 uniquely determines the Hilbert space ℋ,
and thatℋ is a complete inner product space with respect to the norm induced by
the inner product:

‖𝑓‖2 = ⟨𝑓, 𝑓⟩ =
𝑞
∑
𝑖=1

𝑞
∑
𝑗=1

𝑐𝑖𝑐𝑗 𝑐𝑜𝑣(𝐱𝑖, 𝐱𝑗) (2.31)

The relationship between positive-definite kernels and RKHS’s is bidirectional.
Firstly, anyHilbert space of functions whose evaluation functional is continuous can
be classified as a RKHS, with a single reproducing kernel associated with it (Steinwart
& Christmann, 2008, Thr. 4.20). Secondly, every symmetric and positive-definite
function 𝑐𝑜𝑣∶ 𝒳 ×𝒳 → ℝ is the reproducing kernel of a unique RKHS (Steinwart
& Christmann, 2008)
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Representing functions in a RKHS: The reproducing property is a key feature
of an RKHS. It implies that evaluating a function in ℋ at a point 𝐱 can be done
by taking the inner product of the function with the kernel evaluated at 𝐱, which
is computationally efficient and allowed for the use of kernel methods in machine
learning and other fields.

Feature maps: Given an arbitraryHilbert spaceℋ and a featuremap𝜙∶ 𝒳 → ℋ,
mapping𝒳 intoℋ, we have that 𝑐𝑜𝑣(𝑥, 𝑦) ≔ ⟨𝜙(𝑥), 𝜙(𝑦)⟩ℋ , ∀𝑥, 𝑦 ∈ 𝒳 defines a
reproducing kernel for theHilbert spaceℋ𝑐𝑜𝑣 of functions 𝑓∶ 𝒳 → ℝ. Notice that
the feature spaceℋ does not need to beℋ𝑘 itself nor a function space. However, if
ℋ = ℋ𝑘, 𝜙 is called the canonical feature map. In this case, it can be proved that 𝜙
is unique and given by 𝑥 ↦ 𝑐𝑜𝑣(𝑥, ⋅) (Steinwart & Christmann, 2008).

Representing functions with finite features: For many practical problems, the
optimal solution to a learning problem in a high or infinite-dimensionalRKHScanbe
expressed as a finite linear combination of kernel functions evaluated at the training
data points. This result was first discovered by Kimeldorf and Wahba (1970) and is
known as the representer theorem.

Denote {(𝐱𝑖, 𝑦𝑖), 𝑖 = 1,⋯ ,𝑁} as 𝑁 observations of a covariate 𝐱 ∈ 𝒳 and a
response 𝑦 ∈ ℝ. Furthermore, assume our goal is to perform regression analysis to
learn the function 𝑓 ∈ ℋ, such that:

𝑦𝑖 = 𝑓(𝐱𝑖) + 𝜂𝑖, 𝑖 = 1,⋯ ,𝑁 (2.32)

where 𝜂𝑖 are i.i.d. random errors with zero mean andℋ is a Hilbert space of function
from𝒳 → ℝ. Since the spaceℋ is usually infinite dimensional, certain regularisation
is necessary for estimation. Hence, we estimate 𝑓 as the solution to the penalised least
squares

min
𝑓∈ℋ

1
𝑁

𝑁
∑
𝑖=1
(𝑦𝑖 − 𝑓(𝐱𝑖))

2 + 𝜆‖𝑓‖2 (2.33)

where the first part measures the goodness-of-fit, and ‖𝑓‖2 a regularisation function
chosen without loss of generality. Letℋ = ℋ0 ⊕ℋ1 whereℋ0 = {𝑓∶ ‖𝑓‖ = 0}
is a finite dimensional space with basis functions 𝜉1,⋯ , 𝜉𝑀 and ℋ1 is the RKHS
induced by the kernel 𝑘1. Let 𝜙𝑖(⋅) = 𝑐𝑜𝑣(𝐱𝑖, ⋅) for 𝑖 = 1,⋯ ,𝑁 be representers.
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Theorem 1 (Representer theorem) The solution to Eq. (2.33), ̂𝑓, is a linear combin-
ation of the basis functions 𝜉1,⋯ , 𝜉𝑀 and representers 𝜙1,⋯ , 𝜙𝑁 :

̂𝑓 =
𝑀
∑
𝑘=1

𝑑𝑘𝜉𝑘 +
𝑁
∑
𝑗=1

𝑐𝑗 𝜙𝑗 .

Proof Any 𝑓 ∈ ℋ can be expressed as 𝑓 = ∑𝑀
𝑘=1 𝑑𝑘𝜉𝑘 + ∑𝑁

𝑗=1 𝑐𝑗 𝜙𝑗 +𝜌 where
𝜌 ∈ ℋ is orthogonal to the space spanned by 𝜉1,⋯ , 𝜉𝑀 and 𝜙1,⋯ , 𝜙𝑁 . Then the
penalised least squares Eq. (2.33) reduces to

𝑁
∑
𝑖=1
(𝑦𝑖 − ⟨𝑘𝐱𝑖 ,

𝑀
∑
𝑘=1

𝑑𝑘𝜉𝑘 +
𝑁
∑
𝑗=1

𝑐𝑗 𝜙𝑗 +𝜌⟩)
2

+ 𝜆
𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝑐𝑖𝑐𝑗 𝑘1(𝐱𝑖, 𝐱𝑗) + 𝜆‖𝜌‖2

(2.34)
where 𝑘𝐱𝑖 = 𝑐𝑜𝑣(𝐱𝑖, ⋅) and 𝑐𝑜𝑣(𝐱, 𝐱′) = ∑𝑀

𝑘=1 𝜉𝑘(𝐱)𝜉𝑘(𝐱′) + 𝑘1(𝐱, 𝐱′) is the re-
producing kernel of ℋ. Note that 𝑐𝑜𝑣(𝐱𝑖, ⋅) belongs to the subspace spanned by
𝜉1,⋯ , 𝜉𝑀 and 𝜙1,⋯ , 𝜙𝑁 . Therefore, 𝜌 drops out the first term in Eq. (2.34) since
it is orthogonal to 𝑐𝑜𝑣(𝐱𝑖, ⋅). Consequently 𝜌 = 0 and the conclusion follows.

2.6 Stein Variational Gradient Descent

One of the main applications of the theory of RKHS’s in this work will be on ker-
nel methods for VI, in particular on SVGD. Introduced by Liu and Wang, this al-
gorithm serves as a natural counterpart of gradient descent for optimization, provid-
ing a general-purpose variational inference method.

The main challenge in VI arises in defining an appropriate 𝒬. SVGD addresses
this issue while also solving for Eq. (2.16) by performing Bayesian inference in a non-
parametric nature, removing the need for assumptions on restricted parametric fam-
ilies for 𝑞(𝐱) (Liu &Wang, 2016). We start from an uninformative proposal distribu-
tion and construct a empirical distribution through sampling a set of particles {𝐱𝑖}

𝑁𝑝
𝑖=1,

𝐱 ∈ ℝ𝑝. The method then reduces the KL divergence between our empirical and tar-
get distributions by computing incremental transforms to perform steepest descent
in a RKHS. Unlike other methods, SVGD does not require explicit specification of
parametric forms or calculation of the Jacobian matrix. Instead, it mimics the typical
gradient descent algorithm, making it simple and intuitive.
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More formally, the incremental transform in SVGD is defined by a small perturb-
ation of the identity map

T(𝐱) = 𝐱 + 𝜖 𝛟(𝐱). (2.35)

Here,𝛟(𝐱) is a smooth function that characterizes the perturbation direction, and 𝜖 is
a scalar that represents the perturbationmagnitude. Assuming we start from a simple
reference distribution 𝑞0, by the change of variables formula we get

𝑞[T](𝐱) = 𝑞(T−1(𝐱)) ⋅ ||det(∇𝐱 T−1(𝐱))||, (2.36)

where 𝑞[T] is the resulting distribution from applying themapT to the random vector
𝐱. When |𝜖| is sufficiently small, the Jacobian is full-rank and close to the identity
matrix, and T is guaranteed to be a one-to-one transform.

A key insight of SVGD is the connection it draws between the Stein operator and
the derivative of the KL divergence. The derivative of KL divergence with respect to
the perturbation magnitude 𝜖 is given by:

∇𝜖𝐷KL(𝑞[𝑇] || 𝑝)||𝜖=0 = −𝔼𝐱∼𝑞[tr(𝒜𝑝 𝛟(𝐱))], (2.37)

where 𝒜 is the Stein operator. This equation forms the foundation of the SVGD
method, providing a theoretical basis for the algorithm. The SVGDalgorithmmimics
a gradient dynamics updating each particle in parallel according to:

𝐱(𝑙+1)𝑖 ← 𝐱(𝑙)𝑖 + 𝜖𝛟∗(𝐱(𝑙)𝑖 ). (2.38)

The function 𝛟(⋅) is known as the score function and defines the velocity field
that maximally decreases the KL divergence:

𝛟∗ = argmax
𝛟∈ℋ

{−∇𝜖𝐷KL(𝑞[T](𝐱)|| 𝑝(𝐱)), s.t. ‖𝛟‖ℋ ≤ 1}, (2.39)

whereℋ is a RKHS induced by a positive-definite kernel 𝑘 ∶ 𝒳 ×𝒳 → ℝ, and 𝑞[T]
indicates the particle distribution resulting from taking an update step as in Eq. (2.38).
Recall that an RKHS ℋ associated with a kernel 𝑘 is a Hilbert space of functions
endowed with an inner product ⟨⋅, ⋅⟩ such that 𝑓(𝐱) = ⟨𝑓, 𝑘(⋅, 𝐱)⟩ for any 𝑓 ∈ ℋ
and any 𝐱 ∈ 𝒳 (Schölkopf & Smola, 2002). The problem in (2.39) has been shown
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to yield a closed-form solutionwhich can be interpreted as a functional gradient inℋ
and approximated with the set of particles (Liu &Wang, 2016):

𝛟∗(𝐱) = 𝔼𝐲∼𝑞̂[𝑘(𝐲, 𝐱)∇𝐲 log𝑝(𝐲) + ∇𝐲𝑘(𝐲, 𝐱)], (2.40)

with 𝑞̂ = 1
𝑁𝑝

∑𝑁𝑝
𝑖=1 𝛿(𝐱𝑖) being an empirical distribution that approximates 𝑞 with

a set of Dirac delta functions 𝛿(𝐱𝑖). For SVGD, 𝑘 is typically a translation-invariant
kernel, such as the squared-exponential or the Matérn kernels (Liu & Wang, 2016;
Rasmussen &Williams, 2006). The two terms in Eq. (2.40) play different roles. The
first term drives the particles towards the high probability areas of 𝑝(𝐱) by following
a smoothed gradient direction, which is the weighted sum of the gradients of all the
points weighted by the kernel function. The second term acts as a repulsive force that
prevents all the points fromcollapsing together into localmodes of𝑝(𝐱). Themethod
is summarised in Algorithm 1.

Algorithm 1: Stein Variational Gradient Descent
1 Input: A target distribution with density function 𝑝(𝐱) and a set of initial

particles {𝐱0𝑖 }
𝑁𝑝
𝑖=1.

2 Output: A set of particles {𝐱𝑖}
𝑁𝑝
𝑖=1 that approximates the target distribution.

3 for each iteration 𝑙 do
4 𝛟∗(𝐱) = 1

𝑁𝑝
∑𝑁𝑝

𝑗=1[𝑘(𝐱𝑗 , 𝐱)∇ log𝑝(𝐱𝑗) + ∇𝑘(𝐱𝑗 , 𝐱)] ;

5 𝐱(𝑙+1)𝑖 ← 𝐱(𝑙)𝑖 + 𝜖𝛟∗(𝐱(𝑙)𝑖 );
6 end

The SVGD algorithm, with its simplicity and efficiency, provides a powerful tool
for Bayesian inference. By leveraging the connection between the Stein operator and
the derivative of KL divergence, SVGD offers a novel approach to variational infer-
ence.

2.7 Optimal Control

In classical control the design of control systems generally involve the use of transfer
functions, which describe the relationship between the input and output of a known
system in the frequency domain, to analyse and determine the design parameters of
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an acceptable control system. Acceptable performance is generally defined in terms of
time and frequency domain criteria such as rise time, settling time, peak overshoot,
gain and phase margin, and bandwidth. However, for many real-world problems
this involves satisfying several different performance criteria for complex systems with
multiple-input and multiple-output. For example, the design of a spacecraft attitude
control system that minimises fuel expenditure is not easily solved using classical con-
trol (Kirk, 2012).

Optimal control offers a more direct approach and became the de-facto standard
for control systems. The objective of optimal control theory is to determine the con-
trol signals that will cause a process to satisfy the physical constraints and at the same
time minimise (or maximise) some performance criterion. The basic approach in-
volves formulating a mathematical model of the dynamic system, along with a cost
function that captures the desired objective. The model typically consists of a set of
differential equations that describe how the state of the system changes over time, and
the control input is a function that drives the state to the desired trajectory. On the
other hand, a cost functional is used as a surrogate to represent some measure of the
system’s performance.

The goal is to find the control input that minimises the cost function, subject
to the system dynamics, and any other constraints. Consider the problem of con-
trolling a discrete-time system described by a non-linear set of difference equations of
the form:

𝐱𝑡+1 = 𝑓(𝐱𝑡, 𝐮𝑡), (2.41)

where 𝑓 is the transition function, 𝐱𝑡 ∈ ℝ𝑛 denotes the system states, 𝐮𝑡 ∈ ℝ𝑚 are
the control inputs at a given time 𝑡. The optimal control problem can then be posed
as an optimisation problem:

𝐮∗ ≔ argmin
𝐮

𝒞(𝑓, 𝐱, 𝐮)

s.t. 𝐱𝑡+1 = 𝑓(𝐱𝑡, 𝐮𝑡)
ℋ(𝐱𝑡, 𝐮𝑡) = 0
𝒢(𝐱𝑡, 𝐮𝑡) ≤ 0
for 𝑡 = 0, 1, 2,…

(2.42)
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where 𝒞 is the cost functional, andℋ and 𝒢 are a set of equality and inequality con-
straints, respectively.

For linear system or well-behaved non-linear system where the system dynamics
are known, optimal controllers can be designed using Pontryagin’s maximum prin-
ciple or theHamilton-Jabobi-Bellman equation (HJB)offline, although formost prac-
tical cases such solutions are unfeasible Lewis, Vrabie and Vamvoudakis, 2012; Ross,
2009. Furthermore, even though HJB can be extended to stochastic systems, such as
in the case of unknown disturbances, it assumes that distributions are stationary over
time. Additionally, in practice there are many problems in which the dynamics 𝑓 are
unknown, or may be too complex to represent analytically. As a result, it is necessary
to employ numerical methods to solve optimal control problems over a finite look
ahead horizon𝐻.

2.8 Model Predictive Control

MPC is themost commonly used is a type of optimal control to circumvent the issues
above, and in particular for real-time control of dynamic (Camacho & Alba, 2013).
MPC involves solving a finite-horizon optimal control problem at each time step, sub-
ject to constraints on the state and control variables, and using only the first control
input from the optimal control sequence to control the system. The process is then
repeated at the next time step, with the time horizon shifted forward by one step. This
process is known as RHC, which means that the control inputs are updated at each
time step based on the current state of the system and the predicted future evolution
of the system. The RHC formulation allows MPC to account for uncertainties and
disturbances in the system, as well as time-varying constraints on the state and con-
trol variables. MPC is widely used in a variety of applications, including process con-
trol, robotics, agriculture, and automotive control (Ding et al., 2018; Erez et al., 2013;
Mayne, 2014). It is particularly well-suited for systems with constraints or uncertain-
ties, and has been shown to be effective in achieving good control performance and
robustness in practice (Mesbah, 2016).

Therefore, rather than optimising over a deterministic control sequence, our goal
is now to optimise over policies. A policy is a function 𝜋 that maps a desired system
trajectory to a sequence of control actions 𝐮. Therefore we can modify our formula-
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tion in Eq. (2.42) where the policy 𝜋 is updated at every time step based only on the
previous trajectory.

𝜋∗ ≔ argmin
𝜋

𝔼𝜋[𝒞(𝑓, 𝐱, 𝐮)]

s.t. 𝐱𝑡+1 = 𝑓(𝐱𝑡, 𝐮𝑡)
𝐮𝑡 = 𝜋(𝐱𝑡)
ℋ(𝐱𝑡, 𝐮𝑡) = 0
𝒢(𝐱𝑡, 𝐮𝑡) ≤ 0
for 𝑡 = 0, 1,… ,𝐻,

(2.43)

for some initial state 𝐱0.
There are several methods for solving optimal control problems, including dy-

namic programming, calculus of variations, numerical optimisation, and, more re-
cently, approximate inference (Watson, Abdulsamad & Peters, 2020). Constraints in
Eq. (2.43) may include physical limitations on the control input, such as maximum
torque or voltage, or limitations on the state variables, such as staying within a certain
range of values. Indeed, one of the key challenges is balancing the competing object-
ives of minimising the cost function while also satisfying the system constraints. An-
other important consideration in optimal control is the trade-off between the accur-
acy of themathematicalmodel and the computational cost of solving the optimisation
problem. More complex models may capture the system dynamics more accurately,
but are more expensive to solve. Simplified models may be more computationally ef-
ficient, but may not capture all the important features of the system.

Note how in this formulation, MPC is similar to a RL problem. The main dif-
ference being that in contemporary RL themain paradigm is what known as Episodic
Reinforcement Learning Sutton and Barto, 2018. Under this paradigm, our policy 𝜋
is typically learned offline and updated only after a complete episode. Our goal is to
find a policy that maximises the reward, i.e. minimises the cost 𝒞 , in the least amount
of episodes.
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2.9 Stochastic Non-linear Model Predictive Control

StochasticNon-linearModel PredictiveControl (SNMPC) is an extension of determ-
inistic MPC that takes into account uncertainties in the system dynamics or disturb-
ances that affect the systembehavior. InSNMPC, the system ismodeled as a stochastic
process, and the control inputs are chosen to optimise a probabilistic measure of per-
formance, such as the expected value or variance of the cost function.

Inotherwords, we are interested in theproblemwhere the real transition function
𝑓(𝐱𝑡, 𝐮𝑡) is unknown and approximated by a transition functionwith parametric un-
certainty, such that Eq. (2.41) can be rewritten as:

𝑓(𝐱𝑡, 𝐮𝑡) ≈ 𝑓̂(𝐱, 𝐮, 𝛏) ≔ 𝑓𝛏(𝐱𝑡, 𝐮𝑡) (2.44)

where 𝛏 ∈ 𝛯 are theparameters of themodelwith aprior probability distribution𝑝(𝛏)
and the non-linear forward model 𝑓̂(𝐱, 𝐮, 𝛏), is represented as 𝑓𝛏 for compactness.

The main difference to our original problem formulation is that we now need to
take into account the model uncertainty when computing statistical measures of our
system. Namely, we can modify Eq. (2.43) to its stochastic counterpart:

argmin
𝜋

̂𝐽 ≔ 𝔼𝜋,𝛏[𝒞(𝑓𝛏, 𝐱, 𝐮)]

s.t. 𝐱𝑡+1 = 𝑓𝛏(𝐱𝑡, 𝐮𝑡)
𝐮𝑡 = 𝜋(𝐱𝑡)
ℋ(𝐱𝑡, 𝐮𝑡) = 0
𝒢(𝐱𝑡, 𝐮𝑡) ≤ 0
for 𝑡 = 0, 1,… ,𝐻,

(2.45)

where we define the estimator ̂𝐽 and 𝐱0 is once more some predetermined initial state.
The main strategies used to solveMPC can in broad part be utilised for SNMPC,

although sampling-based solutions and approximate inference are more commonly
used as well. One of the main advantages of sampling-based SNMPC is that ̂𝐽 can
be computed even when the cost function is non-differentiable w.r.t. to the policy
parameters byusing importance sampling (G.Williams,Aldrich&Theodorou, 2017).
In the next section we present one sampling based SNMPC method which will be
used extensively as a baseline throughout this thesis.
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2.10 Model Predictive Path Integral

One of the biggest barriers of SNMPC is the solution of complex, non-linear, non-
convex optimisation problems. A possible approach tomake such problems tractable
is to resort to sampling-based, also known as shooting, control methods. Recently, G.
Williams et al. (2016) presented a sampling-basedMPC approach grounded on an in-
formation theoretic approach to Stochastic Optimal Control problems denominated
MPPI—also known as InformationTheoreticalMPC (IT-MPC)—whichwe outline
below. MPPIwill provide the basis uponwhich themethod inChapter 3 is developed
and will be used extensively as a baseline throughout this dissertation.

Consider a discrete-time stochastic system described by a non-linear set of differ-
ence equations of the form:

𝐱𝑡+1 = 𝑓(𝐱𝑡, 𝐯𝑡) (2.46)

where 𝐱𝑡 ∈ ℝ𝑛 denotes the system states at time 𝑡, 𝐯𝑡 ∼ 𝒩(𝐮, 𝚺) ∈ ℝ𝑚 is the
system input at a given time 𝑡 and 𝑓 denotes a typically non-linear discrete transition
function.

For all purposes, in this section we will assume that 𝑓 is time-invariant. Further-
more, we assume that a finite time-horizon𝐻 and control frequency are given, which
uniquely defines the units of time of the system. A final assumption is that we do not
have direct control over the variable 𝐯, but we are able to control its mean 𝐮. In other
words, 𝐯 is a random vector generated by a white-noise process with the following
density function:

𝐯𝑡 ∼ 𝒩(𝐮𝑡, 𝚺) ∈ ℝ𝑚×𝐻, (2.47)

where we are free to set 𝐮𝑡 at any given discrete-time.
Hence, we can proceed by defining a fixed length input sequence

𝑈 = (𝐮0,… , 𝐮𝐻−1) (2.48)

over a fixed control horizon𝐻, onto which we apply a RHC strategy. This yields

𝑉 = (𝐯0, 𝐯1,… , 𝐯𝐻−1) ∈ ℝ𝑚×𝐻, (2.49)

which is itself a random variable.
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Furthermore, let’s denote as𝑝(𝑉) the ProbabilityDensity Function (PDF) of the
uncontrolled system (i.e.𝑈 ≡ 𝟎) and, similarly, let’s denote by 𝑞(𝑉) the correspond-
ing PDF for the open-loop control sequence (that is whenever𝑈 ≠ 𝟎). The optimal
control problemmay then be defined as:

𝑈∗ = argmin
𝑈∈𝒰

𝔼𝑞[𝒞 term(𝐱𝐻) +
𝐻−1
∑
𝑡=0

ℒ(𝐱𝑡, 𝐮𝑡)], (2.50)

where𝒰 is the set of admissible controls, 𝒞 term(𝐱𝐻) is a terminal cost function, and
ℒ(𝐱𝑡, 𝐮𝑡) is a running cost function of the form:

ℒ(𝐱𝑡, 𝐮𝑡) = 𝒞 inst(𝐱𝑡) +
𝛼
2 (𝐮

𝖳
𝑡𝚺−1𝐮𝑡 + 𝐮̃𝖳𝑡𝐮𝑡), (2.51)

where 𝛼 ∈ ℝ+ is known as the inverse temperature and the affine term 𝐮̃ allows the
vector of minimum control (rest position) to be different from zero. Noting that the
state cost may be considered independent from the control terms, we can define

𝒞(𝐱0, 𝐱1,… , 𝐱𝐻) = 𝒞 term(𝐱𝐻) +
𝐻−1
∑
𝑡=0

𝒞 inst(𝐱𝑡). (2.52)

Moreover, we define a functional mapping, H, from input sequences 𝑉 to their res-
ulting trajectory by recursively applying 𝑓 given 𝐱0. That is,

H(𝑉 | 𝐱0) = [𝐱0, 𝑓(𝐱0, 𝐯0), 𝑓(𝑓(𝐱0, 𝐯0), 𝐯1),…]. (2.53)

The final state-cost function can then be defined by the following functional compos-
ition:

𝒮(𝑉 | 𝐱0) = 𝒞(H(𝑉 | 𝐱0)), (2.54)

where for simplicity the dependency on the initial state 𝐱0 will be dropped and the
state-cost simply denoted by 𝒮(𝑉).

