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Abstract 

This thesis proposed cognitive techniques and intelligent algorithms that offered adaptive and 

advanced facilities to cloud-based networking by using Virtual Ad Hoc Mobile Cloud 

Computing Networks architecture (VAMCCNs). This is presented as a working case to address 

their global network challenges and to add cognitive support to the network design and 

implementation for better meeting traffic management and application requirements in mission 

objectives. The thesis concentrates on three main contributions.  

Firstly, an adaptive model, namely: a Heterogeneous Mobile Cloud Computing Network 

(HMCCN), was proposed to integrate different cloud networks architectures into one 

workflow. The cognitive data offloading task and the routing decision methods were applied 

using two different approaches: Fuzzy Analytic Hierarchy system (FAH) as a first approach 

and cognitive Software Defined Network (SDN) model as a second centralised approach. 

Experimental results show improvement in network reliability and throughputs, minimised in 

both nodes’ energy consumption and network latency with efficient intelligent data load 

balance and network resources allocation with best cloud model selection.  

Secondly, based on a virtual Ad Hoc cloud network with a realistic Random Waypoint Motion 

(RWM) model, an innovative cognitive routing algorithm was presented to improve efficient 

and reliable route selection among multiple possible routes. Routing protocols based on 

conventional, Fuzzy logic used important parameters with two data collections and decisions 

techniques and a new adaptive Intelligent Hybrid Fuzzy-Neural routing protocol (IHFN) that 

included prior knowledge to the network of the underlying motion and energy parameters were 

all proposed and compared. Results with the new hybrid algorithm shown a significant 

improvement to solve the network end-to-end performance degradation problem. The new 

hybrid protocol improved network throughput with an average of 20% higher than traditional 

Ad Hoc On-Demand Distance Vector (AODV) Routing protocol, improved the usage of 

network resources and reduced the maintenance process in adynamic topologies network.  

Finally, based on datasets collected from a realistic motion RWM model in a virtual Ad Hoc 

cloud network, the performance behaviour of six selected deep learning algorithms to predict 

the next steps of positions, speed and residual battery energy values of these mobile nodes have 

been evaluated and compared. This work goes further by presenting two algorithm's training 

techniques to predict the next 300-time steps of position, speed, and energy. Results and 

dissuasion show the differences concerning prediction accuracy between using the single node 

dataset model or Multiple node's dataset model.  
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Chapter 1 

 

1 INTRODUCTION 

1.1 Background 

With the Internet of things (IoT) becoming part of human’s daily lives and environments, rapid 

growth has expected in the number of connected devices [1]. Internet of things is expected to 

connect billions of devices and users to bring promising advantages to society. 

With this growth and improvements, fog computing with its related edge computing paradigms 

was presented as a promising solution for handling the large volume of time-sensitive and 

security-critical data that cloud-based users and devices produce.   

Moreover, over the decade, wireless technologies have increased dramatically, and many 

mobile devices can now support multiple forms of wireless connectivity. The popularity of 

cloud services and wireless technology, including wireless devices, has been the motivation to 

researching and enhancing Mobile Cloud Computing Networks (MCCNs) and Ad Hoc Mobile 

Cloud Computing Networks (AMCCNs) architectures in this thesis.  

Therefore, massive data expected to be traversed cloud network backbones and passes through 

its nodes and links. Emerging location-aware and time-sensitive applications such as self-

driving cars, drones, and patient monitoring through cloud-based networks is a big challenge. 

Because the network cannot guarantee the fulfilment of the ultra-low latency requirements of 

these applications, providing accurate location-aware services or being able to scale to the 

volume of the data that these applications produced [2].   

Traditionally cloud-based networks, in general, faces all the challenges related to wireless data 

communications. Traditional data communication networks are working in reactive 

approaches, which means that they address network problems after the problem has occurred. 

New types of cloud architectures, services, and applications drive the researchers to think 

towards new and innovative communication network designs and new routing methods and 

techniques. 
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1.2 Motivation 

In recent years, researchers have clearly shown an increased interest in enhancing network 

performance. The continuous developments of cloud-based applications and mobile devices' 

ability show that the networking requirements have become significantly much more 

sophisticated. Today, data traffic is a lot more demanding with complex needs, especially in 

an age where cloud computing, big data, and IoT reigns supreme. With these complicated 

patterns, it is too fast progress for traditional networking to handle. 

Networks in the mobile cloud must respond and adjust dynamically based on network condition 

and application needs. Current network management models and routing solutions on mobile 

networks are only valid under specific assumptions and conditions. Intensive and time-

sensitive applications performance have been constrained due to uncertainties associated with 

network resources utilisation and link status. Virtual Ad Hoc Mobile Cloud Computing 

Networks (VAMCCNs) can be considered as self-organised, infrastructure-less, multi-hop 

wireless networks. They are able to be linked to cellular networks and can form a group of 

devices. Mobile cloud networks in general, require a reliable connection between the cloud and 

the mobile devices. In VAMCCNs characteristics like node mobility, dynamic topology, and 

intermittent links make the connections between nodes in some cases unreliable. 

As a result, cloud networking needs to be self-aware in order to be able to provide resilient 

services and applications. Such networks should present cognitive properties where the actions 

and decisions are based on analysis, automatic operations, adaptive functionality, and self-

manageability. The introduction of cognition towards cloud networking can address the 

complexity of various applications and services provided and its heterogeneous networks by 

specifying and delivering solutions for the efficient handling of these concepts. For that reason, 

the intelligence that is needed for the management of cloud networking functionalities is rated 

to the optimal cloud networks configurations given a specific adaptable solution. The input in 

such situations consists of information on mobility levels, network resources, data traffic, and 

interface levels. These challenges motivate the proposed idea of extending cognitive 

functionalities to the legacy mobile cloud network.       

The work in this thesis focused, motivated and taken into consideration the following points: 

• The possibility of applying the methodologies found in cognitive networks to cloud 

networking and particularly to the MCCNs. 

• The possibility of using this approach to increase cloud networking's performance to meet 

its mission objective. 
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• To find the efficient management of increasing complexity within cloud networking 

requirements. 

 

1.3 Research Aim and Objectives 

The essence of this thesis goal is to present a framework that will combine some of the 

cognitive network approaches into a cloud networks environment based on VAMCCNs as 

casework. The aim is addressed by the following: 

• To allow to use the principle of cognitive integrations of multiple cloud networking 

architectures based on application requirements, networks resources and network’ state.  

• To maintain service availability in cloud-based networks, particularly in MCCNs that are 

operated over a set of sporadically available nodes and links. 

• To better utilise network available resources when establishing route paths, offloading data, 

and selecting the best cloud architecture based on task requirements to make the network 

more resilient to changes in its topology and congestion during operations. 

• To allow VAMCCNs that operate over unreliable infrastructures to work in a reliable 

method to execute complex tasks and applications efficiently. 

• To allow VAMCCNs to overcome congestion, link breakage and network resources 

consumptions. 

• To allow VAMCCNs to be aware of their state and environment. 

• To identify fault patterns to predict future network performance degradation.   

• To understand algorithms performance differences in pattern prediction models. 

• To understand the best technique to use mobility and energy datasets for training and testing 

algorithms in pattern prediction methods to get accurate results. 

 

The above aims were achieved by meeting the following objectives of this thesis: 

• To present an adaptive Heterogeneous Mobile Cloud Computing Networks model 

(HMCCNs) using VAMCCNs as an assumption approach. 

• To present a cognitive offloading and routing mechanism using The Fuzzy Analytic 

Hierarchy (FAH) technique for offloading and best optimal cloud model selection in 

HMCCNs. 

• To present a centralised cognitive Software Defined Network (SDN) controller as a second 

approach for routing and data traffic management in HMCCNs. 
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• To collect network datasets of useful information such as (position, speed, and residual 

battery energy) values. The datasets were created based on a simulated mobile Ad Hoc 

network with realistic movement using the Random Waypoint Mobility model (RWM) and 

applied three data traffic rates (Low, Medium, and High). The datasets collected will be 

used for further analysis. 

• To simulate and compare the network performance of various conventional and adaptive 

proposed routing algorithms. An Ad Hoc On-Demand Distance Vector (AODV) as a 

traditional routing protocol, a fuzzy logic routing algorithm using essential parameters for 

selecting the reliable routes and with two routing decision and parameters collection 

techniques. Finally, an Intelligent Hybrid Fuzzy-Neural (IHFN) routing algorithm. 

• To improve the reliable path selected by adding prior knowledge of the underlying mobility, 

battery capacity and speed patterns for the network’s nodes. 

• To understand and identify the accuracy results of using six selected deep learning models 

to predict next positioning, speed, and energy based on datasets collected from a virtual Ad 

Hoc mobile network with realistic RWM model using three different data traffics rates. 

• To find better training and testing technique using either Single or Multiple nodes datasets 

models that will give higher prediction accuracy to predict the next 300-time steps of 

positioning, speed and energy of the mobile nodes based on a dataset collected from a virtual 

Ad Hoc mobile network with realistic RWM model using three different data traffics rates 

by applying six chosen deep learning algorithms (RNN, GRU, Bi-Directional-LSTM, 

LSTM, CNN-LSTM and Stacked LSTM). 

 

1.4 Contributions 

There are three main contributions of this thesis which is summarised as follows: 

1- Proposed an adaptive HMCCN model that integrates various cloud architectures, models, 

and service types into one workflow. Results of the integrated MCCN and VAMCCN show 

improvements in network throughputs and minimising nodes’ power consumptions. 

Furthermore, two approaches are presented as two cognitive models used to support 

HMCCN in managing optimal cloud (s) network architecture selection, data flow, and 

routing. The first approach proposed, based on the FAH model is a cognitive model 

supported HMCCN, which selects the optimal cloud network architecture (s) based on 

advance essential criteria. The second approach based on the concept of cognitive SDN 

controller that is presented as an intelligent centralised method supported HMCCN in terms 
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of routing, data flow balanced and cloud network architecture(s) selections. A comparison 

between the SDN network and traditional network in terms of its response time performance 

using Round-Trip Time (RTT) parameter was applied. Results of the measurements’ RTT 

values taken from different scenarios in both networks show a noticeable minimisation in 

network latency with SDN network compared to traditional network and that differences 

increased proportionally with the increasing of the number of switches used within the 

network. 

2- Based on the design and the simulation of a realistic RWM model in a virtual Ad Hoc mobile 

cloud network with three data transmission rates applied (Low, Medium, and High), an 

innovative routing algorithm was proposed aimed at improvement efficient and reliable 

route among multiple possible routes. Four experiments proposed with various routing 

algorithms, AODV as a conventional routing protocol, Fuzzy logic routing protocol with 

two experiments applied, measured the best routing decision process location and best 

network parameters collection time. Finally, as a fourth experiment, an adaptive IHFN 

routing protocol has been proposed. This new routing protocol was designed based on a 

fuzzy logic system that offered a natural way of reasoning and representing the problems 

and a neural network system that added an intelligent future awareness capability of 

movement and resources usage patterns with networks state information. Results of the 

network performance concerning the four proposed protocols were evaluated and compared. 

Final results of the proposed IHFN routing protocol have shown improvements in network 

throughput with an average value of 20% higher than the AODV routing protocol, which 

has also included improvements in packet delivery ratio. Results are also affected by the 

time step used for predictions in IHFN.  Furthermore, an average of 10% throughput 

improved when the source node is used as the primary location for routing management and 

Route Replay (RREP) packet for network parameters collection compared to the other 

scenario. 

3- The performance behaviour of six selected deep learning algorithms (RNN, GRU, Bi-

Directional-LSTM, LSTM, CNN-LSTM and Stacked LSTM) is used to predict the next 

position, speed, and residual battery energy value of mobile nodes have been evaluated and 

compared. This is based on the datasets collected from the mobile Ad Hoc network 

simulated with a realistic random waypoint mobility model (RWM) with three data traffic 

rates scenarios applied. Final results analysed concerning pattern prediction accuracy using 

the complex information in the datasets have shown high accuracy prediction results using 

Stack-LSTM, RNN, and LSTM algorithms compared to other algorithms used. 
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Furthermore, a second experiment is presented to compare two learning and testing datasets 

techniques by using a single node dataset model or multiple nodes datasets model based on 

the same six selected deep learning algorithms to predict the next 300-time steps. To get 

actual and correct results, five nodes were randomly selected and their datasets used for this 

experiment. Results have been analysed and shown that Stacked LSTM, RNN, and LSTM 

algorithms gave lower Root Mean Square Error (RMSE) values with the next 300-time steps 

prediction for x, y, speed, and energy when trained and tested with the multiple nodes dataset 

model. With Bi-Directional- LSTM algorithm, the RMSE values were lower when it was 

trained and tested with a single node model. In contrast, the prediction results of other 

algorithms have shown instability when those complex datasets were used. 

 

1.5 Thesis Outline 

The whole work in this thesis is organised into six chapters. Each chapter started with a brief 

introduction providing an overview and focusing into the main contributions of the chapter. At 

the end of each chapter a summary is presented. 

Chapter 2 Starts with explaining the evolution of cloud computing networks and cloud 

networking with a brief overview of cloud architectures like MCC, fog, edge, and IoT. 

Cognitive techniques such as Artificial Intelligence (AI), SDN, and fuzzy logic and their 

applications in cloud computing networks were discussed.  Also, Pattern prediction models 

with mobility methods and techniques using time series forecasting were fundamentally 

explained with some examples presented when applied in mobility prediction models. 

Chapter 3 Presents a new model, namely HMCCNs. The suggested new cognitive model 

optimises the utilisation of heterogeneous computing and network resources in cloud 

networking environments in general and with MCCNs in particular. The proposed model 

shows an improvement in network throughput of the MCCN when integrated with VAMCCN 

during congestion and link breakdown conditions. It also improved nodes’ energy 

consumptions during the tasks. Furthermore, two intelligent approaches proposed supported 

the HMCCN model in terms of optimal cloud architecture(s) selection, data offloading, data 

management, and routing. The first approach suggested using the FAH system. The second 

approach suggested using a cognitive SDN controller. The final results of two experiments 

with multiple scenarios of traditional and SDN based networks have been compared, evaluated 

and shows a significant improvement in network latency when using an SDN network 
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compared to a traditional network. It is proportional to the scalability related to the increasing 

number of switches used within the network.   

Chapter 4 Presents the design and implementation of an adaptive new IHFN routing protocol 

applied on Ad Hoc mobile cloud network with realistic RWM model assigned with various 

energy capacity and used three data traffic rates (low, medium, and high). Four experiments 

applied using AODV as a conventional routing protocol, Fuzzy logic routing protocol with two 

experiments were applied, which measured the best routing decision process location and best 

network parameters. Finally, as a fourth experiment, an adaptive IHFN routing protocol has 

been proposed. Final results of the network performance concerning the four proposed 

protocols were evaluated, compared, and shows a significant improvement with the new 

proposed IHFN routing protocol in network throughput and Packet Delivery Ratio (PDR). 

Results were also affected by the time step used for predictions in IHFN.  Furthermore, there 

was an average of 10% throughput improvement when the source node was used as the primary 

location for routing management and RREP for network parameters collection compared to the 

other experiments that used destination node and Route Request Packet (RREQ). 

Chapter 5 Presents the comparison performance of six machine learning algorithms (RNN, 

GRU, Bi-Directional-LSTM, LSTM, CNN-LSTM, and Stacked-LSTM) that were used to 

predict the next time steps of nodes positioning, speed and energy using a complex dataset 

collected from simulation of mobile Ad Hoc network with RWM model with three data rates 

applied (Low 200 packets/sec, Medium 600 packets/sec, and High 1200 packets/sec). Results 

showed differences in performance using complex datasets. Furthermore, another experiment 

presented with two scenarios applied by creating two different training and testing datasets 

models, namely Single node ‘dataset and Multiple nodes' datasets. The same six selected 

algorithms have been used to predict the next 300-times steps. To get actual and correct results, 

five nodes were randomly selected and their datasets used for this experiment. Results were 

analysed and compared for both scenarios and show the differences in algorithm’s 

performances when applied both datasets’ models on each one of these algorithms. 

Finally, Chapter 6 presents the study recommendations and conclusions and the suggestion 

for future work. 
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Chapter 2 

 

2 BACKGROUND AND LITRATURE 

REVIEW  

 

 

2.1 Introduction  

In general, Cloud computing networks allows users to acquire on-demand computational and 

network resources on a pay-per-use basis and allows vertical and horizontal scalability [3]. The 

area of cloud computing networks technologies is one of the rapid development areas, with its 

related applications and services provided that is having a huge and almost direct impact on 

various aspects of the modern civilisation, including but not limited to military, commerce, 

education, gaming, and healthcare [4-10]. In this regard, the improvement of a reliable and 

flexible infrastructure that is secure, real-time, and cost-effective when delivering the data 

almost anywhere and anytime is very important to provide the best Quality of Service (QoS) 

required. With complexity increases in current cloud networks, services, and applications, 

upgrading the network and continuously improving its capabilities and limiting human 

intervention have become the most important demand. To do that, the networking research 

community presented a new model for a traditional network called the cognitive network that 

can think, learn, and decide [11-13]. 

 

2.2 Evolution of Cloud Computing Networks 

 Cloud Computing and Cloud Networking 

Although cloud computing concepts were introduced back in the 1950s, the first cloud 

computing services became available in the early 2000s [14]. It was particularly aimed at large 

enterprises, then it spread to small and medium businesses and recently to consumers. 

Nowadays, individual users of mobile devices and PCs are relying on using cloud computing 

services to sync devices, back up and share data using personal cloud computing. Cloud 

computing can be defined as the delivery of different services across the Internet. These 
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services include resources and applications such as servers, data storage, databases, software, 

and networking. In general, the cloud computing model is based on data centres that can 

manage the processing and storage of the massive scale of data. The connections between data 

centres are often made over optical networks to form one singular resource called data centre 

networks (DCNs). Despite that this type of communication will provide low latency between 

data centres itself, but the communication between DCNs and the end devices still prove to be 

a bottleneck. The cloud networking concept refers to the network and network management 

functionality that must be available to enable cloud computing. A good example of cloud 

networking is the provisioning of high reliability and high performance networking between 

the cloud provider and the user, which also will include the traffic that passes between them. 

Traditional cloud networking architectures present imposing challenges for an efficient and 

effective flow of data traffic through networks. It will be helpful in this regard to consider 

cognitive cloud networks as an intelligent solution to overcome network challenges. 

 

 Mobile Cloud Computing Networks  

The importance of mobile cloud computing networks is extremely growing with the increase 

of cloud applications and services. Day by day, mobile cloud computing-based applications 

and services are gaining a reputation in different fields such as in military, learning, commerce, 

and health monitoring [4-10]. Mobile Cloud Computing (MCC) is an integration of mobile 

device, wireless network, and cloud computing. This concept allows mobile users to access 

unlimited storage space and computing power inside cloud servers using the internet [15]. 

Researchers generally use a computational augmentation method to enhance mobile devices' 

functionality by leveraging computational resources from mobiles to clouds through offloading 

methods [16]. Offloading computational tasks or intensive applications from the mobile device 

to the remote cloud can overcome the problems of limited processing power and the limited 

battery lifetime of mobile devices. Offloading will save mobile device power if heavy 

computational and light communication are considered. Figure 2-1 illustrates the area of 

whether to decide to offload the data for computation process or not. From this figure, the data 

should be offloaded if the amount of computation is high.  Partial or full data offload are related 

to whether the area of computation is moderate or high respectively. The expansion increases 

of both mobile devices' abilities and the concept of MCC together have raised a potential 

concept called Mobile Ad Hoc Cloud Networks (MACNs). The main target for this evolution 

is to provide better availability and quality of the service. This attractive alternative framework 
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presented to transform the non-dedicated and locally available resources capacity from end 

users' mobile devices into an overlay cloud platform. 

 

 

Figure 2-1    Offloading decision with respect to computation and data amount [17]. 

 

 Fog Computing 

Despite considering cloud computing as a mature technology that is providing elastic 

infrastructure in a pay-per-use model, the main limitation of this technology is clearly shown 

with the connectivity between the cloud servers and the end-user devices [18], since such 

connectivity is established based on the internet which is mainly associated with noticeable 

transfer delay that is not suitable with latency-sensitive applications.  

Fog computing has emerged to provide elastic resources near the end-user to overcome the 

unacceptable latency between cloud servers and end-users and overcome the lack of location 

awareness and mobility support [19]. This paradigm will extend storage, computing and 

network services provided by the cloud and make it possible to do the required computing or 

process near to end-user devices allowing not only working with latency-sensitive applications 

but also will bring rapid innovation, efficiency, and affordable scalability. Fog computing can 

be considered a layered model that can allow ubiquitous access to shared and scalable 

computing resources. This model assists in the deployment of latency aware and distributed 

services and applications. It consists of fog nodes (light servers) located between the end-user 
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devices and the cloud.  The Fog nodes (physical or virtual) support communication system and 

data management and are also context aware. The nodes can be arranged into clusters either 

vertically or horizontally. Fog computing models provide local computing resources to end-

user devices and allow connectivity to public servers (cloud servers) when needed. It achieves 

the minimum time required for request or respond to or from working applications. Fog nodes 

are the core module of the fog computing part, which can be either physical modules like 

routers, switches, gateways or be virtual modules like virtual machines, virtual switches, 

cloudlets that are closely connected with the end-user devices or access networks so that 

computing resources will be able to be provided to these end devices. Fog node is aware of its 

logical location within its cluster and also its geographical distribution. Furthermore, fog nodes 

can operate in a centralised and decentralised way. 

