1,565 research outputs found

    Workflow Scheduling Techniques and Algorithms in IaaS Cloud: A Survey

    Get PDF
    In the modern era, workflows are adopted as a powerful and attractive paradigm for expressing/solving a variety of applications like scientific, data intensive computing, and big data applications such as MapReduce and Hadoop. These complex applications are described using high-level representations in workflow methods. With the emerging model of cloud computing technology, scheduling in the cloud becomes the important research topic. Consequently, workflow scheduling problem has been studied extensively over the past few years, from homogeneous clusters, grids to the most recent paradigm, cloud computing. The challenges that need to be addressed lies in task-resource mapping, QoS requirements, resource provisioning, performance fluctuation, failure handling, resource scheduling, and data storage. This work focuses on the complete study of the resource provisioning and scheduling algorithms in cloud environment focusing on Infrastructure as a service (IaaS). We provided a comprehensive understanding of existing scheduling techniques and provided an insight into research challenges that will be a possible future direction to the researchers

    QoS-aware predictive workflow scheduling

    Full text link
    This research places the basis of QoS-aware predictive workflow scheduling. This research novel contributions will open up prospects for future research in handling complex big workflow applications with high uncertainty and dynamism. The results from the proposed workflow scheduling algorithm shows significant improvement in terms of the performance and reliability of the workflow applications

    A mathematical programming approach for resource allocation of data analysis workflows on heterogeneous clusters

    Get PDF
    Scientific communities are motivated to schedule their large-scale data analysis workflows in heterogeneous cluster environments because of privacy and financial issues. In such environments containing considerably diverse resources, efficient resource allocation approaches are essential for reaching high performance. Accordingly, this research addresses the scheduling problem of workflows with bag-of-task form to minimize total runtime (makespan). To this aim, we develop a mixed-integer linear programming model (MILP). The proposed model contains binary decision variables determining which tasks should be assigned to which nodes. Also, it contains linear constraints to fulfill the tasks requirements such as memory and scheduling policy. Comparative results show that our approach outperforms related approaches in most cases. As part of the post-optimality analysis, some secondary preferences are imposed on the proposed model to obtain the most preferred optimal solution. We analyze the relaxation of the makespan in the hope of significantly reducing the number of consumed nodes

    An efficient resource sharing technique for multi-tenant databases

    Get PDF
    Multi-tenancy is one of the key components of cloud computing environment. Multi-tenant database system in SaaS (Software as a Service) has gained a lot of attention in academics, research and business arena. These database systems provide scalability and economic benefits for both cloud service providers and customers(organizations/companies referred as tenants) by sharing same resources and infrastructure in isolation of shared databases, network and computing resources with Service level agreement (SLA) compliances. In a multitenant scenario, active tenants compete for resources in order to access the database. If one tenant blocks up the resources, the performance of all the other tenants may be restricted and a fair sharing of the resources may be compromised. The performance of tenants must not be affected by resource-intensive activities and volatile workloads of other tenants. Moreover, the prime goal of providers is to accomplish low cost of operation, satisfying specific schemas/SLAs of each tenant. Consequently, there is a need to design and develop effective and dynamic resource sharing algorithms which can handle above mentioned issues. This work presents a model embracing a query classification and worker sorting technique to efficiently share I/O, CPU and Memory thus enhancing dynamic resource sharing and improvising the utilization of idle instances proficiently. The model is referred as Multi-Tenant Dynamic Resource Scheduling Model (MTDRSM) .The MTDRSM support workload execution of different benchmark such as TPC-C(Transaction Processing Performance Council), YCSB(The Yahoo! Cloud Serving Benchmark)etc. and on different database such as MySQL, Oracle, H2 database etc. Experiments are conducted for different benchmarks with and without SLA compliances to evaluate the performance of MTDRSM in terms of latency and throughput achieved. The experiments show significant performance improvement over existing Mute Bench model in terms of latency and throughput

    Scheduling in Grid Computing Environment

    Full text link
    Scheduling in Grid computing has been active area of research since its beginning. However, beginners find very difficult to understand related concepts due to a large learning curve of Grid computing. Thus, there is a need of concise understanding of scheduling in Grid computing area. This paper strives to present concise understanding of scheduling and related understanding of Grid computing system. The paper describes overall picture of Grid computing and discusses important sub-systems that enable Grid computing possible. Moreover, the paper also discusses concepts of resource scheduling and application scheduling and also presents classification of scheduling algorithms. Furthermore, the paper also presents methodology used for evaluating scheduling algorithms including both real system and simulation based approaches. The presented work on scheduling in Grid containing concise understandings of scheduling system, scheduling algorithm, and scheduling methodology would be very useful to users and researchersComment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    Presentation an Approach for Placement Phase in Mapping Algorithm

    Get PDF
    The data requirements of both scientific and commercial applications have been increasing drastically in recent years. Just a couple of years ago, the data requirements for an average scientific application were measured in terabytes, whereas today we use petabytes to measure them. Moreover, these data requirements continue to increase rapidly every year, and in less than a decade they are expected to reach the exabyte (1 million terabytes) scale.. In this work, the data duplication technique has not been used by us. That’s because of increase in costs and expenses of using a cloud system.In this paper, an approach to mapping workflow tasks and data between cloud system data centers has been presented. This approach encompasses 2 phases: both of which both have been given enough input to appropriately map tasks and data between data centers in such a way that the total time for task execution and data movement becomes minimal. In other words, the goal of mentioned approach is to present a trade-off between these two Goals. Simulations have demonstrated that the said approach can fulfill stated goals effectively. Keywords:Distributed system, scientific application, application, data requirement
    • …
    corecore