Finally, IT-MPC relies on the free-energy principle to compute a lower bound for
the optimal control problem. The free-energy of a control system is given by

F(𝒮 , 𝑝, 𝐱0, 𝛼) = −𝛼 log(𝔼𝑝[exp(−
1
𝛼 𝒮(𝑉))]), (2.55)
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and roughly defines the bounds the information gained when sampling a generative
model. Here again𝛼 is the inverse temperature and𝑝 is a base probability density akin
to a Bayesian prior.

It follows that Eq. (2.55) defines the form of the optimal distribution function
𝑞∗(𝑉) for which the bound on the optimal control problem is tight, thus achieving
the optimal control𝑈∗ (G. Williams, Drews, Goldfain, Rehg & Theodorou, 2018):

𝑞∗(𝑉) = 1
𝜂 exp(−

1
𝛼 𝒮(𝑉)) 𝑝(𝑉) (2.56)

𝜂 = ∫ exp(−1𝛼 𝒮(𝑉)) 𝑝(𝑉) d𝑉, (2.57)

where 𝜂∗ is the normalising term spanningℝ𝑚×𝐻 . This results in

𝐮∗𝑡 = 𝔼𝑞∗[𝐯𝑡], ∀𝑡 ∈ {0, 1,…𝐻 − 1}. (2.58)

Therefore, the optimal open-loop control sequence is the expected value of con-
trol trajectories sampled from the optimal density. As we cannot sample directly from
𝑞∗, we can resort to importance sampling (Andrieu et al., 2003) to construct an un-
biased estimator of the optimal distribution, given the current control distribution,
namely

𝔼𝑞∗[𝐯𝑡] = ∫𝑞∗(𝑉)𝐯𝑡 d𝑉 = ∫𝜔(𝑉) 𝑞(𝑉 | 𝑈̂, 𝚺)𝐯𝑡 d𝑉, (2.59)

where 𝜔(𝑉) = 𝑞∗(𝑉)/ 𝑞(𝑉 | 𝑈̂, 𝚺) is the importance sampling weight and 𝑈̂ the
estimated control sequence.

In practice it may well be the case that the base distribution for the system at rest
is not centred at zero. In other words, the baseline value for 𝐮𝑡 at any given time is
not the usual zero vector𝟎. This can be accounted for by the inclusion of aminimum
control value, such that 𝐮𝑡 = (𝐮̂𝑡 − 𝐮̃𝑡) is the difference between the current control
action 𝐮̂𝑡 and the minimum control 𝐮̃𝑡.

Finally, we can switch the expectation to 𝔼𝑞(𝑈̂), resulting in 𝔼𝑞(𝑈̂)[𝜔(𝑉)𝐯𝑡]. We
can thenuse the definition of the optimal distributionw.r.t. the basemeasure distribu-
tion (G.Williams, Drews, Goldfain, Rehg&Theodorou, 2018) to derive the optimal
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information-theoretic control law:

𝜔(𝑉) = 1
𝜂 exp(−

1
𝛼(𝒮(𝑉) + 𝛼

𝐻−1
∑
𝑡=0

𝐮𝖳𝑡𝚺−1𝐯𝑡)) (2.60)

𝐮𝑡 = 𝔼𝑞(𝑈̂)[𝜔(𝑉)𝐯𝑡], (2.61)

where:

𝜂 = ∫ exp(−1𝛼(𝒮(𝑉) + 𝛼
𝐻−1
∑
𝑡=0

𝐮̂𝖳𝑡𝚺−1𝐯𝑡)) d𝑉. (2.62)

Note that for numerical stability it is customary to multiply the numerator and
denominator of𝜔(𝑉) by a factor exp(1/𝛼𝒞̃), where 𝒞̃ is defined as theminimum cost.

2.11 Sim-to-real

Sim-to-real is the process of transferring a control policy learned in a simulated envir-
onment to a real-world environment. This process is challenging due to the differ-
ences between the simulation and the real world, such as different dynamics, sensory
inputs, and environmental factors. Collectively, these differences account for a re-
duced performance when an agent trained in simulation is deployed in the real-world,
commonly referred to as the reality gap. Reducing the reality gap is the key challenge
in sim-to-real. In recent years there has been a growing interest in developing tech-
niques that can improve the sim-to-real transfer, and several approaches have been
proposed.

In domain randomisation themain premise is to randomise the parameters of the
simulation to make it more diverse and robust to variations in the real world. To gen-
erate a large number of training examples in simulation, various aspects of the envir-
onment are randomly modified, such as lighting, object textures, camera angles, and
physics parameters. By varying these parameters in a controlled way, the model can
learn to generalise to a wide range of real-world scenarios (Peng et al., 2018). For ex-
ample, a robot trained with domain randomisation might learn to grasp objects in a
variety of lighting conditions, or navigate through environments with different tex-
tures and obstacles. The main advantage of domain randomisation is that it allows
policies to be trained with amuch larger andmore diverse set of examples than would
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be possible in the real world, usually at a fraction of the cost. This can help to improve
the robustness and generalisationof themodelwhendeployed in the realworld,where
the environment is often unpredictable and complex. However, one of themain chal-
lenges is to strike a balance between generating enough variation in the simulation en-
vironment to improve generalisation, while also ensuring that the training examples
are still relevant to the real-world scenario. Furthermore, Valassakis, Ding and Johns
(2020) found effectively no difference in training robust policies, i.e. resilient to cer-
tain perturbations, and domain randomisation.

Another popular approach is known as transfer learning. This involves using pre-
trained policies in simulation as a starting point for training in the real world. The
assumption is that by initialising the agent with knowledge from simulation, it will
be able to learn faster and more effectively in the real world (Heess et al., 2017). This
approach can be especially useful in situations where it is difficult or expensive to ob-
tain real-world data but it requires a simulated environment that closely resembles the
real-world environment. This can involve building a detailed simulation model that
includes all of the relevant physics, sensors, and other environmental factors that the
robot will encounter in the real world.

Finally, in curriculum learning the strategy used is to train a policy or model in
simulation using a curriculum, i.e. a series of gradually increase difficulty tasks. This
approach is motivated by the fact that many real-world problems are complex and
cannot be solved using a single model or algorithm (Andrychowicz et al., 2020) In
the context of robotic control, for example, curriculum learning can be used to train
a robot to perform a specific task, such as grasping an object or navigating through
an environment. The idea is to start with simple tasks that the robot can easily per-
form and gradually increase the difficulty of the tasks as the robot becomes more pro-
ficient. For example, to train a robot to grasp an object, the curriculum might start
with simple objects that are easy to grasp, such as a ball or a cube. Once the robot has
mastered these simple objects, the curriculum can gradually increase the difficulty of
the objects, such as objects with irregular shapes or objects that are more difficult to
grip. The underlying assumption of introducing a curriculum is that it will induce
a underlying structure to the learned policy, such as motion primitives for grasping,
that will be useful in generalising to harder tasks or environments. This approach can
also help to avoid the problem of the robot getting stuck in a local minimum, which



2.12 Path signature 39

0.0 0.5 1.0

Time (s)

−1

0

1

P 1
t P 2

t

0.0 0.5 1.0

Time (s)

−1

0

1

P 1
ψ(t) P 2

ψ(t)

−1 0 1

P 1
t /P

1
ψ(t)

0.0

0.5

1.0

P
2 t
/
P

2 ψ
(t

)

Pt Pψ(t)

Figure 2.1: Signature invariance to reparametrisation. Left: Plot of the coordin-
ates of a two dimensional path 𝑃𝑡 over time. Here 𝑃1𝑡 = cos(8.5𝑡) and 𝑃2𝑡 = 𝑡.
Centre: Plot of the two coordinates of path 𝑃𝑡 reparameterised by function 𝜓. Now,
𝑃1𝜓(𝑡) = cos(8.5𝑡4) and 𝑃2𝜓(𝑡) = 𝑡4. Right: Plots of path 𝑃𝑡 and its reparameterised
version 𝑃𝜓(𝑡) are shown overlapping to illustrate how the change in time is irrelev-
ant if the goal is achieving diverse paths. The signature of degree 2 for both paths is
{1, −1.6, 1, 1.3, −0.9, −0.7, 0.5}.

can occur when the robot is trained on a difficult task from the beginning.

2.12 Path signature

A multitude of practical data streams and time series can be regarded as a path, for
example, video, sound, financial data, control signals, handwriting, etc. The path sig-
nature transforms such multivariate sequential data (which may have missing or ir-
regularly sampled values) into an infinite-length series of real numbers that uniquely
represents a trajectory through Euclidean space. Although formally distinct and with
notably different properties, one useful intuition is to think of the signature of a path
as akin to a Fourier transform, where paths are summarised by an infinite series of
feature space coefficients. Consider a path 𝑋 traversing space 𝒳 ⊆ ℝ𝑐 as defined
in Section 2.8. Note that at any time 𝑡 such path can be decomposed in

𝑋𝑡 = {𝑋1
𝑡 , 𝑋2

𝑡 ,… , 𝑋𝑐
𝑡 }. (2.63)

Now recall that for a one-dimensional path 𝑋𝑡 and a function 𝑓, the path integral of
𝑓 along 𝑋 is defined by:

∫
𝑏

𝑎
𝑓(𝑋𝑡) d𝑋𝑡 = ∫

𝑏

𝑎
𝑓(𝑋𝑡) ̇𝑋𝑡 d𝑡. (2.64)
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In particular, note that the mapping 𝑡 → 𝑓(𝑋𝑡) is also a path. In fact, Eq. (2.64)
is an instance of the Riemann-Stieltjes integral (Chevyrev & Kormilitzin, 2016):

∫
𝑏

𝑎
𝑌𝑡 d𝑋𝑡 = ∫

𝑏

𝑎
𝑌𝑡 ̇𝑋𝑡 d𝑡, (2.65)

which computes the integral of one path against another. Let us nowdefine the 1-fold
iterated integral, which computes the increment of the 𝑖-th coordinate of the path at
time 𝑡 as:

S(𝑋)𝑖𝑡 = ∫
𝑎<𝑡1<𝑡

d𝑋 𝑖
𝑡1 = 𝑋 𝑖

𝑡 − 𝑋 𝑖
𝑎, (2.66)

and we again emphasise that S(𝑋)𝑖𝑡 is also a real valued path. This allows us to apply
the same iterated integral recursively and we proceed by defining the 2-fold iterated
integral (Chen, 1954, 1977) as:

S(𝑋)𝑖,𝑗𝑡 = ∫
𝑎<𝑡2<𝑡

S(𝑋)𝑖𝑡2 d𝑋
𝑗
𝑡2 = ∫
𝑎<𝑡1<𝑡2<𝑡

d𝑋 𝑖
𝑡1 d𝑋

𝑗
𝑡2 . (2.67)

Informally,we canproceed indefinitely andwe retrieve thepath signatureby collecting
all iterated integrals of the path𝑋 . A geometric intuitionof the signature canbe found
in (Chevyrev & Kormilitzin, 2016; Yang et al., 2017) where the first three iterated
integrals represent displacement, the Lévy area (T. J. Lyons, Picard&Lévy, 2007) and
volume of the path respectively.

Definition 9 (Signature) The signature of a path 𝑋 ∶ 𝑡 ∈ [𝑎, 𝑏] → ℝ𝑐, denoted
by S(𝑋)𝑡, is the infinite series of all iterated integrals of 𝑋 . Formally, S(𝑋)𝑡 is the
sequence of real numbers

S(𝑋)𝑡 = (1, S(𝑋)1𝑡 ,… , S(𝑋)𝑐𝑡 , S(𝑋)
1,1
𝑡 , S(𝑋)1,2𝑡 ,…), (2.68)

where the iterated integrals are defined as:

S(𝑋)𝑖1,…,𝑖𝑘
𝑡 = ∫

𝑎<𝑡𝑘<𝑡

… ∫
𝑎<𝑡1<𝑡2

d𝑋 𝑖1
𝑡1 … d𝑋 𝑖𝑘

𝑡𝑘 , (2.69)

and the superscripts are drawn from the setℳ of all multi-indexes,

ℳ = {(𝑖1,… , 𝑖𝑘) ∣ 𝑘 ≥ 1, 𝑖1,… , 𝑖𝑘 ∈ {1,… , 𝑐}}. (2.70)
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In practice we often apply a truncated signature up to a degree 𝑑, that is S𝑑(𝑋)𝑡,
defined as the finite collection of all terms of the signature up to multi-indices of
length 𝑑.

The path signature was originally introduced by Chen (1958) who applied it to
piecewise smooth paths and further developed by Lyons and others (Améndola, Friz
& Sturmfels, 2019; Boedihardjo et al., 2016; Hambly&Lyons, 2010; T. Lyons, 2014).
The number of elements in the path signature depends on the dimension of the input
𝑐 and the degree 𝑑, and is given by 𝑐𝑑. Therefore the time and space scalability of the
signature is rather poor (𝑂(𝑐𝑑)), but this can be alleviatedwith the use of kernelmeth-
ods as we will discuss in Section 5.3. The signature of a path has several interesting
properties which make it inherently interesting for applications in robotics.

Canonical featuremap for paths For all effects, the path signature can be thought
of as a linear feature map (Fermanian, 2021) that transforms multivariate sequential
data into an infinite length series of real numbers which uniquely represents a traject-
ory through Euclidean space. This is valid even for paths with missing or irregularly
sampled values (Boedihardjo et al., 2016; Hambly & Lyons, 2010).

Time-reversal We informally define the time-reversed path ⃖𝑋 as the original path
𝑋 moving backwards in time. It follows that the tensor product of the signatures
S(𝑋)𝑎,𝑏 ⊗ S( ⃖𝑋)𝑎,𝑏 = 1, which is the identity operation.

Uniqueness The signature of every non tree-like path is unique (Hambly & Lyons,
2010). A tree-like path is one in which a section exactly retraces itself. Tree-like paths
are quite common in real data (e.g. in cyclic actions) and this could be a limiting factor
of the signature’s application. However, it has been proven (Hambly & Lyons, 2010)
that if a path has at least one monotonous coordinate, then its signature is unique.
The main significance of this result is that it provides a practical procedure to guaran-
tee signature uniqueness by, for example, including a time dimension.

Invariance under reparametrisation An important difficulty when vying for di-
versity in trajectory optimisation is the potential symmetry present in the data. This
is particularly true when dealing with sequential data, such as, for instance, trajector-
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ies of an autonomous vehicle. In this case, the problem is compounded as there is an
infinite group of symmetries given by the reparametrisation of a path (i.e. continuous
surjections in the time domain to itself), each leading to distinct similarity metrics.
In contrast, the path signature acts as a filter that is invariant to reparametrisation re-
moving these troublesome symmetries and resulting in the same features as shown
in Figure 2.1.

Dimension is independent of path length The final property we will emphasise
is how the dimension of the signature depends on its degree and the intrinsic dimen-
sion of the path, but is independent of the path length. In other words, the signature
dimension is invariant to the degree of discretisation of the path.



All models are wrong, but some are
useful.

George Box

CHAPTER 3
Propagating model uncertainty in
MPC through moment matching

Robustness to model miss-specification and noisy sensor measurements is a critical
property for control systems operating in complex robotics applications. To address
such requirements many control strategies frameworks have been proposed of which
model predictive control is one of themost successful and popular (Camacho&Alba,
2013). MPChasbecome aprimary controlmethod for handlingnon-linear systemdy-
namics and constraints on input, output and state, taking into account performance
criteria. It originally gained popularity in chemical and processes control (Eaton &
Rawlings, 1991), being more recently adapted to various fields, such agricultural ma-
chinery (Ding et al., 2018), automotive systems (Di Cairano & Kolmanovsky, 2019),
and robotics (Kamel et al., 2017; Zanon et al., 2014). InMPC one seeks to iteratively
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find the solution of an optimisation problem for a receding finite time-horizon using
an approximate model of the system.

The development of powerful and more realistic simulators allows practitioners
to analyse and verify the performance of the controller against these variables before
the controller is deployed to the real robot. However, when the dynamic model is
given by complex simulators that incorporate differential equations and numerical
solvers there is little hope the equations can be reversed to reason about the paramet-
ers of the simulation to bestmatch the real behaviour of the system. Furthermore, the
simulator might abstract away the equations and solver from the user. Effectively, it
can be interpreted as a generative model that can be sampled from given a set of para-
meter values, but not inverted. In this chapter we pose the question, can we leverage
the power of simulators, treated as generative models, to design control strategies that
are robust to parameter uncertainty?

On the other hand, the application ofMPC to linear systems has been an active re-
search area for many decades with extensive deployments to many practical problems
(Barcelos & Camponogara, 2010; Mayne, 2014; Mesbah, 2016). Notably, the most
common setting for linear MPC application are tasks that involve trajectory tracking
or stabilisation. However, control tasks in reinforcement learning are usually more
complex and therefore less suitable to linearisation, motivating the use of non-linear
models (Recht, 2018). Another motivation for more complex models is the ability to
use ofmore expressive constraints, even if not directly involved in the physical process,
such as economic criteria (Bradford & Imsland, 2018). Despite its vast application in
the linear case, the use of MPC in non-linear systems continues to be an increasingly
active area of research in control theory (Mayne, 2014; Mesbah, 2016).

Recent work in the field has led to controllers that are able to incorporate non-
linear dynamics without relying on linear or quadratic approximations (G. Williams,
Drews, Goldfain, Rehg & Theodorou, 2018; G. Williams et al., 2017). However,
most MPC controllers still do not consider uncertainty in the parameters of their in-
ternal simulator for future trajectories. In addition, estimating parameters for the sys-
tem’s model usually requires large amounts of data from the real system, which can
be infeasible for some applications. Yet, whenever the stochastic system uncertainties
can be adequately modelled, it is more natural to explicitly take them into account
in the control design method itself. In StochasticModel Predictive Control (SMPC),



3.1 Related work 45

the uncertainty on the internal system dynamics is intrinsic to the optimal control
problem solved at every time step. This allows the controller to trade-off performance
and satisfaction of the constraints by regulating the joint probability distribution of
the system states and outputs (Mesbah, 2016).

In this chapter we make the following contributions: we develop a Stochastic
Non-linearMPCvariantwhich leverages recent advancements in likelihood-free infer-
ence to estimate both the uncertainty on the simulator parameters aswell as to propag-
ate it throughout the estimated trajectories. We call our method Double Likelihood-
free Inference Stochastic Control (DISCO). The posterior distribution for the para-
meters of the simulator is estimated by combining simulated data from generative
models and observations from the physical system. Using this posterior distribution
allows us to take into account the uncertainty about the system’s dynamics in the
decision making process during the control task. We proceed to show that the UT
(Julier &Uhlmann, 2004) provides a computationally efficient alternative when com-
pared to traditional Monte Carlo approaches to propagate the uncertainty from the
parameter space to the forward modelling of the trajectory rollouts. In short, Double
Likelihood-free Inference Stochastic Control (DISCO) can be seen as a variant of the
MPPI control algorithm (G. Williams, Drews, Goldfain, Rehg & Theodorou, 2018)
that considers the uncertainty in the system’s parameters in its internal trajectory sim-
ulations.

3.1 Related work

The use ofMPC in the control of linear systems ismature and has beenwidely studied
and applied to real systems. However, as seen in (Mayne, 2014), Non-linear Model
Predictive Control (NMPC) is still an open-research question, especially for systems
were uncertainty over parameters and constraints on controls and state-space are con-
sidered. The most common methods for controlling general non-linear systems are
based onNon-linear Programming (NLP) (Houska, Ferreau &Diehl, 2011) andDif-
ferential Dynamic Programming (DDP) (Erez et al., 2013). Both rely on approxim-
ations of dynamics and cost functions so that the online optimisation problem be-
comes tractable. However, these mainstream gradient-based MPC approaches have
some shortcomings. In the DDPmethod, the cost function must be smooth and it is
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notoriously difficult to include state constraints. Whereas withNLP, constraintsmay
be easily accounted for but a common issue is to define what to do when no feasible
solution is found.

In Mesbah, 2016, a family of SNMPC methods are discussed. In Tube-based
NMPCthe objective of the control policy is to ensure that the forward trajectorieswill
remain inside a desirable tube centred around a given trajectory, however the bound-
ary tube has to be computed offline (Rakovic et al., 2012). A multi-stage NMPC
approach has been suggested in which the uncertainty is modelled by a scenario tree
approach from stochastic programming. However, the procedure quickly becomes
intractable, since the size of the optimisation problem scales exponentially with the
time horizon, number of uncertainties and uncertainty levels (Thangavel et al., 2017).

InDhar andBhasin, 2018, a bounded and asymptotically convergent adaptive law
to refine parameter estimation is presented, but only for a linear MPC formulation.
In contrast, the method in (Sakhdari & Azad, 2018) decouples the transition model
for a Tube NMPC into a nominal model to impose system constraints and an adapt-
ive model used for the control optimisation. However, the adaptive model uses only
point-base estimates computed with least squares.

Althoughmany of the methods above focus on robustness, they do not incorpor-
ate uncertainty over the parameters of the transition function. In Bradford and Ims-
land, 2018, this is accounted for by using a SNMPCwith anUnscentedKalman Filter
to propagate the uncertainty over the state-space. However, this method requires an
optimisation with chance constraints to be solved online and, to keep the problem
feasible, the variance of the trajectories has to be artificially constrained. The most
similar approach is perhaps presented in (Arruda et al., 2017), where the MPPI for-
mulation is used in conjunction with a Ensemble of Mixture Density Networks (E-
MDN) to approximate the joint probability distribution of states and actions. This
is similar to our approach, however as the E-MDN tries to approximate the joint dis-
tribution of states and actions, it needs to be retrained entirely on new environments.

In contrast, the variant of MPPI proposed in this chapter uses the UT to propag-
ate the uncertainty over model parameters. This reduces the dimensionality of the
inference problem and results in a controller more adept to generalise to unseen situ-
ations. Moreover, unlike the stochastic optimisation strategies, our framework is also
amenable to the inclusionof constraints, as the control update law is based on sampled



3.2 Preliminaries 47

trajectories. As shown in (G. Williams, Drews, Goldfain, Rehg & Theodorou, 2018)
constraints may be applied directly to the control actions. On the other hand, we
can apply soft constraints to the state space through the cost function. This is easily
achieved as there is no need for the cost function to be differentiable and assures that
a feasible solution will exist.

Additionally, DISCO takes advantage of the BayesSim LFI framework presented
in (Ramos, Possas & Fox, 2019) to update themodel uncertainty periodically. Hence,
given a set of true observations after a specified episode length, we can update our
knowledge of the posterior probability density of parameters𝑝(𝛏 | 𝐱 = 𝐱𝑟). Thisway
our model can adapt to variations in the environment, e.g. adjust friction coefficients
in case of rain, or intrinsic to the transition function, e.g. change of weight distribu-
tion. In contrast to other inferencemethods, such as Variational Inference orMarkov
Chain Monte Carlo, where a likelihood function is needed, in LFI we compute an
approximated parametric distribution of the true posterior. Furthermore, BayesSim
was shown to be more data efficient than other LFI methods, such as Approximate
Bayesian Computation (Ramos, Possas & Fox, 2019).