Fog computing characteristics can be summarised as:  

1- Low latency with contextual location awareness: Each fog node will be aware of its logical 

location in the context of the whole system. It will also be aware of the latency 

communication cost with other nodes(s). Unlike the datacentre or centralised cloud service, 

fog nodes generate data and analysis it much faster. 

2- Heterogeneity: Fog computing supports various types of cloud network capabilities. 

3- Scalability: Fog computing supports data load changes, resource pooling and network 

condition changing. 

4- Real-time interaction: Unlike application with patching processing, fog computing works 

with real-time interactions applications. 

Fog nodes also can work independently by making local decisions at the same node or within 

the cluster level. The fog computing concept that Cisco has announced was extended to a new 

idea called edge computing that works in the cellular networks [20]. It is also clear that cloud 

computing takes the main part to build 5G system and also Tactile Internet system [21] that 

can be considered the next evolution of the (IoT) that enables human-to-machine and machine-

to-machine interaction in real-time with ultra-low latency and high availability. 

The tactile internet will merge multiple technologies in the networking level, data and contents 

will be transmitted over 5G network. At the same time, all intelligent processes will be close 

to the users at the edge (mobile edge computing), in the application level, Artificial Intelligence 

(AI), Virtual Reality (VR), robotics, and Augmented Reality (AR) will all take part on it. 
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 Edge Computing 

Edge computing is a technology that transfer cloud computing to be located in cellular network 

boundary such that it will be one hop from the end-user devices [22] [23][24][25].  This shifting 

will unload the core network because all computing process will be performed at the edge of 

the cellular network. It will also minimise network latency because it is one hop from the user’s 

devices, which will increase the bandwidth and will be capable of introducing new services 

and applications [26]. In the 5G cellular system, the cloud moves to the edge of the mobile 

network to reduce round trip latency by using one or two communication hops away from 

cellular mobile devices.  In general, 5G cellular system architecture can be considered a 

combination of mobile users, cloud unit, and core mobile network supported with the internet 

and integrated with the remote cloud. Based on European Telecommunications Standards 

Institute (ETSI) that is considered as the leading organisation concerned with edge computing 

[27], researchers are searching and proposing the best place of cloud unit to be located in 5G 

network where multiple scenarios can be used, such as connecting cloud servers to (eNB) - 

LTE macro base station or placing cloud unit either in 3G/4G – RNC (Radio Network 

Controller) or at the edge of the core network. Some researchers also introduced a small cloud 

units called Nabula [28] and micro cloud [29]. Figure 2-2 shows the layers of the cloud, Fog, 

and Edge architectures. 

 

          

 

Figure 2-2    Cloud vs Fog vs Edge layers. 
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 Internet of Things (IoT) 

The internet of things refers to the expanding of the interconnection of smart devices. It is the 

latest development revolution of communication and computing that enables new 

communication forms between the people and things, and between things themselves. Through 

the cloud systems, the internet now supports the interconnections of huge numbers of personal 

and industrial objects that deliver sensor(s) information. IoT is mainly driven by deeply 

embedded devices. These devices are low bandwidth that communicates to each other and 

provides data through user interfaces. But with other high-resolution video security systems as 

an example, it requires high bandwidth streaming capabilities. In general, researchers focus on 

two IoT elements, the things that are connected and the networking that interconnects them. 

IoT consists of five main layers: 

• The sensors and actuators: It represents the things. Sensors send back all observed 

information related to their environment such as humidity and temperature and all absence 

or presence of some observable process. While actuators work on their environment, such 

as operating a valve. 

• Connectivity: Network connected to the devices through either wireless or wired links to 

send collected data to the datacentre or receive command data from the controller (actuator). 

• Capacity: The working network supporting the devices should be able to handle huge flow 

of data. 

• Storage: Through the cloud capability, it can provide the storage facility for storing and 

maintaining the collected data.  

• Data analytics: Due to the huge information collected, data analytics capability is required 

to process the data flow. 

 

2.3 Challenges of Cloud Networks and MCCNs  

Many cloud applications require some guaranteed bandwidth between the end-user as a client 

and the cloud servers to comply with the necessary quality of service and be within the 

acceptable time frame. Insufficient bandwidths between the client-server’s model will impose 

significant latency on user tasks or interactions. The network topology of the cloud networks 

can be the main reason for the limitation of cloud services provided, so it should be tuned to 

match a predefined traffic requirement. In the MCC, the two different technologies namely 

cloud computing and mobile computing, have several issues and challenges [17]. 
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• Bandwidth: The main concern for MCC is the low bandwidth. In general, wireless networks 

have much lower bandwidth compared to wired networks [30]. Also, mobile devices have 

a problem of high variation in network bandwidth. 

• Energy resources: According to the hardware specifications, there is a limitation on the 

battery life of mobile devices. Power consumption should be taken into consideration when 

running any local computation or offloading tasks. 

• Mobile resources: Mobile devices computational and storage resources are limited 

compared to other static elements [31]. Mobile computational resources such as memory 

size, disk capacity, and processor speed are limited due to weight limitations and power 

consumption. 

• Data availability: Unreliability or failure in network connectivity is a significant risk when 

running applications in the cloud computing environment [32], particularly in unnatural 

circumstances like a disaster.  

• Wireless communications: In wireless communication, the packet’s path might be broken, 

or the packets might be dropped or get congested causing more obstacles in the network.   

• Security and privacy: The process of keeping the data secure when using the cloud for 

computational and storage is essential. 

• Fault tolerance: Faults occur in MCCNs as a result of the mobility of the device, running 

out of battery or network failure with the cloud. 

 

 Traditional Routing in Wireless Networks  

In the routing protocol, user traffic is directed and transported through the network from the 

source node to the destination node. The main objectives are to consider maximising network 

performance from the application aspects (application requirements) and minimising the 

network's cost according to its capacity. The network application’s main requirements are 

throughput, hop count, stability, jitter, delay, cost, etc. In contrast, the network capacity is 

related to the measurements of each node’s resources, density (nodes number in the network), 

rate of occurrence End-to-End connection (number of radio access) and the occurrence of the 

topology changes (mobility rate) [33]. As a result, the routing concept is restricted by traffic 

requirements and network capacity, as illustrated in Figure 2-3. 
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Figure 2-3 Routing restrictions [33]. 

 

From this figure, Data forwarding refers to forwarding user traffic across the selected route. 

Path generation indicates generating paths with respect to distribution and assembled state 

information of the application and the network. Path maintenance relates to maintaining the 

chosen route. Path selection refers to selecting appropriate paths based on application and 

network state. Routing in a mobile network is complex because of the bandwidth limitation, 

dynamic topology, and energy constraints.  Each mobile node acts separately or corporately as 

a router. Sometimes routing is multi-hop such that packets are forwarded from the source node 

to the destination node via several intermediate nodes. 

Routing protocols can be classified into different groups based on their properties [34]: 

•   Centralised versus Distributed.  

•   Static versus Dynamic. 

•   Proactive versus Reactive. 

In centralised routing algorithms, the central node will be responsible for all routing choices. 

In general, centralised routing algorithms can be used in individual cases and for limited size 

network. In distributed routing algorithms, route computation in network nodes are shared 

routes among them, and they also exchanged information. The distributed model is currently 

used in most network systems. Routing protocols have another classification that relates to 

change the routes in response to traffic input patterns. In static algorithms, the routes used 

between source and destination pairs stay fixed no matter the traffic conditions. Changes 

happen only when there is link or node failure. This type of routing algorithm cannot 

accomplish high throughput under wide differences in traffic input patterns. In adaptive routing 

algorithms, the routes between source and destination pairs have some changes in response to 
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congestion. The third type of classification that is more associated to Ad Hoc networks is to 

classify the routing algorithms into either proactive or reactive. In proactive protocols, the 

routes' evolution is continuing within the networks so that the route is already known in 

advance when any packet needs to be forwarded. The group of Distance Vector protocols is a 

good example of proactive protocols type. Reactive protocols, on the other hand, will initiate 

the route discovery procedure on-demand only. Thus, only when the route is needed, a sort of 

discovery procedure and search is employed. The group of classical flooding algorithms is 

related to reactive type. 

 

2.4 Cognitive Routing in Cloud Networks 

It is not always possible to expect the availability of fully functional network and computing 

infrastructure, assuming unrestricted power sources to handle the required data processing 

needs. In some exceptional circumstances like tornadoes, hurricanes, earthquakes and 

wildfires, edge infrastructure might be destroyed. Therefore, constrained mobile devices will 

be an option proposed to provide networking, computation and power resources that will be 

used for disaster incident decisions and responses. Usually, applications used in such 

circumstances like facial recognition techniques to help find a missing person or bad 

performance [35] need to be managed in real-time and with high streaming of images with 

fluctuating resolutions on a limited power edge network. In general, Cognitive networks [36] 

can be described as an intelligent, proactive technique that enables networks to provide a higher 

quality of service to the user and increase network performance and efficiency. Unlike 

traditional networks, a cognitive network is aware of usage pattern and network’s states. It can 

predict and enhance data exchange and routing based on users' QoS needs, data history, and 

the current state of the network. Methods like Artificial Intelligence and Game Theory are 

considered a good solution to predicting what will happen next inside the cognitive network. 

Cognitive Radio is also a method that can be applied to manage how to utilise radio frequencies 

in a better way for mobile communication cognitive networks. 

 

2.5 Artificial Intelligence (AI) 

Artificial intelligence was started in the early 1950s by the famous mathematician Alan Turing. 

AI is part of the area in computer science that deals with machine intelligence. Unlike 

computers, which solves problems based on instructions provided by humans in the form of 

coding (programs), Artificial intelligence makes computer learn itself to solve problems. The 
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combination of cloud computing applications and artificial intelligence has been considering 

the most important driving force to many researchers. Advance technology like automated 

document classification self-driving vehicles and voice recognition would have been 

impossible without the collaboration of both cloud computing and AI technologies. The power 

of AI can be used for helping the cloud networking to look for patterns and insights in 

network’s information to manage cloud networking routing and optimising the workflows 

inside it. 

 

 Machine Learning (ML) 

Machine learning is the subset of artificial intelligence that allows computers to learn and 

improve automatically form the past experience without explicitly being programmed. ML was 

initially introduced in the late 1950s as a special technique of Artificial Intelligence [37]. 

In machine learning, there are three categories that can be classified, these are [31]: 

• Supervised Learning: In this system, both input data and the output data are being provided 

and labelled for classification purposes providing learning features to additional data 

processing.  

Supervised learning can also be divided into two categories: 

(a) Regression: This algorithm predicts when the output data is a real value, for example 

when predicting the prices in the stock market. 

(b) Classification: In this algorithm, the output data is used as part of a specific category, 

for example when classifying the colour “BLACK” or “WHITE”. 

• Unsupervised Learning: In this system, only the input data is provided without the output 

labelled data. 

     Unsupervised learning can also be divided into two categories: 

(a) Association: It works by learning the rules that are explaining a large portion of data. 

This rule is called association rule, for example when customers buy “Toys” they tend 

to buy “Batteries”. 

(b) Clustering: It works by discovering the inherent relationships within groupings of data, 

for example, when customers being classified into groups based on the type of products 

they purchased. 

• Reinforcement Learning: Actions are taken in this learning based on the situation so that the 

main goal is to increase the reward. 
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 Artificial Neural Networks (ANNs) 

ANNs have been trained to achieve complex functions in different fields, including 

identification, pattern recognition, speech, classification, control system and vision [38]. 

Neural networks are including of simple elements that are operating in parallel. The biological 

nervous system inspires these simple elements. ANN can be trained to perform a specific 

function by adjusting the weights which represent the values of connections between elements. 

Usually, neural networks are trained or adjust so that a specific input to the system leads to the 

specific target output. The network is adjusted based on a comparison between the values of 

the outputs and the targets until the output values match the target values. Normally, many 

input/targets’ sets are needed to train the network.  

 

 Deep Learning (DL) 

Deep learning is considered a subset of machine learning; it is also called deep learning neural 

network because it follows the neural network architecture. Even though deep learning was 

introduced in the 1980s [46], it is still a technique that attracts and expands rapidly because of 

its higher accuracy than human intelligence and the training time that has been reduced because 

of using GPUs and cloud computing resources. 

 

 AI Applications in Routing in Cloud Networking 

In recent years, the combination of artificial intelligence technology and cloud computing has 

become a popular research topic and has been integrated into large number of applications. 

This combination helps to improve significant optimisation effects and managements for cloud 

applications and services by knowing in advance how to utilise the communication and the 

computation capabilities efficiently. This section presents some AI contributions as the leading 

solution to improve routing in cloud networks. 

 

2.5.4.1 AI in Cognitive Radio Network 

This technology has appeared as a promising solution to overcome the limitation of frequency 

resources (spectrum) underutilisation by licensed users (Primary Users PUs) while on the other 

side it is overcrowded by unlicensed users (Secondary Users SUs) [39]. In any case, if the 

primary user wants to utilise its licensed spectrum, the secondary user(s) should leave the 

spectrum without disturbing the primary user activity. In a Cognitive Radio Network (CRN), 

a mobile terminal that is supported with cognitive radio capabilities will sense – discover 
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communication environments like geographical location, spectrum holes, available service, 

and available wire/wireless networks, then data will be analysed, information from the 

environments with user’s demands and preferences will be learned, self-configurations and 

adjustment for system parameters will take place to confirm specific regulations and policies. 

Figure 2-4 shows the cognitive spectrum management framework [40]. Heterogeneity of 

cognitive radio networks adds more complexity to its topology and routing information and 

introduces many security issues. Heterogeneity occurs in user terminals, wireless access 

technologies, services providers, and applications [41]. The new approach of designing CRN 

architecture is towards improving the whole network utilisation instead of just considering link 

spectral efficiency. From the end-user perspective, the concept of network utilisation means 

that the users can always be accessing CRNs anytime and anywhere with all demands being 

fulfilled. While from an operator’s perspective, it provides better radio allocation and network 

resources to deliver an efficiently large number of packets per unit bandwidth and provide 

better services to the user. CRN can be deployed in distributed mesh and Ad Hoc architectures 

so that it can be of benefit to both unlicensed and licensed applications. The main basic 

components in CRN are the Mobile station, access point/base station and core 

networks/backbone. 

 

 

Figure 2-4 Cognitive spectrum management framework [40]. 

 

Research has proliferated in CR technologies as a concept and has been based on cloud 

realisations during the past few years. However, little progress has been made in introducing 

cognitive/intelligence capabilities into cognitive radios. Early works and efforts demonstrated 
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that using artificial intelligence and machine learning, if suitably applied, could enhance 

cognitive radios adaptations [42][43]. However, further advances in this approach face huge, 

if not insurmountable, challenges that CR researcher faces to define what intelligence is 

adequately addressed challenges in CRs and which AI can achieve it with respect to radio node 

or networks. 

 

2.5.4.2 Artificial Intelligence applications in MCCNs  

Artificial intelligence and Machine learning provide a modern approach to mobile cloud 

computing for optimizing computation time and energy consumption. In [44], the author 

formulates a joint radio and cloud resource allocation problem for heterogeneous mobile cloud 

computing networks to achieve users' maximum utility and satisfy the QoS requirements such 

as latency. Genetic algorithm, ant colony optimization with a genetic algorithm, and quantum 

genetic algorithm have been used to solve the formulated problem. In [45], the author 

investigates a resource management problem of virtual machine placement in a physical 

machine for cloud computing data centres and figuring out which virtual machines have high 

data rates for communication to assign them in the same physical machine for minimizing 

network traffic within virtual machines. 

 

2.6 Software Defined Network (SDN) 

Programmable networks have been proposed as a new approach to facilitate network evolution. 

SDN technology has emerged as a means based on that approach by upgrading innovation in 

network management and its deployment services through the programmability of the essential 

network entities. This section introduces the concept, architecture and features of software 

defined network that can be used to address the complexity and congestion in traditional 

networks’ environments. 

 

 Introduction  

SDN is an emerging network technology that has been proposed to replace traditional 

networking by providing an enhanced level of customisation and flexibility to meet the needs 

of newer network communications and mobility. The two elements taking part in forwarding 

packets via routers are control elements, which decide the priority and route the traffic should 

take, and a data element, which forwards the data based on control element policy. Prior to 

SDN's appearance, these two elements' functions were achieved in an integrated form at each 
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network device (router, switch, bridge, and so on).  Control in traditional networks is trained 

by means of a routing protocol implemented in each node in the network. This approach was 

inflexible and required all nodes in the network to apply the same protocol. With SDN, another 

approach is presented using a central controller that performs all routing and complex 

functionality like policy declaration and security checks. Figure 2-5 illustrates SDN 

architecture and its Application Control and Data planes [46]. 

 

 

Figure 2-5   SDN networking architecture [46]. 

 

As shown from the SDN networking architecture figure, SDN application plane is the upper 

layer that consists of various applications and services to define, monitor, and control network 

resources. SDN control plane comprises one or more controllers. The controller is responsible 

for defining the data flows in the SDN data plane and is accountable for configuring each flow 

through the network. When the flow requested by the end system is allowed by the controller 

(depends on the policy), the controller starts to calculate a route for the flow to use and adds 

an entry for the flow in each of the switches selected along the path. The switches (physical or 

virtual) or also called OpenFlow switches here contain the data plane. Communication between 

the OpenFlow switches and the controller uses a standard protocol like OpenFlow protocol. 

API (Application Program Interface) provides the link between the services and applications 

running over the network and SDN controller. 
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With the increasing variety and volume of network traffic generated by high demand sources 

as mobile cloud traffic and cloud computing, it becomes very difficult to meet the QoS 

requirements. Networks need to be more scalable and adaptable. SDN can be presented as an 

adaptable intelligent solution to provide the required network scalability and adaptability. 

 

 SDN Applications in Routing in Cloud Networking 

Recently, SDN architectures in which the control plane is separated from the data plane is 

becoming popular by researchers who have presented different intelligent control routing, data 

traffic monument and resources usage mechanisms. Based on the concept that the SDN enables 

Open flow switches [47] and forwards traffic through the data plane based on the control plane 

rules which is running on a separated controller [48] it will reduce the complexity of the 

hardware and let the networks to be controlled by standalone software that can be easily 

developed and tuned for the developer’s or user's needs. Started with addresses the problem of 

routing control in traditional networks, the author in [49] proposed a dynamic routing 

framework using SDN that worked based on machine learning- Neural Network. In this method 

named NeuRoute, a default routing protocol based on Dijkstra's algorithm used by 

SDN/OpenFlow controller was presented for obtaining the shortest path and to provide APIs 

to develop custom routing for applications. NeuRoute achieves efficient routing with less 

execution time by applying real-time traffic matrix prediction, by learning traffic 

characteristics using a neural network, and finally generates the required forwarding rules to 

enhance network throughput.  Several different approaches based on SDN architecture have 

been proposed for controlling routing. In [50], a new source routing implementation is 

proposed in a multi-hop wireless network based on SDN. In this novel routing protocol, 

OPNET is used to build the model and compare the proposed protocol with other traditional 

algorithms (including AODV, OLSR and GPSR). Results show that with SDN based 

algorithm, network lifetime is extended compared to conventional algorithms and also though 

SDN centralised controller, shortest path routing of nodes can be provided. 

SDN is also presented as a solution to overcome the problems related to cloud network 

congestion. In [51], the author proposed a local rerouting mechanism using SDN based on 

datacentre networks to effectively manage congestion in the event of link failure or link 

congestion. Unlike traditional network reaction during congestion by notifying the source to 

resend the flow, this new mechanism reforwards flows at the point of congestion or one hop 

before to another available path based on the flow classification scheme. Results show 
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improvement with respect to load balancing control and link utilisation. The emergence of edge 

computing as a complement of cloud computing can reduce energy consumption and maintain 

QoS for various applications. However, congestion in the underlying networks is still possible. 

In [52] author presented SDN based edge cloud interplay that deals with flow scheduling 

between edge and cloud devices by using multi-objective algorithms namely (Techebycheff 

decomposition). The new scheme makes trade-off between energy efficiency and bandwidth 

and energy efficiency and latency. Results are compared with existing methods. Results show 

improvements in flow scheduling in IoT environments. Further works were presented using 

the SDN concept with edge computing to improve processing time [53], with load balancing 

approach [54][55][56][57][58] using OpenFlow protocol, and also with mobility prediction 

[59]. 

 

2.7  Fuzzy Logic System 

The fields of fuzzy logic systems are expanding rapidly with new applications and results. 

Because of its capability to handle uncertainties, Fuzzy logic has greatly supported cloud 

computing’s applications and services by performing logical operations. 

This section presents the concept of fuzzy logic systems and briefly addresses some important 

researches on using fuzzy logic in routing and cloud networks. 

