2,166 research outputs found

    Social Network Optimization for WSN Routing: Analysis on Problem Codification Techniques

    Get PDF
    The correct design of a Wireless Sensor Network (WSN) is a very important task because it can highly influence its installation and operational costs. An important aspect that should be addressed with WSN is the routing definition in multi-hop networks. This problem is faced with different methods in the literature, and here it is managed with a recently developed swarm intelligence algorithm called Social Network Optimization (SNO). In this paper, the routing definition in WSN is approached with two different problem codifications and solved with SNO and Particle Swarm Optimization. The first codification allows the optimization algorithm more degrees of freedom, resulting in a slower and in many cases sub-optimal solution. The second codification reduces the degrees of freedom, speeding significantly the optimization process and blocking in some cases the convergence toward the real best network configuration

    Unmanned Ground Vehicle

    Full text link
    Due to new developed technology man is leading a comfortable life. People want each work should be done automatically. So in this paper introduces a system called UNMANNED GROUND VEHICLE. UGV as name indicate it operates in contact with ground and without any human resource. The vehicle will have a set of sensors to observe the environment. In this paper for the working of UGV, FPGA is embedded with image processing. FPGA as main processing platform used to control UGV. The performance evaluation of proposed system takes place by capturing the image of UGV with help of camera. This system demonstrate accurate localization of UGV. This UGV vehicle used in military, mall, automobile industry. To work system properly provide proper interfacing and synchronization between hardware/software module

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions
    • …
    corecore