3.2 Preliminaries

Once more, we consider the problem of controlling a discrete-time stochastic system
described by a non-linear set of difference equations of the form:

𝐱𝑡+1 = 𝑓(𝐱𝑡, 𝐯𝑡) (3.1)

where𝑓 is the transition function,𝐱𝑡 ∈ ℝ𝑛 denotes the system states, and𝐯𝑡 ∈ ℝ𝑚 is
the control input at a given time 𝑡. Note that there is nodirect control over the variable
𝐯, but we are able to control its mean𝐮. In other words, 𝐯 ∼ 𝒩(𝐮, 𝚺) is the resulting
change of an applied control signal with the addition of an stochastic component.
This assumption is akin to amultiplicative noise model which is common in robotics,
where lower-level actuator controllers are usually present, but also takes into account
a bespoke amount of exploration in our control actions. As such, in practice, 𝚺 is
a hyper-parameter of our control system that may need to be adjusted. Finally, we
assume a finite time-horizon𝐻, and that the control frequency is given.
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More generally, we are interested in theproblemwhere the real transition function
𝑓(𝐱𝑡, 𝐯𝑡) is approximated by a parameterised non-linear forward model 𝑓(𝐱𝑡, 𝐯𝑡 | 𝛏).
In what follows, this approximated model will be represented as 𝑓𝛏 for compactness
and we may rewrite Eq. (3.1) as:

𝐱𝑡+1 = 𝑓𝛏(𝐱𝑡, 𝐯𝑡). (3.2)

This formulation is extremely useful in practice aswe usually do not have access to
the real transition function or, even if we do, in many cases we may want to use a sim-
plified version of the system dynamics for performance reasons. Therefore, Eq. (3.2)
provides not only an approximated version of Eq. (3.1), but one that can be modi-
fied and updated through a fixed set of parameters 𝛏. As we will see throughout the
chapter, this parametric approach will allow us to reason over model uncertainty and
its effects on the control policy.

As seen in Section 2.8, at its core, model-based control relies on an approximated
transition function to optimise the control actions over a given control horizon. In
general this transition function is defined a priori using fundamental physical prin-
ciples and domain knowledge or empirically by applying system identification tech-
niques (Simchowitz et al., 2018) or learning methods from data (Abbeel, Coates &
Ng, 2010; Schaal, 1997; Simchowitz et al., 2018). Typically, these methods provide
deterministic transition functions that do not incorporate model uncertainty and are
invariant over time. As discussed by G. Williams et al. (2017), the closed-loop RHC
offers a degree of robustness to model uncertainties, but the compounding error of
poor predictions along the control horizon will reduce the stability margins of the
system.

Using the methods outlined in Section 2.10, in this chapter we propose a frame-
work to apply the MPPI stochastic control formulation to problems where the para-
meters of the transition function 𝑓𝛏 are unknown, but belong to a problem depend-
ent prior distribution, 𝑝(𝛏). Additionally, we will make use of a LFI method called
BayesSim (Ramos, Possas&Fox, 2019) to refine our knowledge of themodel paramet-
ers as we interact with the environment and gather new observations. The intuition
behind this approach is that, by refining our knowledge of the parameters of an oth-
erwise well-defined transition function, we will capitalise not only on the application
domain knowledge, but also on the adaptability of inference-free learning methods.
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Since 𝛏 represents a plausible range of unknown physical parameters, e.g. mass or fric-
tion coefficient, it is straightforward to incorporate domain knowledge to this formu-
lation. Alternatively, an improper uninformative prior may be used when no assump-
tions are given. Finally, by updating our knowledge of 𝑝(𝛏 | 𝐱𝑟) given observed data,
we are more likely to cope with problems such as covariate shift (Ganegedara, Ott &
Ramos, 2016) and the reality gap (Chebotar et al., 2018) discussed in Section 2.11.

3.3 Problem setup

Given a forward model with parameters 𝛏 distributed according to 𝑝(𝛏), trajectories
can be obtained from it by first sampling 𝛏 and generating rollouts by propagating
the state-action pairs through the transition function. Although the parameters are
stochastic, we assume they are invariant throughout the control horizon for a given
trajectory. This is a reasonable assumption as the latent parameters are usually stable
physical quantities and the update frequency of the control loop is significantly faster
than their time constants. For instance, a given systemmay change its mass over time,
but onmost cases this changewill be negligible during a single pass of the control loop.
In this situation, the optimal distribution given in Eq. (2.56) becomes:

𝑞∗(𝑉, 𝛏) = 1
𝜂 exp(−

1
𝛼 𝒮𝛏(𝑉)) 𝑝(𝑉 | 𝛏) 𝑝(𝛏), (3.3)

where we overload the notation to emphasise the dependence of 𝒮(𝑉, 𝛏) on the now
stochastic 𝛏. However, as 𝑉 and 𝛏 are independent1, we can drop the conditioning in
𝑝(𝑉|𝛏) = 𝑝(𝑉). As a result, our control law can be expressed as:

𝐮𝑡 = 𝔼𝑞(𝑈̂)[𝔼𝑞(𝛏)[𝜔𝛏(𝑉)𝐯𝑡]] = 𝔼𝑞(𝑈̂,𝛏)[𝜔𝛏(𝑉)𝐯𝑡], (3.4)

where 𝜔𝛏 shows the dependence on 𝛏 and we applied the law of total expectation to
get the resulting equivalence. Eq. (3.4) implies that to compute future control actions,
our update rule now has to sample jointly from the distributions of 𝑉 and 𝛏.

1We can safely assume that the parameters of the simulator, 𝛏, do not interfere with the system
input,𝐯, and encapsulate all stochasticity into the control mean,𝐮, in the unlikely case such influence
exists in practice.
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3.4 Propagation of uncertainty over the state-space
dynamics

If we sample sufficiently from 𝑝(𝑉, 𝛏), we are able to reconstruct the joint distribu-
tion 𝑞(𝑉, 𝛏) and compute our control updates. In lower dimensional problems, this
Monte Carlo approach may be sufficient and constitutes the simplest form of uncer-
tainty propagation. However, wenote that the increased dimensionality of the sample
space requires the number of samples to grow combinatorially. This combinatorial
growth can severely compromise the applicability of our method and therefore we
need a more scalable way of propagating model uncertainty over time. As such, we
resort to the Unscented Transform (Julier & Uhlmann, 2004) as a more efficient ap-
proach to propagate the uncertainty of 𝛏 throughout the state-space.

Once the sigma-points are computed, they are applied recursively to the transition
function 𝑓𝛏 to compute the cost 𝒮(𝑉 | 𝛏 = 𝛘𝑖) for 𝑖 ∈ {1,… , 𝐿}. In practice,
since we assume the simulators parameters are stationary during a rollout, the sigma
points on the state space are given by 𝛄 = H[𝛘]. To ensure the trajectory cost of each
sigma-point can be summarised using the UT, it is necessary to apply the same action
sequence 𝑉 sampled i.i.d. to all points. Effectively, this means we need to replicate
𝐿 times each action sequence 𝑉 during our update step. Finally, the mean trajectory
cost is given by

𝒮(𝑉) =
𝐿
∑
𝑖=0

𝜛𝑚
𝑖 𝒮(𝑉 | 𝛏 = 𝛄𝑖), (3.5)

and used in (3.4) for the control law update.

3.5 Updating the parameter prior distribution

At each time step we are computing a new control action 𝐮𝑡, applying it to our en-
vironment and collecting new observations 𝐱𝑟𝑡+1. Hence, we can collect the pairs of
[𝐮𝑡, 𝐱𝑟𝑡] in a trajectory dataset𝒟, up to a specified time-length. The trajectory𝒟may
be used as input to estimate the posterior probability of 𝑝(𝛏 | 𝒟). Many approaches
could be used to perform such inference, in this chapter we follow the steps ofRamos,
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Possas and Fox (2019) and use modern LFI techniques to update the parameters us-
ing a black-box simulator to update the posterior estimate once sufficient data has
been aggregated in 𝒟. In this approach, the posterior distribution over parameters
𝑝(𝛏 | 𝒟) is approximated by anMixture Density Network (MDN) parameterised by
𝜙 denoted by 𝑞𝜙(𝛏 | 𝒟).

Note that the posterior inference step and the online control-loop need not be
executed in tandem. As long as the observations are collected in a trajectory𝒟, the
model update can be performed separately and in parallel. In this case, we keep using
the prior 𝑝(𝛏) until the approximated posterior 𝑞𝜙(𝛏 | 𝒟) is available.

Additionally, the unscented transform requires as an input a mean vector 𝛍𝛏 and
covariance matrix 𝚺𝛏 for the parameters. Therefore, these have to be retrieved from
𝑞𝜙(𝛏 | 𝒟), or, alternatively, the highest weighted Gaussian may be selected if it is
above a specified threshold. The complete method is presented in Algorithm 2.

3.6 Experimental results

3.6.1 Inverted pendulum swing-up task

In this classic control task the controller goal is to swing and hold a pendulumupright
using a torque command applied directly to the joint of a rigid-arm. We usedOpenAI
Gym as the physics simulator (Brockman et al., 2016), and, for each episode, always
set the pendulum initial state to the downright position and at rest. The state cost
function usedwas𝒞 inst = 50 cos(𝜃 − 1)2+ ̇𝜃2, and the terminal cost function𝒞 term

was set to zero. The inverse control temperature 𝛼 was set at 10 and the control au-
thority𝚺 at 1. We have also defined the number of sampled trajectories𝑁𝐮 = 500 and
the control horizon 𝐻 = 30. As usual, the minimum control offset term 𝐮̃ was set
at zero since this defines the rest state for the controller. The Unscented Transform
parameters where chosen as 𝛼 = 0.5, 𝜅 = 0, and 𝜊 = 2. For more details on the
experiment parameters, please refer to Appendix A.

The results presented in Fig. 3.1 are the mean cost over time for 50 iterations,
for a baseline case using MPPI, DISCO using UT to propagate uncertain rollouts,
and DISCO with direct Monte Carlo sampling. It is important to highlight that the
baseline case has perfect knowledge of the dynamical system, whereas both instances
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Algorithm 2: Double Likelihood-free Inference Stochastic Control
1 Controller Hyperparameters: 𝛼, 𝚺, 𝐮̃,𝒞 inst,𝒞 term;
2 UT Hyperparameters: 𝜈, 𝜅, 𝛼, 𝜊;
3 Given: 𝑓𝛏, 𝑝(𝛏), 𝑈0, 𝐻, 𝑁𝐮, 𝐿,𝒟;

4 Update posterior distribution;
5 𝑞𝜙(𝛏 | 𝒟) ← BayesSim(𝒟);
6 𝑝(𝛏) ← 𝑞𝜙(𝛏 | 𝒟);
7 while task not complete do
8 𝐱0 ←GetStateEstimate();
9 for 𝑘 ← 0 to𝑁𝐮 − 1 do
10 Sample 𝑃𝑘 = (𝜌𝑘0…𝜌𝑘𝐻−1), for 𝜌𝑘𝑡 ∼ 𝒩(0, 𝚺);
11 for 𝑖 ← 1 to 𝐿 do
12 𝛏𝑖 ← 𝛏 ∼ 𝑝(𝛏) if Monte Carlo, or 𝛘𝑖 if UT;
13 𝐱 ← 𝐱0;
14 for 𝑡 ← 1 to𝐻 do
15 𝐱 ← 𝑓𝛏(𝐱, 𝐯𝑡, 𝛏𝑖);
16 𝒮𝑘

𝑖 += 𝒞 inst(𝐱) + 𝛼𝐮𝖳𝑡−1𝚺−1(𝛒𝑡−1);
17 end
18 𝒮𝑘

𝑖 += 𝒞 term(𝐱);
19 end
20 𝒮𝑘 = ∑𝑙

𝑖=1𝜛𝑚
𝑖 𝒮𝑘

𝑖 ;
21 end
22 𝒞̃ ← min𝒮𝑘;
23 𝜂 ← ∑𝑁𝐮

𝑘=1 exp(−
1
𝛼
(𝒮𝑘−𝒞̃));

24 for 𝑘 ← 1 to𝑁𝐮 do
25 𝜔𝑘 ←

1
𝜂
exp(− 1

𝛼
(𝒮𝑘−𝒞̃));

26 end
27 for 𝑡 ← 0 to𝐻 − 1 do
28 𝐮𝑡 += ∑𝑁𝐮−1

𝑘=0 𝜔(𝑃𝑘)𝜌𝑘𝑡 ;
29 end
30 SendToActuators (𝐮0);
31 Append (𝒟, [𝐱0, 𝐮0]);
32 RollControlActions (𝐮);
33 end
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ξ ~ U(0.1, 5.0)ξ
ξ ~ MDN

MC:

ξ ~ U(0.1, 5.0)MC:

ξ ~ MDN
UT:

UT:

Ground-truth:

Figure 3.1: Mean cost over time for the inverted pendulum experiment. Shaded
area represents one standard deviation. Three models where evaluated: a standard
MPPI with access to the true system parameters (in green); DISCO using unscen-
ted transform with a prior distribution over parameters (in red) and with an updated
posterior distribution (in magenta); and DISCO usingMonte Carlo sampling with a
prior distribution (in blue) and an updated posterior (in black).

using DISCO are using distributions for the length and mass of the arm, as will be
discussed shortly. Note that the oscillatory behaviour of the cost function is expec-
ted, as the controller has insufficient authority to balance the pendulum without the
swinging action to increase the momentum.

All models used the same hyperparameters described above, with the exception of
the 𝑁𝐮 for the case of Monte Carlo sampling. In order to ensure a fair comparison
of the performance of the controller when using UT against Monte Carlo, for the
case where Monte Carlo is used we increment the amount of trajectories sampled by
a factor equal to the number of sigma points 𝐿 used by the UT. In other words, for
the Monte Carlo controller we have effectively𝑁𝐮 = 2500 trajectories.

The unknownparameters in this examplewere the length of the arm and themass
of the pendulum. As a prior, we assumed an uniform distribution between 0.1 and 5
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for both parameters. The posterior distribution was given by a mixture of Gaussians
with 5 components, trained using a reference control policy. Note that in our simu-
lations, both models shared the same posterior distribution estimate. Once trained
and conditioned on the observed data, the resulting mixture had a mean estimate for
the length of 0.89m and 0.9 kg for mass. The covariance matrix was diagonal, and
the variance was 0.01m2 for the length estimate and 0.03 kg2 for mass. One of the
components of the mixture was dominant with a weight of 0.979 and was used as
reference for the UT.

DISCO with UT outperforms Monte Carlo sampling both with an uninform-
ative prior and inferred posterior. Noticeable also, the performance of UT with the
posterior distribution is better than the baseline model. This is explainable by the
fact that the parameter randomisation introduced by the sigma-points provides more
information in the trajectory evaluation. This way, trajectories that are borderline
to a higher cost state captured by one of the sigma points get penalised. Effectively,
UT works like an automatic calibration of the control temperature, when the prior
is broad, many trajectories are considered in the control update average. Conversely,
when the posterior gets refined, the controller is more confident to select fewer traject-
ories.

3.6.2 Skid-steer robot

This section presents experimental results with a physical robot equipped with a skid-
steeringdrivemechanism (Fig. 3.2). Wemodelled the kinematics of the robotbasedon
a modified unicycle model, which accounts for skidding via an additional parameter
(Kozłowski & Pazderski, 2004). The parameters to be estimated via BayesSim are the
robot’s wheel radius, 𝑟w, axial distance, i.e. the distance between the wheels, given
by 𝑎w, and the displacement of the robot’s Inertial Centre of Rotation (ICR), 𝑥ICR,
from the robot’s centre. A non-zero value on the latter affects turning by sliding the
robot sideways. To estimate the parameters, the robot was driven manually around
a circle and had its trajectory data recorded. From the trajectory data we computed
cross-correlation summary statistics as (𝑥, 𝑦, 𝛥𝑥, 𝛥𝑦), which capture the centre of tra-
jectory and the average linear velocity. In simulation, the wheel speed commands sent
to the robot were repeated 𝑁 = 1000 for different parameter settings sampled from
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Figure 3.2: TheWombot, a custom built skid-steer robot used inmany experiments.
The robot is speed-controlled with separate set-points for left and right wheels speed.

a uniform prior, 𝑥ICR ∼ 𝒰(0, 0.5), 𝑟w ∼ 𝒰(0, 0.5), 𝑎w ∼ 𝒰(0.1, 0.5).
Figure 3.3 presents the resulting marginal estimates from BayesSim for each para-

meter of the robot’s kinematic model. For comparisons, physical measurements in-
dicate a 𝑟w of around 0.06m and 𝑎w of around 0.31m. Measuring 𝑥ICR, however,
involves a laborious process, which would require different weight measurements or
many trajectories from the physical hardware (Yi et al., 2009). As we are only apply-
ing a relatively simple kinematic model of the robot to explain the real trajectories,
the effects of the dynamics and ground-wheel interactions are not accounted for. As
a result, BayesSim tries to compensate for the miss-specifications in some parameters
estimation, such as the axial distance. This explains the larger variation in 𝑎w, and
consequently 𝑥ICR.

The control task was defined as following a circular path at a constant tangen-
tial speed. Costs were set to make the robot follow a circle of 0.75m radius with

𝒞(𝐱𝑡) = √𝑑2𝑡 +(𝐱̇𝑡 − 𝐱̇0)
2, where 𝑑𝑡 represents the robot’s distance to the edge

of the circle and 𝐱̇0 = 0.2ms−1 is a reference linear speed. We performed exper-
iments sampling from the uniform prior over the parameters 𝑝(𝛏), sampling from
the posterior 𝑞𝜙(𝛏 | 𝒟), and using only a point estimate set to 𝑥ICR = 0.12m,
𝑟w = 0.06m and 𝑎w = 0.47m, which was adjusted offline to reduce simulation
error. For clarity, instead of the noisy raw costs, we present the mean instant cost, i.e.
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xICR

Figure 3.3: Estimated parameters found by BayesSim for the Wombot skid-steer
robot after analysing the manually collected dataset. Parameters such as 𝑥ICR and 𝑎w
can be confounding factors and therefore the difficulty inmeasuring𝑥ICR impacts the
uncertainty of 𝑎w. In order to measure 𝑥ICR with higher precision, a higher-fidelity
physics model needed to be used.

𝒞 inst𝑡 =
1
𝑡
∑𝑡

𝑖=1 𝒞 inst(𝐱𝑖) and the executed trajectories in Fig. 3.4. For the complete
experiment parameters please refer to Appendix A.

We see that considering parameter uncertainty via DISCO provides significant
performance improvements over the baseline MPPI algorithm running with a point
estimate. Although, in term of costs, both the prior and posterior estimates offer sim-
ilar performance, we see the advantages of using the parameter posterior estimates in
the trajectories plot, where the overshooting happening on some portions of the path
is drastically reduced. The latter can be explained by the prior allowing kinematic
parameters candidates that are too far from the true values. Additionally, refining
the posterior distribution allows the system to adapt to new configurations or drift
in the model parameters. Lastly, a noisier speed control explains the gap between the
baseline MPPI and the DISCO methods, despite the similar performances in terms
of path tracking.
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Figure 3.4: Experimental results of applying DISCO to the physical robot.
Note how the controller is able to cope relatively well with a broad prior distribution
overmodel parameters. Moreover, once the posterior distribution is refined, the qual-
ity of the trajectories improves significantly, with reduced overshooting and quality
comparable to our baseline case with fine-tuned parameters.

3.7 Summary

In this chapter we presented a first step towards incorporating model uncertainty
and sophisticated Bayesian inference methods to stochastic model based control. We
showed how uncertainty over parameters may be formally incorporated into an SN-
MPC controller and evaluated methods of propagating the uncertainty into traject-
ory rollouts. This extension to Model Predictive Path Integral provides the building
blocks of an adaptive controller framework, more resilient to issues arising from real-
ity gap and covariate shift. As shown in the robotic experiments, incorporating un-
certainty may lead to a more accurate assessment of the environment and increase the
performance.

The unscented transform proved an efficient way to propagate uncertainty, redu-
cing the burden on trajectory samples. Since there is no assumption on the smooth-
ness of the cost function and no differentiability requirement, we are able to impose
hard-penalties on the violation of soft constraint. It follows that the combined effect
is similar to a chance constraintwhere the resulting trajectories from sigma points that
break some of the desired constraints are heavily penalised. It is worth noticing, that
this deterministic method of estimating the moments of the parameter distribution
allow the task of sampling actions to be parallelised asynchronously and aggregated
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when computing the final cost.
However, there is a trade-off between the efficiency gained in sampling and accur-

acy when using moment matching. More precisely, we are approximating the pos-
terior distribution of trajectories over control policies and model parameters with an
uni-modal Gaussian distribution whose first and second order moments match those
of the full posterior distribution. Intuitively, we expect that the Unscented Trans-
form should suffer whenever the posterior distribution is multi-modal, as is the case
inmany practical instances. InChapter 4wewill explore these limitations and discuss
alternatives.

Finally, we showed how LFI is a powerful tool to refine the estimation of the pos-
terior distribution. As the inference is based on the same transition function 𝑓𝛏 used
by the controller, it may compensate overly simplified models of the environment.
This is often the case, since the internal model used by MPC needs to be efficient
in order to generate a large number of real-time rollouts. Therefore, in the follow-
ing chapters we want to explore pathways to efficiently retrain this estimate online so
practical experiments with time-variant parameters may be conducted. This is a cru-
cial step towards generalisation of control policies for autonomous robots operating
under varying environments and configurations. Crucially, by combining parameter
estimation and gradient-free control methods, DISCO may also be used with black-
box simulators, such as data-driven function approximators, as long as we are able to
sample efficiently from them.



Choices are the hinges of destiny.

EdwinMarkham

CHAPTER 4
Online inference of actions and

model parameters

In Chapter 3 we have seen how real robotics applications are invariably subjected
to uncertainty arising from either unknown model parameters or stochastic envir-
onments. We have also discussed how MPC is one of the most used approaches to
design controllers robust to such uncertainty. In its essence, MPC relies on different
optimisation strategies to find a sequence of actions over a given control horizon that
minimises an optimality criteria defined by a cost function.

Furthermore, despite its success in practical applications, most MPC approaches
do not take uncertainty into account. Traditional dynamic-programming approaches
to MPC, such as Iterative Linear Quadratic Regulator (iLQR) (Tassa, Erez & To-
dorov, 2012) and DDP (Tassa, Mansard & Todorov, 2014), rely on a differentiable
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and deterministic cost function and dynamics model. Stochastic Optimal Control
variants, such as Iterative Linear Quadratic Gaussian (iLQG), by Todorov and Wei-
wei Li (2005) and Probabilistic Differential Dynamic Programming (PDDP), by Pan
and Theodorou (2014), can accommodate stochastic dynamics, but only under sim-
plifying assumptions such as additive Gaussian noise. These approaches are generally
less effective in addressing complex distributions over actions, and it is unclear how
these methods should incorporate model uncertainty, if any.

In contrast, sampling-based control schemes have gained increasing popularity for
their general robustness to model uncertainty, ease of implementation, and ability to
contend with sparse cost functions (G. Williams, Goldfain et al., 2018). In sampling
based Stochastic Optimal Control (SOC), the optimisation problem is replaced by a
sampling-based algorithm that tries to approximate an optimal distribution over ac-
tions (G. Williams, Aldrich & Theodorou, 2017). We have seen in Chapter 3 how
approaches like DISCO have shown promising results in several applications and ad-
dresses some of the disadvantages of traditional MPC approaches, however it too has
drawbacks. Most notably, the posterior distribution is only approximated through
moment-matching, resulting in a uni-modal estimate that may inadequately capture
the complexity of the true posterior.

In recent work Lambert et al. (2020) and Okada and Taniguchi (2020) reformu-
lated the MPC problem as a Bayesian inference task whose goal is to estimate the
posterior distribution over control parameters given the state and observed costs. To
make such problem tractable in real-world applications, variational inference has been
used to approximate the optimal distribution. These approaches are better suited at
handling the multi-modality of the distribution over actions, but do not attempt to
dynamically adapt to changes in the environment.