 

 Introduction  

Fuzzy logic is the type of reasoning that helps make rational decisions in an environment of 

uncertainty and imprecision [60]. Its concept was formulated in the 1960s by Zadeh who 

worked at the University of California. Since that time, the fuzzy theory was rapidly evolved 

and applied. Unlike computers that use precise figures that have been either converted to zeros 

and ones or true and false, human brains can reason vague situations. Humans have common 

sense, which makes them able to reason in those things that are partially true. Fuzzy logic is 

the branch of machine intelligence that helps computers to picture the uncertain world. With 

the help of fuzzy logic, it can make the computers understand the vague concepts that can lead 

to developing technologies to judge the situation that is hard to define. When specific 

algorithms cannot dictate the system how to respond, the fuzzy logic can control the system by 

using the common-sense like feature. Figure 2-6 shows the architecture of a Fuzzy logic 

system. 
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                          Figure 2-6   Fuzzy logic system architecture [61]. 

 

As shown from the fuzzy logic system architecture figure, the architecture of the fuzzy logic 

system consists of four different components [61] as follows:  

• Rule Base: This component is basically the set of if /then conditions or the set of rules that 

is given by the user for controlling the decision making.  

•  Fuzzification: This model converts the crisp inputs from the measured sensors into fuzzy 

sets. The converted inputs are passed to the control system within the fuzzy logic system for 

further processing. 

• Inference Engine: This component can be considered the central part of the Fuzzy Logic 

system because it maps the results to the input set and decides which rules to be applied for 

a given input. This is performed by calculating the percentage match of the rules for the 

given input. 

• Defuzzification: This model is the opposite of the Fuzzification process. Here the fuzzy sets 

generated from the interface engine are converted to crisp values. These obtained crisp 

values are the outputs of the fuzzy logic system. 

The Fuzzy Logic Systems structure is accessible and understandable. The algorithms can be 

described with little data and so little memory is required. All these advantages make using 

fuzzy logic system techniques in the decision-making process a perfect option.   

 

 Fuzzy Logic Applications in Routing and Cloud Networks  

Fuzzy logic concept has been used in various technologies and research from a wide range of 

areas like engineering, aerospace, agriculture medical, environmental sciences, industrial, 

geological, mathematics and natural sciences [62]. In intelligent fuzzy routing solutions, the 

author in [63] proposed an intelligent routing - policing mechanism based on fuzzy logic and 

genetic algorithms. In Asynchronous Transfer Mode networks, it is important to design a 
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proper traffic control because of the challenges shown in networks related to various services 

supported and the needs for effective network resources utilisation. To guarantee the required 

quality of the service, two important functions were used in Asynchronous Transfer Mode 

networks, which are policing and routing. The proposed system used the combination 

mechanism approach to get better traffic control. Results have shown that the proposed 

mechanism performance was higher than conventional routing algorithm and policing 

mechanism separately. In [64], the author proposed a new dynamic scheme of mobile Ad Hoc 

network routing protocol using fuzzy logic. This protocol intelligently selects the best route 

based on parameters (bandwidth, signal power, packet forwarding ratio).  Route ranking as an 

output of the system provided for decision making, made the proposed protocol functional and 

effective. In [65], the author proposed expanding vehicular cloud services by using a fuzzy 

logic algorithm that was used to select the most proper cluster head. In addition, genetic 

algorithms were presented with this model to prevent more data loss at crossroads. The newly 

proposed method has shown promising results when compared to two other algorithms used 

before. In [66], the author presented a fuzzy-based power system to monitor and adjust 

electrical appliances' working time automatically. From the room's temperature and humidity 

measurements, the system will calculate the suitable working time for the electrical appliances. 

The current implemented Vehicular Ad Hoc Networks (VANETs) architectures faces several 

challenges due to poor flexibility, scalability, lack of Intelligence, and connectivity. For that 

reason, the author in [67], presented, compared, and evaluated two intelligent fuzzy-based 

systems for Resource Management called FSRM1 and FSRM2 for coordinating and managing 

Cloud, Fog, and Edge resources in SDN-VANETs. These systems are used to make decisions 

on the processing layer of the applications ‘data in a Cloud, Fog, and Edge architecture and to 

come in handy when a vehicle requires additional resources to run its application(s). The 

decisions in this model are made by prioritising the vehicle’s application(s) requirements and 

the availability of connections. FSRM1 considers the relative vehicle speed with the 

neighboring vehicles, the application data size, and its time sensitivity when deciding the 

processing layer. FSRM2 uses all these parameters together with the number of calculated 

neighboring vehicles as an input parameter when making the decision. Results from the 

simulations show an improvement in network management resources. In [68], the author 

proposed a novel fuzzy-based Adaptive green and reliable routing scheme. In this scheme, a 

fuzzy logic system was proposed to decide the number of reproduced packet copies to obtain 

an efficient data gathering. The fuzzy system interface takes the remaining energy and the 

distance to the sink of the reproducing node or source as its inputs. Therefore, it can tune the 



2.8  Intelligence in Load balancing 

 

26 

number of reproducing packet copies in an adaptable way. Simulation results show improved 

energy efficiency and extended network lifetime under the guarantee of transmission 

reliability. 

Three main factors make implementing a fuzzy system in network routing decisions and data 

management more effective, efficient, and accurate. The first is to know and choose the best 

technique to collect the data required that will be used as an input for the fuzzy logic system. 

The second is to maintain updating of all these data during task duration, which includes 

assuring the accuracy of the data values. Finally, it is to know the best location to decide the 

best route. Different approaches and algorithms are proposed, but no attention is considered to 

combine all these factors into one system.      

 

2.8 Intelligence in Load balancing  

Recently, the increasing complexity of cloud applications, communications networks, and the 

rapid growth of data traffic has created significant challenges for service management and 

network.  The traditional load balancing model has not been integrated into the cloud network 

platform; it works as an independent model. In this case, random mobility, distribution of 

terminals, and various quality of service requirements for the mobile user services may cause 

an unbalanced distribution for the network traffic, leading to overloading and congestion on 

some nodes with a heavy load that causes an increase in packets lost and increase in service 

latency, while other nodes with idle resources have a light load and poor utilisation. An 

integration of cognitive network balancing and cloud networking has been offered. The 

workload with predictive frameworks based on artificial intelligence were proposed that offer 

the same service as resource manager by providing an estimated measure of the future 

workload. It anticipates future traffic trends in terms of user requests and resource utilisation 

patterns based on previous information. These predictive frameworks consist of intelligent 

resources management systems based on algorithms used to scale up the growth of the service 

provider by maximising the throughput and minimising energy consumption. The author of 

[69] proposes a self-directed workload forecasting method (SDWF) that determines the 

workload on cloud servers by detecting its past estimation error trend and improving its future 

prediction accuracy. The proposed SDWF uses the optimisation approach of a black hole 

algorithm and learns the network load efficiently, providing better performance results as 

compared to deep learning, differential evolution, and backpropagation algorithms. The author 

in [70] uses a combination of ant colony optimisation (ACO) algorithm with a fuzzy logic 
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approach to propose a hybrid algorithm that improves load balancing, processing time and 

response time in a cloud computing network. The fuzzy algorithm used improved the 

computation duration and enhanced the ACO algorithm performance. 

 

2.9 Pattern Prediction Analysis 

Nowadays, the network’s data traffic has highly increased due to the appearance of new 

technologies and applications. Networks supporting these services and applications have to 

cope with growing traffic demands, and they must provide the best quality of service to the 

user. Therefore, efficient utilisation of networking resources and the information that can be 

extracted from the networks have become crucial.  

Many new intelligence-based techniques have been proposed that uses the information 

extracted from the network for pattern predictions system to overcome the traditional network 

routing and data analyses challenges. The aims to improve the network can be achieved 

effectively and efficiently only when the predicted data are measured accurately.  Pattern 

prediction models have been proposed as a solution in various applications such as in network 

resources management [71], energy saving [72], and wireless sensor networks [73]. 

This section started with discovering mobility pattern prediction by knowing mobility models. 

Also, an explorer of some predictors with different techniques and complexity has been 

explained, and some related works were covered. 

 

 Mobility Pattern Prediction- Models 

In this section, an overview of some mobility models proposed and used by researchers will be 

discussed and presented. There are many different models for realistic mobility patterns that 

are related to object taxonomy, such as Pedestrians Mobility, Marine and Submarine Mobility, 

Earthbound Vehicles, Aerial Mobility, Medium based Mobility, Mobility in outer space, and 

Robot Motion [12], which have been classified based on applications, motion speeds and 

working dimensions. This section will focus only on Pedestrians Mobility. This type can be 

considered as the oldest and the most common way to mimic mobility in the walk.  Unlike 

other modern mobility patterns, this model has the slowest velocity values and draws people’s 

walking. In wireless networks, pedestrian mobility can be applied as people holding cellular 

phones walking in a mall or street. Limited mobile resources like battery charge capacity can 

be considered the main side effect of this mobility type. 
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In mobility models, that have been approved, namely: Random Waypoint Mobility Model and 

Random Walk Mobility Model, are the most commonly used in research than others. Types of 

mobility models can be categorised as follows: 

•   Random Waypoint Mobility Model: In Random Waypoint Mobility Model [74], the 

motion begins by selection of the initial positioning for the node and staying in that location 

for a period of time called (pause time), once this time has come to an end, the mobile node 

chooses another random destination within the simulation area and a random speed that is 

distributed between [minimum speed, maximum speed]. The mobile node then will travel 

to the new selected random position at the selected random speed. When the node reaches 

the new position, it will pause for a specified random time period and then start again to 

move to another new position. The Random Waypoint Mobility Model is a common model 

that is used in mobility model research [75][76][77][78]. In some cases, this model can be 

simplified by using the same concept of motions without pause time [79].  

Figure 2-7 illustrates an example of mobile node motion using Random waypoint Mobility 

model [80]. In this scenario, the speed was selected between 0 and 10 m𝑠−1, new positioning 

has been chosen randomly after the pause time period has come to an end. 

 

                 

Figure 2-7 Movement pattern of mobile nodes using Random Waypoint Mobility Model [80].  

 

• Random Walk Mobility Model: This mobility model was mathematically explained in 

1926 by Einstein [81]. It was presented to mimic an extremely unpredictable way of motion 

for many entities in nature. In this model, the nodes move from their current position to a 

new position with a specific speed, both values of the new positioning (direction) and the 

speed of movements are selected randomly in the predefined range [0, 2π], [speedmin, 
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speedmax] respectively. The movements in this model occur in either constant distance 

travelled or constant time interval, at the end of each new position the speed and the 

direction are calculated. Suppose the nodes reach the simulation’s platform boundary. In 

this case, it will hit and move back from boundary with an angle determined by its incoming 

direction and then it will continue to its new direction. There are many derivatives within 

this model that has been developed like 1D, 2D, and 3D. The Random Walk mobility model 

is widely used [82][83][84][85]. However, this model in a memoryless mobility pattern, 

which means it keeps no knowledge regarding its previous speed and location values [86], 

In other words, the current direction and speed values are independent of its past values 

[87]. In this model, if the time and distance are specified, mobile nodes motion in this model 

will be short, making the movement pattern random roaming but restricted to a small 

territory in the simulation area. In this case, a larger value should be used to assign the 

movements of steps before changing directions. Figure 2-8 illustrates an example of this 2D 

movement model [80], where mobile nodes begin their movements form the centre 

(150x300) m of the simulation area (300x600) m, each node will randomly choose its new 

direction between [0, 2π] and a speed between 10 m𝑠−1 , all nodes are allowed to travel for 

60s before changing direction and speed. The movement pattern of Random Walk Mobility 

Model is similar to the movement pattern of Random Waypoint Mobility Model when the 

pause time is zero. 

 

                            

Figure 2-8 Movement pattern of 2D mobile nodes using Random Walk Mobility Model 

(Timing) [80].   
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• Random Direction Model: This model [88] was created to overcome density waves 

phenomenon that is shown mostly in Random Waypoint mobility model. A density wave 

can be described as a gathering of nodes in one part of the simulation area. In the Random 

Waypoint mobility model clustering happens close to the middle of the simulation because 

the probability of each node passing through the middle of the simulation area each time it 

is assigned its new randomly next positioning is high. Thus, nodes are shown to be clustered, 

then dispersed and then again clustered to each other again. To alleviate this phenomenon, 

Random Direction model was developed, where mobile nodes select their direction 

randomly like Random Walk mobility model then when they reach the border of the 

simulation area, they are paused for a specific time then choose another direction with an 

angle between [0, 2π] and move toward their new direction which is selected randomly. 

Figure 2-9 illustrates an example of this movement model. From the figure, the average hop 

count of packets using this movement model will be higher than the previous models 

described. Furthermore, this model is most likely to be used with network partitioning 

compared to other models. Few more mobility models have been presented and described 

[80], such as boundless Simulation Area Model [89], Gauss-Markov Model [86], 

Probabilistic Version of Random Walk [90] and City Section Mobility Model [91]. In 

addition, there are other mobility models for multiple mobile nodes that are dependent on 

each other with respect to their movements like Exponential Correlated Random Mobility 

Model [87], Column Mobility Model [92], Nomadic Community Mobility Model [93], 

Pursue Mobility Model [94] and Reference Point Group Mobility Model [95]. 

 

                           

Figure 2-9 Movement pattern of mobile nodes using Random Direction Mobility Model [80]. 
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 Mobility Pattern Prediction Methods 

The mobility prediction methods can be classified into three categories [96]: 

• Prediction based on movement history: in this method, the network’s future topology is 

predicted from the previous movement pattern. In a highly mobile network model, this 

method might fail to give accurate results. 

•   Prediction based on topology: in this model, prediction depends on the physical 

characteristics of the mobile user nodes, which includes for example using GPS embedded 

on the device to get an estimation of the future location of the mobile node. 

•   Prediction based on the logical topologies: this model uses the logical topology of the 

network to calculate the node movements based on different parameters such as line cluster 

position, which represents the distance from the cluster head, or neighbour’s movements. 

 

 Prediction Techniques- Time Series forecasting 

Time series forecasting has been considered an important research area in many fields because 

different types of data are collected and saved as a time series. A lot of time series data can be 

found in weather forecasting, medicine, biology, stock prices forecasting, and it can be used as 

well in decision making applications [97]. Considering the growing availability of computing 

power and data in recent years, the deep learning concept has become an essential part of the 

presented new generation of time series forecasting models that, obtain stunning results. 

Time series consists of main components that can be explained as follows: 

•   Long term trend: It represents the overall direction and approach of the data achieved, while 

ignoring any short-term turbulence that might affect it such as noise. 

•   Seasonality: it is related to the periodic fluctuation of the data that are repeated during the 

time series period. 

•   Stationary: it is one of the important characteristics of time series. It refers to time series as 

stationary when covariance and variance do not have significant changes over the 

considered time period. 

•   Autocorrelation: It is used to identify the seasonality characteristic and trend in time series 

data. It refers to the correlation between the time series and a lagged version of itself. 

• Noise: It refers to all random fluctuations or variations of data because of uncontrolled 

factors. Every set of data includes noise. 
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2.9.3.1 Traditional and Deep Learning Time Series Forecasting   

Time series with traditional machine learning like ARIMA models and Exponential smoothing 

forecasts have many limitations, so that they are not suitable for long term forecast (steps), not 

suitable for recognizing complex patterns in the data, and any missing values can affect the 

performance of the model. To overcome the traditional machine learning disadvantages, deep 

learning for time series forecasting has been used with different approaches. 

In this chapter, six deep learning architectures for time series forecasting are presented [98]: 

 

• Recurrent Neural Networks (RNN):  

   Recurrent Neural Networks can be considered as a development to the conventional 

feedforward neural network. It consists of a neuron that looks like a node, and these nodes 

are organised into layers whose architecture is similar to the standard Neural Networks. The 

neurons are divided to form an input layer, hidden layers, and output layers. The connection 

between each neuron has a trainable weight. Every neuron in this model is assigned to a 

fixed time step. That also includes the neurons in the hidden layer that forward data from 

the input in the forward direction with time dependency. In this model, all neurons are fully 

connected only with the hidden layer’s neurons with the same assigned time step and 

connected through a one-way connection to every neuron assigned to its next time step. 

Hidden layers are connected to both the input and output neurons only to the same assigned 

time step [99]. 

  The activation of the neurons can be considered here as time ordered, because the one-time 

step of the output of the hidden layer is part of the input of the next-time step. The RNN 

architecture shown in figure 2-10, shows that the input vector is x(t) at time step t.  

 

Figure 2-10  RNN Architecture [98]. 
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     This input vector is connected to the hidden layer neurons of time t with a weight Matrix 

(U). That hidden layer neurons are connected to neurons of time t+1 and t-1 with a weight 

matrix of (W), and at the end that hidden layer of neurons are connected to the output vector 

of time t with weight matrix (V). Weight matrices are all constant for each time step t. The 

vector h(t) represents the hidden state at time t, and it is a type of network memory, which 

can be calculated from the current input and the previous time step of the previous hidden 

step. 

 

h(t)=σh(Wh( t-1)+Ux(t)+bh)                                               (2.1) 

 

 y⋀(t) = σy ( Vh( t)+ by)                                                     (2.2) 

 

σh, σy are the activation functions, bh, bh  are the bias, y⋀(t) is the output vector at time t.  

    In general, recurrent neural network cannot be affected by any missing values. It can detect 

complex patterns within the time series input. It can also give more good results using fewer 

steps. However, the training of the RNN is computationally expensive and it suffers from a 

weak memory that is unable to take several values in the past for the prediction of the future. 

 

•   Long Short-Term Memory (LSTM):  

    In the mid of 90s, LSTM has been developed by placing LSTM unit in place to a hidden 

layer of RNN; this was proposed to overcome the vanishing gradient problem in the standard 

RNN by enhancing the gradient flow in the network. In Figure 2-11 below, the LSTM unit 

consists of a cell state that represents the network’s memory and is responsible for bringing 

information along the whole sequence. A forget gate decides what is applicable to keep from 

the previous time steps. An input gate decides what is applicable to add from the current 

time step. An output gate decides the value of the output at the present time step. Same as 

RNN, with LSTM unit, the input vector at time (t) is connected to the LSTM-cell of time 

(t) with a weight matrix of (U), the LSTM- cell is connected to the LSTM- cell of time (t-

1) and ( t+1)  with weight matrix (W), and the LSTM-cell is connected to the output vector 

of time (t) with wight matrix (V). In this unit the matrices (W) and (V) are divided into 

submatrices ( Wf, Wi, Wg and Wo) and ( Uf, Ui, Ug, and Uo) that connected and shared across 

time to different elements in the LSTM unit. 
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Figure 2-11 LSTM architecture [98]. 

 

     

    The effect of short-time memory is reduced by making the relevant information transfer from 

the cell state during the processing, also the information that comes from the previous time 

steps arrive at each time step. The gate learns during the training overall time, which 

information is important to forget or to keep, and it will add them or remove them from the 

cell state. This process enables LSTM to recover the data transferred into the memory. 

    The forget gate represents the first gate. This gate will work as a filter to decide which 

information should be deleted or saved. The information from the current input and the 

information from the previous hidden state are passed through a sigmoid function. If the 

output is close to (0) it means that the information can be forgotten, while if the output close 

to (1) then it means that information must be saved. 

 

f(t)= σ(x(t)Uf+h(t+1)Wf                                                  (2.3) 

 

     In the input gate, which represents the second gate that will be used to update the cell state. 

Initially, the current input and the previous hidden state will be given as inputs to the 

sigmoid function, where the closer the output to value (1), the more important the 

information. It also passes the current input and the hidden state to a tanh function to 

squeeze the values between (-1) and (1) to improve tuning of the network. The output of the 
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sigmoid and the tanh are multiplied element by element. The sigmoid is the factor that 

decides what to keep of important information from the tanh output. 

 

i1(t)=σ(x(t)Ui+h(t-1)Wi)                                               (2.4)  

 

i2(t)=tanh(x(t)Ug+h(t-1)Wg)                                           (2.5) 

 

i(t)=i1(t)* i2(t)                                                        (2.6) 

 

     Cell state can be calculated after the activation of the input gate, where the call state of the 

previous time step will get elementwise that is multiplied by the output of the forget gate. 

This will help to provide the possibility to ignore the values in the cell state when 

multiplying it by values close to (0). Then input gates’ output is elementwise added to the 

cell state. The output will be the new cell state. 

 

C(t)= σ ( f( t)*  C( t-1)+i(t))                                         (2.7) 

 

 Finally, at the final gates which is the output gate, it will decide the value of the next hidden 

state, which includes information about the previous inputs.  At first, the current inputs and 

the previous hidden state are summed and passed to a sigmoid function. After that, the new 

cell state is moving to tanh function in which its output with the sigmoid function output 

will be multiplied to decide what information should be contained within the hidden state. 

The output represents the new hidden state. The new hidden state and the new cell state are 

then moving to the next time step. 

 

o(t)= σ ( x( t)U0+  h( t-1)Wo)                                         (2.8) 

 

 

h(t)= tanh ( Ct)* o(t)                                               (2.9) 
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•   Gated Recurrent Unit (GRU):  

    Gated Recurrent Unit was developed as a new generation of RNN with similarity to LSTM 

to overcome the vanishing gradient problem of the standard RNN. In GRU, it uses the reset 

gate and the update gate. These gates are responsible for deciding what information should 

be acceptable to pass to the output. Information can be kept from many times steps before 

the current time step are trained by these two gates, which can be done without washing it 

through time by removing information that is not related to the prediction. With good 

training, it will be possible for GRU to perform extremely well, even in a complex scenario. 

As shown in figure 2-12, the GRU unit consists of a reset gate responsible for deciding how 

much information that comes from the previous time steps can be forgotten. An update gate 

that is responsible for deciding how much information that has come from the previous time 

steps can be saved. 

 

 

Figure 2-12 GRU architecture [98]. 

 

    The first gate in GRU is the reset gate, which determines how to do a combination between 

the new and the previous memory and decides how much information to be forgotten that 

comes from previous time steps. Weighted sum between the memory h( t-1) and the input 

x(t) will occur while the information for the previous t-1 steps are held, then to squeeze the 

results between (0) and (1), a sigmoid application function is applied.  

 

r(t)= σ ( x( t)Ur+  h( t-1)Wr)                                              (2.10) 
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The next step is the update gate that helps to determine how much information comes from 

the previous time steps to be passed to the future. This feature is a powerful one because it 

eliminates the risk of vanishing gradient problem by making the model to decide to copy all 

the information that comes from the past. 

 

     Z(t)= σ ( x( t)Uz+  h( t-1)Wz)                                            (2.11) 

 

The relevant information from the past that has come from the rest gate is stored in the 

memory. At first, element by element multiplication is applied between the final memory at 

the previous time step h(t-1) and the output of the reset gate r(t) is computed. Then the 

weighted sum between the input x(t) and the result is completed. Then at the end, the 

activation function tanh is applied  

 

h(t)= tanh ( x( t)Uh+(r(t)* h( t-1)Wh)                                    (2.12) 

 

 

Next, to calculate h(t), which represents the vector that has the information of the current 

unit to send it to the next time step. It discovers what to collect from the previous steps h(t-

1) and the current memory content h~(t). Element by element are multiplied and computed 

between 1- (1- z(t)) and h(t) and the update gate z(t) and h(t-1). At the end, weighted sum 

calculated between two results. 

 

h(t)= (1-  z( t))*h(t-1)+z(t)*h~(t)                                     (2.13) 

 

 

•   Stack LSTM:  

Unlike the standard LSTM model which consists of a single hidden LSTM layer followed 

by a feedforward output layer, Stack LSTM is a development version with multiple hidden 

LSTM layers, where each layer consists of multiple memory cells. Figure 2-13 illustrates 

Stack LSTM architecture. The hidden layers make the model more accurate and deeper. 

Stack LSTM is considered as a reliable model in solving sequence prediction problems. 
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Figure 2-13 Stack LSTM architecture [100]. 

 

•    Bi-directional LSTM:  

This model is a combination of LSTM and RNN [101]. This structure provides the networks 

to have both backwards and forward information related to the sequence at every time step. 

By using bidirectional neurons, it will allow the model to run the inputs in two ways, from 

the past to the future and from the future to the past. Input sequence time steps are 

proceeding one at a time, while the input sequence network steps are run simultaneously in 

both directions. However, Bi-directional-LSTM is not a suitable solution for all sequence 

prediction problems.  Figure (2-14) illustrates Bi-directional LSTM architecture. 

 

 

 

Figure 2-14 Bi-directional LSTM architecture [102]. 
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•   CNN-LSTM:  

This model is a combination of LSTM, which is efficient in learning and extracting the long-

term dependencies and the traditional neural network which is efficient at one- dimensional 

data [103], Figure 2-15 shows CNN-LSTM architecture.  

 

 

 

Figure 2-15 CNN-LSTM architecture [100]. 

 

 Intelligent Prediction Related work  

Many Researchers have used time series and deep learning models and Artificial intelligence 

methods for predicting networks. Based on real trajectory data, the author of [104] presented a 

method to predict pedestrian’s future position. The results show a good performance of this 

method on various types of trajectories. This technique works on pedestrian traced data, and 

its performance improved when working in high mobility scenarios such that the error will 

change from 3 meters to less than 1 meter. In [105], a Markov model was proposed as a 

mobility prediction method. To use this technique, the area of simulation that has been used 

for mobile moves are geographically divided into cells to shape the Markov Chain. Increasing 

partitioning of the geographical area of movements into a larger number of smaller sizes, will 

improve the timing required to calculate mobility behaviour (accuracy rate). In a new model 

proposed in [106] using encoder-recurrent-decoder networks based on LSTM, the author 

designed a non-linear transformation model for prediction and recognition of human body pose 

in motion and video capture. The recurrent unit constrained human motion prediction using the 

history information passed through it. Another approach for short-term human motion 

prediction has focused on neural network architecture [107][108][109]. Recurrent neural 
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networks (RNNs) have been introduced because they are able to store relevant recurrent 

information in their hidden state. 

 

2.10 Summary  

In this chapter, the fundamental basic technologies of cloud computing networks, concepts and 

evolutions were reviewed and presented. The chapter also gives a brief explanation of cloud 

networking and particularly on mobile cloud computing network’s challenges by concentrating 

on routing that raises the question of whether existing traditional routing and data management 

solutions can be ported to mobile cloud networks. A study on using cognitive data routing 

approaches was presented by showing various intelligent techniques that research has offered 

such as artificial intelligence algorithms, software defined networks and fuzzy logic systems 

that can be used to overcome challenges of mobile cloud networks. Also, in this chapter, a 

survey of pattern prediction models, mobility pattern prediction methods and prediction 

techniques of six time-series forecasting algorithms were discussed. In summary, mobile cloud 

networking raises some unique design challenges related to its services and network 

heterogeneity, requiring a cognitive architecture tailored for modern cloud applications and 

dynamic topologies environments. It should be aware that while the aim of this chapter has 

been to give details and cover as many various aspects on cognitive solutions in cloud 

networking as possible, it is not the most comprehensive of the solutions available. There are 

plenty of other resources and research, and many investigated different issues.   
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Chapter 3 

 

3 COGNITIVE DATA ROUTING IN 

HETEROGENEOUS MCCNs 

3.1  Introduction 

 

Nowadays, using cloud computing becomes a significant computing paradigm in utilising 

resources over the Internet. This new computing paradigm that builds upon advanced research 

in resources virtualisation, distributed, grid and utility computing [110] provides flexible, 

abstracted, and virtualised services on demand. The basic concept of cloud computing is that 

computing resources provided as a service, such as computing power and storage, are not stored 

locally but are stored in the cloud's datacentre. One of the cloud's advantages is that it provides 

a variety of services to the cloud users, such as infrastructure, platform, and software as a 

service (IaaS, PaaS, and SaaS) [111]. The cloud users will access services through the Internet 

so that maintenance and the installation cost decreases while the flexibility and scalability 

increase. 

Recently, the popularity of mobile devices and the demand for applications are rapidly 

increasing. Moreover, the worldwide shipments of tablets and mobiles phones are rising to 2.16 

billion units in 2020. Also, increasing availability of 5G handsets will replace the old devices, 

accounting for over 50% of the mobile phones shipped in 2023 [112]. However, the constrained 

resources of mobile devices, such as the limitation of their computing power and storage 

capacity in addition to mobility, causes an impedance to the running of resource-intensive 

mobile applications. To overcome such challenges, a new concept has been proposed by 

integrating mobile devices and cloud computing to obtain the concept of mobile cloud 

computing (MCC). In this concept, all or some of the resources-intensive applications will be 

performed outside mobile devices using cloud-based resources by offloading intensive 

computational tasks and most of the storage and processing related to mobile applications from 

limited capability mobile devices to powerful, centralised remote processing 

device(s)/server(s) on the cloud. In this scheme, all the communication between mobile devices 
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and remote cloud servers are carried through cloud networks [113]. The availability of a good 

and high-speed network connection will ensure the advantages of mobile cloud-based concept 

without experiencing any significant delays associated with mobile communication 

technologies. The most apparent challenge with the traditional networks is how to fully 

leverage mobile cloud network’s capabilities with respect to conventional network capacity 

and reliability as in some applications like those related to healthcare [114], disasters [115], 

interactive applications and real-time media content analysis [116], where it is always 

important to keep those applications working in real-time streaming, high QoS, using efficient 

resources and the connectivity to backend should always be available anytime and anywhere. 

It will be helpful to consider cognitive cloud networks as an intelligent solution to overcome 

mobile cloud network challenges. 

 

3.2 Research Gap 

Using the mobile cloud concept is being widely addressed in today’s research. In this section, 

the popular mobile cloud networking architecture, as shown in Figure 3-1, was introduced and 

categorised with respect to how it provides services for the users. The architecture can be 

classified into three types: - 

• Client-Server Architecture (C-S): In this model, some or all of the tasks or complex 

applications are offloaded from the mobile device (Client) to a computational infrastructure 

hosted a cloud (server), which remains static and provisioning services to the mobile users 

[117]. 

• Cloudlet Architecture: - Is a nearby resources-rich computer or server with one hop, low 

latency, high bandwidth accessing from mobile device [118]. 

• Virtual AD Hoc Architecture: - A group of mobile devices that formed a virtual cloud by 

sharing its resources to provide special tasks to other mobile devices [119]. 

A number of researchers have presented so many improvements in mobile cloud networks and 

mobile computing concepts from different perspectives, such as offloading [120], allocation, 

scheduling, and virtual machine deployment in cloud computing [121]. Some other researchers 

presented the concept of using multiple cloud computing providers to host user's data [122], 

[123]. However, up to date, it is evident that not too many of the research provided any 

mechanism of extending new intelligent functionalities to legacy cloud network architectures 

and presented it as one framework. 
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Figure 3-1   Heterogeneous Mobile Cloud Networking Architectures. 

 

Various topics have been covered by researchers, such as energy consumption [124], [125]. 

Some research proved that a mobile node using the 3G/4G network consumes energy higher 

than a node using Wi-Fi. The author in [126] presented the concept of a software defined 

cognitive radio system: Cognitive Wireless Cloud (CWC) from a network's viewpoint. 

However, this solution does not consider mobile local resources during the design for the 

appropriate tasks, making the system incapable of working efficiently if there is a lack of 

mobile resources. In [127], the author proposed a new concept in constructing a mobile cloud 

computing system by integrating P2P networks and heterogeneous wireless networks to 

perform services and resources exchange among peer nodes. However, this design only solved 

the information querying problem, which is generally looked at as the classic problem of P2P 

networks. Mobile edge cloud computing is a new concept proposed to overcome the delay in 

using traditional mobile computing systems. In this new concept, multiple stationary and 

mobile devices are interconnected to create a small cloud infrastructure for several IoT that 

require a huge amount of storage and computing resources with minimum time delay. Node's 
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mobility in edge computing and the poor design of its network [128] can significantly decrease 

its lifetime due to an increase in energy and communication consumption cost. Many cloud 

applications require a rapid response and a long working duration. Fog networks also face 

challenges related to providing the required QoS for latency-sensitive applications and dealing 

with the various fog node resources and network links [129].   

In general, every cloud computing network can be considered as a combination of the 

deployment model and service. Nevertheless, of the type of cloud computing, however, one 

crucial fact that is always true, no network indicates no cloud. 

 

3.3 Integrated Service Routing Oriented Architecture in HMCCNs 

In this work, an adaptive solution is proposed based on cognitive methods to overcome the 

situation when mobile channel connectivity or capacity has a problem with the initial working 

model formed, such as in mobile cloud computing network with (Client-Server Architecture). 

The adaptive model proposed, namely: Heterogeneous Mobile Cloud Computing Networks 

(HMCCNs), create and integrate different cloud network architectures to work as one structural 

unit that helps achieve the required task when it is impossible to accomplish it using only 

traditional networking methods. In the simulation, different assumptions and scenarios have 

been implemented and proposed. The working case started by assuming that a variety of 

resources and alternative wireless connectivity(s) were available in the network that will be 

simulated. Then by optimising data routing decision, the data is passed across the proposed 

heterogeneous network model in a cognitive way to ensure reliability, scalability, economy and 

in real-time. In this work, a Long-Term Evolution (LTE) cellular network that consists of a 

cellular base station (eNodeB) and several mobile devices connected to it has been used and 

simulated. The LTE cellular network was connected to the back haul with a server that worked 

as a mobile cloud services provider. The LTE is a radio technology designed to increase cellular 

networks' capacity and speed. In LTE, the downlink peak rates of at least 100Mbps and 50Mbps 

for Uplink were used. The Radio Access Network (RAN) round-trip times in this network less 

than 10(ms). This network is supported with Frequency Division Duplexing (FDD) and Time 

Division Duplexing (TDD) and scalable carrier bandwidths with a range from 20 MHz down 

to 1.4 MHz. The main reasons for selecting the LTE network in this work are its low latency 

and high throughput capabilities.  

In general, multimedia data consists of image, audio, and video that requires high mobile 

resources and wide bandwidth capacity in the network for transferring data tasks, as in the 
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many cases where many mobile users are uploading multimedia files in cloud storage services 

to share them with a friend(s). In other cases, some intensive and time-sensitive applications 

need to upload a huge stream of information to analyse it and use it for real-time decisions. In 

this work, a special case is presented that was started by assumed that MobA is a mobile user 

device connected to an LTE cellular network. The user has a special cloud task to upload real-

time multimedia data (video streaming) for a certain duration of time to store it in the server 

for real-time analysis. During the data traffic uploaded process, the LTE cellular link capacity 

(bandwidth to deliver data) after a while will become a bottleneck and could not handle real-

time transmission so that the network latency increases to be above the acceptable limit, also 

in the case when accessing to the cellular network is not guaranteed (connection to the cloud) 

broken. Unlike traditional mobile cloud network architecture as an individual cloud network 

model, when dealing with such networks' link failure issues, in the proposed integrated model, 

MobA user device that was disconnected or suffered from channel congestion in the LTE 

channel network will be connected to another neighbour mobile devices. A free high-

bandwidth WI-FI network will establish these connections to form a virtual Ad Hoc mobile 

cloud network that will become a core component cooperated in sharing the cellular wireless 

channels of these mobile devices shown in Figure 3-2.   

 

 

Figure 3-2 Cognitive data routing in heterogeneous mobile cloud networks. 
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This migration helped to do the necessary task in such cases anytime and anywhere, meeting 

efficiency, reliability, and high performance in uploading the required task to the cloud server. 

Achieving reliability data routing in the proposed heterogeneous mobile cloud computing 

network model required using a novel cognitive routing algorithm and intelligent data 

management methods to enhance network resources utilisation and increase capacity link 

problems of mobile user networks.  

In this experiment, the virtual Ad Hoc mobile cloud network was created and chosen for the 

appropriate task and integrated with the original client-server model to improve the network 

performance by increasing its throughput and reliability. In order to achieve that, two 

approaches have been presented in this work as follows: 

•    Local Node Management System: 

This presented approach is based on the assumptions that routing management was built 

inside the user mobile MobA device. It locally decides the adaptive cloud architecture 

network used. It also decides when to switch from one cloud network architecture model to 

another or, in some cases, multiple models can be used to form the heterogeneous mobile 

cloud network as per tasks’ requirements and availability of resources. Data migration or 

offloading was used to outsource intensive tasks partially or entirely. In this approach, user 

node MobA has a command-and-control management function that is used to initiate the 

following procedures: 

a) Resources Scanner: This function is responsible for searching and collecting 

information about neighbour terminal(s) location, available connectivity and its types 

and costs of the interfaces to the mobile user device such as cellular link channel,        

Wi-Fi, and Bluetooth. The resources information mentioned is the primary criteria for 

allocating or establishing the required cloud network model(s) to perform the task. The 

searching process for collecting resources information of other neighbouring mobile 

nodes and connections continues. All the collected data discovered is sent back to the 

mobile user to save it inside the database unit. The database unit is the memory part of 

the user node management structure that will save the required local and public network 

resources, such as node(s) energy, CPU, and memory size values. 

b) Cognitive routing algorithm:  a cognitive routing mechanism is used in this approach 

that is able to be adaptable to the network topologies changes with respect to the 

network information collected and applications or tasks requirements. 

c) Decision and execution: The mobile user node MobA is offloading the task based on 

the HMCCNs concept proposed.  
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As mentioned before, there are different types of cloud networks models with various links, 

resources, and conditions. Offloading the same task to each one of these models produces 

different network performance results. Therefore, a cognitive method to select the optimal 

model(s) is needed especially when using the new proposed HMCCNs model. In this 

experiment, within MobA node, is selecting optimal cloud network model from the whole 

integrated HMCCNs for offloading the task required new additional routing parameters and 

criteria that should be independent of the routing algorithms. This is achieved by presented 

the Fuzzy Analytic Hierarchy (FAH) system. This system was proposed by Saaty [130]. The 

aim of using this method is to break down an unstructured and complex situation into a 

hierarchical arrangement of parts and to determine the highest priority variable that should 

be the outcome of the situation based on informed judgment. It is one of the useful 

methodologies for decision making and path selection.  

In this work, there are three hierarchical levels used and listed as shown in Figure 3-3. The 

first level is called target hierarchy, which describes what the object is, the second level is 

called criteria hierarchy, within this level, there are five criteria to be considered 

simultaneously as a scenario for this task. The last level is called decision hierarchy, within 

this level there are only five models used to be selected as a final decision based on the 

analysis provided in the criteria hierarchy level. 

 

 

Figure 3-3 Cognitive decision hierarchy of HMCCNs model selection.  
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Bandwidth, price, speed, security, and availability have been chosen for this experiment as 

criteria to be considered in the offloading task to make the final routing decision.  In 

Bandwidth, it depends on the type of wireless link between the mobile user and the cloud 

model established or selected. When the connection is very good, then the amount of data 

and computation that needs to be offloaded will be large, but if the connection is weak, then 

the amount of data computation is small [131]. The price is related to differences in costs 

for the same amount of computing. The measurement values are different from one cloud 

to another [132]. Speed is related to the cloud or the server's execution speed value for 

computational processes, sometimes it is measured with speedup factor (F) that represents 

the comparison between the execution speed of the cloud to the mobile device. For security, 

it is related to the level of security of how data are protected [133]. Availability is associated 

with the link status (failure) during the offloading process because of devices' mobility 

condition [134]. 

Six steps have been used to evaluate the weights of these criteria. The first step was to define 

the problem objectives.  The second step was the decomposition process, which breaks the 

unstructured problem into a clear hierarchical structure. Then the third step was a pairwise 

comparison and formed the required comparison matrix. The fourth step used the eigen 

value method to determine the relative weights then checked consistency property, which 

was the fifth step. Finally, in the last step, an aggregation of relative weights is applied to 

measure the total performance of all the alternatives [135]. 

 

•   SDN Cognitive Controller System: 

The second approach proposed for cognitive network management and routing decision in 

HMCCNs is based on using a cognitive SDN controller as an intelligent system. This system 

presented optimizes the integration of cloud networks models. The system architecture 

proposed for cognitive SDN controller with HMCCN is shown in Figure 3-4.  

In this proposed model, the cognitive SDN controller will work in the perceptions action 

cycle and provide input to the controller. In addition, based on the learned knowledge of the 

network over time, the controller will take action (decision) regarding routing and network 

data management. 
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Figure 3-4 HMCCNs with Intelligent SDN controller. 

 

A cognitive inspired system, based on cognitive control [136] for cognitive SDN-HMCCNs, is 

shown in Figure 3-5. 

 

 

 

Figure 3-5 Cognitive System architecture for SDN -HMCCNs. 
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From the controller system illustrated above, there are three main components: The perception 

unit, which is responsible for perceiving and learning about the network’s environment. The 

second part is a cognitive controller unit, which is responsible for taking actions. The last unit 

is the working memory that is supporting both previous units. These units form a closed-loop 

feedback mechanism (perception-action cycle). 

In perception module, the SDN controller is connected and communicates to SDN switches 

using OpenFlow API [137]. The controller receives the control packets and the data from SDN 

switches. The control packets carries information like link status of link failure that may 

frequently occur in the network to cause latency and of information about network resources 

and of node mobility information.  The perceptual memory extracts and keeps the learnt 

information that comes from incoming packets. The working memory sorts and analyses its 

meaningful information for decision making in the cognitive controller. A good example of 

useful information is knowing which link has frequently failed over time. Finally, the cognitive 

controller is responsible for making a decision based on the working memory unit's 

information, for example, finding a reliable path. With its centralised controller, this system 

also determines applications’ requirements based on Quality of Service (QoS). Resending the 

packets from source to destination might be due to packets dropping (path congestion); thus, 

the cognitive controller can find delay on all paths using this mechanism.  

In general, traditional network devices like routers, firewalls, switches, and other devices are 

made up of control plane and data plane. As a result, a huge effort is needed with a large 

network when performing devices configurations because it needs access through the 

command line for each device within the network. However, in an SDN network, the control 

plane and the data plane are separated. Thus, a control plane is managed using a centralized, 

programmable controller where all the policies are configured for each device within the 

network. In this work, a comparison of performance between SDN networks with traditional 

networks has been implemented based on calculating the average Round-Trip Time (RTT) with 

different numbers of switches used. 

 

3.4 Simulation and Results   

 Integrated HMCCN Model Experiment 

 Using an OPNET version 17.5 as a toolkit to simulate HMCCN and based on LTE Network 

with bandwidth of 3MHz  FDD. Different scenarios are implemented with the assumption that 

all cellular nodes within the network get similar resources such as (CPU speed, memory size 
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and network interfaces). Figure 3-6 illustrates the result of an average throughput when sending 

uplink video streaming of 1 Gbps of data for 10 seconds of time from the source node MobA 

to the cloud server as a destination (Client-Server model) through the LTE network channel. 

 

 

Figure 3-6   The average throughput in Client–Server cloud model with video streaming. 