Conversely, previous work has demonstrated that incorporating uncertainty in
the evaluation of SOC estimates can improve performance (Barcelos et al., 2020), par-
ticularly when this uncertainty is periodically re-estimated (Possas et al., 2020). Al-
though this method is more robust to model mismatch and help address the sim-to-
real gap, the strategy relies on applying moment-matching techniques to propagate
the uncertainty through the dynamical system which is approximated by a Gaussian
distribution. This diminishes the effectiveness of the method under settings where
multi-modality is prominent.
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Step 0
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Figure 4.1: Online parameter estimation for autonomous ground vehicles.
DuSt-MPC is able to reason and update distributions over system parameters in real-
time. The ridge plot shows the distribution over 𝑥ICR for the Wombot (see Fig. 3.2)
at different time steps. The load mass on the robot is suddenly increased during exe-
cution and the parameter distribution estimate quickly changes to include a second
mode that better explains the new dynamics. Our particle-based control scheme can
leverage such multi-modal distribution and hence adapt to dynamically changing en-
vironments.

In this chapter, we aim to leverage recent developments in variational inference
withMPC for decision-making under complex multi-modal uncertainty over actions
while simultaneously estimating the uncertainty over model parameters. We propose
a Stein variational stochastic gradient solution that models the posterior distribution
over actions and model parameters as a collection of particles, representing an impli-
cit variational distribution. These particles are updated sequentially, online, in par-
allel, and can capture complex multi-modal distributions. We call this method Dual
SteinVariational InferenceMPC, orDual SteinVariationalModel PredictiveControl
(DuSt-MPC) for conciseness1.

1Note, that dual is used in the sense of a doubly stochastic problem, i.e. inferring a distribution
over policies and system dynamics, and not as a duality problem in optimisation.
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(a) SVMPC trajectories (baseline) (b) DuSt-MPC trajectories

Step 0
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(c) Ridge plot of mass distribution (in kg)

Figure 4.2: Point-mass navigation task. The plots shows trajectories from the start
position (red dot) towards the goal (red star). Top-Left: Trajectories executed by
SVMPC. Note that, as the mass of the robot changes, the model mismatch causes
manyof the episodes to crash (xmarkers). Top-Right: Trajectories executedbyDuSt-
MPC. Depending on the state of the system when the mass change occurs, a few tra-
jectories deviate from the centre path to avoid collisions. A few trajectories are trun-
cated due to the fixed episode length. Bottom: Ridge plot of the distribution over
mass along several steps of the simulation. The vertical dashed line denotes the true
mass. Mass is initially set at 2 kg, and changed to 3 kg at step 100.
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Specifically, the main contributions of this chapter are:

• We propose a principled Bayesian solution of introducing uncertainty over the
model parameters in Stein variational MPC and empirically demonstrate how
this can be leveraged to improve the control policy robustness;

• We introduce a novel method to extend the inference problem and simultan-
eously optimise the control policywhile refining our knowledge of the environ-
ment as new observations are gathered. Crucially, by leveraging recent advance-
ments in sequential Monte Carlo with kernel embedding, we perform online,
sequential updates to the distribution over model parameters which scales to
large datasets;

• By capturing the uncertainty on true dynamic systems in distributions over a
parametric model, we are able to incorporate domain knowledge and physics
principles while still allowing for a highly representative model. This simplifies
the inference problem and drastically reduces the number of interactions with
the environment to characterise the model.

We implement the algorithm on a real Automated Guided Vehicle (AGV), (see
Fig. 3.2), illustrating the applicability of the method in real time. Experiments show
how the control and parameter inference are leveraged to adapt the behaviour of the
robot under varying conditions, such as changes in mass. We also present simulation
results on an inverted pendulum and an 2-D obstacle grid, see Fig. 4.2, demonstrating
an effective adaptation to dynamic changes in model parameters.

This chapter is organised as follows. In Section 4.1 we review related work, con-
trasting the proposed method to the existing literature. The main method is presen-
ted from Sections 4.2 to 4.5 and relies on the foundational knowledge presented in
Sections 2.6 and 2.9. In Section 4.6 we present a number of real and simulated exper-
iments, followed by relevant conclusions in Section 4.7.

4.1 Related work

Sampling-based approaches for stochasticMPC have shown to be suitable for a range
of control problems in robotics (Wagener et al., 2019; G. Williams, Drews, Goldfain,
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Rehg & Theodorou, 2018). At each iteration, these methods perform an approxim-
ate evaluation by rolling-out a stochastic policywithmodelled systemdynamics over a
finite-lengthhorizon. Theoptimisation stepproceeds toupdate the policy parameters
in the direction that minimises the expected cost and a statistical distance to a refer-
ence policy or prior (Wagener et al., 2019). This can equivalently be interpreted as a
statistical inference procedure, where policy parameters are updated in order tomatch
an optimal posterior distribution (Agarwal et al., 2013; Lambert et al., 2020; G. Wil-
liams, Drews, Goldfain, Rehg & Theodorou, 2018). This connection has motivated
the use of common approximate inference procedures for SOC. MPPI (G. Williams,
Drews, Goldfain, Rehg & Theodorou, 2018; G. Williams, Aldrich & Theodorou,
2017) and the Cross Entropy Method (CEM) (Botev et al., 2013), for instance, use
importance sampling to match a Gaussian proposal distribution to moments of the
posterior. VI approaches have also been examined for addressing control problems
exhibiting highly non-Gaussian or multi-modal posterior distributions. This family
of Bayesian inference methods extends the modelling capacity of control distribution
to minimise a Kullback-Leibler divergence with the target distribution. Traditional
VI methods such as Expectation-Maximisation have been examined for control prob-
lems (Okada & Taniguchi, 2020; Watson, Abdulsamad & Peters, 2020), where the
model class of the probability distribution is assumed to be restricted to a parametric
family (typically Gaussian Mixture Models). More recently, Lambert et al. proposed
to adapt SVGD (Liu & Wang, 2016) for use in model predictive control. Here, a
distribution of control sequences is represented as a collection of particles. The res-
ulting framework, Stein Variational Model Predictive Control (SVMPC), adapts the
particle distribution in an online fashion. The non-parametric representation makes
the approach particularly suitable to systems exhibiting multi-modal posteriors. In
the present work, we build on the approach in (Lambert et al., 2020) to develop an
MPC frameworkwhich leverages particle-based variational inference to optimise con-
trols and explicitly address model uncertainty. Our method simultaneously adapts a
distribution over dynamics parameters, which we demonstrate improves robustness
and performance on a real system.

Model predictive control is a reactive control scheme, and can accommodatemod-
elling errors to a limited degree. However, its performance is largely affected by the
accuracy of long-range predictions. Modelling errors can compound over the plan-
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ning horizon, affecting the expected outcome of a given control action. This can be
mitigated by accounting for model uncertainty, leading to better estimates of expec-
ted cost. This has been demonstrated to improve performance in stochastic optimal
controlmethods andmodel-based reinforcement learning (Deisenroth&Rasmussen,
2011; Pan & Theodorou, 2014). Integrating uncertainty has typically been achieved
by learning probabilistic dynamics models from collected state-transition data in an
episodic setting, where the model is updated in between trajectory-length system ex-
ecutions (Chua et al., 2018; Okada & Taniguchi, 2020; Ramos, Possas & Fox, 2019;
Wabersich & Zeilinger, 2020). A variety of modelling representations have been ex-
plored, including Gaussian processes (Deisenroth & Rasmussen, 2011), neural net-
work ensembles (Chua et al., 2018), Bayesian regression, andmeta-learning (Harrison,
Sharma & Pavone, 2020). Additionally, Ramos, Possas and Fox (2019) used black-
box simulators to estimate the posterior distributions of physical parameters given
real-world observations.

Recent efforts have examined the online setting, where a learned probabilistic
model is updated based on observationsmade during execution (Abraham et al., 2020;
Fan, Agha & Theodorou, 2020; Fisac et al., 2019). The benefits of this paradigm are
clear: incorporating new observations and adapting the dynamics in situ will allow
for better predictions, improved control, and recovery from sudden changes to the
environment. However, real-time requirements dictate that model adaptation must
be done quickly and efficiently, and accommodate the operational timescale of the
controller. This typically comes at the cost of modelling accuracy, and limits the ap-
plication of computationally-burdensome representations, such as neural networks
and vanilla GPs. Previous work has included the use of sparse-spectrum GPs and ef-
ficient factorization to incrementally update the dynamics model (Pan et al., 2017).
In (Harrison, Sharma & Pavone, 2020), the authors use a meta-learning approach to
train a network model offline, which is adapted to new observations using Bayesian
linear regression operating on the last layer. However, these approaches are restric-
ted to Gaussian predictive distributions, and may lack sufficient modelling power for
predicting complex, multi-modal distributions.

Perhaps most closely related to our modeling approach is the work by Abraham
et al. (2020). The authors propose to track a distribution over simulation parameters
using a sequentialMonteCarlomethod akin to a particle filter. The set of possible en-
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vironments resulting from the parameter distribution is used by an MPPI controller
to generate control samples. Each simulated trajectory rollout is then weighted ac-
cording to the weight of the corresponding environment parameter. Although such
an approach canmodelmulti-modal posterior distributions, we should expect similar
drawbacks to particle filters, which require clever re-sampling schemes to avoid mode
collapse and particle depletion. Our method also leverages a particle-based represent-
ation of parameter distributions, but performs deterministic updates based on new
information and is more sample efficient thanMonte Carlo sampling techniques.

In the next sections, we present our MPC approach for joint inference over con-
trol and model parameters. We begin by formulating optimal control as an inference
problem and address how to optimise policies in Section 4.4. Later, in Section 4.5, we
extend the inference to also include the system dynamics. A complete overview of the
method is shown in algorithm Algorithm 3.

4.2 MPC as Bayesian inference

MPC can be framed as a Bayesian inference problem where we estimate the posterior
distribution of policies, parameterised by 𝛉𝑡, given an optimality criterion. Note how
we index the policy parameters by 𝑡 to indicate that they may vary over time. Now
let 𝒪 ∶ 𝒫𝒳 → {0, 1} be an optimality indicator for a trajectory 𝛕 ∈ 𝒫𝒳 such that
𝒪[𝛕] = 1 indicates that the trajectory is optimal. Now we can apply Bayes’ Rule and
frame our control problem as estimating:

𝑝(𝛉𝑡 | 𝒪) ∝ 𝑝(𝒪 | 𝛉𝑡) 𝑝(𝛉𝑡) = 𝑝(𝒪, 𝛉𝑡). (4.1)

In essence, optimality is a subjective termwhichmight be difficult to define. How-
ever, we may agree that in the MPC formulation the optimality of a trajectory is re-
lated to the task-dependent cost functional defined in Section 2.8. A reasonable to
way to quantify𝒪[𝛕] is tomodel it as a Bernoulli random variable conditioned on the
trajectory 𝛕, allowing us to define the likelihood 𝑝(𝒪 ∣ 𝛉𝑡) as:

𝑝(𝒪[𝛕] = 1 | 𝛕) ≔ exp(−𝛼𝒞[𝛕]), (4.2)

where 𝛼 ∈ ℝ+ is a constant and 𝒞[𝛕] is the cost functional measuring optimality.
Since𝒪 is an indicator functional over trajectories, it also defines a set of optimal tra-
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jectories:
𝒫∗
𝒳 ≔ {𝛕 ∈ 𝒫𝒳 || 𝒪[𝛕] = 1} ⊂ 𝒫𝒳. (4.3)

We can measure the probability of generating trajectories in the optimal set 𝒫∗
𝒳

with a policy 𝜋𝛉𝑡 as:

P(𝒫∗
𝒳 | 𝛉𝑡) = ∫

𝒫𝒳

𝑝(𝒪[𝛕] = 1, 𝛕 | 𝛉𝑡) d𝛕

= ∫
𝒫𝒳

𝑝(𝒪[𝛕] = 1 | 𝛕) 𝑝(𝛕 | 𝛉𝑡) d𝛕.
(4.4)

Note that the above P(𝒫∗
𝒳 | 𝛉𝑡) denotes the probabilitymeasure, not the probability

density, of the set 𝒫∗
𝒳 . In practice, we cannot integrate over 𝒫𝒳 , but we can generate

trajectories via independent rollouts 𝛕𝑖 ∼ 𝑝(𝛕 | 𝛉𝑡), for 𝑖 ∈ {1,… ,𝑁}. We then
define and approximate the parameters likelihood as

𝑝(𝒪 | 𝛉𝑡) ≔ P(𝒫∗
𝒳 | 𝛉𝑡)

= 𝔼𝛕∼𝑝(𝛕∣𝛉𝑡)[𝑝(𝒪[𝛕] = 1 | 𝛕)]

≈ 1
𝑁

𝑁
∑
𝑖=1

exp(−𝛼𝒞[𝛕𝑖]),
(4.5)

where we overload 𝑝(𝒪[𝛕] = 1 | 𝛉𝑡) to simplify the notation. The variable 𝛼 is
known as the inverse temperature parameter and controls the amount of exploration
of the policy. A lower𝛼 results in smaller separation between each cost functional and
encourages more trajectories to contribute in the gradient step. Conversely, higher
values of𝛼 increase the cost functional separationof each rollout andpromotes amore
exploitative policy. Now, assuming a prior 𝑝(𝛉𝑡) for 𝛉𝑡, the posterior over 𝛉𝑡 is given
by:

𝑝(𝛉𝑡 | 𝒪) ∝ 𝑝(𝒪 | 𝛉𝑡) 𝑝(𝛉𝑡)

∝ ∫
𝒫𝒳

𝑝(𝒪 ∣ 𝛕) 𝑝(𝛕 | 𝛉𝑡) 𝑝(𝛉𝑡) d𝛕.
(4.6)

This posterior corresponds to the probability density of a given parameter setting 𝛉𝑡
conditioned on the hypothesis that (implicitly observed) trajectories generated by 𝛉𝑡
are optimal. Alternatively, one may say that 𝑝(𝛉𝑡 | 𝒪) tells us the probability of 𝛉𝑡
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being the generator of the optimal set𝒫∗
𝒳 . Lastly, note that the trajectories conditional

distribution 𝑝(𝛕 | 𝛉𝑡) factorises as:

𝑝(𝛕 | 𝛉𝑡) =
𝐻−1
∏
ℎ=0

𝑝𝛏[𝐱𝑡+ℎ+1 ∣ 𝐱𝑡+ℎ, 𝐮𝑡+ℎ] 𝜋𝛉𝑡(𝐱𝑡+ℎ), (4.7)

where𝐻 is the control horizon,𝑝𝛏 is the probability density of theparameterised trans-
ition function and 𝜋𝛉𝑡 is the control policy from which 𝐮𝑡+ℎ is sampled. This factor-
isation will be used in the next section, in which we explore how to perform joint
inference of control policy and system dynamics.

4.3 Joint inference of policy and dynamics

In this section, we generalise the framework presented in Lambert et al. (2020) to sim-
ultaneously refine our knowledge of the dynamical system, parameterised by 𝛏, while
estimating optimal policy parameters 𝛉𝑡. Before we proceed, however, it is important
to notice that the optimality measure defined in Section 4.2 stems from simulated
rollouts sampled according to Eq. (4.5). Hence, these trajectories are not actual obser-
vations of the agent’s environment and are not suitable for inferring the parameters
of the system dynamics. In other words, to perform inference over the parameters 𝛏
we need to collect real observations from the environment.

Moreover, we argue that the two inference problems can be naturally factorised.
From the perspective of the plant, i.e. the physical system, the dynamics inference de-
pends solely onpreviously observeddata,whichdespite includingpast control actions,
is independent of the current policy. On the other hand, the policy inference assumes
that the distribution over the system dynamics at a given time is given and invariant
and relies exclusively on simulated future rollouts. With that in mind, the problem
statement in Eq. (4.1) can be rewritten as:

𝑝(𝛉𝑡, 𝛏 | 𝒪,𝒟1∶𝑡) = 𝑝(𝛉𝑡 | 𝒪, 𝛏) 𝑝(𝛏 | 𝒟1∶𝑡), (4.8)

where𝒟1∶𝑡 ∶= {(𝐱𝑟𝑡 , 𝐮𝑟𝑡−1, 𝐱𝑟𝑡−1)}
𝑁
𝑡=1 represents the dataset of collected environment

observations. Note that the distribution over the parameters of the plant, the dynam-
ical system, is independent from the policy optimality, and therefore the conditioning
on 𝒪 has been dropped. Similarly, once the distribution over 𝛏 is defined, the policy
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parameters 𝛉 are independent from the previous environment observations𝒟1∶𝑡, and
again we omit the conditioning.

If one were to solve a joint inference problem by defining a new random variable
𝛩 = {𝛉, 𝛏}, and following the steps outlined by Lambert et al. (2020), careful con-
sideration should be taken to prevent the partial derivative of 𝛏 from including terms
dependent on the policy optimality (see Appendix B.4 for further discussion). Fur-
thermore, by factorising the problem we can perform each inference step separately
and adjust the computational effort and hyper-parameters based on the idiosyncrasies
of the problem at hand.

4.4 Policy inference for Bayesian MPC

Having formulated the inference problem as in Eq. (4.8), we can proceed by solv-
ing each of the factors separately. We shall start with optimising 𝜋𝛉𝑡 according to
𝑝(𝛉𝑡 | 𝒪, 𝛏). It is evident that we need to consider the dynamics parameters when
optimising the policy, but at this stage we may simply assume the inference over 𝛏
has been solved and leverage our knowledge of 𝑝(𝛏 | 𝒟1∶𝑡). More concretely, let us
rewrite the factor on the RHS of Eq. (4.8) by marginalising over 𝛏 so that:

𝑝(𝛉𝑡 | 𝒪,𝒟1∶𝑡) ∝ ∫
𝛯
ℓ𝜋(𝛉𝑡) 𝑝(𝛉𝑡) 𝑝(𝛏 | 𝒟1∶𝑡) d𝛏, (4.9)

where, as in Eq. (4.5), the likelihood ℓ𝜋(𝛉𝑡) is defined as:

ℓ𝜋(𝛉𝑡) = 𝑝(𝒪 | 𝛉𝑡, 𝛏) ≔ P(𝒫∗
𝒳 | 𝛉𝑡, 𝛏)

= ∫
𝒫𝒳

𝑝(𝒪 | 𝛕) 𝑝(𝛕 | 𝛉𝑡, 𝛏) d𝛕

≈ 1
𝑁𝛕

𝑁𝛕

∑
𝑖=1

exp(−𝛼𝒞[𝛕𝑖]),

(4.10)

with 𝛕𝑖
i.i.d.∼ 𝑝(𝛕 | 𝛉𝑡, 𝛏), 𝑖 ∈ {1, 2,… ,𝑁𝛕}, and 𝑝(𝛏 | 𝒟1∶𝑡) defines the inference

problem of updating the posterior distribution of the dynamics parameters given all
observations gathered from the environment, which we shall discuss in the next sec-
tion. Careful consideration of Eq. (4.10) tells us that unlike the case of a deterministic
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transition function or evenmaximum likelihood point estimation of 𝛏, the optimality
of a given trajectory now depends on its expected cost over the distribution 𝑝(𝛏).

Hence, given a prior 𝑝(𝛉𝑡) and 𝑝(𝛏 | 𝒟1∶𝑡), we can generate samples from the
likelihood inEq. (4.10) anduse an stochastic gradientmethod as in Section2.6 to infer
the posterior distribution over 𝛉𝑡. Following the steps of Lambert et al. (2020), we
approximate the prior 𝑝(𝛉𝑡) by a set of particles 𝑞(𝛉𝑡) = {𝛉𝑡}𝑁𝜋

𝑖=1 and take sequential
SVGD updates:

𝛉𝑖𝑡 ← 𝛉𝑖𝑡 + 𝜖𝛟∗(𝛉𝑖𝑡), (4.11)

to derive the posterior distribution. Where, again, 𝛟∗ is computed as in Eq. (2.40) for
each intermediate step and 𝜖 is a predetermined step size. One ingredient missing to
compute the score function is the gradient of the log-posterior of𝑝(𝛉𝑡 | 𝒪, 𝛏), which
can be factorised into:

∇𝛉𝑖𝑡 log𝑝(𝛉
𝑖
𝑡 | 𝒪, 𝛏) = ∇𝛉𝑖𝑡 log ℓ(𝛉

𝑖
𝑡) + ∇𝛉𝑖𝑡 log 𝑞(𝛉

𝑖
𝑡). (4.12)

In practice we typically assume that the 𝒞[⋅] functional used as surrogate for optimal-
ity is not differentiable w.r.t. 𝛉𝑡, but the gradient of the log-likelihood can be usually
approximated via Monte Carlo sampling.

Most notably, however, is the fact that unlike the original formulation in SVGD,
the policy distributionwe are trying to infer is time-varying and depends on the actual
state of the system. The measure P(𝒫∗

𝒳 | 𝛉𝑡, 𝐱𝑡) depends on the current state, as that
is the initial condition for all trajectories evaluated in the cost functional 𝒞[𝛕].

Theoretically, one could choose an uninformative prior with broad support over
the𝒰 at each time-step and employ standard SVGD to compute the posterior policy.
However, due to the sequential nature of theMPC algorithm, it is likely that the prior
policy 𝑞(𝛉𝑡−1) is close to a region of low cost and hence is a good candidate to boot-
strap the posterior inference of the subsequent step. This procedure is akin to the
prediction step commonly found in Sequential Bayesian Estimation (Doucet, 2001).
More concretely,

𝑞(𝛉𝑡) = ∫𝑝(𝛉𝑡 | 𝛉𝑡−1) 𝑞(𝛉𝑡−1) d𝛉𝑡−1, (4.13)

where 𝑝(𝛉𝑡 | 𝛉𝑡−1) can be an arbitrary transitional probability distribution. More
commonly, however, is to use a probabilistic version of the shift operator as defined
in (Wagener et al., 2019). For a brief discussion on action selection, please refer to
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Appendix B.2. For more details on this section in general the reader is encouraged to
refer to (Lambert et al., 2020, Sec. 5.3).

4.5 Real-time dynamics inference

We now focus on the problem of updating the posterior over the simulator paramet-
ers. Note that, due to the independence of each inference problem, the frequency in
which we update 𝑝(𝛏) can be different from the policy update. In fact, as discussed
in Section 4.1, many previous works rely on this to refine the parametric transition
function in an episodic setting (Okada &Taniguchi, 2020; Possas et al., 2020; Ramos,
Possas & Fox, 2019). Then, recursively, the new parameter distribution can be used
during a new episode of data collection.

In contrast, we are interested in the case where𝑝(𝛏 | 𝒟1∶𝑡) can be updated in real-
time adjusting to changes in the environment. For that end, we need a more efficient
way of updating our posterior distribution. The inference problem at a given time-
step can then be written as:

𝑝(𝛏 | 𝒟1∶𝑡) ∝ 𝑝(𝒟𝑡 | 𝛏,𝒟1∶𝑡−1) 𝑝(𝛏 | 𝒟1∶𝑡−1). (4.14)

Note that in this formulation, 𝛏 is considered time-invariant. This based on the impli-
cit assumption that the frequency inwhichwe gather newobservations is significantly
larger than the covariate shift to which 𝑝(𝛏 ∣ 𝒟1∶𝑡) is subject to as we traverse the
environment. In Appendix B.3 we discuss the implications of changes in the latent
parameter over time.

In general, we do not have access to direct measurements of 𝛏, only to the system
state. Therefore, in order to perform inference over the dynamics parameters, we rely
on a generative model, i.e. the simulator ̂𝑓𝛏, to generate samples in the state space𝒳
for different values of 𝛏. However, unlike in the policy inference step, for the dynam-
ics parameter estimation we are not computing deterministic simulated rollouts, but
rather trying to find the explanatory parameter for each observed transition in the en-
vironment. Namely, we have:

𝐱𝑟𝑡 = 𝑓(𝐱𝑟𝑡−1, 𝐮𝑡−1) = ̂𝑓𝛏(𝐱𝑟𝑡−1, 𝐮𝑡−1) + 𝜂𝑡, (4.15)
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where 𝐱𝑟𝑡 denotes the true system state and 𝜂𝑡 is a time-dependent random variable
closely related to the reality gap in the sim-to-real literature (Valassakis, Ding& Johns,
2020) and incorporates all the complexities of the real system not captured in simula-
tion, such asmodelmismatch, unmodelled dynamics, etc. As a result, the distribution
of 𝜂𝑡 is unknown, correlated over time and hard to estimate.