 

In the graph, it shows clearly that with the Client-Server model, the average network throughput 

value measured was low because of the congestion of data traffic between the source and 

destination, and also because of the limited capacity of the uplink channel used. This is 

considered a serious problem in real life especially when working with sensitive real-time 

applications. While in Figure. 3-7. it shows different scenarios with a worse case when MobA 

is disconnected from LTE base station, and the original task of video streaming has been 

partitioned in equal sizes and routed through (1, 2, 3, 4, 8) neighbour mobile nodes respectively 

to the server using virtual Ad Hoc network technique. In these scenarios, all neighbour mobile 

devices share their capacity links to upload the task.  The new network performance results 

indicate that the average throughput increases each time increasing the number of mobile 

devices within the Ad Hoc network to transfer the data over Wi-Fi channels to the server through 

the LTE network. This new proposed model also improved energy consumption because the 

power and time required to send the data to each neighbour node using Wi-Fi links is less than 

the power and time needed to send the same data to the far cellular base station using only one 

link. Results also show that the value of the average throughput for uploading video streaming 
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from MobA directly to the server through LTE network is almost identical to the value of 

average throughput of uploading the same video streaming from MobA using one hop Wi-Fi 

technique directed to other neighbour mobile nodes than to the server through LTE network. 

This is because the time spent on mobile devices for uploading process over LTE cellular 

network channel is much higher than the time spent when using Wi-Fi network channel. Finally, 

integrated a client-server model to an Ad Hoc virtual cloud model has minimised the utilisation 

of each node resources and its link capacity. Values are related to the number of nodes 

participating in forming an Ad Hoc virtual cloud network. 

 

 

 

 

Figure 3-7 The average throughput in Heterogeneous MCN with high video streaming. 

 

 

 SDN vs Traditional Networks Experiment  

These two experiments with all scenarios included were aimed to measure and compare the 

network performance in terms of network’s latency between SDN networks and traditional 

networks when their connected switches are gradually increased between the source node and 

the destination node using RTT values. In this experiment, two open-source simulation 

platforms have been selected. For the traditional network, Cisco Packet Tracer version 

7.2.2.0418 was used, while for the SDN network, the Mininet platform was used and was 

installed on Ubuntu 18.4 platform. 
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•   Traditional Network Simulation: 

In this experiment, all scenarios have been implemented using Cisco Packet Tracer 

platform. The network has a first scenario, which consists of two nodes, the source node 

host1 and the destination node host2. These two nodes connected through 4 switches and 

one router in the middle. When all system configurations are completed, the ping command 

has been used to send packets from host1 to host2 and the average value of RTT was 

calculated. In networking, the round-trip time represents the duration in millisecond 

measured for the signal to be sent from the source, plus the time it takes the acknowledging 

of that signal to be received. Further scenarios were implemented by increasing the number 

of switches gradually to (10, 20, 30, 40, 50, 60, 70, 80, 90, 100) respectively, and the average 

values of RTT have been measured per each scenario.  Figure 3- 8 shows the simulation 

scenario of 100 switches connected between host1 and host2. 

 

 

 

Figure 3-8 Traditional network design with 100 switches.  

 

•   SDN Network Simulation. 

In this experiment, the same network concept previously used but with OpenFlow switches 

and SDN controller. Mininet was installed into the Ubuntu operating system. Unlike the 

Cisco Packet Tracer platform that can be described as a graphical user interface, the Mininet 

platform is a command control interface. 

The first scenario was implemented using two nodes, the source node host1 and destination 

node host2, these two nodes connected through 4 OpenFlow switches and one SDN 
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controller. When all system configurations were completed, the ping command has been 

used to send packets from host1 to host2, and the average value of RTT was calculated.  

Further scenarios were implemented by increasing the number of OpenFlow switches 

gradually to (10, 20, 30, 40, 50, 60, 70, 80, 90, 100) respectively, the average values of RTT 

have been measured per each scenario.  

Figure 3-9 shows the scenario of 100 OpenFlow switches connected between host1 and 

host2 with the SDN controller in the middle. 

 

 

      

 

Figure 3-9 Mininet with 100 OpenFlow switches and SDN controller configurations.  

 

 

 

All average RTT values for both experiments with all scenarios implemented were measured 

as shown in Table 3-1, and the bar chart of Figure 3-10 shows the average RTT values 

measured and differences for both experiments. Multiple readings (four readings) have been 

taken per each scenario to increase the accuracy of measurements taken from all scenarios. The 

mean value has been calculated as the actual average value per each scenario such that the 

measurement’s errors will cancel each other out. 
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Number of 

Switches 

Traditional 

Network 

Avg. RTT (ms) 

SDN 

Avg. RTT (ms) 

4 0 0.066 

10 0 0.089 

20 2 0.103 

30 6 0.318 

40 11 0.565 

50 18 0.644 

60 23 0.699 

70 27 0.854 

80 29 0.912 

90 33 1.01 

100 39 1.272 

 

                   Table 3-1 Average RTT values for Traditional and SDN networks. 

 

 

 

 

Figure 3-10 Comparison chart between traditional network and SDN network with respect to 

RTT.  
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The bar chart in the figure above illustrated that with the first two scenarios (4 and 10) switches, 

the average RTT values for the SDN network were almost similar or slightly higher than the 

average RTT values calculated for the same scenarios in a traditional network. The results show 

noticeable changes when the number of switches keeps increasing. Starting from the scenario 

with 20 switches, the average RTT values for the SDN network provided better results than the 

traditional network which its RTT values keep increasing till the last scenario with 100 

switches.  

As a result, the SDN network provided better RTT results (lower values) than the traditional 

network, especially with an extensive scale network that comprises too many switches. In the 

SDN experiment, when host1 sent the first packet to host2, it routed through OpenFlow 

switches that established a communication link with the SDN controller through OpenFlow 

protocol to check and decide how the current input flow should be processed. All other packets 

sent after that were routed directly to the source using the best route selected before. In 

traditional network experiment, the technique is different, each switch is forwarding packets 

based on the forwarding table. With the SDN concept, all managements of data packets are 

software-based, while the traditional network is hardware-based. In this case, SDN more 

flexible and can easily manage resources through the control plane. 

 

3.5 Summary 

In this chapter, an adaptive HMCCN model has been proposed to integrate different cloud 

network topologies and services in one workflow. 

A task of high-rate video streaming has been simulated passing through an LTE MCCN from 

the source node to the server, the channel used suffered from low bandwidth, congestion, and 

link breakdown. The new adaptive model was established by integrating MCCN with 

VAMCCN to form the new model HMCCN. 

The cognitive data offloading task and routing management methods were applied using two 

approaches: An FAH system as the first approach and the centralised cognitive SDN model as 

a second approach. Final results of the HMCCN model used in an experiment with different 

scenarios that were scalable in terms of the number of mobile Ad Hoc nodes, which shared 

their resources, shows an improvement in network reliability and minimising in mobile nodes 

energy consumption. The throughputs measured were increased each time more mobile nodes 

were added to the network. Finally, to prove the enhancement in network performance with 
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HMCCN that worked based on the SDN cognitive control network that was proposed as a 

second approach for routing management, two experiments were simulated to compare and 

analyse the differences between the SDN network and the traditional network RTT values in 

terms of network’s latency. Final results with different scenarios, which were scalable in terms 

of the number of switches used within the two networks, have improved network latency when 

using an SDN network with higher number of switches than a traditional network. 
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Chapter 4 

4 INTELLIGENT HYBRID ROUTING 

PROTOCOL WITH PATTERNS 

AWARENESS IN VIRTUAL MOBILE 

AD HOC NETWORKS  

 

4.1 Introduction 

Cloud computing networks is a modern networking generation that enables convenient, 

ubiquitous, and on-demand access to computing resources such as networks, servers, 

applications, storage and services with high scalability and less management effort. The great 

advantage and improvement of cloud computing to cloud users is the issue of mobile services. 

Mobile devices are becoming more efficient because of the contentious improvements in 

computing capabilities due to these devices' influence almost in every human's daily life. 

Despite that improvement, they are still constrained mostly due to the limited storage 

capacities, processing capabilities and short battery lives of the mobile devices, which 

compromise the Quality of Service (QoS) provided. To overcome these limitations, researchers 

have presented two new types of mobile cloud concepts, Mobile Cloud Computing Networks 

(MCCNs) [138][139][11], and Ad Hoc Mobile Cloud Computing Networks (AMCCNs) 

[140][141]. In mobile cloud computing, a cloud system is integrated with mobile devices based 

on an infrastructure communication network, of which a cellular network is a good example of 

such a network. The integration between the cloud system and mobile devices enables these 

devices to access huge storage space and processing power. It helps mobile devices to run 

intensive computational applications such as video and image processing on the same mobile 

devices. Furthermore, using cloud systems for data storage and execution for such applications 

improves reliability and minimises battery power consumption on mobile devices. In mobile 

Ad Hoc cloud computing, or sometimes called a virtual mobile Ad Hoc cloud computing 
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network, it consists of multiple devices intercommunicating through mobile Ad Hoc networks 

to form a virtual supercomputing node model. 

 

4.2 Virtual Mobile Ad Hoc Cloud Computing Networks 

(VMACCNs) 

Virtual mobile Ad Hoc cloud computing networks can be considered as a collection of wireless 

mobile nodes that dynamically create a one-hop connection to the cellular network and also 

can work as a wireless network connected amongst themselves without using any 

infrastructure.  Mobile cloud nodes are no longer just the end-user node. Each of them must 

also be able to function as a router to relay packets generated from another previous node(s). 

The growth of data traffic has witnessed a phenomenal increase in a mobile network.  

Figure 4-1 shows the mobile network data traffic growth chart around the world made by the 

Ericsson Mobility Report Data and Forecasts. Growth increased sevenfold between the year 

2016 to the expectation of growth in 2027 [142]. 

 

 

 

     Figure 4-1   Global mobile network data traffic (EB per month) [142]. 

 

 

When the users work on their own mobile devices in movement conditions and with the 

limitation of networking and computing resources within the device, topology adaptation is 
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required to make sure that nodes are communicated as appropriate. Furthermore, constraints 

reveal on how much control and administrative information need to be exchanged and for how 

many times. Using an effective routing algorithm protocol is one of the most significant 

challenges in mobile cloud networks. 

 

4.3 Routing in (VMACCNs) Challenges  

Most mobile multimedia and time-sensitive applications require the establishment of 

transmission paths that should meet several parameters such as bandwidth and delay, 

commonly referred to as QoS guarantees. In a virtual mobile Ad Hoc cloud network, due to 

low signal power, high mobility and limited bandwidth, an active path’s link breakdown might 

occur when, for example, a pair of mobile nodes that are establishing link communication along 

the data transmission path exceed each other’s transmission range. Each node that is forming 

the network can join or leave the network and is free to move in any direction and at any speed 

independently. Searching for a new path only occurs when the current path is broken. In 

general, the cost of detecting the failed link is high and several time-out packets sent before a 

path is considered as breakdown. Therefore, during a path breakdown period, packets 

experiencing loss and delays before the broken path is detected and an alternative new path is 

established. This may cause an increase in packet loss rate and a decrease in throughput. 

Unfortunately, route failures occur frequently in the virtual Ad Hoc cloud network because of 

mobile node mobility and limited battery capacity resources. The operations of route discovery 

also consume additional network resources, reducing network performance and lifetime. Many 

traditional Ad Hoc reactive routing protocols for mobile wireless networks use a single metric 

like signal strength or shortest path to building the route for data transmission. Routing metrics 

are an essential factor to select the best links. However, the single metric method for route 

selection is insufficient to build a stable route because it most probably causes frequent route 

failures that motivate routing protocol algorithms used to retransmit further packets to 

rediscover new paths each time the link breaks. Therefore, combining multiple routing metrics 

using an efficient, intelligent protocol to select the most reliable nodes and establish the best 

route starting from the source node to the destination node is essential [143]. Ad Hoc on-

demand distance vector routing protocol (AODV) and destination sequenced distance vector, 

and Dynamic Source Routing (DSR) are examples of shortest path routing protocols [144]. 

These protocols use minimum hop count to determine the best route paths without considering 

node resources quality or the path’s link stability factor. It means that the path selected for 



4.4  Research Gap 

 

61 

routing may not be reliable, especially for dynamic topology networks with time-varying radio 

link conditions. Despite that, other protocols have been proposed to overcome some of the 

weaknesses of shortest path routing algorithms like Sequence Distance Vector Routing [145]. 

However, overhead and extra processing is so common in these protocols. 

To overcome these problems, it has to: 

1- Predict link failure and nodes resource limitation values that affect data routing reliability 

such that an alternative routing path is selected before the established path for a connection 

breaks. 

2- Increase the throughput, which is the amount of data that are passing through the network. 

Increasing throughput will decrease the waiting time of any data or control packets and will 

improve network performance. 

 

4.4 Research Gap 

Different algorithms and routing protocols have been proposed for VAMCCN and MANET in 

general. Three classifications of previous works have been overviewed and presented here in 

this section that is selected based on intelligent routing protocols used and types of metrics 

chosen to make the routing decisions. 

 

 Fuzzy Logic System 

Computational intelligence techniques like fuzzy logic have been comprehensively used in 

different fields of control engineering and engineering research and provide a promising 

approach in routing algorithms. The author in [146] proposed a mobility management system 

in the wireless network supported by fuzzy logic techniques. The main target is to keep 

monitoring a mobile worker's movements and their condition inside the oil refinery. In this 

work, matrices of End-to-End packet loss and a threshold based on the Received Signal 

Strength Indicator (RSSI) have been measured and used instantaneously as state inputs of a 

Fuzzy Logic Mobility Controller (FLMC). Using linguistic rules that explain the behaviour of 

the environment in different conditions helps decide whether to hand off to another new 

position. In [147], the author proposed a fuzzy logic routing algorithm. The approach was to 

find a stable route from source to destination using three parameters: energy, trust value and 

reliability value. The decision to select the candidate path is related to its reliability value; 

results show an improvement in path reliability compared to AODV. In [148], a new 

evolutionary Ad Hoc on-demand fuzzy routing protocol has been proposed. This new 
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algorithm used to determine the best route based on achieving various objective performance 

in MANETs. Different routing metrics such as signal strength between two neighbouring 

nodes, remaining node battery lifetime and node queuing length were used in this model to 

select the best route with less fuzzy cost value. The results have shown a noticeable 

improvement over conventional MANETs routing protocols. 

 

 Neural Network  

In this section, a brief overview of the previous works proposed in routing techniques and 

traffic prediction based on neural networks. In [149], a new sensor routing table realisation 

protocol was presented using a neural network. In this model, the routing table is replaced by 

an artificial neural network to improve routing decisions speed. ANN also trained to change 

the routes in case of network topology changed. In [150] a novel QoS aware routing protocol 

is proposed to fulfil the requirements of delay-sensitive applications. The protocol successfully 

improved the PDR and throughput, which improved the performance of the network. In this 

model, ANNs used to predict end-to-end-delay to incorporate QoS enabled route discovery. 

The routing overhead is minimised in this model compared to the existing approaches. Some 

other research proposed different approaches using a neural network to address the designing 

challenges of location prediction systems. In [151], the authors proposed an STF-RNN model 

that used a recurrent neural network algorithm to predict the next location of individuals. The 

proposed model includes space and time interval sequence. This method was used to predict 

the long term dependencies that provided a significant improvement to that model's efficiency. 

The related works mentioned above show that the new scientific direction and research 

approaches are moving towards the developments and find a new architecture of applying 

neural networks to achieve intelligent adaptive routing algorithms. 

 

 Pattern Predication 

With mobile node movements in Ad Hoc cloud networks, a rapid change occurs in network 

topology that causes frequent disconnection. To address the impact of mobile nodes’ 

movements, we need to evaluate nodes' movement in the cloud networks. Mobile prediction is 

a method of assessing the route of the future position of the mobile nodes.  

Studies have been made within this topic that covers different fields in wireless mobile 

networks such as Ad Hoc and cellular networks [152][153][154][155][156][157]. The mobility 

prediction techniques support to evolve an image of the future mobile network topology. As a 
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result, it reduces the need for location updating information, leading to minimising 

communication delay and improving QoS. The better accuracy of the prediction depends on 

the regularity of mobile nodes movements. However, sometimes regular mobile nodes’ 

movements act unpredictably. Recently, different prediction methods for mobile nodes have 

been proposed by many researchers. These methods varied in the information they used for 

mobility prediction, and the results of the parameters they obtained by prediction, and the target 

for prediction. The author of [158] proposed a sequential learning algorithm for human 

mobility as a solution for short-term prediction. For the prediction technique, a constant order 

Markov model has been used. Despite that, the accuracy of prediction is high due to large 

datasets of sequences used to predict human mobility. However, the mobility prediction 

process cannot be estimated without the accessibility of mobility history data. In [159], a new 

technique of Enhanced Localisation Solution (ELS) has been proposed. This solution combined 

the human mobility model, standard location tracking method and machine learning and is 

presented as a self-adaptive solution. The results show that this technique worked properly for 

different node reactions with a low error rate and high-power consumption. A lightweight 

genetic algorithm also being proposed as a new method for prediction works in [160] to 

improve routing in MANET. This approach of genetic predictor did not contain all genetic 

operations. In addition, it was modified to reach its termination condition with a smaller 

number of iterations. Unlike the probability-based techniques, genetic predictor causes better 

QoS results. However, when using this technique for prediction, heavy computational power 

was needed as well as more memory in mobile nodes storage required. A Mobility Prediction 

of a MANET node based on the Bayesian model has been proposed in [161]. This model 

improved routing protocol by preventing broadcasting request messages from high mobility 

nodes by using prediction results. GPS information has not used in this model. The 

improvements in packet delivery ratio reach 46.32% based on the maximum speed of 30m/s 

and the density of the nodes of 200 nodes/k. A mobility prediction for MNs' future locations 

based on neural learning machine was proposed in [162]. Two integrated architectures of 

Extreme Learning Machine (ELM) and standard Multi-layers Perceptron (MLP) were used as 

a solution in this method with higher accuracy achieved by an order of magnitude. 

Improvement in accuracy enhanced the quality of service in MANET. This model reduces data 

exchange inside the network by predicting routing tables in MANET; it also helped reduce 

battery power consumption. In [163], a method to predict the future location of the mobile user 

proposed. Based on considering user's online posts that were already tagged with GPS 
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information (geological coordinates) of the user's smartphone. However, this method's 

prediction accuracy was low because the amount of information collected was limited.  

A routing algorithm for Ad Hoc on-demand distance vector network AODV was proposed in 

[164] based on mobility prediction. In this algorithm, the measured mobility was used to 

estimate the lifetime of the link between nodes, and the estimated values (link durations) helped 

select the best route. Unlike traditional AODV routing maintenance, which used fixed duration 

values, this algorithm used mobility estimate when dealing with route maintenance. This 

proposed algorithm effectively decreased the number of control messages used for route 

discovery and route maintenance. Therefore, significant improvements have been shown on 

route performance like packet delivery rate and End to End Delay values. The author in [165] 

proposed a movement prediction model for MNs based on neural network algorithm. Feed-

forward Neural Network with three layers was used with a backpropagation algorithm for the 

learning process. For the training and testing process to the neural network, patterns of Ad Hoc 

mobility nodes' locations based on the random waypoint mobility model have been applied as 

the input of a neural network. The outputs consisted of prediction of future position. The 

system's evaluation performance is applied by adding new input as a node position and 

calculating the output's accuracy as a future position. Prediction accuracy was acceptable with 

this model. 

Many routing algorithms mentioned focus only on discovering a suitable route for transferring 

data packets through intermediate nodes. At the same time, little attention was given to improve 

that discovery by minimising overhead control packets during the discovery process. It is also 

essential to know and select the best timing for collecting the data required for routing 

decisions, such as the data used as an input for a fuzzy logic system. Updating all these data 

during task duration includes assuring the data values' accuracy is an important factor. Lastly, 

little attention has been given to know the best network/node location to decide the optimal 

route. Different approaches and algorithms were proposed, but not one of them manages to 

discuss all these factors combined in one system. 

 

4.5 Proposed System 

One of the most critical research areas in vertical Ad Hoc routing protocol is establishing and 

maintaining network connections through the routing protocol. Although there are so many 

traditional routing protocols available and proposed, this work used AODV as a traditional Ad 

Hoc routing protocol for the performance comparisons process with other new adaptive 
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intelligent proposed protocols for its familiarity among all other protocols. To get realistic 

results when evaluating the performance of the new routing protocols proposed, the network's 

parameters should be assigned based on realistic conditions such as the initial mobile resources 

values used and the mobile nodes' movement model that will be simulated (Mobility model). 