In practice, for the feasibility of the inference problem, we make the standard
assumption that the noise is distributed according to a time-invariant normal distri-
bution 𝜂𝑡 ∼ 𝒩(0, 𝚺obs), with an empirically chosen covariance matrix. More con-
cretely, this allows us to define the likelihood term in Eq. (4.14) as:

ℓ(𝛏 ∣ 𝒟1∶𝑡) ≔ 𝑝(𝒟𝑡 | 𝛏,𝒟1∶𝑡−1)
= 𝑝(𝐱𝑟𝑡 | 𝛏,𝒟1∶𝑡−1)
= 𝒩(𝐱𝑟𝑡 | ̂𝑓𝛏(𝐱𝑟𝑡−1, 𝐮𝑡−1), 𝚺obs),

(4.16)

where we leverage the symmetry of the Gaussian distribution to centre the uncer-
tainty around 𝐱𝑟𝑡 . It follows that, because the state transition is Markovian, the like-
lihood of ℓ(𝛏 ∣ 𝒟1∶𝑡) depends only on the current observation tuple given by 𝒟𝑡,
and we can drop the conditioning on previously observed data. In other words, we
now have a way to quantify how likely is a given realisation of 𝛏 based on the data we
have collected from the environment. Furthermore, let us define a single observation
𝒟𝑡 = (𝐱𝑟𝑡 , 𝐮𝑟𝑡−1, 𝐱𝑟𝑡−1) as the tuple of last applied control action and observed state
transition. Inferring exclusively over the current state is useful whenever frequent
observations are received and prevents us from having to store information over the
entire observation dataset. This approach is also followed by ensemble Kalman filters
and particle flow filters (Leeuwen et al., 2019).

Equipped with Eq. (4.16) and assuming that an initial prior 𝑝(𝛏) is available, we
can proceed as discussed in Section 2.6 by approximating each prior at time 𝑡 with a
set of particles {𝛏𝑖}𝑁𝛏

𝑖=1 following 𝑞(𝛏 | 𝒟1∶𝑡−1), so that our posterior over 𝛏 at a given
time 𝑡 can then be rewritten as:

𝑝(𝛏 | 𝒟1∶𝑡) ≈ 𝑞(𝛏 | 𝒟1∶𝑡) ∝ ℓ(𝛏 ∣ 𝒟𝑡) 𝑞(𝛏 | 𝒟1∶𝑡−1), (4.17)

and we can make recursive updates to 𝑞(𝛏 | 𝒟1∶𝑡) by employing it as the prior dis-
tribution for the following step. Namely, we can iteratively update 𝑞(𝛏 | 𝒟1∶𝑡) a
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number of steps 𝐿 by applying the update rule with a functional gradient computed
as in Eq. (2.40), where:

∇𝛏 log𝑝𝑡(𝛏 | 𝒟1∶𝑡) ∝ ∇𝛏 log𝑝(𝒟𝑡 | 𝛏) + ∇𝛏 log 𝑞𝑡(𝛏 | 𝒟1∶𝑡−1). (4.18)

An element needed to evaluate Eq. (4.18) is an expression for the gradient of the pos-
terior density. An issue in sequential Bayesian inference is that there is no exact expres-
sion for the posterior density (Pulido & van Leeuwen, 2019). Namely, we know the
likelihood function, but the prior density is only represented by a set of particles, not
the density itself.

One could forge an empirical distribution 𝑞(𝛏 | 𝒟1∶𝑡) =
1
𝑁𝛏
∑𝑁𝛏

𝑖=1 𝛿(𝛏𝑖) by as-
signing Dirac functions at each particle location, but we would still be unable to dif-
ferentiate the posterior. In practice, we need to apply an efficient density estimation
method, as we need to compute the density at each optimisation step. We choose
to approximate the posterior density with an equal-weight Gaussian Mixture Model
(GMM) with a fixed diagonal covariance matrix:

𝑞(𝛏 | 𝒟1∶𝑡) =
1
𝑁 𝛏

𝑁𝛏

∑
𝑖=1

𝒩(𝛏 | 𝛏𝑖, 𝚺s), (4.19)

where the covariance matrix 𝚺s can be predetermined or computed from data. One
option, for example, is touse aKernelDensity bandwidth estimationheuristic, such as
Improved Sheather Jones (Botev,Grotowski&Kroese, 2010), Silverman’s (Silverman,
1986) or Scott’s (Scott, 1992) rule, to determine the standard deviation𝜎 and set𝚺s =
𝜎2𝐈.

One final consideration is that of the support for the prior distribution. Given
the discussion above, it is important that the density approximation of 𝑞(𝛏 | 𝒟1∶𝑡)
offers support on regions of interest in the parameter space. In our formulation, that
can be controlled by adjusting𝚺s. Additionally, precautions have to be taken tomake
sure the parameter space is specified correctly, such as using log-transformations for
strictly positive parameters for instance.
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Algorithm 3: DuSt-MPC, Sim-to-Real in the loop SVMPC
Input: 𝑝(𝛏), 𝑞(𝛉𝑡0),𝐻,𝑁 𝛏,𝑁𝜋,𝑁s,𝑁a, 𝛼, 𝚺obs, 𝚺s, 𝚺a, ̂𝑓𝛏(⋅), 𝒞[⋅]

1 Sample {𝛉𝑛𝑡0}
𝑁𝜋
𝑛=1 ∼ 𝑞(𝛉𝑡0)

2 foreach policy 𝜋𝛉𝑛 ∈ 𝑁𝜋 do 𝜋𝛉𝑛 ←𝒩(𝛉𝑛𝑡0 , 𝚺a)
3 while task not complete do
4 𝐱𝑟𝑡 ←GetStateEstimate()
5 𝒟1∶𝑡 ← 𝒟1∶𝑡−1 ∪ {𝐱𝑟𝑡 , 𝐱𝑟𝑡−1, 𝐮𝑟𝑡−1}
6 for 𝑙 ← 1 to 𝐿 do in parallel
7 for𝑚 ← 1 to𝑁 𝛏 do
8 ℓ(𝛏 ∣ 𝒟1∶𝑡) ← 𝒩(𝐱𝑟𝑡 | ̂𝑓𝛏(𝐱𝑟𝑡−1, 𝐮𝑟𝑡−1), 𝚺obs)
9 ∇𝛏 log𝑝(𝛏𝑚 | 𝒟1∶𝑡) ≈ ∇𝛏 log ℓ(𝛏𝑚 ∣

𝒟1∶𝑡) + ∇𝛏 log 𝑞(𝛏𝑚 | 𝒟1∶𝑡−1)
10 𝛟(𝛏𝑚) ←

1
𝑁𝛏
∑𝑁𝛏

𝑗=1 𝑘(𝛏𝑗 , 𝛏𝑚) ∇𝛏𝑗 log𝑝𝑡(𝛏𝑗 | 𝒟1∶𝑡) + ∇𝛏𝑗𝑘(𝛏𝑗 , 𝛏𝑚)
11 𝛏𝑚 ← 𝛏𝑚 + 𝜖𝛟(𝛏𝑚)
12 𝑞(𝛏 | 𝒟1∶𝑡) =

1
𝑁𝛏
∑𝑁𝛏

𝑚=1𝒩(𝛏𝑚, 𝚺s)

13 Sample {𝛏𝑗}
𝑁s

𝑗=1 ∼ 𝑞(𝛏 | 𝒟1∶𝑡)
14 for 𝑛 ← 1 to𝑁𝜋 do in parallel
15 Sample {𝑈𝑛

𝑖 }
𝑁a

𝑖=1 ∼ 𝜋𝛉𝑛
16 foreach 𝑖 ∈ 𝑁a and 𝑗 ∈ 𝑁s do 𝒞𝑛

𝑖,𝑗 ←GetTrajCosts(𝑈𝑛
𝑖 , 𝛏𝑗 , 𝐱𝑟𝑡)

17 ∇𝛉 log𝑝(𝛉𝑛𝑡 | 𝒪, 𝛏) ≈
∇𝛉 log 𝑞(𝛉𝑛𝑡−1) + ∇𝛉 log(

1
𝑁a𝑁s

∑𝑁a
𝑖=1∑

𝑁s
𝑗=1 exp(−𝛼𝒞𝑛

𝑖,𝑗))

18 𝛟(𝛉𝑛𝑡 ) ←
1
𝑁𝜋

∑𝑁𝜋
𝑖=1 𝑘(𝛉𝑖𝑡, 𝛉𝑛𝑡 ) ∇𝛉𝑖𝑡 log𝑝(𝛉

𝑖
𝑡 | 𝒪, 𝛏) + ∇𝛉𝑖𝑡𝑘(𝛉

𝑖
𝑡, 𝛉𝑛𝑡 )

19 𝛉𝑛𝑡 ← 𝛉𝑛𝑡 + 𝜖𝛟(𝛉𝑛𝑡 )
20 𝜔𝑛𝑡 ←

𝑞(𝛉𝑛𝑡−1)
𝑁a𝑁s

∑𝑁a
𝑖=1∑

𝑁s
𝑗=1 exp(−𝛼𝒞𝑛

𝑖,𝑗)

21 foreach policy 𝑛 ∈ 𝑁𝜋 do 𝜔𝑛𝑡 ←
𝜔𝑛
𝑡

∑𝑁𝜋
𝑛=1𝜔

𝑛
𝑡

22 𝑛∗ = argmax𝑛 𝜔𝑛𝑡
23 SendToActuators(𝑈𝑛∗

𝑡 = 𝛉𝑛∗𝑡 )
24 𝛉𝑡 ←RollPolicies(𝛉𝑡)
25 𝑞(𝛉𝑡) = ∑𝑁𝜋

𝑛=1 𝜔𝑛𝑡 𝒩(𝛉𝑛𝑡 , 𝚺)
26 foreach policy 𝑛 ∈ 𝑁𝜋 do 𝜋𝛉𝑛 ←𝒩(𝛉𝑛𝑡 , 𝚺a)
27 𝑡 ← 𝑡 + 1
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Figure 4.3: Inverted pendulum. The plots show the result of the experiment to
balance an inverted pendulum with unknown pole-mass and length. Left: Mean cu-
mulative cost over 10 episodes. The shaded region represents the 50% confidence in-
terval. The high variance is expected since each scenario has parameters sampled from
a uniform distribution. Right: Plot of the posterior distribution over the pendulum
pole-mass and length at the final step of one of the episodes. The true latent value is
shown by the red star marker.

4.6 Experiments

In the following section we present experiments, both in simulation and with a phys-
ical AGV, to demonstrate the correctness and applicability of our method. Although
these experiments have low-dimensional control spaces it is important to note that in
sampling-basedMPC each control action in a sequential plan is independent. There-
fore, the inference problem involves effectively solving a distribution whose dimen-
sionality is the size of the control space times the number of control steps. As such,
this demonstrates that the method is suitable in large-dimension spaces and that the
control horizon can be adjusted according to the desired computational complexity.

For each experiment, the hyper-parameters 𝛼, 𝜖, 𝐻, 𝚺, 𝚺a where optimised by
performing Bayesian Optimisation within a given search space (Akiba et al., 2019).
The optimal values found where subsequently rounded-off to fewer significant digits
and are listed in Appendix B.1.

4.6.1 Inverted pendulum with uncertain parameters

We first investigate the performance of DuSt-MPC in the classic inverted pendulum
control problem. As usual, the pendulum is composed of a rigid pole-mass system
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controlled at one end by a 1-degree-of-freedom torque actuator. The task is to balance
the point-mass upright, which, as the controller is typically under-actuated, requires
a controlled swingmotion to overcome gravity. Contrary to the typical case, however,
in our experiments the mass and length of the pole are unknown and equally likely
within a range of 0.6 kg to 1.3 kg and 0.6m to 1.3m, respectively.

At each episode, a set of latent model parameters is sampled and used in the sim-
ulated environment. Each method is then deployed utilising this same parameter set.
MPPI is used as a baseline and has perfect knowledge of the latent parameters. This
provides a measure of the task difficulty and achievable results. As discussed in Sec-
tion 4.1, we compare against DISCO and SVMPC as additional baselines. We argue
that, although these methods perform no online update of their knowledge of the
world, they offer a good underpinning for comparison since the former tries to lever-
age themodel uncertainty to create more robust policies, whereas the latter shares the
same variational inference principles as our method. DISCO is implemented in its
unscented transform variant applied to the uninformative prior used to generate the
random environments. SVMPC uses the mean values for mass and length as point-
estimates for its fixed parametric model. For more details on the hyper-parameters
used, refer to Appendix B.1.

Figure 4.3 presents the average cumulative costs over 10 episodes. Although the
results show great variance, due to the randomised environment, it is clear that DuSt-
MPC outperforms both baselines. Careful consideration will show that the improve-
ment is more noticeable as the episode progresses, which is expected as the posterior
distribution over the model parameters being used by DuSt-MPC gets more inform-
ative. Additionally, the final distribution over mass and length for one of the episodes
can also be seen in Fig. 4.3. Finally, a summary of the experimental results is presented
in Table 4.1.

4.6.2 Point-mass navigation on an obstacle grid

Here, we reproduce and extend the planar navigation task presented in Lambert et
al. (2020). We construct a scenario in which an holonomic point-mass robot must
reach a target location while avoiding obstacles. As in Lambert et al. (2020), colliding
with obstacles not only incurs a high cost penalty to the controller, but prevents all
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Figure 4.4: AGV trajectory tracking. The plots show the result of theWombot tra-
jectory tracking task with varying load. Left: Raw cost over time. Amount of steps
before and after the change of mass are normalised for proper comparison. Right:
Trajectories executed by each method. Line style changes when mass changes. Mark-
ers denote initial and change of mass position.

Point-mass Pendulum

Cost (𝜇 ± 𝜎) Success† Cost (𝜇 ± 𝜎) Success‡

MPPI§ — — 30.8±12.6 100%
DISCO 250.8±29.9 20% 61.3±40.0 70%
SVMPC 191.7±56.5 25% 44.5±17.9 70%
DuSt-MPC 118.3± 7.9 100% 36.8±14.0 80%

Table 4.1: Simulation results. Summary of results for simulation experiments. The
mean episode cost is given by the sum of the instant costs over the episode length. Val-
ues shown do not include the crash penalty for a more comparable baseline. § Not
used in the navigation task; has perfect knowledge in the pendulum task. † Successes
are episodes with no crashes. ‡ Successes are episodes whose last five steps have a in-
stant cost below 4 (≈ 10° from the upright position).

futuremovement, simulating a crash. Thenon-differentiable cost functionmakes this
a challenging problem, well-suited for sampling-based approaches. Obstacles lie in an
equally spaced 4-by-4 grid, yielding several multi-modal solutions. This is depicted in
Fig. 4.2. Additionally, we include barriers at the boundaries of the simulated space to
prevent the robot from easily circumventing obstacles.

The system dynamics is represented as a double integrator model with a non-
unitary mass𝑚, s.t. the particle acceleration is given by 𝐱̈ = 𝑚−1𝐮 and the control
signal is the force applied to the point-mass. In order to demonstrate the inference
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over dynamics, we forcibly change the mass of the robot at a fixed step of the experi-
ment, adding extra weight. This has a direct parallel to several tasks in reality, such as
collecting a payload or passengers while executing a task. Assuming the goal position
is denoted by 𝐱𝑔, the cost function that defines the task is given by:

𝒞 inst(𝐱𝑡, 𝐮𝑡) = 0.5𝐞𝖳𝑡𝐞𝑡 + 0.25 ̇𝐱𝑡𝖳 ̇𝐱𝑡 + 0.2𝐮𝖳𝑡𝐮𝑡 + 𝑝 ⋅ 𝟙{col.}
𝒞 term(𝐱𝑡, 𝐮𝑡) = 1000𝐞𝖳𝑡𝐞𝑡 + 0.1 ̇𝐱𝑡𝖳 ̇𝐱𝑡,

where 𝐞𝑡 = 𝐱𝑡 − 𝐱𝑔 is the instantaneous position error and 𝑝 = 106 is the penalty
when a collision happens. A detailed account of the hyper-parameters used in the
experiment is presented in Appendix B.1.

As a baseline, we oncemore compare against DISCO and SVMPC. In Fig. 4.2 we
present an overlay of the trajectories for SVMPC and DuSt-MPC over 20 independ-
ent episodes and we choose to omit trajectories of DISCO for conciseness. Collisions
to obstacles are denoted by a xmarker. Note that in a third of the episodes SVMPC is
unable to avoid obstacles due to the highmodelmismatchwhileDuSt-MPC is able to
avoid collisions by quickly adjusting to the newmodel configuration online. A typical
sequential plot of the posterior distribution inducedbyfitting aGMMas inEq. (4.19)
is shown on Fig. 4.2c for one episode. There is little variation between episodes and
the distribution remains stable in the intermediate steps not depicted.

4.6.3 Trajectory tracking with autonomous ground vehicle

We now present the experimental results with a physical AGV equipped with a skid-
steering drive mechanism. The kinematics of the robot are based on a modified uni-
cycle model, which accounts for skidding via an additional parameter (Kozłowski &
Pazderski, 2004). The parameters of interest in thismodel are the robot’s wheel radius
𝑟w, axial distance𝑎w, i.e. the distance between thewheels, and the displacement of the
robot’s ICR from the robot’s centre 𝑥ICR. A non-zero value on the latter affects turn-
ing by sliding the robot sideways. The robot is velocity controlled and, although it
possess four-wheel drive, the controls is restricted to two-degrees of freedom, left and
right wheel speed. Individual wheel speeds are regulated by a low-level proportional-
integral controller.

The robot is equipped with a 2-DHokuyo LiDAR and operates in an indoor en-
vironment in our experiments. Prior to the tests, the area is pre-mapped using the
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gmapping package (Grisetti, Stachniss & Burgard, 2007) and the robot is localised
against this pre-built map. Similar to the experiment in Section 4.6.2, we simulate a
change in the environment that could be captured by our parametric model of the ro-
bot to explain the real trajectories. However, we are only applying a relatively simple
kinematic model in which the effects of the dynamics and ground-wheel interactions
are not accounted for. Therefore, friction and mass are not feasible inference choices.
Hence, out of the available parameters, we opted for inferring𝑥ICR, the robot’s centre
of rotation. Since measuring 𝑥ICR involves a laborious process, requiring different
weightmeasurements ormany trajectories from the physical hardware (Yi et al., 2009),
this also makes the experiment more realistic. To circumvent the difficulties of ascer-
taining 𝑥ICR, we use the posterior distribution estimated in Barcelos et al. (2020), and
bootstrap our experiment with 𝑥ICR ∼ 𝒩(0.5, 0.22).

To reduce the influence of external effects, such as localisation, wedefined a simple
control task of following a circular path at a constant tangential speed. Costs were set

tomake the robot follow a circle of 1m radiuswith𝒞 inst(𝐱𝑡) = √𝑑2𝑡 + 10(𝑠𝑡 − 𝑠0)2,
where 𝑑𝑡 represents the robot’s distance to the edge of the circle and 𝑠0 = 0.2ms−1

is a reference linear speed.
The initial particles needed byDuSt-MPC inEq. (4.18) for the estimation of𝑥ICR

are sampled from the bootstrapping distribution, whereas for SVMPCwe set 𝑥ICR =
0.5m, the distribution mean. Again, we want to capture whether our method is
capable of adjusting to environmental changes. To this end, approximately halfway
through the experiment, we add an extra load of approximately 5.3 kg at the rear of
the robot in order to alter its centre of mass. These moments are indicated on the tra-
jectories shown in Fig. 4.4. Also in Fig. 4.4we plot the instant costs for a fixed number
of steps before and after the change of mass. For the complete experiment parameters
refer to the Appendix B.1.

We observe that considering the uncertainty over 𝑥ICR and, crucially, refining our
knowledge over it (see Fig. 4.1), allows DuSt-MPC to significantly outperform the
SVMPC baseline. Focusing on the trajectories from SVMPCwe note that our estim-
ation of 𝑥ICR is probably not accurate. As the cost function emphasises the tangential
speed over the cross-track error, this results in circles correctly centred, but of smaller
radius. Crucially though, the algorithm cannot overcome this poor initial estimation.
DuSt-MPC initially appears to find the same solution, but quickly adapts, overshoot-
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ing the target trajectory and eventually converging to a better result. This behaviour
can be observed both prior to and after the change in the robot’s mass. Conversely,
with the addition of mass, the trajectory of SVMPC diverged and eventually led the
robot to a halt.

4.7 Summary

InChapter 3we have seen how incorporatingmodel uncertainty in a control problem
can be challenging, but lead to improved performance, especially in the presence of
disturbances or unmodelled phenomena. One of the drawbacks of the first approach
was the fact that the uncertainty propagation was accurate up to certain momenta of
the posterior distribution and uni-modal. On the other hand, SVMPCoffers away to
deal with multi-modal inference, but does not take model uncertainty into account.

In this chapter we presented DuSt-MPC, a method to perform multi-modal in-
ference under model uncertainty. Additionally, using a particle filtering inspired ap-
proach, DuSt-MPC is able to encapsulate gathered observations into a prior distribu-
tion over model parameters and refine such distribution in real-time. This provides
a formal way of adapting the control policy to changes in the environment, such
as covariate shift, while keeping a Bayesian viewpoint on previously observed situ-
ations. The experimental results illustrate how this method is more efficient than
both DISCO and SVMPC in handling problems with parametric uncertainty, such
as the pendulum experiment, and unforeseen disturbances, such as the particle maze
navigation.

However, both SVMPC and DuSt-MPC may suffer from lack of diversity once
the dimensionality of the inference problem is large. This problem is further com-
pounded by the fact that the similarity of trajectories is computed over flattened vec-
tor spaces of dimensionℝ𝑚×𝐻 , where𝑚 are the dimensions of the control space and
𝐻 the amount of steps in the control horizon. In other words, for controllers with
a long look-ahead or several degrees of freedom, the problem dimension can quickly
grow. This poses a significant challenge for particle-based variational inference, as the
repulsive forces imposed by the kernel gradient become smaller as the number of di-
mensions increase (Zhuo et al., 2018). The alternative proposed by Zhuo et al. (2018)
is to compute the embedding for each step of the control policy separately and aggreg-
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ate them later through a graph-based message passing kernel. This, however, creates
an auto-regressive kernel which has a substantially larger computational burden.

In the next chapter we will investigate an alternative way to tackle this issue by
exploring how trajectories can be represented differently and computing their similar-
ities in a projected feature space. This approach allowsus to leverage desiredproperties
of trajectories and promotes higher particle diversity on the approximated posterior
distribution, which in turn lead to optimisation solution with better global proper-
ties.



In diversity there is beauty and there
is strength.

Maya Angelou

CHAPTER 5
Improving solution diversity with

path signatures

On the previous chapter we have seen how framing an MPC problem as an equi-
valent inference problem allows us to reason about multi-modal solutions and take
into account model uncertainty. We have introduced a VI approach named DuSt-
MPC that is able to approximate a posterior policy distribution while updating a dis-
tribution over possible simulator parameters. This is achieved either byMonte Carlo
sampling, when the simulator and/or cost function is not differentiable, or otherwise
by direct optimisation. Conversely, we have discussed how this inference problem
can unravel into a high-dimensional solution space depending on the control hori-
zon, whichmakes the problem significantly harder to solve. Weposit this is due to two
main reasons: first, the sampling space becomes larger and henceweneedmoreMonte
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Carlo samples to achieve reasonable coverage; and second, the repulsive force between
particles diminishes substantially, leading to a concentration of solutions around local
minima.

In this chapter we will introduce the use of Path Signatures as an alternative rep-
resentation of trajectories over arbitrary spaces. We will show how this representa-
tion functions as a canonical feature map that is able to promote higher particle di-
versity and leads to a posterior policy distribution with better global properties. This
is demonstrated not only on applied control problems, as those illustrated on the pre-
vious chapters, but also on problems of trajectory optimisation which offer an easier
way to visualise solutions.