Mobility models severely impact the performance evaluation of any assessment of a new 

routing protocol or any comparison with other corresponding routing protocol models 

presented [166]. Thus, it is certainly important to choose a suitable mobility model that 

correctly expresses a real movement pattern of mobile nodes in the network. As a result, all the 

proposed routing protocol experiments presented here are based on an Ad Hoc network with 

Random Waypoint Mobility Model (RWM). This is a well-known model and mostly used by 

many research as a realistic mobility model [167][168][169][13]. Results obtained from the 

network experiments were simulated in MATLAB and have been compared and analysed 

based on important metrics such as end-to-end delay, throughput, and packet delivery ratio. In 

conventional AODV routing protocol, the best route selection is decided by utilising the 

minimum value of hop metric [170], but this is not an adequate parameter for establishing the 

best route to a destination in MANETs in general. It does not consider the other essential factors 

that may affect the routing reliability and quality of service provided. In this work, the adaptive 

proposed protocols used important node parameters for route decision calculations; for 

instance, node energy capacity value and mobility (speed and position) values were considered 

to be the main parameters to establish a reliable route and to ensure minimising the probability 

of route failure at the time of data packet transmission. The selected reliable nodes that were 

used to build a reliable route in these proposed intelligent algorithms were based on nodes that 

were having higher residual battery energy value, moving with minimum speed, and located at 

a minimum distance from their neighbouring nodes, the direction of movements was also 

considered as another important factor that may increase the probability of link failure. In 

addition to AODV as the first traditional protocol presented in first experiment, three other 

proposed routing protocols that used a fuzzy logic algorithm to make routing decision were 

presented as three more experiments. A fuzzy logic technique was used to calculate each link's 

reliability values by combining residual battery energy value and velocity of each node with 

the distance between them in this network. The path with the highest reliable value is selected 

to establish the best route to the destination. Routing protocols, namely Fuzzy logic A, Fuzzy 

Logic-B, and Intelligent Hybrid Fuzzy-Neural protocol (IHFN), were proposed as three 

experiments. All experiments have been simulated based on an Ad Hoc network with a random 

waypoint mobility model. An improvement has been made when using the fuzzy logic concept 
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in routing mechanism with the two experiments (Fuzzy logic-A protocol, and Fuzzy logic-B 

protocol) compared to AODV. Furthermore, it revealed two approaches to knowing the best 

time to collect nodes’ parameters information from the nodes within the routing path selected 

and the best location to make a routing decision for better. In the last experiment, a novel 

intelligent hybrid routing protocol namely IHFN was presented that used fuzzy logic and neural 

network algorithms combined. The new protocol has used a pattern prediction concept based 

on a neural network system with feedforward propagation to make the required predictions. 

The dataset collected form the first experiment was used to train and test the NN system. The 

system then used in the IHFN routing protocol mechanism to predict the next future steps of 

nodes' essential parameters to use them later to get the links' reliability values calculated using 

the fuzzy logic system. Getting links measurements during dynamic topologies helped 

calculate the highest value used as the best routing path for data transmission from the source 

node to the destination node. Three different time steps predictions have been applied in three 

different scenarios within IHFN experiment. All results of all four experiments with scenarios 

applied were analysed and compared. 

 

4.6 Implementation and Simulation  

 

 Core Network with (RWM) Model: 

This section explains the simulation environment, including suggested relevant simulation 

parameter values. This network, namely the core network, will be used as a core for all other 

experiments by applying all traditional and new proposed routing protocols.  

In this work, a virtual Ad Hoc mobile cloud network was simulated with all proposed 

algorithms using MATLAB R2020a 64-bit. The network consists of 60 Ad Hoc nodes moves 

according to the Random Waypoint Mobility Model (RWM) and two other nodes as a source 

and destination. The grid size selected (the arena of the simulation) was set to 600*600. During 

the simulation, the RWM mobility model creates positioning, speed, and energy patterns per 

each node. This information was collected and used as datasets for the prediction process. 

Parameters for the core network design were selected, as shown in table 4-1. 
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Parameters 

Mobility Model  RWM model 

Area of deployment  600*600 𝑚2 

Number of nodes   60 

Simulation time   750 sec  

Speed (max. and min.) [0, 8] m/s 

Pause time (max. and min.) [0,1] sec 

MNs Max. charging capacity 

100% 

 4 Watts  

Transmission Range  100 m 

Packet size  CBR 

Packet traffic rates  Low rate (200 packet/sec)  

Medium rate (600 packet/sec) 

High rate (1200 packet/sec) 

 

Table 4-1   RWM network parameters. 

 

The experiment started by distributing all of the 60 nodes to their randomly distributed initial 

position (x, y) within the simulation arena as shown in Figure 4-2, each one of the 60 nodes 

stayed in its initial location for a certain selected randomly period of time (pause time) between 

[0-1] sec, and as soon as this time comes to an end, each mobile node assigned new random 

destination within the arena of simulation and also assigned with it a randomly speed range 

between [0-8] m/sec. Upon arrival, the mobile node takes another pause for a specific random 

time period before doing the same process again until the simulation time of 750 sec. ended. 

Using the null matrix, all variables were initialized, and then all new values were ready to be 

collected and saved inside it. Parameters required to save are node positioning values (x, y), 

node’s speed values, and residual battery energy values. The dataset created from saved 

information will be formed as Comma Separated Values (CSV formats) file. The simulation 

time has been selected based on its relationship with the datasets generated from the simulation. 

If the simulation time increases, then the datasets collected will also increase. 
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Figure 4-2    RWM simulation with 60 nodes with initial random positioning. 

 

 Experiment 1: AODV Routing Protocol 

An Ad Hoc On-Demand Distance Vector routing protocol (AODV) is one of the most favourite 

traditional reactive routing protocols used in the research environment [171]. With the AODV 

protocol, the source node starts to initiate the route discovery process when there are data 

packets to be sent, and it is broadcasting a Route Request (RREQ) packet to all the neighbour 

nodes within the transmission range. Each intermediate node receives the RREQ check if it has 

a new route to the destination node or if it is the destination. Then, it responds back in a unicast 

way using a Route Replay (RREP) packet to the source node. AODV is one of the traditional 

protocols that use the minimum hop  count (Short Path-SP) parameter to select the best route to 

the destination node regardless of the nodes' attributes that will be formed in the route. When 

the source node receives different RREP Packets, RREP with the shortest hop count is selected. 

In case a route link failure occurs, the node attached to that faulty link will create a Route Error 

(RERR) packet that travels back to the source node. Source node starts to rediscovery process 

for a new route if still needed, or if any other data packets still need to be sent. When the source 

node is broadcasting the RREQ packet during its discovery process phase, the intermediate 

node rebroadcasts each received RREQ packet (if this intermediate node is not the destination 

or does not have an updated route to the destination) following incrementing the hop  count 

parameter value by one. When the intermediate node receives different RREQ packets with the 

same identification number (Id) and same sequence number with different hop count values, 

each from its neighbouring nodes, the node checks each RREQ packet separately. If the new 

hop count value is smaller than for the previously received RREQ packet with the same (Id), 

the node will then update the value of its hop count for its reverse route with that specific Id 
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and rebroadcasts the RREQ packet. Unless the node already got an equal or lower hop count 

value, then the RREQ packet will be discarded.  

By using the same core network RWM model simulated previously. In this experiment, the 

maximum charge capacity of each node was assumed to be 4 watts each. Each node is assigned 

various randomly initial energy values such that mobile nodes numbers from 1 to 20 were 

assigned randomly with residual mobile battery energy values between 0 and 50% of its 

maximum charging capacity, while mobile node numbers from 21 to 40 were assigned 

randomly with residual mobile battery energy values between 25 to 75% of its maximum 

charging capacity. Finally, node numbers from 41 to 60 were assigned randomly with residual 

mobile battery energy values between 50 to 100% of its maximum charging capacity. Figure 

4-3 illustrates how the battery charging capacity values were assigned randomly as explained 

for all 60 nodes. The experiment started with RWM movements for all 60 nodes, three 

scenarios applied by sending data traffic packets of 200, 600 and 1200 packets /second 

respectively from the source node to the destination node using AODV routing protocol for a 

duration of 750 seconds each. Metrics such as end-to-end delay, throughput and packet delivery 

ratio have been measured for all three scenarios. The values of each node's positioning, speed 

and residual battery energy were saved for the whole simulation time (750 sec) for the three 

data traffic scenarios. Datasets were saved in Comma Separated Values (CSV formats) files. 

 

 

   Figure 4-3    Residual battery energy values randomly assigned for 60 nodes.  
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 Experiment 2: Fuzzy logic-A Routing Protocol 

In a mobile Ad Hoc network, the communication between one-hop nodes (neighbour) needs 

the relative information of nodes’ movements. In general, the mobile node state comprises the 

movement speed, position, and movement direction [172]. In this experiment, 𝑀𝑁𝑖 (p,v) 

represents the attribute description of one mobile node, where i denoted the number of one 

mobile node, 𝑝𝑖 represents the position formatted in ( 𝑥𝑖, 𝑦𝑖) , 𝑣𝑖 represents the velocity of   

𝑀𝑁𝑖, velocity is a vector that includes the value (speed ) and the direction by assuming we 

have two adjacent mobile nodes  𝑀𝑁𝑖  and 𝑀𝑁𝑗 in motion as shown in Figure 4-4,  

 

 

Figure 4-4   Two adjacent (one hop) mobile nodes in movement state. 

 

 

Here ∆𝑑𝑖𝑗  is given by the following equation:  

  

 

 

 

 

Here,  ∆𝑑𝑖𝑗 represents the distance between mobile node i (𝑀𝑁𝑖) and mobile node j ( 𝑀𝑁𝑗) . 

Also, ∆𝑣𝑖𝑗  has been calculated as shown  

 

 

∆𝑑𝑖𝑗 = 𝑃𝑖 - 𝑃𝑗                                                        (4-1) 

 

(4-1) 

 

∆𝑣𝑖𝑗= (𝑣𝑖 cos𝛼- 𝑣𝑗cos𝛽) - ( 𝑣𝑖 sin𝛼- 𝑣𝑗sin𝛽)                                    (4-3) 

 

(4-1) 

 

∆𝑑𝑖𝑗 =  √(𝑥𝑗 − 𝑥𝑖)
2
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Here,  ∆𝑣𝑖𝑗 represents the velocity differences between mobile node i (𝑀𝑁𝑖) and mobile node 

j (𝑀𝑁𝑗). Also 𝛼  represents the angle between 𝑣𝑖 and the extended line that connected between 

𝑀𝑁𝑖 and 𝑀𝑁𝑗 and it has been calculated as follows: 

 

 

 

 

 

 

 

 

Same calculation is used to get the value of 𝛽 as follows:  

 

 

 

  

 

 

 

 

 

Here,  𝛽 represents the angle between 𝑣𝑗 and the extended line that is connected between 𝑀𝑁𝑗 

and  𝑀𝑁𝑖 

The attribute of ∆𝑣𝑖𝑗 results in equation (4-3), which denotes that if the value (can be taken 

from speed) and direction of the velocity vector of two mobile nodes are equal, then the value 

of ∆𝑣𝑖𝑗 is zero, while in the case of that  𝑣𝑖 and 𝑣𝑗 are face to face then the value of ∆𝑣𝑖𝑗 is 

positive. Finally, in case that  𝑣𝑖 and 𝑣𝑗 are in opposite direction, then the value of ∆𝑣𝑖𝑗 is 

negative. 

 

▪   Fuzzy Logic System Design: 

Fuzzy logic brings the user’s preferences and experiences into the decision by using fuzzy 

rules and membership functions. In this experiment, the Fuzzy logic controller has designed 

with three input variables and one output variable, where the three input variables to be 
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fuzzified are residual mobile battery energy value (Energy) for the receiving node, distance 

(∆d) calculated from equation (4-2), and velocity (∆v) calculated from equation (4-3). A 

crisp value of Reliability Value (RV) is the output from the system after defuzzification. 

The Linguistic variables related with the three input variables are (Low), (Medium), and 

(High) for energy, (Low), (Medium), and (High) for distance ∆d and (Negative), (Zero), and 

(Positive) for velocity ∆v. For the output variables of the reliability value (RV), six linguistic 

variables have been used, (Very low), (Low), (Medium), (Average), (High), and (Very 

High). All Membership Functions (MFs) used in this work are chosen to be triangular 

membership functions for simplicity, convenience, efficiency, and speed [173]. Table 4-2 

shows the ranges of inputs and outputs variables against each MFs.  

 

Variables Names Membership Function Name 
Range                       

(Lower limit, High limit) 

Energy (Residual mobile 

battery energy value) 

Low 

Medium 

High 
 

0 to 50 

25 to 75 

50 to 100 
 

Distance (∆d) 

Low 

Medium 

High 
 

0 to 50 

25 to 75 

50 to 100 
 

Velocity (∆v) 

Negative 

Zero 

Positive 
 

-16 to 0 

-7.5 to 7.5 

0 to 16 
 

Reliability value (RV) 

Very low 

Low 

Medium 

Average 

High 

Very high 
 

0 to 20 

0 to 40 

20 to 60 

40 to 80 

60 to 100 

80 to 100 
 

 

Table 4-2    Names and ranges of all MFs for each variable.  

 

In Table 4-3, It shows fuzzy logic rules that have been used in this experiment for the 

proposed routing algorithm to calculate the output reliability values, where the first rule can 
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be explained as, if Energy is (Low), Distance is (Low) and velocity is (Negative) then the 

Reliability value will be (Low). 

 

Rules # Energy Distance (∆d) Velocity (∆v) Reliability 

value (RV) 

1 LOW LOW NEG LOW 

2 LOW LOW ZERO Average 

3 LOW LOW POS Medium 

4 LOW MEDIUM NEG Very Low 

5 LOW MEDIUM ZERO Medium 

6 LOW MEDIUM POS Low 

7 LOW HIGH NEG Very Low 

9 LOW HIGH ZERO Low 

10 LOW HIGH POS Very Low 

11 MEDIUM LOW NEG Medium 

12 MEDIUM LOW ZERO High 

13 MEDIUM LOW POS Average 

14 MEDIUM MEDIUM NEG Low 

15 MEDIUM MEDIUM ZERO Average 

16 MEDIUM MEDIUM POS Medium 

17 MEDIUM HIGH NEG Very Low 

18 MEDIUM HIGH ZERO Medium 

19 MEDIUM HIGH POS Low 

20 HIGH LOW NEG Average 

21 HIGH LOW ZERO Very High 

22 HIGH LOW POS High 

23 HIGH MEDIUM NEG Medium 

24 HIGH MEDIUM ZERO High 

25 HIGH MEDIUM POS Average 

26 HIGH HIGH NEG Low 

27 HIGH HIGH ZERO Average 

 

Table 4-3   Fuzzy logic Rules.  
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In Figure 4-5, the input variables of MFs and the output with ranges selected and simulated 

using MATLAB platform is illustrated, also Figure 4-6 shows the relationship of Distance 

and Energy as fuzzy input variables for the proposed routing algorithm that are laid on the 

horizontal axes of the diagram with respect to the Reliability Value (RV) as an output 

variable in the vertical axis. Figure 4-7 shows the relationship of Velocity and Distance as 

fuzzy input variables for the proposed routing algorithm that are laid on the horizontal axes 

of the diagram with respect to the Reliability Value (RV) as an output variable in the vertical 

axis. Finally, Figure 4-8 shows the relationship of Energy and Velocity as fuzzy inputs 

variables for the proposed routing algorithm that are laid on the horizontal axes of the 

diagram with respect to the Reliability Value (RV) as an output variable in the vertical axis.  

 

 

 

 

 

 

   Figure 4-5    Input and output MFs variables ranges simulated in MATLAB. 
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   Figure 4-6    Reliability value (RV) with respect to Distance and Energy.   

  

  

 

Figure 4-7    Reliability value (RV) with respect to Velocity and Distance. 

 

 

 

   Figure 4-8     Reliability value (RV) with respect to Energy and Velocity. 
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▪   Route Discovery Steps: 

This is based on the core network with RWM model and with battery charging capacity 

values assigned per each node and by assuming the source node does not have a route to the 

destination node. Route discovery is started when the source node initiates (broadcast) route 

Request Packet (RREQ) to all neighbouring nodes. Each node in this network, upon 

receiving the RREQ packet, rebroadcasts the packet to its neighbours’ nodes if the node is 

not the destination node. At the destination node, as a first step proposed in this experiment, 

the RREQ packet was designed to carry three new fields of information that has been added 

to its field structure format. The new three information that are gathered along the complete 

path that been traversed consists of energy (Residual battery energy value), positioning and 

speeds values of the nodes. 

A waiting time period (time window) is set up to start when the first PREQ packet is 

received at the destination node. Furthermore, more PREQ packets from the source node 

passing through different route paths may also receive at the destination node. That waiting 

time has been set to three RREQ packets received (three successful paths), in other words, 

the destination node takes only first three RREQ packets for calculation purposes and 

discards all others that come after. Then, as a second step, by extracting and using the 

information on each of these three different RREQ packets, ∆d, ∆V, energy, and then RV 

values between each two neighbouring nodes along the whole path from source to 

destination is calculated using a fuzzy logic controller. When this calculation is completed 

as a crisp value, the reliability value 𝑅𝑉 𝑆,𝑑 is calculated as a final value from source to 

destination per each successful path from RREQ packet such that:  

 

   

 

In equation (4-10), reliability value  𝑅𝑉 𝑆,𝑑  represents the crisp value of the whole route 

between source and destination. Now, by comparing the three final values of the three-routes 

that have been received at the destination, destination node sends a reply packet RREP to 

the source node along the path with the maximum value of  𝑅𝑉 𝑆,𝑑  calculated. Source node 

uses this path to send data packets to destination as a source router method. Three scenarios 

are applied in this experiment by sending data packets traffic rates of 200, 600 and 1200 

packets /second respectively from source node to destination node using (Fuzzy Logic – A) 

routing protocol proposed in this experiment for 750 seconds each. Metrics such as end-to-

RV 𝑆,𝑑 =( RV𝑠,1 +  RV1,2  +  RV2,3 + …+ RV𝑛,𝑑)                                   (4-10) 

                                            (4-9) 

 

(4-1) 
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end delay, throughput and packet delivery ratio has been measured for the three scenarios 

within this experiment.  

 

 Experiment 3: Fuzzy Logic–B Routing Protocol 

In this experiment, a different approach has been proposed to select reliable and efficient 

routing paths for data packets.  The new method proposed in this experiment is concentrated 

on using the same fuzzy logic controller, same configurations, and rules but with changes in 

the concept of when the three new information parameters of each node will be collected, and 

where the decision of the best routing path is made and how it is made.  

Once again, the experiment is based on (core network with RWM simulation model) with 

battery charging capacity values assigned per each node as per previous two experiments and 

by assuming a source node does not have a route to the destination node. Route discovery is 

started when the source node initiates (broadcast) Route Request (RREQ) packet to all 

neighbouring nodes until packets arrive at their destination node. Upon receiving the RREQ 

packet, each node in this network rebroadcasts the packet to its neighbours’ nodes if it is not 

the destination node. Unlike (experiment 2 with Fuzzy Logic-A), when the destination node 

receives different RREQ packets, the time window is started from the first arrival of the RREQ 

packet. In this experiment, the destination node sends a Route Replay (RREP) packet per each 

received RREQ packet immediately without any delay. The time window here is also counted 

by three RREQ that are successfully received by the destination node. Unlike (experiment 2 

with fuzzy logic A), RREP packets are newly formatted by adding three new fields named 

Energy, positioning, and speed. All intermediates’ nodes add their energy capacity values and 

their positioning and speeds to RREP packets and forward that packet towards the source node 

in the same direction but with a reverse route all the way across the selected RREQ packet 

path. Therefore, the source node receives the RREP packet, which includes the whole route 

topology information. Unlike (experiment 2 with Fuzzy Logic-A), the source node calculates 

all information received of ∆d, ∆V, energy, and then RV values between each neighbouring 

node along the whole path from source to destination using fuzzy logic controller designed in 

previous experiment with same rules and configurations. When this calculation is completed 

as a crisp value, the reliability value 𝑅𝑉 𝑆,𝑑  is calculated using equation (4-10). While receiving 

the first RREP packet and starting the process to calculate its  𝑅𝑉 𝑆,𝑑  , the source node transmits 

data packet immediately from that discovered path to the destination node. When the next 

following RREP packet is received, similar calculation is started to get its 𝑅𝑉 𝑆,𝑑 . Source node 
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compares their 𝑅𝑉 𝑆,𝑑   with the transmitted packet route 𝑅𝑉 𝑆,𝑑 , and if the source node finds 

the new route with higher  𝑅𝑉 𝑆,𝑑 , the source node switches the transmission of data packet 

path to the new next reliable path. Same process is applied for the third RREP packet received.  

Three scenarios are applied in this experiment by sending data packets traffic of 200, 600 and 

1200 packet /second respectively from source node to destination node using (fuzzy logic – B) 

routing protocol method for 750 seconds each. Metrics such as end to end delay, throughput 

and packet delivery ratio has been measured for the three scenarios within this experiment. 

 

 Experiment 4: IHFN (Fuzzy Logic-B with Neural network) 

An adaptive improvement in routing method is proposed in this experiment by using hybrid 

routing protocol system based on combining fuzzy logic and neural network algorithms.  Three 

steps have been used to design route discovery procedure with decision making mechanism: - 

 

▪   Step 1- Simulate and Train ANN: 

In general, an Artificial Neural Network (ANN) with its learning and generalisation 

capability acts as an appropriate tool to predict the mobile node position [174]. In this 

experiment, a feedforward neural network was selected and used to predict the future node 

motion and other essential parameters within its dynamic environment. The training and 

testing datasets used in this system was obtained from the datasets generated from the 

previous experiment.  A total of (750 * 60) * 3 patterns has been used in this work (80% for 

training, 10% for validation and 10% for testing). The Neural Network (NN) prototype 

system used for prediction is shown in Figure 4-9. This figure illustrates the nodes’ four 

parameters, which are position (x, y), speed, and energy as inputs, and the next timing step(s) 

of the nodes’ four parameters which are position (x, y), speed, and energy as outputs.  