Trajectory optimisation is one of the key tools in robotic motion, used to find
control signals or paths in obstacle-cluttered environments that allow the robot to
perform desired tasks. These trajectories can represent a variety of applications, such
as the motion of autonomous vehicles or robotic manipulators. In most problems,
we consider a state-space model, where each distinct situation for the world is called a
state, and the set of all possible states is called the state space (LaValle, 2006). When
optimising candidate trajectories for planning and control, twocriteria are usually con-
sidered: optimality and feasibility. Although problem dependant, in general, the lat-
ter evaluates in a binary fashion whether the paths generated respect the constraints
of both the robot and the task, such as physical limits and obstacle avoidance. Con-
versely, optimality is a way to measure the quality of the generated trajectories with
respect to task-specific desired behaviours. For example, if we are interested in smooth
paths we will search for trajectories that minimise changes in velocity and/or accelera-
tion. The complexity of most realistic robot planning problems scales exponentially
with the dimensionality of the state space and is countably infinite. When focusing on
motion planning, a variety of algorithms have been proposed to find optimal and feas-
ible trajectories. These can be roughly divided into two main paradigms: sampling-
based and trajectory optimisation algorithms.

Sampling-based planning (Gammell & Strub, 2021) is a class of planners with
probabilistically complete and asymptotically optimal guarantees (Al-Bluwi, Siméon
&Cortés, 2012). These approaches decompose the planning problem into a series of
sequential decision-making problems with a tree-based (LaValle & Kuffner, 2001) or
graph-based (Kavraki et al., Aug./1996) approach. However, they are limited in their
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ability to encode kinodynamic cost like trajectory curvature (Heilmeier et al., 2020) or
acceleration torque limits (Berntorp et al., 2014). In addition, despite the complete-
ness guarantee, sampling-based planners are oftenmore computationally expensive as
the search space grows and can obtain highly varying results due to the randomnature
of the algorithms.

Trajectory optimisation algorithms (Gonzalez et al., 2016) use a diverse set of tech-
niques tominimise a cost functional that encourages solutions to be both optimal and
feasible. The most direct optimisation procedure relies on a differentiable cost func-
tion anduses functional gradient techniques to iteratively improve the trajectory qual-
ity (Ratliff et al., 2009). However, many different strategies have been proposed. For
example, one may start from a randomly initialised candidate trajectory and proceed
by adding random perturbations to explore the search space and generate approxim-
ate gradients, allowing any arbitrary form of cost functional to be encoded (Kalakrish-
nan et al., 2011). The same approach can be used to search for control signals and a
local motion plan concurrently (G. Williams et al., 2016). Finally, a locally optimal
trajectory can also be obtained via decomposing the planning problem with sequen-
tial quadratic programming (Schulman et al., 2013). A drawback of these methods is
that they usually find solutions that are locally optimal and may need to be run with
different initial conditions to find solutions that are feasible or with lower costs.

In the present work we will focus on trajectory optimisation. More specifically,
in a class of algorithms that performs parallel optimisation of a batch of trajectories.
The concurrent optimisation of several paths in itself already alleviates the proneness
to local solutions. Nonetheless, we show how a proper representation of trajectories
when performing functional optimisation leads to increased diversity and solutions
with a better global property, either with direct gradients orMonte Carlo-based gradi-
ent approximations. As an illustrative example, refer to Fig. 5.2.

Our approach is based on two cornerstones. On one hand, we use a modifica-
tion of SVGD (Liu &Wang, 2016), a variational inference method to approximate a
posterior distributionwith an empirical distribution of sampled particles, to optimise
trajectories directly on a structured RKHS. The structure of this space is provided by
the second pillar of our approach. We leverage recent advancements in rough path
theory to encode the sequential nature of paths in the RKHS using a Path Signature
Kernel (Kiraly&Oberhauser, 2019; Salvi et al., 2021). Thereforewe can approximate
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Figure 5.1: An episode of the Kitchen scene. Depicted is one of the collision-
free paths found by Kernel Signature Variational Gradient Descent (SigSVGD) on a
reaching task using a 7 Degrees of Freedom (DOF) Franka Panda arm on theMotion-
BenchMaker planning benchmark.

the posterior distribution over optimal trajectories with structured particles during
the optimisation while still taking into accountmotion planning and control idiosyn-
crasies. More concretely, themain contributions of this chapter are: we introduce the
use of path signatures (T. Lyons, 2014) as a canonical feature map to represent traject-
ories over high-dimensional state spaces; next, we outline a procedure to incorporate
the signature kernel into a variational inference framework for motion planning; fi-
nally, we demonstrate through experiments in both planning and control that the
proposed procedure results in more diverse trajectories, which aid in avoiding local
minima and lead to a better optimisation outcome.

The chapter is organised as follows. In Section 5.1 we review related work, con-
trasting the proposed method to the existing literature. In Section 5.2 we provide
background on path signatures and motion planning as variational inference, which
are the foundational knowledge for themethodoutlined in Section5.3. Finally, in Sec-
tion 5.4 we present a number of simulated experiments, followed by relevant discus-
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Figure 5.2: Qualitative analysis of 2-D planning task. The plot shows the final
20 trajectories found with different optimisation methods. The colour of each path
shows its normalised final cost. Note how all batch gradient descent trajectories con-
verge to two modes of similar cost. Paths found by SVMP are already more diverse,
but one of the gradient descent modes is lost. Note how when multiple trajectories
converge to a single trough, the knots are pushed away by the repulsive force resulting
in suboptimal solutions. Conversely, paths found by SigSVGD are diverse and able
to find more homotopic solutions, including those found by BGD. Note also how
paths are able to converge to the same trough without being repelled by one another
since the repulsive force takes into account the entire trajectory andnot exclusively the
spline knot placement. That also allows for paths that are more direct and coordin-
ated than SVMP.

sions in Section 5.5.

5.1 Related work

Trajectory optimisation refers to a class of algorithms that start from an initial sub-
optimal path and find a, possibly local, optimal solution by minimising a cost func-
tion. Given its broad definition, there are many seminal works in the area. One in-
fluential early work is Covariant Hamiltonian Optimisation for Motion Planning
(CHOMP) (Ratliff et al., 2009) and related methods (Byravan et al., 2014; Marinho
et al., 2016; Zucker et al., 2013). The algorithm leverages the covariance of trajector-
ies coupled with HamiltonianMonte Carlo to perform annealed functional gradient
descent. However, one of the limitations of CHOMP and related approaches is the
need for a fully-differentiable cost function.

InStochasticTrajectoryOptimisation forMotionPlanning (STOMP) (Kalakrish-
nan et al., 2011) the authors address this by approximating the gradient fromstochastic



5.1 Related work 87

samples of noisy trajectories, allowing for non-differentiable costs. Another approach
used in motion planning are quality diversity algorithms, at the intersection of op-
timisation and evolutionary strategies, of which Covariance Matrix Adaptation Evol-
ution Strategy (CMA-ES) is the most prominent (Hämäläinen et al., 2020; Hansen,
Müller & Koumoutsakos, 2003; Tjanaka et al., 2022). CMA-ES is a derivative-free
method that uses a multivariate normal distribution to generate and update a set of
candidate solutions, called individuals. The algorithm adapts the covariancematrix of
the distribution based on the observed fitness values of the individuals and the search
history, balancing exploration and exploitation of the search space. Because of its
stochastic nature, it is ergodic and copes well with multi-modal problems. Nonethe-
less, it may require multiple initialisations and it typically requires more evaluations
than gradient-based optimisers (Hansen, 2016).

TrajOpt (Schulman et al., 2013), another prominent planner, adopts a different
approach solving a sequential quadratic program and performing continuous-time
collision checking. Contrary to sampling-based planners, these trajectory optimisa-
tion methods are fast, but only find locally optimal solutions and may require reitera-
tions until a feasible solution is found. Another issue common to these approaches is
that in practice they require a fixed andfine parametrisation of trajectorywaypoints to
ensure feasibility and smoothness, which negates the benefit of working on continu-
ous trajectory space. To address this constraint, in (Marinho et al., 2016) the authors
restrict the optimisation and trajectory projection to an RKHS with an associated
squared-exponential kernel. However, the cost between sparse waypoints is ignored
and the search is still restricted to a deterministic trajectory. Another approach was
proposed inGaussianProcessMotionPlaning (GPMP) (Dong et al., 2016;Mukadam
et al., 2017, 2018) by representing trajectories as GPs and looking for amaximum a
posteriori (MAP) solution of the inference problem.

More closely related to our approach are (Lambert & Boots, 2021; Yu & Chen,
2022) which frame motion planning as a variational inference problem and try to es-
timate the posterior distribution represented as a set of trajectories. In (Yu & Chen,
2022), the authors modify GPMP with a natural gradient update rule to approxim-
ate the posterior. On the other hand, in Stein Variational Motion Planning (SVMP)
(Lambert & Boots, 2021) the posterior inference is optimised using Stein variational
gradient descent. This method is similar to ours, but the induced RKHS does not



5.2 Background 88

take into account the sequential nature of the paths being represented, which leads
to a diminished repulsive force and lack of coordination along the dimensions of the
projected space.

In contrast, our approach—which we will refer to as SigSVGD—uses the path
signature to encode the sequential nature of the functional being optimised. We argue
that this approach leads to a better representation of trajectories promoting diversity
and finding better local solutions. To empirically corroborate this claim we use the
Occam’s razor principle and take SVMP as the main baseline of comparison since it
more closely approximates our method.

We note that the application of trajectory optimisation need not be restricted to
motion planning. By removing the constraint of a target state and making the optim-
isation process iterative over a rolling horizonwe retrieve awide class ofModel Predict-
ive Controllers with applications in robotics (Barcelos et al., 2020, 2021; Lambert et
al., 2020; G. Williams et al., 2016). SVMPC (Lambert et al., 2020) uses variational
inference with SVGD optimisation to approximate a posterior over control policies
andmore closely resembles SigSVGD.However, like SVMP, it too does not take into
account the sequential nature of control trajectories and we will illustrate how our
approach can improve the sampling of the control space and promote better policies.

5.2 Background

5.2.1 Trajectory optimisation for planning and control

Consider a system with state 𝐱 ∈ 𝒳 and let us denote a trajectory of such system as
𝑋 ∶ [𝑎, 𝑏] → 𝒳, where 𝒳 is an appropriate Euclidean space or group. We shall
use the notation 𝑋𝑡 to denote the dependency on time 𝑡 ∈ [𝑎, 𝑏]. The trajectory
𝑋 describes a path in𝒳 and we shall use the two denominations interchangeably. In
trajectory optimisation the goal is to find the optimal path 𝑋∗ from a given starting
state 𝐱𝑠 to a certain goal state 𝐱𝑔. This can be done by minimising a cost functional
that codifies our desired behaviour 𝒞 ∶ 𝒫𝒳 → ℝ+, where 𝒫𝒳 is the Hilbert space of
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trajectories (King et al., 2013):

𝑋∗ ≔ argmin
𝑋

𝒞(𝑋)

s.t. 𝑋𝑎 = 𝐱𝑠
𝑋𝑏 = 𝐱𝑔.

(5.1)

In the typical case 𝒞 is a bespoke functional that includes penalties for trajectory non-
smoothness, total energy, speed and acceleration tracking, as well as length. To ensure
that the solution is feasible and collision-free, additional equality and inequality con-
straints may also be included (Schulman et al., 2013). Alternatively, we can solve an
unconstrained problem and include additional penalties to the cost functional as soft-
constraints (Ratliff et al., 2009; Zucker et al., 2013).

Finally, note that the problem stated in Eq. (5.1) can be viewed as an open-loop
optimal control problem. If the solution can be found in a timely manner, the same
problem can be cast onto a Model Predictive Control (Barcelos et al., 2020, 2021;
Camacho & Alba, 2013) framework

𝑈∗ ≔ argmin
𝑈

𝒞(𝑋, 𝑈)

s.t. 𝑋𝑎 = 𝐱𝑠,
(5.2)

where𝑈 ∶ [𝑎, 𝑏] → 𝒰 is a path of control inputs on a given Euclidean space and the
mapping to 𝒳 is given by the dynamical system 𝑓 such that 𝐱̇ = 𝑓(𝐱, 𝐮, 𝑡). That is
to say, we now influence the path𝑋 indirectly through input𝑈 , and at any time 𝑡 the
problem is solved for a finite interval. The closed-loop solution arises from applying
only the first immediate control action before re-optimising the solution.

5.3 Method

Our main goal is to find a diverse set of solutions to the problem presented in Sec-
tion 5.2.1. To that end, we begin by reformulating Eq. (5.1) as a probabilistic infer-
ence problem. Next, we show that we can apply SVGD to approximate the posterior
distribution of trajectories with a set of sampled paths. Finally, in Section 5.3.3, we
present our main contribution discussing how we can promote diversity among the
sample paths by leveraging the Path Signature Kernel.
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5.3.1 Stein Variational Motion Planning

To reframe the trajectory optimisation problem described in Eq. (5.1) as probabilistic
inference we introduce a binary optimality criterion, 𝒪 ∶ 𝒫𝒳 → {0, 1}, analogously
to (Barcelos et al., 2021; Levine, 2018). Simplifying the notation with 𝒪 indicat-
ing 𝒪 = 1, we can represent the posterior distribution of optimal trajectories as
𝑝(𝑋 | 𝒪) ∝ 𝑝(𝒪 | 𝑋) 𝑝(𝑋), for a given optimality likelihood 𝑝(𝒪 | 𝑋) and traject-
ory prior 𝑝(𝑋). The MAP solution is given by finding the mode of the negative log
posterior:

𝑋∗ = argmin
𝑋

− log𝑝(𝒪 | 𝑋) − log𝑝(𝑋)

= argmin
𝑋

𝜆𝒞(𝑋) − log𝑝(𝑋),
(5.3)

where the last equality arises from the typical choice of the exponential distribution
to represent the optimality likelihood, i.e. 𝑝(𝒪 | 𝑋) = exp(−𝜆𝒞(𝑋))with 𝜆 being a
temperature hyper-parameter.

Rather than finding the MAP solution, we are interested in approximating the
full posterior distribution, which may be multi-modal, and generating diverse solu-
tions for the planning problem. As discussed in Section 2.6, we can apply SVGD to
approximate the posterior distribution with a collection of particles. In the case at
hand each of such particles is a sampled path, such that Eq. (2.40) can be rewritten as:

𝛟∗(𝑋) = 𝔼𝑌∼𝑞̂[𝑘(𝑌, 𝑋)∇𝑌 log𝑝(𝑌 | 𝒪) + ∇𝑌𝑘(𝑌, 𝑋)]. (5.4)

The score function presented in Eq. (5.4) is composed of two competing forces.
On one hand, we have the kernel smoothed gradient of the log-posterior pushing
particles towards regions of higher probability. Whereas the second term acts as a
repulsive force, pushing particles away from one another.

It is worth emphasising that the kernel function is static, i.e. it does not consider
the sequential nature of the input paths. In effect, for a path of dimension 𝑐 and 𝑥 dis-
crete time steps, the inputs are projected onto a space𝒱 ⊂ ℝ𝑐×𝑥 in which similarities
are evaluated.

Finally, the posterior gradient can be computed by applying Bayes’ rule, resulting
in:

∇𝑌 log𝑝(𝑌 | 𝒪) = ∇𝑋 log𝑝(𝑌) − ∇𝑌𝜆𝒞(𝑌). (5.5)
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5.3.2 Stein Variational Motion Planning with smooth paths

In previous work (Barfoot, Hay Tong & Sarkka, 2014; Dong et al., 2016; Lambert
& Boots, 2021; Mukadam et al., 2018) the prior distribution in Eq. (5.5) is defined
in a way to promote smoothness on generated paths. This typically revolves around
defining Gaussian Processes (Rasmussen & Williams, 2006) as priors and leveraging
factor graphs for efficiency. Although effective, this approach still requires several lat-
ent variables to describe a desired trajectory, which implies on a higher dimensional
inference problem.

Importantly, the problem dimensionality is directly related to the amount of re-
pulsive force exerted by the kernel. In large dimensional problems, the repulsive force
of translation-invariant kernels vanishes, allowing particles to concentrate around the
posterior modes which results in an underestimation of the posterior variance (Zhuo
et al., 2018). This problem is further accentuated when considering the static nature
of the kernel function, as discussed in the previous section.

In order to keep the inference problem low-dimensional while still ensuring paths
are smooth we make use of natural cubic splines and aim to optimise the location of
a small number of knots. These knots may be initialised in different ways, such as
perturbations around a linear interpolation from the starting state𝐱𝑠 and goal state𝐱𝑔,
sampled from an initial solution given by a shootingmethod—e.g. Rapidly-exploring
Random Tree (RRT) (LaValle & Kuffner, 2001)—or drawn randomly from within
the limits of𝒳. For simplicity, we will opt for the latter.

Since path smoothness is induced by the splines, the choice of prior is more func-
tionally related to the problem at hand. If one desires some degree of regularisation
on the trajectory optimisation, amultivariateGaussian prior centred at the placement
of the initial knots may be used. Conversely, if we only wish to ensure the knots are
within certain bounds, a less informative smoothed approximation of the uniform
prior may be used. More concretely, for a box 𝐵 = 𝑥∶ 𝑎 ≤ 𝑥 ≤ 𝑏, such prior would
be defined as:

𝑝(𝑥) ∝ exp (−𝑑(𝑥, 𝐵)2/√(2𝜎2)) (5.6)

where the distance function 𝑑(𝑥, 𝐵) is given by 𝑑(𝑥, 𝐵) = min |𝑥 − 𝑥′|, 𝑥′ ∈ 𝐵. Fi-
nally, we could define both a prior and hyper-prior if we wish to combine both effects
(see Appendix C.3 for details).
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As discussed in Section 5.2.1 the cost functional𝒞 imposes penalties for collisions
and defines the relevant performance criteria to be observed. Since only a small num-
ber of knots is used for each path, some of these criteria and, in particular, collision
checking require that we discretise the resulting spline in a sufficiently dense amount
of points. It is worth mentioning that 𝒞 is typically non-differentiable and that the
gradient in Eq. (5.5) is usually approximated with Monte Carlo samples (Barcelos et
al., 2021). However, as this introduces an extra degree of stochasticity in the bench-
mark comparison, we will restrict our choice of 𝒞 to be differentiable. We will discuss
the performance criteria of each problem in the experimental section.

5.3.3 Stein Variational Motion Planning with path signature
kernel

In this section we present our main contribution, which is a new formulation for mo-
tion planning in which Path Signature can be used to efficiently promote diversity
in trajectory optimisation through the use of Signature Kernels. In other words, we
want to define a kernel 𝑘+∶ 𝒫𝒳 × 𝒫𝒳 → ℝ, which takes into account the structure
induced by paths, instead of the kernel 𝑘∶ 𝒳 × 𝒳 → ℝ defined by SVMP. In Sec-
tion 5.2 we discussed some desirable properties of the signature transform. The key
insight is that the space of linear combination of signatures forms an algebra, which
enables it as a faithful feature map for trajectories (Kiraly & Oberhauser, 2019).

With that in mind, perhaps the most straightforward use of the signature would
be to redefine the kernel used in Eqs. (2.39) and (2.40) as ̄𝑘(𝑋, 𝑌) = 𝑘(S(𝑋)𝑠, S(𝑌)𝑡),
where we use the notation 𝑠 and 𝑡 to denote the independence between paths. How-
ever, as seen in Section 5.2, this approach would not be scalable given the exponential
time and space complexity of the signature w.r.t. to its degree. A single evaluation of
the Gram kernel matrix for ̄𝑘 would be an operation of order 𝑂(𝑛2 ⋅ 𝑐𝑑), where 𝑛 is
the number of concurrent paths being optimised, 𝑑 is the degree of the signature, and
𝑐 is the dimensionality of the space𝒫𝒳 ∋ 𝑋, 𝑌 .

Hence, we take a different approach and proceed by first projecting paths to an
RKHS onto which we will then compute the signature. That is, given a kernel

𝑘+∶ 𝒫𝒳 × 𝒫𝒳 → ℝ, (5.7)
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a path 𝑋 ∈ 𝒫𝒳 can be lifted to a path in the RKHS𝒫ℋ through the map

𝑘𝑋 ∶ 𝑠 ↦ 𝑘(𝑋𝑠, ⋅), (5.8)

where𝒫ℋ is the set ofℋ-valued paths. Finally, we compute the signature of the lifted
path S(𝑘𝑋)𝑠 and use it as our final feature map.

At first glance, this further deteriorates scalability, since most useful 𝒫ℋ are in-
finite dimensional, rendering this approach infeasible. However, results presented by
Kiraly and Oberhauser (2019, Corollary 4.9) show that this approach can be com-
pletely kernelised. This allows them to define a truncated signature kernel,

𝑘+∶ (𝑋𝑠, 𝑌𝑡) ↦ ⟨S𝑑(𝑘𝑋)𝑠, S𝑑(𝑘𝑌 )𝑡⟩, (5.9)

that can be efficiently computed using only evaluations of a static kernel 𝑘(𝑋, 𝑌) at
discretised timestamps. The number of evaluations depends on the truncation de-
gree 𝑑 and number of discretised steps 𝑙. Several algorithmic approaches are con-
sidered in (Kiraly &Oberhauser, 2019) with dynamic programming having complex-
ity𝑂(𝑛2 ⋅ 𝑙2 ⋅ 𝑑) to compute a (𝑛×𝑛)-Grammatrix. Otherwise, approximations can
be used to reduce the complexity to linear on 𝑙 and 𝑛. However, even though the im-
portance of the terms in the signature decay factorially (T. Lyons, 2014), the amount
of coefficients grows exponentially, which means that for high values of 𝑑 the kernel
𝑘+ would be restricted to low-dimensional applications.

Nonetheless, recent work by Salvi et al. (2021) proved that for two continuously
differentiable input paths the complete signature kernel,

𝑘⊕∶ (𝑋𝑠, 𝑌𝑡) ↦ ⟨S(𝑘𝑋)𝑠, S(𝑘𝑌 )𝑡⟩, (5.10)

is also the solution of a second-order, hyperbolic Partial Differential Equation (PDE)
known as Goursat PDE. More precisely, for two differentiable paths 𝑋 and 𝑌 , the
equivalent PDE equation is given by:

𝜕2𝑘⊕𝑋,𝑌
𝜕𝑠𝜕𝑡 = ⟨ ̇𝑘𝑋 , ̇𝑘𝑌 ⟩𝒫ℋ

𝑘⊕𝑋,𝑌
s.t. 𝑘⊕𝑋,𝑌 (𝑢, ⋅) = 𝑘⊕𝑋,𝑌 (⋅, 𝑣) = 1,

(5.11)

where 𝑘𝑋 and 𝑘𝑌 are the projections of paths𝑋 and𝑌 when lifted by the static kernel
𝑘; ̇𝑘𝑋 and ̇𝑘𝑌 are the derivatives of the lifted paths; and 𝑘⊕𝑋,𝑌 (𝑢, ⋅) = 𝑘⊕𝑋,𝑌 (⋅, 𝑣) = 1
are the boundary conditions.
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Salvi et al. (2021) show how Eq. (5.11) is an instance of a Goursat problem and
how it can be numerically solved by finite differences approximation on a discretised
grid along 𝑠 and 𝑡. The choice of the discretisation grid offers a trade-off: the finer the
grid, the better the approximation; but at the expense of a greater computational cost.
To provide the reader with an intuition of how this approximation is constructed,
consider that when using a first order approximation of the derivatives of ̇𝑘𝑋 and ̇𝑘𝑌 ,
Eq. (5.11) can be rewritten as:

𝜕2𝑘⊕𝑋,𝑌
𝜕𝑠𝜕𝑡 = (⟨𝑘𝑋𝑠 , 𝑘𝑌𝑡⟩ − ⟨𝑘𝑋𝑠−1 , 𝑘𝑌𝑡⟩ − ⟨𝑘𝑋𝑠 , 𝑘𝑌𝑡−1⟩ + ⟨𝑘𝑋𝑠−1 , 𝑘𝑌𝑡−1⟩)𝑘

⊕
𝑋,𝑌

= (𝑘(𝑋𝑠, 𝑌𝑡) − 𝑘(𝑋𝑠−1, 𝑌𝑡) − 𝑘(𝑋𝑠, 𝑌𝑡−1) + 𝑘(𝑋𝑠−1, 𝑌𝑡−1))𝑘⊕𝑋,𝑌 ,
(5.12)

which depends exclusively on computations of the static kernel and therefore circum-
vent the need to evaluate the signature of the path.