 

 

 

Figure 4-9 Neural Network prototype for pattern prediction.   
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The numbers of Hidden1 and Hidden2 of NN layers are selected by trial and error from this 

design. It has also been found that a small variation of numbers of hidden layers can affect 

the output prediction accuracy. The activation functions selected of a node was sigmoid 

function. The assumptions used for the inputs is the current values of position x(t), y(t), 

speed(t) and energy(t) to predict the next step(s) as an output such as x (t+n) y (t+n), speed 

(t+n), and energy (t+n), where n represents the prediction time step.  The training process 

consists of 96 epochs; an epoch represents one process cycle in the neural network. The 

batch size for training is 3000*3000. Figure 4-10 presents the degradation of mean squared 

error during a training phase. The iterations that was required for validation performance to 

reach a minimum value was 90 epochs. 

 

 

 

Figure 4-10 The mean squared error during the training. 

 

 

Figure 4-11 shows network regression values during training the system by the training set, 

validation set, test set, and the actual prediction values. The R values indicate the correlation 

between the outputs values and the input values (relationship). The best value of R is when 

R=1 m. It means then there is an exact linear relationship between the output’s values and 

the target’s values. But when R is equal or close to zero, then there is no linear relationship 

between the output’s values and the target’s values. 
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Figure 4- 11 The values of network regression for training set, validation set, testing set 

and all datasets. 

 

▪   Step 2-Route Discovery Procedure: 

The new adaptive routing protocol proposed in this experiment concentrates on adding 

future mobility and energy awareness to routing decision mechanism by using neural 

network pattern prediction technique and fuzzy logic algorithms together as one intelligent 

hybrid routing algorithm. The experiment is based on the use of the core network RWM 

model simulated with residual mobile battery energy value assigned per each node as per 

the previous three experiments. By assuming the source node does not have a route to the 

destination node, the route discovery is started when source node initiates (broadcast) a 

Route Request (RREQ) packet to all of its neighbouring nodes until packets arrive at their 

destination node. Each node in this network, upon receiving the RREQ packet, they 

rebroadcast the packet to its neighbours’ nodes if the node is not the destination node. At 

the destination nodes, when they receive different PREQ packets within a time window that 

started from the first arrival of the PREQ packet, the destination node sends a route replay 

packet (RREP) per each RREQ packet received without any delay. The time window here 
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in this work is also counted by three RREP that are successfully received at the destination 

node. The RREP packets are newly formatted just like previous experiments by adding three 

new fields named Energy, positioning, and speed. All intermediates’ nodes add their 

residual mobile battery energy values, positioning, and speeds to the RREP packet. 

Intermediate nodes forward the RREP packet towards the source node using the same route 

but with a reverse direction all the way the selected RREQ packet passed through. Therefore, 

the source node receives the RREP packet that includes the whole route topology 

information. Unlike (experiment 3 with Fuzzy Logic-B), the source node uses a neural 

network system. The four parameters (Energy, speed, and position (x and y)) data belong to 

all nodes that have been measured within the route path carried by the first RREP packet 

received is the input to the neural system. The output values of the neural system that 

represents the predicted next timing step(s) of the (position, speed, and energy) values, is 

used to calculate the values between each two neighbouring nodes (links) for the whole path 

by using fuzzy logic controller designed in previous experiments with same rules and 

configurations. Next, by using equation (4-10), 𝑅𝑉 𝑆,𝑑 is calculated as a crisp value. While 

receiving the first RREP packet, the source node transmits data packets immediately from 

that discovered path to destination node. The same procedure is applied when receiving the 

next following RREP packet by passing all the four parameters’ information to ANN system 

for prediction process before 𝑅𝑉 𝑆,𝑑  calculated , the source node will compare the new  

𝑅𝑉 𝑆,𝑑   with the transmitted packet route 𝑅𝑉 𝑆,𝑑 , if the source node find a route with higher  

𝑅𝑉 𝑆,𝑑 , it will switch the transmission of data packet path to that new reliable path. Three 

scenarios are applied in this experiment by sending data traffic of 200, 600 and 1200 packet 

/second respectively from source node to destination node using the proposed intelligent 

hybrid routing protocol for 750 seconds each.  

 

▪   Step 3- (NN1), (NN2) and (NN3) Prediction Values: 

In Step- 2 experiment, the output values from the neural network system for all four 

parameters (Energy, Speed, and position (x, y)) have been set in advance to predict the first-

time step (t+1), i.e., n=1 and it has been used later to calculate  𝑅𝑉 𝑆,𝑑  with higher values to 

complete the routing process. This step was namely as NN1, which represents the first 

scenario in this experiment. The second scenario namely NN2 was applied using the second 

prediction time step (t+2)), i.e., n=2 and it has been used later to calculate  𝑅𝑉 𝑆,𝑑  with 

higher values to complete routing process. Finally, the third scenario applied namely NN3, 
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it was applied using the third prediction time step (t+3)), i.e., n=3 and it has been used later 

to calculate  𝑅𝑉 𝑆,𝑑  with higher values to complete routing process. 

The three scenarios within this experiment were implemented using data traffic rates of 200, 

600, and 1200 packet /second respectively transmitted from the source node to the 

destination. Metrics such as end-to-end delay, throughput, and packet delivery ratio have 

been measured for the nine scenarios within this experiment.   

 

4.7 Simulation, Results and Discussion 

Performances of different routing protocols proposed under the same realistic mobility 

environments with different data packet rates have been evaluated using various quantitative 

metrics. In this work, popular performance evaluated metrics have been used for wireless Ad 

Hoc virtual cloud network routing protocols such as (throughput, end-to-end delay, and packet 

delivery ratio. The three measurements pause time (300, 500 and, 700 seconds) with respect to 

the simulation total time of 750 seconds have been selected to present and compare mostly the 

average results between all algorithms proposed. 

 

• Average Throughput: was calculated as the percentage of the quantity of data being sent / 

received by the unit of time.  The effects of each of the four experiments and scenarios 

included (AODV, Fuzzy logic-A, Fuzzy logic-B, IHFN with (NN1, NN2, and NN3 

scenarios) on network performance using the average throughput metric with three various 

data packet rates of 200, 600, and 1200 packet/sec applied to the networks are shown in 

Figure  4-12, Figure  4-13,  and Figure 4-14 respectively. The routing protocol of IHFN with 

proposed scenarios NN3 and NN2 have the highest throughput values. The new protocol 

with motion and energy predictions mechanism added further enhancements to calculate the 

best reliable path for data routing by increasing the accuracy of predicted networks future 

state in dynamic topologies. The more accurate calculations for reliable paths used have led 

to more packets going through the network, which shows better performance. The results 

also show the effectiveness of the other proposed routing protocols. The throughput of the 

AODV protocol have the lowest values because it has been affected by movements of nodes 

that changed their positions and speeds randomly during the whole simulation time, which 

frequently caused link failures. In addition, the limitation of battery energy values of each 

node and battery draining condition during the simulation time have also played a prominent 

role in the throughputs values results especially in AODV protocol that its routing selection 
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mechanism does not consider this essential parameter, which was related directly to all 

nodes responsible for forming the best routing path. Throughput results show also some 

differences and better improvements when using the parameters' prediction values with 

higher timing steps. The throughput value of the fuzzy logic-B protocol shows an average 

of 5% higher than the throughput value of the Fuzzy Logic-A protocol. These throughput 

improvements were caused by increasing the accuracy of measurements by collecting the 

updated values of node parameters during collection by switching from RREQ packets to 

PREP packets. These improvements are also caused by changing the location of routing 

decision analysis and technique used from the destination node to the source node.  In 

conclusion, the new IHFN routing protocol with its NN3 scenario has improved network 

throughput with an average of 20% compared to the traditional AODV routing protocol 

throughput value. 

 

 

 

 

Figure 4-12  Throughput at different protocols with 200 packets/sec data traffic.  
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Figure 4-13 Throughput at different protocols with 600 packets/sec data traffic.  

 

 

 

 

 

Figure 4-14 Throughput at different protocols with 1200 packets/sec data traffic.  
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• End-to-End Delay: It is defined as the average time it takes for the packets to propagate 

from the source node to the destination node across the network. The calculation also 

considers all possible delays caused by latency, buffering during discovery procedure, 

retransmission delays, queuing, transfer, and propagation times. A higher value of End-to-

End delay indicates that the network is congested, and there is an issue with the routing 

protocol used. End to End delay can be measured as follows: 

 

End to End delay = ∑ (arrival time – send time) / No. of Delivered packets ……….(4-11) 

 

Simulation results shown in Figures 4-15, 4-16, and 4-17 represent all proposed protocols 

for experiments that have been measured with three traffic data rates of (200, 600, and 1200) 

packet/sec, respectively. 

It is clear from the results that the AODV routing protocol has less end-to-end delay than 

the other cognitive protocols proposed. The higher delay for cognitive protocols presented 

in other experiments, such as fuzzy logic-based routing protocols, was mainly because of 

the time wasted to discover the reliable routes. The packets during the discovering time stays 

in the node buffer until valid route results found. This process takes some time and increases 

the average delay, while in the AODV routing protocol, the mechanism is based on choosing 

the shortest path as a reliable path. More delays occurred with the new IHFN routing 

protocol using their scenarios NN1, NN2, and NN3 due to the sequential mode of using the 

fuzzy logic discovering mechanism mentioned before in addition to the pattern prediction 

process used within its routing decision mechanism that added further delay to the system. 

Limited node buffer is filled much quicker during high mobility speed. Again, things are 

different with AODV that does not require that much processing to select the routing path. 

However, with high data traffic rates, unlike other protocols using a fuzzy logic concept, 

AODV shows more delay caused by high network links failure due to node mobility and the 

drain of some of the nodes’ battery charge. In this condition, more route maintenance is 

required that caused more delay in the network performance. 
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Figure 4-15   End-to-End Delay at different protocols with 200 packets/sec data traffic.  

 

 

 

 

 

Figure 4-16   End-to-End Delay at different protocols with 600 packets/sec data traffic.  
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Figure 4-17   End-to-End Delay at different protocols with 1200 packets/sec data traffic.  

 

• PDR packets delivery ratio: This is the ratio between the number of packets received by 

the destination node to the number of packets sent by the source node.  

 

PDR = [(Packets Received /Packet sent)] *100  ………………………………………(4-13)  

 

Simulation results shown in figures (4-18), (4-19) and (4-20) represent all proposed 

protocols as experiments and scenarios that were measured with three different traffic data 

rates (200, 600, and 1200) packet/sec, respectively.  

Results in scenarios NN2 and NN3 routing protocols provide a higher PDR ratio than other 

presented protocols. Using the fuzzy logic concept in routing path selection mechanism such 

as in Fuzzy Logic-A, Fuzzy Logic-B and IHFN routing protocols have improved the 

network performance. It gives a high PDR ratio by choosing only a reliable path different 

from the traditional AODV routing protocol that used the shortest path mechanism. 

However, a further enhancement to the network performance was applied by adding a 

prediction mechanism of essential network parameters using the new IHFN routing 

protocol. The prediction mechanism increased the accuracy of results to select reliable data 

routing paths in dynamic topologies networks condition. 
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Figure 4-18   PDR at different protocols with 200 packets/sec data traffic.  

 

 

 

 

 

Figure 4-19   PDR at different protocols with 600 packets/sec data traffic.  
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Figure 4-20   PDR at different protocols with 1200 packets/sec data traffic.  

 

Results proved that reactive traditional protocols do not always provide better network 

performance because its more sensitive to the mobility, traffic rates flow, and link connectivity 

changes rates compared to intelligent techniques that are more adaptable to network changes. 

 

 

4.8 Summary 

Virtual Ad Hoc Mobile Cloud Networks (AVMCCNS) can be considered as a technique full 

of uncertainties because of their dynamic topology’s features, different application contexts, 

and dynamic traffic. In AVMCCNS, due to the low signal power, limited bandwidth, and high 

mobility, the wireless links are frequently broken, requiring frequent new connections to be 

established. The dynamic network topology and the emergence of new intensive and time-

sensitive mobile cloud applications can be considered significant challenges for network 

routing algorithms. Therefore, traditional routing protocols may not be the right choice for 

cloud networks because they cannot be efficiently handled to provide QoS required for a 
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particular cloud application nor do they have the capability to adapt to any network topology 

changes. 

This chapter introduced intelligence routing algorithms and enhancement techniques that 

improved network performance in AVMCCNS, where the work aims were achieved by the 

proposed adaptive Intelligent Hybrid Fuzzy-Neural routing algorithm (IHFN) which was 

simulated based on a core network that consists of realistic random mobility RWM model in a 

virtual Ad Hoc mobile cloud network of 60 nodes with three data traffic rates applied (Low 

with 200 packets/sec AODV as traditional protocol, Fuzzy Logic-A, Fuzzy Logic-B and IHFN 

that were presented with three scenarios). The new IHFN routing protocol was designed based 

on combining a fuzzy logic system that offered a natural way of reasoning and representing the 

problems and a neural network system that added an intelligent awareness capability of 

movement and resource values patterns that are considered as essential parts of network’s state 

information. Results of the new IHFN routing protocol with NN3 scenario shows 

improvements in network performance with an average of 20% throughput and an average of 

25% PDR higher than traditional AODV routing protocol. In addition to that, the routing 

protocol throughput value of the Fuzzy Logic-B shows an average of 5% higher than the 

routing protocol throughput value of the Fuzzy Logic-A. These throughput value 

improvements were caused by increasing the accuracy of measurements by collecting the 

updated values of node parameters when switching from RREQ packets to PREP packets. 

These improvements are also caused by changing the location of routing decision analysis and 

technique used from the destination node to the source node.   

As a result, using an intelligent hybrid routing algorithm by adding pattern prediction features 

to the fuzzy logic algorithm, it was shown to have noticeable advantages, for instance: 

• Improves the routing decision by adding the ability to switch over to another alternative 

route before the current working link is disconnected or disrupted either by draining node 

resources below the required or operational threshold or by its movements.  

•   Improve the routing decision by adding the ability to predict the future or the available 

resources and locations of nodes intelligently. 

•   Improvements in an accurate real-time view of almost the whole dynamic network 

topologies. 
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Chapter 5 

 

5 Evaluation Performance of Different DL 

Algorithms in Mobility and Energy 

Pattern Prediction System  

 

5.1 Introduction 

With the on-going developments for cloud applications, there is always a massive increase in 

cloud users' demands with mobile communication technology. It is essential in this case to 

provide uninterrupted network access and high-quality services, especially when working in 

mobility with limited resources environments and when the applications required are time 

sensitive. Mobile networks create a huge amount of information, either as data or control 

information. This information can be useful to improve the quality of services provided to the 

mobile user and the network performance in general.  Thus, there is always an increase in the 

need to use cognitive solutions in cloud networks by using network information intelligently 

to overcome all challenges related to routing and data management currently used by traditional 

networks. Many researchers have focused on using mobile users' movement patterns to 

improve the conditions and performance of communications and services [175]. With the 

various existing mobility models, large volumes of data like mobile positioning, energy and 

speeds can be sensed and collected form the network, which can be highly useful to improve 

network performance. In VAMCCNs, the advantages like minimising node energy 

consumption and improving routing decision can be achieved using mobility prediction [176]. 

Mobility prediction in cognitive networks is a useful technique that can be utilised by mobile 

devices and wireless networks, focusing on effective and efficient resource management of 

networks, and predicting mobile users' future locations [177]. 

An increase in orientation towards using machine learning algorithms as a powerful approach 

for pattern prediction in a mobility environment causes a significant variation in the accuracy 
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of each algorithm performance used, which became a serious challenge in improving cognitive 

network data management routing protocols concepts design. 

This work aims to discuss six selected Deep Learning (DL) algorithm performances to predict 

the future steps of position, speed, and energy of nodes based on the dataset collected from the 

mobile Ad Hoc network with a realistic RWM model with different data traffic rate scenarios. 

This work also goes one step beyond, by presenting two different techniques for using datasets 

to train and test the same algorithms to predict the next 300-time steps. Datasets of five 

randomly distributed nodes have been used in this experiment to get a trustable and more 

accurate analysis of the results extracted from the experiment. 

 

5.2 Research Gap 

Mobile location can easily be identified with a large degree of localization accuracy using 

technologies like GPS used to provide positioning with an excellent sample rate. Some 

previous research used the location-based concept by using location history shared by social 

networking applications. Research approaches to the prediction of the location have been 

improved with higher precision and greater feasibility. In [97], the author presented a mobile 

location identification method using mobility patterns predictions taken from the history of 

mobile movements' path by collecting the data of time, location, and mobile user's current state. 

Markov Model [178] is one of the traditional presented approaches. This model uses one order 

and multiple order state transition matrix to form people's mobility pattern. In [179], the author 

proposed a mobility prediction model based on the n-Mobility Markov Chain algorithm to 

predict the next location of the mobile user using the previous (n) visited locations. There were 

several other types of studies and research conducted by many researchers to overcome 

location prediction problems. The rising interest in artificial intelligence and machine learning 

in the pattern prediction system is well illustrated by the sharp increase of developments and 

research interest in this domain. Mobility prediction in Ad Hoc neural networks is also an 

important method to improve routing decisions in wireless mobile Ad Hoc networks. In [180], 

the author proposed a recycling time series production using a recurrent neural network with a 

scheme that predicts mobile movement in Ad Hoc networks. This scheme is based on a multi-

layer and recurrent neural network using backpropagation through a time algorithm for 

training. The prediction of the node's future destination is performed by stable path estimation, 

which leads to an optimal routing process. Another approach to comparing the performance of 

different techniques using mobility prediction, is presented in [181] where author evaluated the 
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performance of using time-series forecasting techniques for vehicular mobility prediction. The 

work started by extracting vehicles’ movements featured into times series sequence of 

observations and used them as an input to different machine learning predictors. The 

performance of each algorithm used was evaluated and compared with others for accuracy 

based on Route Mean Square Error (RMSE). 

 

5.3 Proposed System 

A dataset was created and collected from a virtual Ad Hoc mobile cloud network with  RWM 

mobility model and with three data traffic rate scenarios. This proposed work started by 

creating three datasets from the original datasets collected.  

The first dataset is called DATA-Comp, consisting of all original datasets collected, combined, 

and separated into two sets of data, training and testing datasets. This dataset was applied in 

the first experiment named (Comparison Experiment).  In this experiment, six selected machine 

learning models (RNN, GRU, Bi-Directional LSTM, LSTM, CNN, LSTM and Stacked LSTM) 

were used, where each of these models has been trained with the (DATA-Comp) training 

dataset and tested with the DATA-Comp testing dataset for x, y, speed, and energy parameters. 

Results were compared between all algorithms to find a suitable model for pattern prediction 

that has less error value, where the metric used for comparison is the Root Mean Square Error 

(RMSE). The second experiment proposed (Single-Multiple Experiment) applied as two 

scenarios representing two techniques of using the datasets for training and testing the same 

algorithms for the pattern prediction model. Comparison of results gives a good indication of 

the influence of dataset technique used that improves the process to give better prediction 

results. The second experiment used five randomly selected nodes (7, 15, 24, 33 and 48) for its 

analysis.  The (DATA-Single) is the dataset arranged from the original dataset collected of 

each node individually that was used for the first scenario.  Each node dataset combined its 

(three data traffic rates) then splits into training and testing. Five single datasets were formed 

and applied separately to all the six deep learning models (RNN, GRU, Bi-Directional LSTM, 

LSTM, CNN, LSTM and Stacked LSTM).  Results of predicting positioning (x, y), speed and 

energy parameters were calculated using the next 300-time steps.  RMSE was the metrics used 

to evaluate each machine learning model's performance per each node per each parameter. 

The second scenario used (DATA-Multiple datasets). These datasets were obtained from taking 

the original total dataset collected of 60 nodes to extract the training dataset from it, while the 

testing datasets were taken from the same five selected nodes used in this experiment's first 
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scenario. The (DATA-Multiple) datasets were applied to the same six selected machine 

learning algorithms. The results of predicting the positioning (x, y), speed, and energy 

parameters were calculated using the next 300-time steps. RMSE value is a metric used to 

evaluate each algorithm model's performance per each node per each parameter. 

Finally, both scenarios' results were compared and analysed to find the best technique for 

arranging training and testing datasets to be applied to ML algorithms to get better accurate 

result for the pattern prediction models.  

 

 Datasets (Creation and Collection)  

Datasets have been created and collected from a Virtual Ad Hoc mobile cloud network with 

RWM mobility model with three data traffic scenarios. All scenarios were simulated using 

MATLAB R2020a 64-bit platform. The network includes 60 Ad Hoc mobile nodes moved 

according to the RWM mobility model and two other nodes as a source and destination. The 

grid size selected for this mobility model (the arena of the simulation) was set to 600X600. 

Parameters for this network has been selected as shown in table 5-1. 

 

Parameters 

Mobility Model  RWM model 

Area of deployment  600x600 𝑚2 

Number of nodes   60 

Simulation time   750  

speed (max. and min.) [0, 8] m/s 

Pause time (max. and min.) [0,1] sec 

MNs Max. charging capacity 

100% 

 3000 joules = 4 Watt 

Transmission Range  100m 

Packet size  CBR 

Packet rates  Low rate (200 packet/sec)  

Medium rate (600 packet/sec) 

High rate (1200 packet/sec) 

 

                                  Table 5-1   RWM Parameters.  