Solving this PDE is a problem of complexity 𝒪(𝑙2 ⋅ 𝑐), so still restrictive on the
discretisation of the path. However, by its intrinsic nature, the PDE can be parallel-
ised, turning the complexity into𝒪(𝑙 ⋅ 𝑐), as long as the GPU is able to accommodate
the required number of threads. Therefore the untruncated signature kernel can be
efficiently and parallel computed using state-of-the-art hyperbolic PDE solvers and
finite-difference evaluations of the static kernel 𝑘.

Hence, we can directly apply 𝑘⊕ in Eq. (5.4) and we now have a way to properly
represent sequential data in feature space, resulting in the final gradient update func-
tion:

𝛟∗(𝑋) = 𝔼𝑌∼𝑞̂[𝑘⊕(𝑌, 𝑋)∇𝑌 log𝑝(𝑌 | 𝒪) + ∇𝑌𝑘⊕(𝑌, 𝑋)]. (5.13)

For convenience, wewill use the acronymSigSVGDwhether the algorithm is used
for planning or control problems. A complete overview of the algorithm is presented
in Algorithm 4.

5.4 Results

In this section we present results to demonstrate the correctness and applicability of
our method in a set of simulated experiments, ranging from simple 2-Dmotion plan-
ning to a challenging benchmark for robotic manipulators.
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Algorithm 4:Kernel Signature Variational Gradient Descent
Input: A cost function 𝒞(𝑋) or target distribution 𝑝(𝑋), a prior

distribution 𝑞(𝑋𝑡0), a signature kernel 𝑘⊕.
Output: A set of particles {𝑋 𝑖

𝑡}
𝑁𝑝
𝑖=1 that approximates the posterior

distribution over optimal paths.
1 Sample {𝑋 𝑖

𝑡0}
𝑁𝑝

𝑖=1 ∼ 𝑞(𝑋𝑡0);
2 while task not complete do
3 if usingMonte Carlo samples then
4 Generate𝑁 samples for each path 𝑋 𝑖,𝑗𝑥

𝑡 ← 𝑋 𝑖
𝑡 + 𝜂𝑗𝑥;

5 if using splines then
6 Generate decimated trajectories from knots 𝑋𝑡;
7 Evaluate 𝒞(𝑋𝑡) in parallel;
8 if target distribution 𝑝(𝑋𝑡) is available then
9 Update score

𝛟∗ ← 1
𝑁𝑝

∑𝑁𝑝
𝑖 [𝑘⊕(𝑋 𝑖

𝑡 , 𝑋𝑡) ∇𝑋𝑖
𝑡
log𝑝(𝑋 𝑖

𝑡) + ∇𝑋𝑖
𝑡
𝑘⊕(𝑋 𝑖

𝑡 , 𝑋𝑡)];

10 else
11 Log-posterior gradient∇𝑋𝑖

𝑡
log𝑝(𝑋 𝑖

𝑡 | 𝒪) ≈
∇𝑋𝑖

𝑡
log 𝑞(𝑋 𝑖

𝑡−1 | 𝒪) + ∇𝑋𝑖
𝑡
log 1

𝑁
∑𝑁

𝑗𝑥 exp(−𝛼𝒞(𝑋 𝑖,𝑗𝑥
𝑡 ));

12 Update score
𝛟∗ ← 1

𝑁𝑝
∑𝑁𝑝

𝑖 [𝑘⊕(𝑋 𝑖
𝑡 , 𝑋𝑡) ∇𝑋𝑖

𝑡
log𝑝(𝑋 𝑖

𝑡 | 𝒪) + ∇𝑋𝑖
𝑡
𝑘⊕(𝑋 𝑖

𝑡 , 𝑋𝑡)];

13 Update paths 𝑋𝑡 ← 𝑋𝑡 + 𝜖𝛟∗;
14 Update prior 𝑞(𝑋𝑡 | 𝒪) ← 𝑝(𝑋𝑡 | 𝒪) 𝑡 ← 𝑡 + 1;

5.4.1 Motion planning on 2-D terrain

Our first set of experiments consists of trajectory optimisation in a randomised 2-D
terrain illustrated in Fig. 5.2. Regions of higher cost, or hills, are shown in a darker
shade whereas valleys are in a lighter colour. The terrain is parameterised by a series of
isotropicMultivariate Gaussian distributions placed randomly according to aHalton
sequence and aggregated into a GaussianMixture Model denoted by 𝑝map.

Paths are parameterised by natural cubic splines with𝑁𝑘 = 2 intermediary knots,
apart from the start and goal state. Our goal is to find the best placement for these
knots to find paths from origin to goal that avoid regions of high cost but are not too
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Cost Steps

SigSVGD 1056.0 (58.4) 189.3 (12.6)
SVMPC 1396.4 (73.0) 239.1 (49.4)
MPPI 1740.7 (192.3) 290.8 (23.7)
CMA-ES† — —

Table 5.1: Point-mass navigation results. The table shows the mean and standard
deviation for 20 episodes. Cost indicates the total accrued cost over the episode. CMA-
ES cost is not shown as it couldn’t complete the task on any episodes. Steps indicates
the total amount of time-steps the controller needed to reach the goal. †CMA-ES
couldn’t complete any episodes, so results are omitted.

long. We adopt the following cost function in order to balance trajectory length and
navigability:

𝒞(𝐱𝑡) = ∑
𝑡∈[𝑎,𝑏]

(𝑝map(𝐱𝑡) + 75 ‖𝐱𝑡 − 𝐱𝑡−1‖2), (5.14)

where the ℓ2-norm term is a piecewise linear approximation of the trajectory length.
To ensure the approximation is valid each trajectory is decimated into 100 waypoints
before being evaluated by Eq. (5.14).

The initial knots are randomly placed and the plots in Fig. 5.2 show the final 20
trajectories found with three different optimisation methods. Furthermore, the col-
our of each path depicts its normalised final cost. On the left we can see the solutions
found with Batch Gradient Descent (BGD) and note how all trajectories converge
to two modes of similar cost. The SVMP results are more diverse, but failed to cap-
ture one of the BGD modes. Also note how, when multiple trajectories converge to
a single trough, the spline knots are pushed away by the repulsive force resulting in
suboptimal solutions. On the other hand, the trajectories found by SigSVGD are not
only more diverse, finding more homotopic solutions, but are also able to coexist in
the narrow valleys. This is possible since the repulsive force is being computed in the
signature space and not based on the placement of the knots. Furthermore, notice
how for the same reason the paths are more direct and coordinated when compared
to SVMP.
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SigSVGD SVMPC

Figure 5.3: Point-mass navigation trajectories. The plot shows an intermediate
time-step of the navigation task for SigSVGD, on the left, and SVMPC, on the right.
An inset plot enlarges a patch of themap just ahead of the point-mass. The rollout col-
our indicate from which of the policies, i.e. paths in the optimisation, they originate,
whereas fixedmotion primitives are shown in purple. Note how rollouts generated by
SigSVGD are more disperse, providing a better gradient for policy updates.

5.4.2 Point-mass navigation on an obstacle grid

Here, our goal is to demonstrate the benefits of applying the signature kernel MPC.
To that end, we reproduce the point-mass planar navigation task presented in (Bar-
celos et al., 2021; Lambert et al., 2020) and compare SVMPC against and a modified
implementation using SigSVGD. The objective is to navigate an holonomic point-
mass robot from start to goal through an obstacle grid. Since the system dynamics
is represented as a double integrator model with non-unitary mass𝑚, the particle ac-
celeration is given by 𝐱̈ = 𝑚−1𝐮 and the control signal is the force applied to the
point-mass. We adopt the same cost function as in (Barcelos et al., 2021), that is:

𝒞(𝐱𝑡, 𝐮𝑡) = 0.5 𝐞𝖳𝑡𝐞𝑡 + 0.25 ̇𝐱𝑡𝖳 ̇𝐱𝑡 + 0.2 𝐮𝖳𝑡𝐮𝑡 + 𝟙{col.} 𝑝
𝒞 term(𝐱𝑡, 𝐮𝑡) = 1000 𝐞𝖳𝑡𝐞𝑡 + 0.1 ̇𝐱𝑡𝖳 ̇𝐱𝑡 ,

where 𝐞𝑡 = 𝐱𝑡 − 𝐱𝑔 is the instantaneous position error and 𝑝 = 106 is the penalty
when a collision happens.

To create a controlled environment with several multi-modal solutions, obstacles
are placed equidistantly in a grid (see Fig. 5.3). The simulator performs a simple col-
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lision check based on the particle’s state and prevents any future movement in case a
collision is detected, simulating a crash. Barriers are also placed at the environment
boundaries to prevent the robot from easily circumventing the obstacle grid. As the
indicator function makes the cost function non-differentiable, we need to compute
approximate gradients using Monte Carlo sampling (Lambert et al., 2020). Further-
more, since we are using a stochastic controller, we also include CMA-ES and MPPI
(G.Williams et al., 2016) in the benchmark. A detailed account of the hyperparamet-
ers used in the experiment is presented in Appendix C.2.

In this experiment, each of the particles in the optimisation is a path that repres-
ents the mean of a stochastic control policy. Gradients for the policy updates are gen-
erated by sampling the control policies and evaluating rollouts via an implicit model
of the environment. As CMA-ES only entertains a single solution at any given time,
to make the results comparable we increase the amount of samples it evaluates at
each step to be equivalent to the number of policies times the number of samples in
SVMPC. One addition to the algorithm in (Lambert et al., 2020) is the inclusion of
particles with predefined primitive control policies which are not optimised. For ex-
ample, a policy which constantly applies theminimum,maximum, or no acceleration
are all valid primitives. These primitive policies are also included in every candidate
solution set of CMA-ES.

The inlay plot in Fig. 5.3 illustrates howSigSVGDpromotes policies that aremore
diverse, covering more of the state-space on forward rollouts. The outcome can be
seen on Table 5.1. SigSVGD finds lower cost policies and is able to reach the goal in
fewer steps than SVMPC.Due to the dynamical nature of the problem, we are unable
to run the optimisation for many iterations during each time-step, as we need to get
actions from the controller at a fast rate. This poses a challenge to CMA-ES, which
crashed on all episodes despite having a much larger number of samples per step.

5.4.3 Benchmark comparison on robotic manipulator

To test our approach on a more complex planning problem we compare batch gradi-
ent descent (i.e. parallel gradient descent on different initialisations), SVMP and SigS-
VGD in robotic manipulation problems generated using a benchmark released by
Chamzas et al. (2022), MotionBenchMaker. A problem consists of a scene with ran-
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Figure 5.4: Motion planning benchmark. Results shown are the mean and stand-
ard deviation over 5 episodes for 4 distinct requests, totalling 20 iterations per scene.
Best result is highlighted with a hatched bar. Lowest cost depicts the cost of the best
trajectory found. Path length is the piecewise linear approximation of the end-effector
trajectory length for the best trajectory. NLL indicates the negative log likelihood and,
since we are using an exponential likelihood, represents the total cost of all sampled
trajectories.
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(a) Box (b) Bookshelf Small (c) Bookshelf Tall (d) Bookshelf Thin
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Figure 5.5: Visualisation of SigSVGD in the motion planning benchmark. The
Blue andGrey lines denote the end-effector’s trajectories with the former highlighting
the trajectory with the lowest cost. TheOrange andGreen tinted robot poses denote
the start and target configuration, respectively. The translucent robot poses denote
in-between configurations of the lowest-cost solution.

domly placed obstacles and a consistent request to move the manipulator from its
starting pose to a target configuration. For each scene in the benchmark, we generate
4 different requests and run the optimisation with 5 random seeds for a total of 20
episodes per scene.

The robot used is a Franka Emika Panda with 7 DOF. The cost function is de-
signed to generate trajectories that are smooth, collision-free andwith a short displace-
ment of the robot’s end-effector. We once again resort to a fully-differentiable func-
tion to reduce the extraneous influence of approximating gradients withMonteCarlo
samples. As is typical in motion planning, the optimisation is performed directly in
configuration space (C-space), which simplifies the search for feasible plans. To reduce
the sampling space and promote smooth trajectories, we once again parameterise the
path of each of the robot joints with natural cubic splines, adopting 3 intermediary
knots besides those at the initial and target poses.
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Robot collision as continuous cost

Typically collision-checking is a binary check and non-differentiable. To generate dif-
ferentiable collision checking with informative gradients, we resort to continuous oc-
cupancy grids. Occupancy grid maps are often generated from noisy and uncertain
sensor measurement by discretising the space𝒲 where the robot operates (know as
workspace) into grid-cells, where each cell represents an evenly spaced field of bin-
ary random variables that corresponds to the presence of an obstacle at the given
location. However, the discontinuity in-between each cell means these grid maps
are non-differentiable and not suitable for optimisation-based planning. A continu-
ous analogue of an occupancy map can be generalised by a kernelised projection to
high-dimensional spaces (Ramos&Ott, 2016) orwith distance-basedmethods (Jones,
Baerentzen & Sramek, 2006).

In this work we trade off the extra complexity of the methods previously men-
tioned for a coarser but simpler approach. Inspired by (Danielczuk et al., 2021), we
learn the occupancy of each scene using a neural network as a universal function ap-
proximator. We train the network to approximate a continuous function that returns
the likelihood of a robot configuration being occupied. The rationale for this choice
is that, since all methods are optimised under the same conditions, the comparative
results should not be substantially impacted by the overall quality of the map. Addi-
tionally, the trained network is fast to query and fast to obtain derivatives with respect
to inputs, properties that are beneficial for querying of large batches of coordinates for
motion planning.

Given a dataset of𝑁 pairs of coordinates and a binary value which indicates if the
coordinate is occupied, i.e.𝒟 = {(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1, where𝐱𝑖 ∈ 𝒲 ⊆ ℝ𝑤, and 𝑦𝑖 ∈ {0, 1},
for 𝑖 = 1,… ,𝑁. The network then learns a mapping 𝑓col between a coordinate of
interest 𝐱 and the probability of it being occupied, that is, 𝑓col(𝐱) = ℙ(𝑦 = 1 | 𝐱).
A dataset of this format can be obtained, for instance, from depth sensors as point
clouds. We model 𝑓col as a fully-connected neural network, with tanh as the activ-
ation function between hidden layers, and sigmoid as the output layer. The final
network is akin to a binary classification problem, which can be learned via a binary
cross-entropy loss with gradient descent optimisers. As such, we can construct a colli-
sion cost function 𝑓col∶ 𝒲 → ℝ that maps workspace coordinates into cost values
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associated at the corresponding locations.
A similar problem occurs when ascertaining whether a given configuration of the

robot’s joints is unfeasible, leading to a self-collision. We address this issue in a similar
manner, by training a separate neural network to approximate a continuous function
𝑓s-col which maps configurations of the robot to the likelihood of they being in self-
collision. More precisely, 𝑓s-col∶ 𝒬 → ℝ, where 𝑓s-col(𝐪) = ℙ(𝑦 = 1 | 𝐪), for
𝐪𝑖 ∈ 𝒬 ⊆ ℝ𝑑, and 𝑦𝑖 ∈ {0, 1}. The dataset used to train 𝑓s-col is generated by
randomly choosing configurations within the joint limits of the robot and perform-
ing a binary self-collision check provided by the robot’s Application Programming
Interface (API).

SigSVGD SVMP Batch Gradient Descent

Scene Depth Feasible Pct. Depth Feasible Pct. Depth Feasible Pct.

Box 3.74 (2.30) 94.99 (3.78) 3.62 (1.95) 94.96 (3.32) 3.63 (1.95) 94.97 (3.31)
Bookshelf Small 1.32 (2.50) 96.63 (5.48) 1.55 (2.19) 96.20 (4.68) 1.56 (2.20) 96.18 (4.71)
Bookshelf Tall 0.56 (1.78) 98.30 (4.65) 0.27 (0.60) 99.02 (1.76) 0.27 (0.59) 99.03 (1.74)
Bookshelf Thin 2.78 (3.11) 94.59 (4.94) 3.14 (3.50) 93.54 (5.57) 3.14 (3.50) 93.54 (5.57)
Cage 2.13 (1.82) 96.12 (2.92) 2.00 (1.67) 96.11 (2.89) 2.00 (1.67) 96.11 (2.89)
Kitchen 9.82 (6.95) 88.04 (9.85) 10.61 (6.45) 88.59 (6.21) 10.62 (6.71) 88.61 (6.21)
Table Bars 9.46 (7.43) 92.42 (5.89) 9.52 (8.05) 92.09 (6.69) 9.70 (8.44) 92.05 (6.85)
Table Pick 0.22 (0.67) 99.56 (1.67) 0.83 (1.04) 98.06 (2.62) 0.83 (1.02) 98.08 (2.43)
Table Under 3.33 (2.60) 93.63 (5.36) 5.16 (4.75) 90.19 (8.21) 5.18 (4.77) 90.06 (8.30)

Table 5.2: Motion planning benchmark. Results shown are the mean and stand-
ard deviation over 5 episodes for 4 distinct requests, totalling 20 iterations per scene.
Contact Depth indicates the average collision depth of the trajectories found (in milli-
metres), if a collision happens. Feasible Pct. is the average percentage of the trajectory
that is collision-free.

Bringing collision cost from workspace to configuration space

Collision checking requires information about the workspace geometry of the robot
to determinewhether it overlaps with objects in the environment. On the other hand,
we assume that the robot movement is defined and optimised in C-space. The cost
functions to shape robot behaviour are often defined in the Cartesian task space. We
denote C-space as 𝒬 ⊆ ℝ𝑑, where there are 𝑑 joints in the case of a robotic manipu-
lator. The joint configurations, 𝐪 ∈ 𝒬, are elements of the C-space, while Cartesian
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coordinates in task space are denoted as 𝐱 ∈ 𝒲 . We now outline the procedure of
pulling a cost gradient defined in the workspace to the C-space.

We start by defining 𝑏 body points on the robot, each with a forward kinematics
function𝜓𝑖mapping configurations to theCartesian coordinates𝐱𝑖 at thebodypoint,
𝜓𝑖 ∶ 𝒬 → 𝒲 , for each 𝑖 = 1,… , 𝑏. Let the Jacobian of the forward kinematics
functions w.r.t. the joint configurations be denoted as

𝐉(⋅)𝑖𝜓 =
d𝜓𝑖
d𝐪 (⋅). (5.15)

The derivative of a cost potential 𝒞col which operates on the body points, such as the
occupancy cost potential, can then be pulled into the C-space with:

∇𝐪 𝒞 =
𝑏
∑
𝑖=1

𝐉(𝐪)𝑖𝜓∇𝐱 𝒞 , (5.16)

which allows us to update trajectory in the C-space𝒬 with cost in the Cartesian space
𝒲 .

Regularising path length and dynamical motions

Finally, the use of splines to interpolate the trajectories ensures smoothness in gener-
ated trajectories, but that does not necessarily imply in smooth dynamics for the ma-
nipulator. To visualise this, consider, for example, a trajectory in𝒬 parameterised by a
natural cubic spline. The configurations 𝐪 in between each knot can be interpolated,
resulting in a smooth trajectory of the robot end-effector in Euclidean coordinates
in SE(3). However, the same end-effector trajectory could be traversed in a constant
linear speed or with a jerky acceleration and deceleration motion. More specifically,
if we use a fixed number of interpolated configurations between knots without care
to impose dynamical restrictions to the simulator, knots that are further apart will
result in motions with greater speed and acceleration since a larger distance would be
covered during the same interval. To avoid these abrupt motions on the robots joints,
we introduce the term 𝒞dyn to the cost function, which penalises the linear distance
between consecutive configurations:

𝒞dyn =
𝑝
∑
𝑖=2

𝐰𝖳‖𝐪𝑖 − 𝐪𝑖−1‖2, (5.17)
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where 𝑝 is the number of intermediary configurations chosen when discretising the
path spline and the weight 𝐰 can be used to assign a higher importance to certain
robot joints. We choose to adopt a vector𝐰 which is a linear interpolation from 1
to 0.7, where the higher value is assigned to the base joint of the manipulator and
progressively reduced until the end-effector. A similar approach as the one presented
in Eq. (5.17) can be used to penalise the length of the robot’s trajectory in workspace.
We include a final term to our cost function, 𝒞 len, that penalises exclusively the length
of the end-effector path. This brings us to our final cost function:

𝒞 = 2.5 𝒞 len+2.5 𝒞dyn+𝒞col+10 𝒞s-col, (5.18)

where each of the terms are respectively the cost for path length, path dynamics, col-
lisionwith the environment and self-collision. The optimisation is carried out for 500
iterations and the kernel repulsive force is scheduledwith cosine annealing (Loshchilov
&Hutter, 2017). By reducing the repulsive force on the last portion of the optimisa-
tion, we allow trajectories at the same local minima to converge to the modes and are
able to qualitatively measure the diversity of each approach.

The results shown on Fig. 5.4 demonstrate how SigSVGD achieves better results
in almost all metrics for every scenario. The proper representation of paths results in
better exploration of the configuration space and leads to better global properties of
the solutions found. This can be seen in Fig. 5.5, which shows the end-effector paths
for SigSVGD and SVMP. One of such paths is also illustrated in Fig. 5.1. Results
found by SigSVGD also show a higher percentage of feasible trajectories and lower
contact depths for rollouts in collision (see Table 5.2).

5.5 Summary

This work, to the best of our knowledge, is the first to introduce the use of path sig-
natures for trajectory optimisation in robotics. We discuss how this transformation
can be used as a canonical linear feature map to represent trajectories and how it pos-
sesses many desirable properties, such as invariance under time reparametrisation. We
use these ideas to construct SigSVGD, a kernel method to solve control and motion
planning problems in a variational inference setting. It approximates the posterior
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distribution over optimal paths with an empirical distribution comprised of a set of
vector-valued particles which are all optimised in parallel.

In previous work it has been shown that approaching the optimisation from the
variational perspective alleviates the problem of local optimality, providing a more di-
verse set of solutions. We argue that the use of signatures improves on previous work
and can lead to even better global properties. Despite the signature poor scalability,
we show how we can construct fast and paralellisable signature kernels by leveraging
recent results in rough path theory. The RKHS induced by this kernel creates a struc-
tured space that captures the sequential nature ofpaths. This is demonstrated through
an extensive set of experiments that the structure provided helps the functional op-
timisation, leading to better global solutions than equivalent methods without it. We
hope the ideas herein presented will serve an inspiration for further research and stim-
ulate a groundswell of new work capitalising on the benefits of signatures in many
other fields within the robotics community.



CHAPTER 6
Conclusion and future work

In the course of this thesis, we have navigated a path from basic control problems
to advanced approximate inference control solutions, exploring the intersections of
model uncertainty, Bayesian inference, multi-modal inference, and variational meth-
ods. The aim was to develop a more robust and versatile framework for control, cap-
able of handling a variety of challenges. The result is a series of methods: Double
Likelihood-free Inference Stochastic Control (DISCO), which efficiently handles un-
certainty propagation using the Unscented Transform; Dual Stein Variational Model
Predictive Control (DuSt-MPC), which uses variational inference to jointly infer the
control policy andmodel parameters; and Kernel Signature Variational Gradient Des-
cent (SigSVGD), which takes advantage of the signature of path to improve particle
diversity and find more diverse solutions. Each of these has been carefully crafted to
answer a unique set of challenges in robotics, frommodel uncertainty and the reality
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gap to the efficient approximation of the posterior distribution over control policies
and model parameters. This chapter summarises the thesis’s contributions and dis-
cusses possible future research directions.

6.1 Contributions

6.1.1 Incorporating model uncertainty in control as inference

Chapter 3 introduced the concept of incorporating model uncertainty and advanced
Bayesian inference methods into stochastic model-based control. This approach in-
troduces the foundation for an adaptive controller framework, capable of effectively
dealingwith the reality gap and covariate shift. By formally incorporating uncertainty
over parameters into an SNMPC controller, we found that this led to amore accurate
assessment of the environment and improved performance. To efficiently evaluate the
cost of future paths the unscented transformwas introduced as a means to propagate
this uncertainty, reducing the computational burden on trajectory samples and pav-
ing the way for more efficient control.

6.1.2 Joint estimation of model and policy parameters

However, wenoticed that there is a trade-offbetween the efficiency gained in sampling
and accuracy when using moment matching. This motivated further exploration in
Chapter 4 where we presented DuSt-MPC, a method to perform multi-modal infer-
ence under model uncertainty. DuSt-MPC encapsulates gathered observations into a
prior distribution overmodel parameters and refines such distribution in real time, ad-
apting the control policy to changes in the environment. Anothermajor contribution
of DuSt-MPC is that it can be applied with non-differentiable black-box simulators,
since the gradients can be approximated withMonte Carlo samples. One such applic-
ation is to reduce the reality gap in complex sim-to-real applications, as discussed by
Possas et al. (2020). Despite the great strides made byDuSt-MPC, we identified limit-
ations related to the lack of diversity once the dimensionality of the inference problem
is large (Zhuo et al., 2018).
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6.1.3 Addressing high-dimensional problems

In response to these challenges, Chapter 5 presented the use of path signatures for tra-
jectory optimisation in robotics. The introduction of signatures, as implemented in
SigSVGD, presents a novelway to represent trajectories and compute their similarities
in a projected feature space. This approach leverages the desirable properties of traject-
ories, promotes higher particle diversity on the approximated posterior distribution,
and thus leads to optimisation solutions with better global properties. Furthermore,
SigSVGD also introduces a novel and statistically sound manner of handling input
constraints with the use of hyper-priors over paths. Despite the poor scalability of
the signature method, we found that it could still be used effectively through recent
results in rough path theory (Salvi et al., 2021).

The work presented in this thesis is one of the first to combine these various ele-
ments into a cohesive whole, pushing the boundaries of what is possible in planning
and control policy optimisation under model uncertainty. It is clear from our exper-
iments that the integration of model uncertainty and variational inference can signi-
ficantly improve the performance of control systems, particularly in situations where
disturbances or unmodelled phenomena are present.

Each step, from incorporatingmodel uncertainty and Bayesian inference into SN-
MPC, developingmethods formulti-modal inference undermodel uncertainty, to in-
troducing the use of path signatures for trajectory optimisation, has led to improved
performance and greater resilience in the face of challenges such as the reality gap, co-
variate shift, and parametric uncertainty. The experiments have provided strong evid-
ence of these improvements, demonstrating that our methods outperform existing
approaches. In conclusion, we hope this thesis constitutes a significant contribution
to the field of robotics and control systems and that it paves theway for future research
on how to best apply these ideas in varied applications.

6.2 Future work

However, it is important to note that there are still many challenges to overcome and
questions to be answered. The trade-off between efficiency and accuracy when us-
ingmomentmatching, the problemof diversity in other high-dimensionality settings,
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and the scalability issues of the signature method are all areas that warrant further in-
vestigation. Looking forward, it is our hope that this work will stimulate further re-
search into these and other related areas. Here we list but a few potential avenues to
explore.

6.2.1 Exploring new uses for the path signature in robotics

The use of path signatures in planning and control problems is perhaps themost palp-
able application in robotics, but it is by no means the only one. Like we discussed in
Chapter 5, the signature is a canonical feature map for any kind of sequential data
(Boedihardjo et al., 2016). As such, all kinds of time-series data are candidates sources
for a signature transform. Evaluating if such transformation would be beneficial, for
example, in policies trained on end-to-end sequential images (Levine et al., 2015) or
perhaps in recursive Bayesian estimation in filtering applications (Castellano-Quero,
Fernández-Madrigal & García-Cerezo, 2020) is a promising pathway.

For example, exploring pathways to efficiently retrain estimates online for prac-
tical experimentswith time-variant parameters could be a crucial step towards the gen-
eralisation of control policies for autonomous robots operating under varying envir-
onments and configurations. Similarly, the use of black-box simulators, such as data-
driven function approximators, could further enhance the versatility of the methods
we have presented.

6.2.2 Conditioning policies on states

Another interesting research pathway is to explore how to persistently condition the
learned policy on the current state of the system. The methods presented are all state-
less, that is, a solution is recalculated every time for each situation the agent is experi-
encing presently. Additionally, it would be beneficial if such policy could be updated
online, with the gathering of new observations from the real system. In other words,
unlike the distribution over the model parameters which is constantly refined, the
policy does not improve from experience. We anticipate that extensive datasets would
be needed to either supervised or semi-supervised train such a policy, but the advances
in foundational models in computer vision could facilitate the creation of simulated
or augmented datasets in that direction. For example, models capable of generating
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text-to-image are already a reality (Ramesh et al., 2021). These could in turn be used
to generate 3-D scenes (Mildenhall et al., 2020) and converting such scenes to assets
of a simulator is the missing link.

6.2.3 Decision theory with multi-modal posteriors

We have presented methods which are capable of approximating multi-modal pos-
terior distributions, but not much focus was given on how to best leverage this in-
formation on mission critical applications. The most straightforward solution is to
pick the solution pertaining to the most likely mode, however this does not take risk
into consideration. Another approach is to sample the posterior for solutions, e.g. ac-
tions or paths, however this may lead to inconsistent outcomes when several modes
are likely. For example, when changing lanes in traffic weaving, one sample may be
swerving in one direction and the subsequent sample might go in the opposite way
(Schmerling et al., 2018). The scenario described is studied in sequential decisionmak-
ing, and often solved using imitation learning, like Behavioral Cloning (BC), or RL.
One possible avenue of research is to learn a latent space representation of previous
actions that can be used to condition the posterior distribution, making sampling for
a solution more amenable. Another possibility is to evaluate utility functions that
could encode the desired behaviour, e.g. assign a higher likelihood to safer solutions,
and hence reduce the problemmulti-modality.



APPENDIX A
Supplementary material for

Chapter 3

A.1 Further details on performed experiments

Thehyper-parameters used in the experimental section ofChapter 3 are listed next, on
Table A.1 and Table A.2. For both experiments, the unscented transform secondary
scaling (𝜅) andminimum control (𝐮̃) were set to zero. Note that, as the random seeds
were not controlled, slight variations are expected when reproducing the results. Sim-
ilarly, the update of the posterior distribution approximation, 𝑞(𝛏 | 𝒟), will depend
on𝒟 and therefore will vary in every execution.
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Table A.1: Hyper-parameters for the inverted pendulum experiment in Chapter 3.

Parameter Value

Sampled actions,𝑁𝐮 500
Control horizon,𝐻 30
Inverse temperature, 𝛼 10
Control authority, 𝚺 1
Minimum control, 𝐮̃ 0
Instant state cost, 𝒞 inst 50 cos(𝜃 − 1)2 + ̇𝜃2
Terminal state cost, 𝒞 term 0
Sigma points, 𝐿 5
UT Secondary scaling (𝜅) 0
UT Spread, 𝛼 0.5
UT scalar, 𝜊 2
Prior distribution, 𝑝(𝛏)

- over pole length 𝑙 𝒰(0.1, 5)
- over pole mass𝑚 𝒰(0.1, 5)

Posterior distribution, 𝑞𝜙(𝛏 | 𝒟)
- over pole length 𝑙 𝒩(0.89, 0.01)
- over pole mass𝑚 𝒩(0.9, 0.03)

Table A.2: Hyper-parameters for the skid-steer experiment in Chapter 3.

Parameter Value

Sampled actions,𝑁𝐮 400
Control horizon,𝐻 50
Inverse temperature, 𝛼 0.1
Control authority, 𝚺 0.25
Minimum control, 𝐮̃ 0

Instant state cost, 𝒞 inst √𝑑2𝑡 +(𝐱̇𝑡 − 𝐱̇0)
2

Terminal state cost, 𝒞 term 0

Continued on next page
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Table A.2: (continued)

Parameter Value

Sigma points, 𝐿 7
UT Secondary scaling, 𝜅 0
UT Spread, 𝛼 0.5
UT scalar, 𝜊 2
Prior distribution, 𝑝(𝛏)

- over 𝑥ICR 𝒰(0, 0.5)
- over 𝑟w 𝒰(0, 0.5)
- over 𝑎w 𝒰(0.1, 0.5)

Posterior distribution, 𝑞𝜙(𝛏 | 𝒟)
- [𝑥ICR, 𝑟w, 𝑎w]

𝖳 𝒩(𝛍, 𝚺)
- 𝛍 [0.238 0.061 0.415]

𝖳

- 𝚺 × 10−3
⎡
⎢
⎢
⎣

0.13 −0.03 −0.04
−0.03 0.15 0.03
−0.04 0.03 0.09

⎤
⎥
⎥
⎦
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Supplementary material for

Chapter 4

B.1 Further details on performed experiments

The hyperparameters used in the experimental section of Chapter 4 are listed next, on
Tables B.1 to B.3. For the inverted pendulum experiment, the unscented transform
secondary scaling (𝜅) andminimum control (𝐮̃) were set to zero. Note that, as the ran-
dom seeds were not controlled, slight variations are expected when reproducing the
results. Similarly, the update of the posterior distribution approximation, 𝑞(𝛏 | 𝒟),
will depend on𝒟 and therefore will vary in every execution.
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Table B.1: Hyper-parameters for the inverted pendulum experiment in Chapter 4.

Parameter Inverted Pendulum

Initial state, 𝐱0 [3 rad, 0 rad/sec]
Environment maximum velocity 8 rad/sec
Environment maximum acceleration/torque 2 Nm
Policy samples,𝑁a 32
Dynamics samples,𝑁s 8
Cost Likelihood inverse temperature, 𝛼 1.0
Control authority, 𝚺 2.02
Control horizon,𝐻 20
Number of policies,𝑁𝜋 3
Policy Kernel, 𝑘𝜋(⋅, ⋅) Radial Basis Function
Policy Kernel bandwidth selection Silverman’s rule
Policy prior covariance, 𝚺a 2.02
Policy step size, 𝜖 2.0
Dynamics prior distribution

- mass,𝑚 𝒰(0.6, 1.3)
- length, 𝑙 𝒰(0.6, 1.3)

Dynamics particles,𝑁 𝛏 50
Dynamics Kernel, 𝑘𝛏(⋅, ⋅) Radial Basis Function
Dynamics GMM covariance, 𝚺s Improved Sheather Jones
Dynamics likelihood covariance, 𝚺obs 0.12
Dynamics update steps, 𝐿 20
Dynamics step size, 𝜖 1 × 10−3
Dynamics in log space No
Unscented Transform spread, 𝛼 0.5
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Table B.2: Hyper-parameters for the navigation experiment in Chapter 4.

Parameter Point-mass Navigation

Policy samples,𝑁a 64
Dynamics samples,𝑁s 4
Cost Likelihood inverse temperature, 𝛼 1.0
Control authority, 𝚺 5.02
Control horizon,𝐻 40
Number of policies,𝑁𝜋 6
Policy Kernel, 𝑘𝜋(⋅, ⋅) Radial Basis Function
Policy Kernel bandwidth selection Silverman’s rule
Policy prior covariance, 𝚺a 5.02
Policy step size, 𝜖 100.0
Dynamics prior distribution 𝒩(2, 0.12)
Dynamics particles,𝑁 𝛏 50
Dynamics Kernel, 𝑘𝛏(⋅, ⋅) Radial Basis Function
Dynamics GMM covariance, 𝚺s 0.252
Dynamics likelihood covariance, 𝚺obs 0.12
Dynamics update steps, 𝐿 20
Dynamics step size, 𝜖 1 × 10−2
Dynamics in log space Yes

Table B.3: Hyper-parameters for the trajectory tracking experiment in Chapter 4.

Parameter Traj. Tracking

Policy samples,𝑁a 50
Dynamics samples,𝑁s 4
Cost Likelihood inverse temperature, 𝛼 1.0
Control authority, 𝚺 0.12
Control horizon,𝐻 20
Number of policies,𝑁𝜋 2

Continued on next page
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Table B.3: (continued)

Parameter Traj. Tracking

Policy Kernel, 𝑘𝜋(⋅, ⋅) Radial Basis Function
Policy Kernel bandwidth selection Silverman’s rule
Policy prior covariance, 𝚺a 1.02
Policy step size, 𝜖 2 × 10−2
Dynamics prior distribution 𝒩(0.5, 0.22)
Dynamics particles,𝑁 𝛏 50
Dynamics Kernel, 𝑘𝛏(⋅, ⋅) Radial Basis Function
Dynamics GMM covariance, 𝚺s 0.06252
Dynamics likelihood covariance, 𝚺obs 0.12
Dynamics update steps, 𝐿 5
Dynamics step size, 𝜖 5 × 10−2
Dynamics in log space No

B.2 Considerations on action selection

Once policy parameters have been updated according to Eq. (4.11), we can update the
policy for the current step, 𝜋𝛉𝑡 . However, defining the updated policy is not enough,
as we still need to determinewhich immediate control action should be sent to the sys-
tem. There aremany options which could be considered at this stage. One alternative
would be to take the expected value at each time-step, although that could comprom-
ise themulti-modality of the solution found. Other options would be to consider the
modes 𝜋𝛉𝑡 of at each horizon step or sample the actions directly. Finally, we adopt
the choice of computing the probabilistic weight of each particle and choosing the
highest weighted particle as the action sequence for the current step. More formally:

𝜔𝑖 =
𝑝(𝒪 | 𝛉𝑖𝑡, 𝛏) 𝑞(𝛉𝑖𝑡−1)

∑𝑚
𝑗=1 𝑝(𝒪 | 𝛉𝑗𝑡 , 𝛏) 𝑞(𝛉𝑗𝑡−1)

≈ 𝑝(𝛉𝑖𝑡 | 𝒪, 𝛏). (B.1)

And finally, the action deployed to the system would be given by 𝑈𝑛∗
𝑡 = 𝛉𝑛∗𝑡 ,

where 𝑛∗ = argmax𝑛 𝜔𝑛𝑡 .
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B.3 Considerations on covariate shift

The proposed inferencemethod assumes that the parameters of the dynamical model
are fixed over time. Note that, even if the distribution over parameters changes over
time, this remains a plausible consideration, given that the control loopwill likely have
a relatively high frequency when compared to the environment covariate shift. This
also ensures that trajectories generated in simulation are consistent and that the res-
ulting changes are being governed by the variations in the control actions and not the
environment.

However, it is also clear that the method is intrinsically adaptable to changes in
the environment, as long as there is a minimum probability of the latent parameter
being feasible under the prior distribution 𝑞(𝛏 | 𝒟𝑡). Too see this, consider the case
where there is an abrupt change in the environment (e.g. the agent picks-up some
load or the type of terrain changes). In this situation, 𝑞(𝛏 | 𝒟𝑡−1)would behave as if
a poorly specified prior, meaning that as long the probability density around the true
distribution 𝑝(𝛏) is non-zero, we would still converge to the true distribution, albeit
requiring further gradient steps.

In practice, themore datawe gather to corroborate a givenparameter set, themore
concentrated the distributionwouldbe around a given location in theparameter space
and the longer it would take to transport the probability mass to other regions of the
parameter space. This could be controlled by including heuristic weight terms to the
likelihood and prior in Eq. (4.14). However, we deliberately choose not to include
extra hyper-parameters based on the hypothesis that the control loop is significantly
faster than the changes in the environment, which in general allows the system to
gather a few dozens or possibly more observations before converging to a good estim-
ate of 𝛏.

B.4 Bias on joint inference of policy and dynamics

Note that, if we take the gradient of Eq. (4.8) w.r.t. 𝛏, we get:

∇𝛏 𝑝(𝛉𝑡, 𝛏 | 𝒪,𝒟) = ∇𝛏[𝑝(𝛉𝑡 | 𝒪, 𝛏) 𝑝(𝛏 | 𝒟)]
= 𝑝(𝛏 | 𝒟)∇𝛏 𝑝(𝛉𝑡 | 𝒪, 𝛏) + 𝑝(𝛉𝑡 | 𝒪, 𝛏)∇𝛏 𝑝(𝛏 | 𝒟).

(B.2)
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The first term on the right-hand side (RHS) of the equation above indicates that
the optimality gradient of simulated trajectories would contribute to the update of
𝛏. This implies that the estimation of 𝑝(𝛏) would be driven to regions that would
yield lower cost policies, i.e. possibly due to easier to control dynamics. Naturally, it
is important that the likelihood of 𝛏 be taken into account during the policy updates,
but we don’t want the inference of the physical parameters to be biased by our optim-
ality measure. In other words, the distribution over 𝛏 shouldn’t conform to whatever
would benefit the optimality policy, but the other way around.
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Supplementary material for

Chapter 5

C.1 Path following example

As amotivating example in Fig. C.1 we depict the results of a simple two-dimensional
path following task. The goal is to reduce the error between the desired path and can-
didate paths. Sincewewant the error to be as small as possible, the optimal path is one
centred at the origin across time. The objective function is defined as a correlatedmul-
tivariate Normal distribution across 10 consecutive discrete time-steps such that the
optimality likelihood is computed for the entire discretised path. As the cost function
is convex and we are optimising the paths directly—i.e. not searching for an indirect
policy that generates the candidate paths—the solution is trivial. Nonetheless, the
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example is useful to illustrate the differences between SigSVGD and SVMP.
The initial paths are sampled from a uniform distribution and optimised with

SVMP and SigSVGD for 200 iterations. The length scale of the squared-exponential
kernel is computed according to Silverman’s rule (Silverman, 1986) based on the ini-
tial sample for SigSVGD and updated at each iteration using the same method for
SVMP. The results in Fig. C.1 show how both methods are able to promote diversity
on the resulting paths. However, close inspection of the SVMP solution illustrates
how coordinates of the candidate paths at each time-step are optimised without co-
ordination, resulting in many paths crisscrossing and non-optimal paths close to the
origin. Conversely, SigSVGD is promoting diversity of complete paths, rather than co-
ordinates at each cross-sectional time-step, resulting in more direct paths with higher
optimality likelihood.

Cost map

−2 0 2
−2

0

2
Initial Paths

−2 0 2

SVGD Paths

−2 0 2

SigSVGD Paths

0.0

0.5

1.0

Figure C.1: Qualitative analysis of trajectory tracking task. Left: Contour
plot of the optimality distribution over sequential time-steps (on 𝑧-axis). Centre-left:
Cross-section plot at a given time-step of initial path coordinates. The colour of each
path indicates its normalised optimality probability. Centre-right: Cross-section plot
of the paths after SVGD optimisation. The sampled paths are diverse and capture
the variance of the target distribution. Note, however, that many non-optimal tra-
jectories are close to the origin due to the lack of coordination between consecutive
time-steps. Right: Cross-section plot of the paths after SigSVGDoptimisation. Note
how we achieve both diversity and a concentration of optimal paths near the origin.

C.2 Experiments hyper-parameters

In Tables C.1 to C.3 we present the relevant hyper-parameters to reproduce the res-
ults in the paper. It is worth mentioning that the terrain in the 2-Dmotion planning
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is randomly generated and will vary on each simulation. Another source of random-
ness arises when using Monte Carlo samples to approximate the gradient of the log
posterior distribution. Furthermore, due to the stochastic nature of the initial place-
ment of the spline knots, results will vary despite using analytic gradients.

Table C.1: Hyper-parameters for the 2-D terrain experiment.

Parameter 2-D Terrain

Initial state, 𝐱𝑠 [0.25, 0.75]
Number of spline knots,𝑁𝑘 4
Number of particles,𝑁𝑝 20
Particle prior Uniform
Cost likelihood inverse temperature, 𝜆 1.0
Stationary kernel, 𝑘(⋅, ⋅) Squared-exponential
Stationary Kernel bandwidth, 𝜎 1.5
Signature kernel bandwidth, 𝜎 1.5
Signature kernel degree, 𝑑 4
Optimiser class Adam
Learning rate, 𝜖 5 × 10−2

Table C.2: Hyper-parameters for the navigation experiment.

Parameter Point-mass Navigation

Initial state, 𝐱𝑠 [−1.8, −1.8]
Environment maximum velocity 5 m/sec
Number of particles,𝑁𝑝 30
Particle prior 𝒩(𝑋, 𝟏)
Number of action samples,𝑁a 10
Cost likelihood inverse temperature, 𝜆 1.0
Control authority, 𝚺 25
Control horizon,𝐻 30

Continued on next page
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Table C.2: (continued)

Parameter Point-mass Navigation

Stationary kernel, 𝑘(⋅, ⋅) Squared-exponential
Stationary Kernel bandwidth, 𝜎 Silverman’s rule
Signature kernel bandwidth, 𝜎 5.65
Signature kernel degree, 𝑑 3
Optimiser class Adam
Learning rate, 𝜖 1

Table C.3: Hyper-parameters for the manipulator benchmark experiment.

Parameter Manipulator Benchmark

Initial state, 𝐱𝑠 Problem dependent
Number of spline knots,𝑁𝑘 5
Number of particles,𝑁𝑝 20
Particle prior Uniform
Cost likelihood inverse temperature, 𝜆 1.0
Stationary kernel, 𝑘(⋅, ⋅) Squared-exponential
Stationary Kernel bandwidth, 𝜎 1.5
Signature kernel bandwidth, 𝜎 1.5
Signature kernel degree, 𝑑 6
Optimiser class Adam
Learning rate, 𝜖 1 × 10−3

C.3 Including hyper-priors in SigSVGD

Asmentioned in Section 5.3.2, if one wants to constraint the feasible set of the SVGD
optimisation a hyper-prior can be included in the algorithm. Let ℎ(⋅) be a hyper-prior
and𝑝(⋅) theprior distributionover particles𝐱, 𝐲 ∈ 𝒳 and recall that the score function
at each update is computed according to

𝛟∗(𝐱) = 𝔼𝐲∼𝑝[𝑘⊕(𝐲, 𝐱)∇𝐲 log𝑝(𝐲 | 𝒪) + ∇𝐲𝑘⊕(𝐲, 𝐱)],
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where the posterior distribution can be factored in log𝑝(𝐲 | 𝒪) = ℒ(𝒪 | 𝐲) +
log𝑝(𝐲). We can include the hyper-prior in the formulation by variable substitution.
Let log ̂𝑝(⋅) = log𝑝(⋅) + logℎ(⋅), then

𝛟∗(𝐱) = 𝔼𝐲∼𝑝[𝑘⊕(𝐲, 𝐱)∇𝐲 log𝑝(𝐲 | 𝒪) + ∇𝐱𝑘⊕(𝐲, 𝐱)]

𝛟∗(𝐱) = 𝔼𝐲∼𝑝[𝑘⊕(𝐲, 𝐱)∇𝐲[ℒ(𝒪 | 𝐲) + log ̂𝑝(𝐲)] + ∇𝐲𝑘⊕(𝐲, 𝐱)]

𝛟∗(𝐱) = 𝔼𝐲∼𝑝[𝑘⊕(𝐲, 𝐱)∇𝐲[ℒ(𝒪 | 𝐲) + log𝑝(𝐲) + logℎ(𝐲)] + ∇𝐲𝑘⊕(𝐲, 𝐱)],

where ℎ(⋅) can be any differentiable probability density function. ■
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