 



5.3  Proposed System 

 

95 

The dataset collection experiment started by distributing all of the 60 nodes into randomly 

distributed initial positions (x, y) within the simulation arena; each of the 60 nodes stayed in 

its initial location for a certain selected randomly distributed period (pause time) between [0-

1] sec. As soon as this time comes to an end, each mobile node is assigned a new randomly 

distributed destination within the simulation arena and given a uniformly distributed random 

speed range between [0-8] m/sec. Upon arrival, the mobile node takes another pause for a 

specific random period of time before doing the same process until the simulation time of 750 

ended. By using a null matrix, all variables are initialized and then all new values are being 

collected and saved inside it. In this experiment also, a full charge capacity of each node has 

been assigned as an estimation to be 4 watts which converted to 3000 Joules for 750 seconds 

periods that represents the simulation time by using the following equations: 

 

𝐸(𝐽) = 𝑃(𝑊) ∗ 𝑡(𝑆)                                                       (5-1) 

 

Where the energy E in joules (𝐽) is equal to the power P in watts(W), times period in seconds(s). 

Mobile node numbers from 1 to 20 are assigned randomly with residual mobile battery energy 

values between 0 and 50% of its maximum charging capacity. Mobile node numbers from 21 

to 40 are assigned randomly with residual mobile battery energy values between 25 to 75% of 

its maximum charging capacity. Finally, node numbers from 41 to 60 are assigned randomly 

with residual mobile battery energy values between 50 to 100% of its maximum charging 

capacity. The experiment started with RWM movements for all 60 nodes, where three scenarios 

applied by sending data traffic packets of 200, 600 and 1200 packets /second respectively from 

the source node to the destination node using an AODV routing protocol for 750 seconds 

simulation time each. Values of each node’s positioning, speed and battery charging capacity 

were measured and saved for the whole simulation time (750 sec) for the three scenarios. 

Datasets were saved in Comma Separated Values (CSV formats). 

 

 Training and Testing Datasets Forms for The Two Experiments. 

In this work, two experiments have been applied, a Comparison Experiment and a Single-

Multiple dataset experiment.  Datasets for training and testing were formulated according to 

these experiments' main requirements and the work's aims. For that reason, three datasets were 

obtained from the total datasets collected to perform the two proposed experiments. 
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The original total datasets have been created and collected from the simulation outputs of 60 

nodes Ad Hoc mobile network.  All nodes in mobile condition is based on RWM mobility 

model with three data traffic scenarios applied (low, medium, and high).  The simulation time 

selected was 750 seconds time slots that represented the whole simulation period per each 

scenario, which can also be considered the size of rows of dataset per node per scenario.  Four 

parameters (columns) of data measured represent (x, y) for positioning, speed, and energy of 

the nodes. It means that the total dataset consists of the following information: 

Total dataset per parameter (column) = (750 *60*3) = 135000 data rows, here 750 represents 

the time steps readings saved, 60 represents the number of nodes, and 3 represents the number 

of data traffic rate scenarios used. The three datasets were formulated as shown below: 

 

•   For the First Experiment (Comparison Experiment)  

DATA-Comp. 

The original data collected were divided into the training dataset and testing dataset to train 

and test the six selected models’ performance representing the first experiment. 

The total dataset per parameter (column) is consisting of (750 *60*3) = 135000 data then 

by splitting the last 100 time slots per each node per each data traffic rate for testing. the 

remaining were used for training, the two datasets was formulated as shown below: 

Training dataset = 650*60*3 = 117000 rows * 4 columns 

Testing Datasets = 100*60*3 = 18000 rows * 4 columns 

Figure 5-1 illustrates the training and testing dataset rows and columns used in this 

experiment as the main dataset.   
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Figure 5-1   Training and testing datasets used in the first Experiment- DATA-

Comp. 

 

 

•   For the Second Experiment (Single-Multiple Scenarios)  

- (DATA-Single) Dataset  

DATA-Single, represents the datasets that was used for the second experiment for the 

single node datasets scenario. Dataset collected per each node was used separately for 

training and testing each algorithm. The total dataset per each node was split as shown 

below: 
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Total dataset = (750 *60*3) = 135000 data * 4 columns 

Training dataset = 650*3 = 1950 rows * 4 columns per each node 

Testing Datasets = 100*3 = 300 rows * 4 columns per each node 

Five nodes were randomly selected for this experiment, these nodes are (7, 15, 24, 33 

and 48). 

 

Figure 5-2 illustrates an example of node 24 datasets with its training and testing dataset 

rows and columns to form a single dataset (DATA-Single).   

 

 

   Figure 5-2   Training and testing datasets for node 24- DATA-Single. 
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- (DATA-Multiple) Dataset  

This dataset was used for the second experiment in the multiple node’s datasets 

scenario. The training and the testing datasets obtained from this scenario was applied 

to each of the six selected algorithms. 

DATA-Multiple datasets were formulated from the total original dataset as follows: 

Training dataset = 650*60*3 = 117000 rows * 4 columns 

Testing Datasets = 100*3 = 300 rows * 4 columns 

As shown above, the training dataset includes the whole data of the 60 nodes out of 100 

times slots per each node per each data traffic rate, the 100-time slots left of any specific 

node multiplied by three which reparents the data traffic scenarios formed the training 

dataset. The same five randomly selected nodes before (7, 15, 24, 33 and 48) are used 

for testing the dataset to make the required comparison. 

Figure 5-3 illustrate an example of training and testing dataset rows and columns for 

node 24 that was used as multiple datasets.   

 

 

 

      Figure 5-3   Training and testing data for node 24- DATA-Multiple. 
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In Figure 5-4, the plotted graph illustrates an example of the user mobility speed data for 

the five selected nodes, the X-axis is representing the simulation time slots and Y-axis is the 

speed in (m/s). This data was used for the second experiment (Single-Multiple) training 

dataset. 

    

 

Figure 5-4   Example of five nodes speed dataset for (Single-Multiple) training dataset. 

 

5.4 Simulation and Results 

Python version 3.7.4 has been selected for this experiment because it is considered one of the 

most preferred programming languages for simulating machine learning as the syntaxes used 

are easy and simple to learn [129]. Jupyter Notebook was used in this work as an open-source 

web application; it includes all opensource required in providing data analysis and for machine 

learning algorithms. 

The selected models used for comparison for both experiments are:   

- Recurrent Neural Network (RNN). 

- Long short-term memory (LSTM) 

- Gated Recurrent Unit (GRU). 

- Conventional neural network-LASTM (CNN-LSTM). 

- Bi-directional LSTM. 

- Stacked LSTM. 

 

 Experiment 1 (Comparison Experiment)  

In this experiment, DATA-Comp training and testing datasets were applied for all six 

algorithms. The prediction results of these models (RNN, GRU, Bi-Directional LSTM, LSTM, 
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CNN, LSTM and Stacked LSTM) with respect to the position x, position y, speed and energy 

are shown in the Figures 5-, 5-6, 5-7 and 5-8 respectively. 

 

 

Figure 5-5 Predicted values of position x for all algorithms. 

 

 

 

Figure 5-6 Predicted values of position y for all algorithms. 

 

 

 

Figure 5-7 Predicted values of speed for all algorithms. 
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Figure 5-8 Predicted values of energy for all algorithms. 

 

Table 5-2 illustrate the final results of the prediction in the route mean square error (RMSE) 

values. The results have also been plotted as a bar chart as shown in figure 5-9. 

 

 

Table 5-2 RMSE values of the total algorithms comparison results. 

 

Figure 5-9 RMSE values of all algorithms.  
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The bar chart above shows the results in RMSE when applied (DATA-comp) on all the six 

algorithms (RNN, GRU, Bi-Directional LSTM, LSTM, CNN, LSTM and Stacked LSTM) to 

predict the next steps for nodes parameters (x, y, speed, and energy). Stacked- LSTM has the 

lowest errors with the prediction results for all four parameters used in mobility and energy 

prediction. RNN and LSTM models also show very good results, while for the other three 

algorithms models (CNN-LSTM, BI- Directional LSTM and GRU), the results were good with 

respect to the prediction of the position (x, y) and speed parameters, but they gave a large error 

value when energy values were predicted. It can be concluded that the shape of the data pattern 

evaluated, affecting algorithms' performance sometimes makes the algorithms give 

inconsistent and inaccurate results. However, for other algorithms like Stack LSTM, RNN and 

LSTM, there were more reliable in this experiment when dealing with complex datasets. 

 

 Experiment 2 (Single- Multiple node datasets experiment) 

In this experiment, two scenarios (techniques) were implemented: 

▪ Single node dataset:  In this technique, each node dataset with its three scenarios were 

combined as a single dataset (DATA-single), and it was split into training and testing 

datasets and was applied on all six deep learning algorithms selected (RNN, GRU, Bi-

Directional LSTM, LSTM, CNN, LSTM and Stacked LSTM) to predict the next 300-time 

steps. Five single datasets related to nodes (7, 15, 24, 33 and 48) have been selected for this 

experiment separately for the four parameters (x, y, speed, and energy).  

▪ Multiple node dataset:  In this technique, the total original dataset has been extracted to 

get the training dataset, while for the testing dataset, the same datasets have been used in 

single node scenario for the same five selected nodes. The final datasets (DATA-Multiple) 

were applied into all six deep learning algorithms selected (RNN, GRU, Bi-Directional 

LSTM, LSTM, CNN, LSTM and Stacked LSTM) to predict the next 300-time steps. The 

same five single datasets related to nodes (7, 15, 24, 33 and 48) have been selected for this 

experiment separately for the four parameters (x, y, speed, and energy).  

Both scenarios’ results of the single-node model and multiple nodes model were calculated and 

compared based on using the datasets of the five nodes selected and by applying it to all six 

deep learning algorithms. Figures  5-10,  5-11 ,  5-12,  and  5-13  illustrate an example of the 

results comparison for node 48  dataset to predict the next 300-time steps for position x, y, 

speed and energy parameters respectively using both techniques single and multiple models by 

applying them to all six selected algorithms. 
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Figure 5-10 Single- Multiple techniques comparison for node 48-X prediction parameter. 
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       Figure 5-11 Single- Multiple techniques comparison for node 48-Y prediction parameter.   
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Figure 5-12 Single- Multiple techniques comparison for node 48-speed prediction parameter.  
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Figure 5-13 Single- Multiple techniques comparison for node 48-energy prediction parameter. 
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The final comparison results in RMSE values for nodes (7, 15, 24, 33 and 48) datasets have 

been illustrated in Appendices (A, B, C, D, and E) respectively. The results show each node's 

four parameters to predict the next 300-time steps using single and multiple node datasets 

techniques applied to all six parameters. 

Figure 5-14 illustrates the bar chart for all single node model final results (five selected nodes 

with all six algorithms) of Position x, y, and Energy while for the speed’s result, it is illustrating 

separately in Figure 5-15. 

 

 

Figure 5-14  Single node model scenarios with Position x, y, and Energy final results. 

 

 

 

Figure 5-15  Single node model scenarios with the Speed final results. 
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Also, Figure 5-16 illustrates the bar chart for all Multiple nodes model final results (five 

selected nodes with all six algorithms) of Position x, y, and Energy while for the speed’s result, 

it is illustrating separately in Figure 5-16. 

 

 

Figure 5-16  Multiple nodes model scenarios with Position x, y, and Energy final results. 

 

 

 

Figure 5-17  Multiple nodes model scenarios with the Speed final results. 

 

Based on the above final results for the second experiments: 

▪ Stacked LSTM, RNN and LSTM algorithms, gave lower RMSE values with the next 

300-time steps prediction for x, y, speed, and energy using the multiple nodes dataset 

compared to single node dataset. 

▪ With Bi-Directional-LSTM algorithm, the RMSE values were lower when using a 

single node dataset compared to multiple node dataset.  
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▪ In GRU and CNN-LSTM algorithms, RMSE values were lower in multiple node 

dataset for x, y and energy parameters but with speed parameters situation is different 

as its more accurate to predict the next 300-time steps for the speed using the single 

node.  

It can be concluded that: 

1-  Datasets contents used for training and testing were considered a critical factor in 

getting better performance. From the second experiment, different algorithms showed 

different performance related to the training and testing dataset techniques used. 

2- GRU control the flow of data like the LSTM but without having to use memory and 

that was the reason of the GRU results. GRU algorithm trains faster and performs better 

than LSTM on less training data and that was the main reason of inconsistent results. 

3- Bi-Directional-LSTM is not appropriate for all sequence prediction problems. 

4- CNN-LSTM is used for predictions that are interrelated and have longer dependencies 

and because the datasets used did not have longer dependencies, the results were 

inconsistent and inaccurate.   

5- In general, according to the results shown, multiple nodes dataset provides better 

accuracy for motion prediction than single node dataset.  

 

5.5 Summary 

 

This chapter presents some of the deep learning algorithms (RNN, GRU, Bi-Directional 

LSTM, LSTM, CNN-LSTM and Stacked LSTM) that can be used for mobility pattern 

prediction. Based on the original datasets that were created and collected form virtual Ad Hoc 

mobile cloud network with a realistic RWM mobility model with three data traffic rates 

scenarios. In this work, three new datasets have been formed namely DATA-Comp, DATA-

Single, and DATA-Multiple form the original datasets collected. Two experiments were 

presented. In the first experiment, the six selected algorithms were trained and tested with 

DATA-Comp datasets to predict the positions of (x, y), speed and energy parameters. 

Evaluating the results shows that Stacked-LSTM gives highly accurate results (Low RMSE). 

RNN and LSTM algorithms also provide very good accurate prediction values. However, the 

other three CNN-LSTM, Bi-Directional LSTM and GRU, algorithms show good prediction 

accuracy with respect to the positioning x, y and speed but not for the energy.  
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The second explement consists of two scenarios, Single node dataset with its datasets DATA-

Single and Multiple nodes dataset with its datasets DATA-Multiple. Five datasets related to 

nodes (7, 15, 24, 33, 48) were selected randomly from the total of 60 nodes.  The selected 

algorithms were trained and tested using these two models to predict the next 300-time steps 

for the four parameters x, y, speed, and energy per each node form the five selected. Results 

evaluated and compared to find suitable techniques that might show more accurate prediction 

results.  Stacked LSTM, RNN and LSTM show Lower RMSE values for the next 300-time 

steps prediction for x, y, speed, and energy using DATA-Multiple dataset compared to the 

DATA-Single dataset. While in Bi-Directional-LSTM, RMSE values were lower when using 

DATA-Single dataset compared to DATA-Multiple dataset.  In GRU and CNN algorithms, 

RMSE values were lower using DATA-Multiple dataset for x, y, and energy parameters. 

However, the speed parameters results were different as it was more accurate to predict the 

next 300-time steps for the speed using DATA-Single dataset. 

Prediction accuracy results in this work influence the complexity of datasets used. The impact 

on prediction results for a moving node is different from the same prediction model's impact 

when the node position is the same per time. That also includes the speed and energy values' 

influences on prediction accuracy due to their inconsistent patterns. Furthermore, the various 

characteristics of the used algorithms have played a significant role in final accuracy results. 

In conclusion for experiment two, using all nodes datasets for training and testing algorithms 

gives higher accurate results regarding node movements and energy predication than using 

only individual node dataset to train and test the same algorithms to get the movements and 

energy prediction values of the same node. 
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Chapter 6 

 

6 CONCLUSION AND FUTURE WORKS 

 

6.1 Conclusion 

 

Cloud Networking, or sometime called as cloud-based networking, refers to the network 

resources and network management functionality that must be available to enable cloud 

computing. A good example of cloud networking is the provisioning of high reliability and 

high performance networking between the cloud provider and the user; this will include the 

traffic that passes between them. Cloud networking presents imposing challenges for an 

efficient and effective flow of data traffic through networks. There are many vital research 

projects concerning the management of cloud-based networks. The background research on the 

related areas of cloud computing networks illustrates the drawbacks and benefits of cloud 

networks. Traditional cloud-based networks composed of different interworking technologies 

(wired and wireless) reach a point where existing network traffic management, maintenance 

methods, and routing protocols will be no longer capable of carrying on with the raised level 

of traffic by the emerging new cloud applications. The use of adaptive cognitive concepts is an 

encouraging method to overcome these challenges. Hence, applying cognition to the cloud 

network will create a network that will respond to demanding applications' requirements more 

efficiently, effectively, and adaptively. 

This thesis focused mostly on improving end to end cloud network performance by addressing 

the challenges shown in AMCCNs architectures as a working case. Link breakage, routing, and 

network information data analysis are the main areas selected in this thesis because of their 

adverse effects on data communications' overall performance in cloud networks and the 

services provided to the user. Throughout this thesis, adaptive approaches have been presented 

to help alleviate these issues by applying the concept of cognitive networks to the virtual mobile 

Ad Hoc cloud networks. 

Cognitive Routing and data management in the Heterogeneous Mobile Cloud Computing 

Networks model (HMCCNs) have been presented. This new model optimises the utilisation of 
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heterogeneous computing and network resources in cloud network environments by integrating 

different cloud network architectures into one workflow. In this work, HMCCNs has been 

proposed by created AMCCN that was integrated with MCCN to overcome routing path 

congestion and link breakage issues. Two approaches for traffic management, namely: optimal 

cloud model selection and routing decisions, were proposed. The first approach suggested 

using FAH model, and the second suggestion is using a cognitive SDN controller. The 

experiments' results show that using HMCCNs model concept leads to improvements in the 

network's end-to-end performance with respect to throughputs, network latency, and reducing 

power consumption of nodes. A further experiment has been implemented that shows the 

improvements in network latency when using an SDN network compared to a traditional 

network. 

Moreover, this thesis's work highlighted traditional routing challenges in AMCCNs and 

proposed an adaptive IHFN routing protocol. The new proposed protocol and the other 

protocols AODV, Fuzzy Logic-A and Fuzzy Logic-B, have been evaluated and compared. 

From the simulation results, it can be seen that IHFN protocol provides better results than the 

other three protocols AODV, Fuzzy logic-A, and Fuzzy Logic-B in terms of network 

throughput and packet delivery ratio. There were improvements in network performance firstly 

because the new hybrid protocol was designed based on fuzzy logic concept that offered a 

better way to select the reliable routing path using essential parameters like node movements 

and battery energy values, and secondly, by integrated that fuzzy logic concept with a neural 

network system, which added an intelligent awareness capability of nodes future movement 

and resources usage patterns also networks future states information to the routing process. The 

dynamic topology characteristic is responsible for the unsatisfactory performance of several 

routing algorithms in the cloud network, especially in the mobile cloud network. In contrast to 

other routing algorithms, the hybrid fuzzy-neural protocol is based on customising matrices 

related to mobility and nodes energy values and pattern predictions that gives extra features 

when making routing decisions. Finally, in this thesis, while there are many benefits to 

implementing machine learning in different areas, including pattern prediction systems, it is 

also important to know the potential limitations to its implementations and the impact of 

datasets complexity in prediction results accuracy. For those reasons, a new adaptive work was 

presented based on a dataset collected from the simulation of mobile Ad Hoc network with a 

realistic RWM mobility model with three data traffic rates scenarios. Three datasets have been 

formed from the original datasets that were used in two experiments. The performance 

behaviours of six selected DL algorithms have been evaluated and compared to predict the next 
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steps of position, speed, and residual battery energy values of mobile nodes. Results were 

analysed concerning pattern prediction accuracy and have shown differences in algorithms 

performance. A second experiment highlighted the effect of using either single node dataset or 

multiple nodes dataset techniques on prediction accuracy results when applied on the same 

selected DL algorithms.  

 

6.2  Direction to Future Work 

All experiments and scenarios in this thesis were designed and presented to show the important 

changes that cognitive algorithms bring to cloud networks in order to improve the network's 

performance. The outcomes of introduced cognitive algorithms applied to HMCCNs in general 

and to VAMCCNs in particular have been presented. 
Results were satisfactory with cognition network when compared with a network without 

cognitively. However, there are further works that can implement in the future. 

We identify the following areas and topics of future work. 

• Create scenarios using different traffic with multiple source nodes and multiple destination 

nodes in order to show the general suitability and applicability of our proposed integrated 

fuzzy logic and neural network routing algorithms. 

• Using different mobility models with the new hybrid protocol presented and to compare its 

effect on network performance. 

• Using optimisation techniques like Particle Swarm Optimisation (PSO), genetic algorithms 

(GA) or Ant Colony Optimisation (ACO) to make further improvements to the prediction 

system used. 

• Currently, each cloud provider makes its own infrastructure to serve efficient cloud services 

to the users anywhere and anytime. Therefore, all the management is performed in a 

centralised way. It will be an excellent approach if some providers integrate to enable each 

one of these providers to access and use the infrastructure of the others; this will help to 

reduce the cost of deployments and will achieve better efficient utilisation of the whole 

available resources. In addition, it will allow the user to migrate and get services from more 

than one cloud provider. 
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RMSE – Single-Multiple datasets comparison for Node 7. 
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RMSE – Single-Multiple datasets comparison for Node 1. 
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RMSE – Single-Multiple datasets comparison for Node 24. 
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RMSE – Single-Multiple datasets comparison for Node 33. 
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RMSE – Single-Multiple datasets comparison for Node 48. 
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